Windows

Internals
Part 2

SIXTH
EDITION

Mark Russinovich
David A. Solomon
Alex lonescu

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2012 by David Solomon and Mark Russinovich

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

Library of Congress Control Number: 2012933511
ISBN: 978-0-7356-6587-3

Printed and bound in the United States of America.
First Printing

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of
their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the authors’ views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or
distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly by
this book.

Acquisitions Editor: Devon Musgrave

Developmental Editor: Devon Musgrave

Project Editor: Carol Dillingham

Editorial Production: Curtis Philips

Technical Reviewer: Christophe Nasarre; Technical Review services provided by Content Master,
a member of CM Group, Ltd.

Copyeditor: John Pierce

Indexer: Jan Wright

Cover: Twist Creative « Seattle

To our parents, who guided and inspired us to follow our dreams

Contents at a Glance

Windows Internals, Sixth Edition, Part 1 (vailable separately)

CHAPTER 1 Concepts and Tools

CHAPTER 2 System Architecture
CHAPTER 3 System Mechanisms
CHAPTER 4 Management Mechanisms
CHAPTER 5 Processes, Threads, and Jobs

CHAPTER 6 Security
CHAPTER 7 Networking

Windows Internals, Sixth Edition, Part 2

CHAPTER 8 1/0 System 1
CHAPTER 9 Storage Management 125
CHAPTER10 Memory Management 187
CHAPTER 11 Cache Manager 355
CHAPTER 12 File Systems 391
CHAPTER 13 Startup and Shutdown 499

CHAPTER 14 Crash Dump Analysis 547

Contents

Windows Internals, Sixth Edition, Part 1
(See appendix for Part 1's table of contents)

Windows Internals, Sixth Edition, Part 2

INtroduction XV
Chapter 8 1/0 System 1
I/0 System Components 1
The I/OManager 3
Typical I/O Processingovuuin e 4
DeVvice DIFIVEIS . ..ot 5
Types of Device Drivers. 5
Structureof aDriver 12
Driver Objects and Device Objects.cooiii.... 14
Opening DeviCes 19

[/O PrOCESSING « . vttt e et e e 25
Types of 1/O. ..o 25

I/O Request to a Single-Layered Driver........................ 33

I/O Requests to Layered Drivers ..., 40

I/O Cancellationo 48

I/O Completion Ports ..o 53

I/O Prioritization. 58
Container Notifications. 65
Driver Verifier 65
Kernel-Mode Driver Framework (KMDF) 68
Structure and Operation of a KMDF Driver..................... 68
KMDF Data Model 70
KMDF I/OModelo 74

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

vii

viii

Contents

Chapter 9

User-Mode Driver Framework (UMDF). 78

The Plug and Play (PnP) Manager ..., 81
Level of Plug and Play Support ..., 82
Driver Support for Plugand Play 82
Driver Loading, Initialization, and Installation 84
Driver Installation. oo 94

The Power Manager.ouuu e 98
Power Manager Operation. ..., 100
Driver Power Operation ... 101
Driver and Application Control of Device Power............... 105
Power Availability Requests i 105
Processor Power Management (PPM)o ... 108

CoNCIUSION . .o oot 123

Storage Management 125

Storage Terminologyoooiuiii 125

DisK DEVICESttt ettt 126
Rotating Magnetic Disks. 126
Solid State Diskso 128

Disk DFIVEIS . . .t e 131
Winload 132
Disk Class, Port, and Miniport Drivers 132
Disk Device Objects. 136
Partition Manager 138

Volume Management. 138
Basic Disks 139
Dynamic Disks. ... 141
Multipartition Volume Management 147
The Volume Namespace.t 153
Volume I/O Operations. 159
Virtual Disk Service ... 160

Virtual Hard Disk Support....... ... 162
Attaching VHDS 163
Nested File Systems. 163

BitLocker Drive Encryption ... 163
Encryption Keys 165
Trusted Platform Module (TPM) 168
BitLocker Boot Process ... 170
BitLocker Key Recovery. ..o 172

Full-Volume Encryption Driver., 173

BitLocker Management. 174
BitLocker TOGO ..o oo 175
Volume Shadow Copy Service, 177
Shadow CopIesS. . ..ottt 177

VSS Architecture. 177

VSS Operation. 178

Uses iNnWINdOWS 181
CoNClUSION . .o oo 186
Chapter 10 Memory Management 187
Introduction to the Memory Manager............................. 187
Memory Manager Components, 188
Internal Synchronization............ oL 189
Examining Memory Usage. ... 190
Services Provided by the Memory Manager 193
Large and Small Pages ... 193
Reserving and Committing Pages. 195
Commit Limit ... 199
Locking MemOry 199
Allocation Granularity i 199
Shared Memory and Mapped Files. 200
Protecting Memory 203

No Execute Page Protection, 204
Copy-0ON-WIite . . e 209
Address Windowing Extensions, 210
Kernel-Mode Heaps (System Memory Pools) 212
POOI SiZes. .. 213
Monitoring Pool Usage. 215
Look-Aside Listso 219

Heap Manager. 220
Typesof Heaps 221

Heap Manager Structure 222

Heap Synchronization........ ... i 223

The Low Fragmentation Heap......... ..., 223

Heap Security Features. ... 224

Heap Debugging Features............. 225
Pageheap. ... 226

Fault TolerantHeap ... e 227

Contents ix

X

Contents

Virtual Address Space Layoutsoouiiiiiiieiiii... 228

x86 Address Space Layouts i 229
x86 System Address Space Layout oL 232
X86 SesSioN Space 233
System Page Table Entries ..., 235
64-Bit Address Space Layouts L. 237
x64 Virtual Addressing Limitations. 240
Dynamic System Virtual Address Space Management 242
System Virtual Address Space Quotas 245
User Address Space Layout ... 246
Address Translation. 251
x86 Virtual Address Translation.............................. 252
Translation Look-Aside Buffer 259
Physical Address Extension (PAE), 260
x64 Virtual Address Translation.............................. 265
IA64 Virtual Address Translation...................... 266
Page Fault Handling. ... 267
Invalid PTES 268
Prototype PTES 269
INn-Paging I/O ... o 271
Collided Page Faults i 272
Clustered Page Faults 272
Page Files. 273
Commit Charge and the System Commit Limit 275
Commit Charge and Page File Size............ 278
StaCKS o 279
User Stacks 280
Kernel Stacks. 281
DPC Stack ..ot 282
Virtual Address Descriptors. 282
Process VADs. o 283
Rotate VADS 284
NUM A 285
Section Objectst 286
Driver Verifier. 292
Page Frame Number Database. 297
Page List Dynamicsc.ooiiiii 300
Page Priority 310
Modified Page Writer ... 314

PFN Data Structures. 315

Physical Memory Limits. ... 320
Windows Client Memory Limits.oo ... 321
Working Setso 324
Demand Paging ... 324
Logical Prefetcher i 324
Placement Policy 328
Working Set Management.............o 329
Balance Set Manager and Swapper ..., 333
System Working Sets. 334
Memory Notification Events 335
Proactive Memory Management (Superfetch) 338
COMPONENTS . o oo 338
Tracingand Loggingo 341
SCENAMIOS .« o o ettt e e 342

Page Priority and Rebalancing. 342
Robust Performance i 344
ReadyBooOStt 346
ReadyDrivet 348
Unified Caching 348
Process Reflection 351
COoNCIUSION .« .ot 354
Chapter 11 Cache Manager 355
Key Features of the Cache Manager o .. 355
Single, Centralized System Cache 356

The Memory Manager ... 356
Cache Coherencyoouuii i 356
Virtual Block Caching ... 358
Stream-Based Caching i 358
Recoverable File System Support ... 359
Cache Virtual Memory Management 360
Cache Size. ... 361
Cache Virtual Size. 361
Cache Working Set Size 361
Cache Physical Size ... 363
Cache Data Structuresot 364
Systemwide Cache Data Structures. 365
Per-File Cache Data Structures 368

Contents xi

xii

Contents

File System Interfaces. i 373

Copying to and fromtheCache 374
Caching with the Mapping and Pinning Interfaces............. 374
Caching with the Direct Memory Access Interfaces 375

Fast 1/O .o 375
Read-Ahead and Write-Behind oL 377
Intelligent Read-Ahead....... i 378
Write-Back Caching and Lazy Writing 379
Write Throttling ... 388
System Threads. 390
CONCIUSION .« . 390
Chapter 12 File Systems 391
Windows File System Formats o i, 392
CDFS 392

UDF . 393
FAT12, FAT16,and FAT32 e 393
eXFAT 396

NS L 397

File System Driver Architecture i i 398
Local FSDs . ..o 398
Remote FSDs. ... oo 400

File System Operation. e 407

File System Filter Drivers. 413
Troubleshooting File System Problems.......................... ... 415
Process Monitor Basic vs. Advanced Modes................... 415
Process Monitor Troubleshooting Techniques 416
Common Log File System ... 416
NTFS Design Goals and Features, 424
High-End File System Requirements. 424
Advanced Features of NTFS o 426

NTFS File System Driver. ... i e 439
NTFS On-Disk Structure. ... 442
VOIUMES . .o 442
CIUSERIS. e e 442
Master File Table 443

File Record Numbers....... i i i 447

File ReCOrds. . ..ot 447

File Names. 449

Resident and Nonresident Attributes. 453

Data Compression and Sparse Filescoooiii... 456

The Change Journal File i 461
INdEXING . . 464
ObJeCt IDS . oottt 466
Quota Tracking. oo 466
Consolidated Security i 467
Reparse Points 469
Transaction SUPPOrtt 469

NTFS Recovery SUpport.o e 477
DESIgN o 478
Metadata Logging. ..ot 479
Recovery ... 483

NTFS Bad-Cluster Recovery 487
Self-Healing. 490
Encrypting File System Security o 491
Encrypting a File for the First Time........................... 494

The Decryption Process ..., 496
Backing Up Encrypted Files o i 497
Copying Encrypted Files.........o i 497
CONCIUSION . . oot 498
Chapter 13 Startup and Shutdown 499
BOOT ProCess . ..ottt 499
BIOS Preboot.o 499

The BIOS Boot Sector and Bootmgr.................ooun... 502

The UEFI BOOt Process.o vv e 512
Booting from iSCSI. 514
Initializing the Kernel and Executive Subsystems............... 514

Smss, Csrss, and Wininito i 522
ReadyBoot. 527
Images That Start Automatically............................. 528
Troubleshooting Boot and Startup Problems 529
Last Known Good. . ..ot 530
SafeMode. ... 530
Windows Recovery Environment (WinRE)..................... 534
Solving Common Boot Problems 537
Shutdown 542
CONCIUSION .« .o oot 545

Contents Xxiii

xiv

Contents

Chapter 14 Crash Dump Analysis 547

Why Does Windows Crash?............. . i, 547
The Blue Screen. 548
Causes of Windows Crashes. 549
Troubleshooting Crashes. 551
Crash Dump Files. 553
Crash Dump Generation................ i, 559
Windows Error Reporting 561
Online Crash Analysis.ooo e 563
Basic Crash Dump Analysis 564
Notmyfault 564
Basic Crash Dump Analysis......... o i a.. 565
Verbose Analysis.t 567
Using Crash Troubleshooting Tools. 569
Buffer Overruns, Memory Corruption, and Special Pool 569
Code Overwrite and System Code Write Protection............ 573
Advanced Crash Dump Analysis. 574
Stack Trashes. 575
Hung or Unresponsive Systems., .. 577
When There Is No Crash Dump. ..., 581
Analysis of Common Stop Codes. ..o 585
0xD1 - DRIVER_IRQL_NOT_LESS_OR_EQUAL 585
O0x8E - KERNEL_MODE_EXCEPTION_NOT_HANDLED 586
0x7F - UNEXPECTED_KERNEL_MODE_TRAP 588
0xC5 - DRIVER_CORRUPTED_EXPOOL. ..., 590
Hardware Malfunctions. o i 593
CONCIUSION L oo 594
Appendix: Contents of Windows Internals, Sixth Edition, Part 1 595
Index 603

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

Introduction

Windows Internals, Sixth Edition is intended for advanced computer professionals
(both developers and system administrators) who want to understand how the
core components of the Microsoft Windows 7 and Windows Server 2008 R2 operating
systems work internally. With this knowledge, developers can better comprehend the
rationale behind design choices when building applications specific to the Windows
platform. Such knowledge can also help developers debug complex problems. System
administrators can benefit from this information as well, because understanding how
the operating system works “under the covers” facilitates understanding the perfor-
mance behavior of the system and makes troubleshooting system problems much
easier when things go wrong. After reading this book, you should have a better under-
standing of how Windows works and why it behaves as it does.

Structure of the Book

For the first time, the book has been divided in two parts. This was done to get the
information out more quickly since it takes considerable time to update the book for
each release of Windows.

Part 1 begins with two chapters that define key concepts, introduce the tools used in
the book, and describe the overall system architecture and components. The next two
chapters present key underlying system and management mechanisms. Part 1 wraps
up by covering three core components of the operating system: processes, threads, and
jobs; security; and networking.

Part 2 covers the remaining core subsystems: I/O, storage, memory management,
the cache manager, and file systems. Part 2 concludes with a description of the startup
and shutdown processes and a description of crash-dump analysis.

Xvi

History of the Book

This is the sixth edition of a book that was originally called Inside Windows NT
(Microsoft Press, 1992), written by Helen Custer (prior to the initial release of Microsoft
Windows NT 3.1). Inside Windows NT was the first book ever published about Windows
NT and provided key insights into the architecture and design of the system. Inside
Windows NT, Second Edition (Microsoft Press, 1998) was written by David Solomon. It
updated the original book to cover Windows NT 4.0 and had a greatly increased level
of technical depth.

Inside Windows 2000, Third Edition (Microsoft Press, 2000) was authored by David
Solomon and Mark Russinovich. It added many new topics, such as startup and shut-
down, service internals, registry internals, file-system drivers, and networking. It also
covered kernel changes in Windows 2000, such as the Windows Driver Model (WDM),
Plug and Play, power management, Windows Management Instrumentation (WMI),
encryption, the job object, and Terminal Services. Windows Internals, Fourth Edition was
the Windows XP and Windows Server 2003 update and added more content focused
on helping IT professionals make use of their knowledge of Windows internals, such as
using key tools from Windows Sysinternals (www.microsoft.com/technet/sysinternals)
and analyzing crash dumps. Windows Internals, Fifth Edition was the update for
Windows Vista and Windows Server 2008. New content included the image loader,
user-mode debugging facility, and Hyper-V.

Sixth Edition Changes

This latest edition has been updated to cover the kernel changes made in Windows 7
and Windows Server 2008 R2. Hands-on experiments have been updated to reflect
changes in tools.

Hands-on Experiments

Even without access to the Windows source code, you can glean much about Windows
internals from tools such as the kernel debugger and tools from Sysinternals and
Winsider Seminars & Solutions. When a tool can be used to expose or demonstrate
some aspect of the internal behavior of Windows, the steps for trying the tool yourself
are listed in "EXPERIMENT" boxes. These appear throughout the book, and we encour-
age you to try these as you're reading—seeing visible proof of how Windows works
internally will make much more of an impression on you than just reading about it will.

Introduction

www.microsoft.com/technet/sysinternals

Topics Not Covered

Windows is a large and complex operating system. This book doesn’t cover everything
relevant to Windows internals but instead focuses on the base system components. For
example, this book doesn't describe COM+, the Windows distributed object-oriented
programming infrastructure, or the Microsoft .NET Framework, the foundation of man-
aged code applications.

Because this is an internals book and not a user, programming, or system administra-
tion book, it doesn't describe how to use, program, or configure Windows.

A Warning and a Caveat

Because this book describes undocumented behavior of the internal architecture and
the operation of the Windows operating system (such as internal kernel structures and
functions), this content is subject to change between releases. (External interfaces, such
as the Windows API, are not subject to incompatible changes.)

By “subject to change,” we don't necessarily mean that details described in this book
will change between releases, but you can't count on them not changing. Any soft-
ware that uses these undocumented interfaces might not work on future releases of
Windows. Even worse, software that runs in kernel mode (such as device drivers) and
uses these undocumented interfaces might experience a system crash when running on
a newer release of Windows.

Acknowledgments

First, thanks to Jamie Hanrahan and Brian Catlin of Azius, LLC for joining us on this
project—the book would not have been finished without their help. They did the bulk
of the updates on the “Security” and "Networking” chapters and contributed to the
update of the “"Management Mechanisms” and "Processes and Threads” chapters. Azius
provides Windows-internals and device-driver training. See www.azius.com for more
information.

We want to recognize Alex lonescu, who for this edition is a full coauthor. This is a
reflection of Alex’s extensive work on the fifth edition, as well as his continuing work on
this edition.

Introduction xvii

www.azius.com

xviii

Also thanks to Daniel Pearson, who updated the “Crash Dump Analysis” chapter.
His many years of dump analysis experience helped to make the information more
practical.

Thanks to Eric Traut and Jon DeVaan for continuing to allow David Solomon access
to the Windows source code for his work on this book as well as continued develop-
ment of his Windows Internals courses.

Three key reviewers were not acknowledged for their review and contributions
to the fifth edition: Arun Kishan, Landy Wang, and Aaron Margosis—thanks again to
them! And thanks again to Arun and Landy for their detailed review and helpful input
for this edition.

This book wouldn’t contain the depth of technical detail or the level of accuracy it
has without the review, input, and support of key members of the Microsoft Windows
development team. Therefore, we want to thank the following people, who provided
technical review and input to the book:

m Greg Cottingham
m Joe Hamburg

m Jeff Lambert

m Pavel Lebedinsky
m Joseph East

m AdiOltean

m Alexey Pakhunov

m Valerie See

= Brad Waters

m Bruce Worthington
= Robin Alexander

m Bernard Ourghanlian

Also thanks to Scott Lee, Tim Shoultz, and Eric Kratzer for their assistance with the
“Crash Dump Analysis” chapter.

For the "Networking” chapter, a special thanks to Gianluigi Nusca and Tom Jolly,
who really went beyond the call of duty: Gianluigi for his extraordinary help with
the BranchCache material and the amount of suggestions (and many paragraphs of

Introduction

material he wrote), and Tom Jolly not only for his own review and suggestions (which
were excellent), but for getting many other developers to assist with the review. Here
are all those who reviewed and contributed to the “Networking” chapter:

Roopesh Battepati
Molly Brown
Greg Cottingham
Dotan Elharrar
Eric Hanson

Tom Jolly

Manoj Kadam
Greg Kramer
David Kruse

Jeff Lambert
Darene Lewis
Dan Lovinger
Gianluigi Nusca
Amos Ortal

Ivan Pashov
Ganesh Prasad
Paul Swan

Shiva Kumar Thangapandi

Amos Ortal and Dotan Elharrar were extremely helpful on NAP, and Shiva Kumar
Thangapandi helped extensively with EAP.

Thanks to Gerard Murphy for reviewing the shutdown mechanisms in Windows 7
and clarifying Group Policy behaviors.

Thanks to Tristan Brown from the Power Management team at Microsoft for spend-
ing a few late hours at the office with Alex going over core parking's algorithms and
behaviors, as well as for the invaluable diagram he provided.

Introduction

Xix

XX

Thanks to Apurva Doshi for sending Alex a detailed document of cache manager
changes in Windows 7, which was used to capture some of the new behaviors and
changes described in the book.

Thanks to Matthieu Suiche for his kernel symbol file database, which allowed Alex to
discover new and removed fields from core kernel data structures and led to the inves-
tigations to discover the underlying functionality changes.

Thanks to Cenk Ergan, Michel Fortin, and Mehmet lyigun for their review and input
on the Superfetch details.

The detailed checking Christophe Nasarre, overall technical reviewer, performed
contributed greatly to the technical accuracy and consistency in the book.

We would like to again thank lIfak Guilfanov of Hex-Rays (www.hex-rays.com) for the
IDA Pro Advanced and Hex-Rays licenses they granted to Alex so that he could speed
up his reverse engineering of the Windows kernel.

Finally, the authors would like to thank the great staff at Microsoft Press behind
turning this book into a reality. Devon Musgrave served double duty as acquisitions
editor and developmental editor, while Carol Dillingham oversaw the title as its project
editor. Editorial and production manager Curtis Philips, copy editor John Pierce, proof-
reader Andrea Fox, and indexer Jan Wright also contributed to the quality of this book.

Last but not least, thanks to Ben Ryan, publisher of Microsoft Press, who continues
to believe in the importance of continuing to provide this level of detail about Windows
to their readers!

Errata & Book Support

We've made every effort to ensure the accuracy of this book and its companion con-
tent. Any errors that have been reported since this book was published are listed on our
Microsoft Press site at oreilly.com:

http.//go.microsoft.com/FWLink/?Linkid=258649

If you find an error that is not already listed, you can report it to us through the
same page.

If you need additional support, email Microsoft Press Book Support at mspinput@
microsoft.com.

Introduction

www.hex-rays.com
oreilly.com
http://go.microsoft.com/FWLink/?Linkid=258649
mailto:mspinput@microsoft.com
mailto:mspinput@microsoft.com

Please note that product support for Microsoft software is not offered through the
addresses above.

We Want to Hear from You

At Microsoft Press, your satisfaction is our top priority, and your feedback our most
valuable asset. Please tell us what you think of this book at:

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in
advance for your input!

Stay in Touch

Let's keep the conversation going! We're on Twitter: http.//twitter.com/MicrosoftPress.

Introduction xxi

http://www.microsoft.com/learning/booksurvey
http://twitter.com/MicrosoftPress

|/O System

he Windows 1/0O system consists of several executive components that together manage hard-

ware devices and provide interfaces to hardware devices for applications and the system. In this
chapter, we'll first list the design goals of the /O system, which have influenced its implementation.
We'll then cover the components that make up the 1/O system, including the I/O manager, Plug and
Play (PnP) manager, and power manager. Then we'll examine the structure and components of the
I/O system and the various types of device drivers. We'll look at the key data structures that describe
devices, device drivers, and I/O requests, after which we'll describe the steps necessary to complete
1/0 requests as they move through the system. Finally, we'll present the way device detection, driver
installation, and power management work.

1/0 System Components

The design goals for the Windows I/O system are to provide an abstraction of devices, both hardware
(physical) and software (virtual or logical), to applications with the following features:

Uniform security and naming across devices to protect shareable resources. (See Chapter 6,
“Security,” in Part 1 for a description of the Windows security model.)

High-performance asynchronous packet-based I/O to allow for the implementation of scalable
applications.

Services that allow drivers to be written in a high-level language and easily ported between
different machine architectures.

Layering and extensibility to allow for the addition of drivers that transparently modify the be-
havior of other drivers or devices, without requiring any changes to the driver whose behavior
or device is modified.

Dynamic loading and unloading of device drivers so that drivers can be loaded on demand
and not consume system resources when unneeded.

Support for Plug and Play, where the system locates and installs drivers for newly detected
hardware, assigns them hardware resources they require, and also allows applications to dis-
cover and activate device interfaces.

Support for power management so that the system or individual devices can enter low power
states.

Support for multiple installable file systems, including FAT, the CD-ROM file system (CDFS), the
Universal Disk Format (UDF) file system, and the Windows file system (NTFS). (See Chapter 12,
“File Systems,” for more specific information on file system types and architecture.)

Windows Management Instrumentation (WMI) support and diagnosability so that drivers can
be managed and monitored through WMI applications and scripts. (WMl is described in Chap-
ter 4, "Management Mechanisms,” in Part 1.)

To implement these features the Windows 1/0 system consists of several executive components as
well as device drivers, which are shown in Figure 8-1.

The 1/0 manager is the heart of the 1/0 system. It connects applications and system compo-
nents to virtual, logical, and physical devices, and it defines the infrastructure that supports
device drivers.

A device driver typically provides an 1/O interface for a particular type of device. A driver is a
software module that interprets high-level commands, such as read or write, and issues low-
level, device-specific commands, such as writing to control registers. Device drivers receive
commands routed to them by the I/O manager that are directed at the devices they manage,
and they inform the I/0O manager when those commands are complete. Device drivers often
use the 1/0 manager to forward I/O commands to other device drivers that share in the imple-
mentation of a device’s interface or control.

The PnP manager works closely with the I/O manager and a type of device driver called a bus
driver to guide the allocation of hardware resources as well as to detect and respond to the
arrival and removal of hardware devices. The PnP manager and bus drivers are responsible for
loading a device's driver when the device is detected. When a device is added to a system that
doesn't have an appropriate device driver, the executive Plug and Play component calls on the
device installation services of a user-mode PnP manager.

The power manager also works closely with the I/O manager and the PnP manager to guide
the system, as well as individual device drivers, through power-state transitions.

Windows Management Instrumentation support routines, called the Windows Driver Model
(WDM) WMI provider, allow device drivers to indirectly act as providers, using the WDM WMI
provider as an intermediary to communicate with the WMI service in user mode. (For more
information on WMI, see the section "Windows Management Instrumentation” in Chapter 4 in
Part 1))

The registry serves as a database that stores a description of basic hardware devices attached
to the system as well as driver initialization and configuration settings. (See “The Registry” sec-
tion in Chapter 4 in Part 1 for more information.)

INF files, which are designated by the .inf extension, are driver installation files. INF files are
the link between a particular hardware device and the driver that assumes primary control of

Windows Internals, Sixth Edition, Part 2

the device. They are made up of script-like instructions describing the device they correspond
to, the source and target locations of driver files, required driver-installation registry modifica-
tions, and driver dependency information. Digital signatures that Windows uses to verify that
a driver file has passed testing by the Microsoft Windows Hardware Quality Labs (WHQL) are
stored in .cat files. Digital signatures are also used to prevent tampering of the driver or its
INF file.

m The hardware abstraction layer (HAL) insulates drivers from the specifics of the processor and
interrupt controller by providing APIs that hide differences between platforms. In essence, the
HAL is the bus driver for all the devices soldered onto the computer’s motherboard that aren't
controlled by other drivers.

— Windows
Applications .
services
WMI U d Setup com-
’ ser-mode |1 | Iponents library
service PnP manager (Setupapi.dll)
] l User mode .inf files,
Kernel mode .cat.flles,
registry
Py 1
|
|
|
1/O system | WDM.WMI PnP Power I/O :
I routines manager manager manager |
|
- !
oo s E AR E R 1
Drivers | | | | | . | —
! 1
Lo o o o o o o e e e e e e e e e e - -
| HAL

FIGURE 8-1 /O system components

The 1/0 Manager

The I/O manager is the core of the 1/O system because it defines the orderly framework, or model,
within which I/O requests are delivered to device drivers. The 1/0 system is packet driven. Most 1/O re-
quests are represented by an /O request packet (IRP), which travels from one I/O system component
to another. (As you'll discover in the section “Fast I/0,” fast I/O is the exception; it doesn't use IRPs.)

1/O System 3

The design allows an individual application thread to manage multiple 1/0 requests concurrently. An
IRP is a data structure that contains information completely describing an 1/0 request. (You'll find
more information about IRPs in the section “I/O Request Packets” later in the chapter.)

The 1/O manager creates an IRP in memory to represent an I/O operation, passing a pointer to the
IRP to the correct driver and disposing of the packet when the I/O operation is complete. In contrast,
a driver receives an IRP, performs the operation the IRP specifies, and passes the IRP back to the I/O
manager, either because the requested 1/0O operation has been completed, or because it must be
passed on to another driver for further processing.

In addition to creating and disposing of IRPs, the I/O manager supplies code that is common to
different drivers and that the drivers can call to carry out their I/O processing. By consolidating com-
mon tasks in the I/O manager, individual drivers become simpler and more compact. For example, the
I/0 manager provides a function that allows one driver to call other drivers. It also manages buffers
for I/O requests, provides timeout support for drivers, and records which installable file systems are
loaded into the operating system. There are close to one hundred different routines in the I/0O man-
ager that can be called by device drivers.

The 1/0 manager also provides flexible 1/0 services that allow environment subsystems, such as
Windows and POSIX, to implement their respective 1/O functions. These services include sophisti-
cated services for asynchronous 1/O that allow developers to build scalable, high-performance server
applications.

The uniform, modular interface that drivers present allows the I/O manager to call any driver with-
out requiring any special knowledge of its structure or internal details. The operating system treats all
I/0 requests as if they were directed at a file; the driver converts the requests from requests made to
a virtual file to hardware-specific requests. Drivers can also call each other (using the I/O manager) to
achieve layered, independent processing of an 1/O request.

Besides providing the normal open, close, read, and write functions, the Windows 1/0 system pro-
vides several advanced features, such as asynchronous, direct, buffered, and scatter/gather I/O, which
are described in the “Types of I/O” section later in this chapter.

Typical 1/0 Processing

Most 1/O operations don't involve all the components of the I/O system. A typical I/O request starts
with an application executing an 1/0-related function (for example, reading data from a device) that is
processed by the I/O manager, one or more device drivers, and the HAL.

As just mentioned, in Windows, threads perform 1/O on virtual files. A virtual file refers to any
source or destination for I/0 that is treated as if it were a file (such as files, directories, pipes, and
mailslots). The operating system abstracts all I/O requests as operations on a virtual file, because the
I/0 manager has no knowledge of anything but files, therefore making it the responsibility of the
driver to translate file-oriented comments (open, close, read, write) into device-specific commands.
This abstraction thereby generalizes an application’s interface to devices. User-mode applications

Windows Internals, Sixth Edition, Part 2

(whether Windows or POSIX) call documented functions, which in turn call internal I/O system func-
tions to read from a file, write to a file, and perform other operations. The I/O manager dynamically
directs these virtual file requests to the appropriate device driver. Figure 8-2 illustrates the basic
structure of a typical 1/O request flow.

User-mode API

I/0 system services API
(Ntxxx)

Driver I/O manager (loxxx)
support
routines
(lo, Ex, Ke,
Mm, Hal, Kernel-mode
FsRtl, device drivers
and so on)

HAL hardware access routines

Memory-mapped registers and DMA
FIGURE 8-2 The flow of a typical I/O request

In the following sections, we'll look at these components more closely, covering the various types

of device drivers, how they are structured, how they load and initialize, and how they process I/0
requests. Then we'll cover the operation and roles of the PnP manager and the power manager.

Device Drivers

To integrate with the I/O manager and other I/0 system components, a device driver must conform to
implementation guidelines specific to the type of device it manages and the role it plays in managing
the device. In this section, we'll look at the types of device drivers Windows supports as well as the
internal structure of a device driver.

Types of Device Drivers

Windows supports a wide range of device driver types and programming environments. Even within a
type of device driver, programming environments can differ, depending on the specific type of device

I/O System 5

6

for which a driver is intended. The broadest classification of a driver is whether it is a user-mode or
kernel-mode driver. Windows supports a couple of types of user-mode drivers:

Windows subsystem printer drivers translate device-independent graphics requests to printer-
specific commands. These commands are then typically forwarded to a kernel-mode port
driver such as the universal serial bus (USB) printer port driver (Usbprint.sys).

User-Mode Driver Framework (UMDF) drivers are hardware device drivers that run in user
mode. They communicate to the kernel-mode UMDF support library through ALPC. See the
“User-Mode Driver Framework (UMDF)" section later in this chapter for more information.

In this chapter, the focus is on kernel-mode device drivers. There are many types of kernel-mode
drivers, which can be divided into the following basic categories:

File system drivers accept /O requests to files and satisfy the requests by issuing their own,
more explicit, requests to mass storage or network device drivers.

Plug and Play drivers work with hardware and integrate with the Windows power manager and
PnP manager. They include drivers for mass storage devices, video adapters, input devices, and
network adapters.

Non-Plug and Play drivers, which also include kernel extensions, are drivers or modules that
extend the functionality of the system. They do not typically integrate with the PnP or power
managers because they typically do not manage an actual piece of hardware. Examples
include network APl and protocol drivers. Process Monitor’s driver, described in Chapter 4 in
Part 1, is also an example.

Within the category of kernel-mode drivers are further classifications based on the driver model
that the driver adheres to and its role in servicing device requests.

WDM Drivers

WDM drivers are device drivers that adhere to the Windows Driver Model (WDM). WDM includes
support for Windows power management, Plug and Play, and WMI, and most Plug and Play drivers
adhere to WDM. There are three types of WDM drivers:

Bus drivers manage a logical or physical bus. Examples of buses include PCMCIA, PCI, USB, and
IEEE 1394. A bus driver is responsible for detecting and informing the PnP manager of devices
attached to the bus it controls as well as managing the power setting of the bus.

Function drivers manage a particular type of device. Bus drivers present devices to function
drivers via the PnP manager. The function driver is the driver that exports the operational
interface of the device to the operating system. In general, it's the driver with the most knowl-
edge about the operation of the device.

Filter drivers logically layer either above or below function drivers (these are called func-
tion filters) or above the bus driver (these are called bus filters), augmenting or changing the

Windows Internals, Sixth Edition, Part 2

behavior of a device or another driver. For example, a keyboard capture utility could be imple-
mented with a keyboard filter driver that layers above the keyboard function driver.

In WDM, no one driver is responsible for controlling all aspects of a particular device. The bus
driver is responsible for detecting bus membership changes (device addition or removal), assisting the
PnP manager in enumerating the devices on the bus, accessing bus-specific configuration registers,
and, in some cases, controlling power to devices on the bus. The function driver is generally the only
driver that accesses the device's hardware.

Layered Drivers

Support for an individual piece of hardware is often divided among several drivers, each provid-
ing a part of the functionality required to make the device work properly. In addition to WDM bus
drivers, function drivers, and filter drivers, hardware support might be split between the following
components:

m Class drivers implement the /O processing for a particular class of devices, such as disk, key-
board, or CD-ROM, where the hardware interfaces have been standardized, so one driver can
serve devices from a wide variety of manufacturers.

m Miniclass drivers implement I/O processing that is vendor-defined for a particular class of de-
vices. For example, although there is a standardized battery class driver written by Microsoft,
both uninterruptible power supplies (UPS) and laptop batteries have highly specific interfaces
that differ wildly between manufacturers, such that a miniclass is required from the vendor.
Miniclass drivers are essentially kernel-mode DLLs and do not do IRP processing directly—the
class driver calls into them, and they import functions from the class driver.

m Port drivers implement the processing of an I/O request specific to a type of I/0 port, such as
SATA, and are implemented as kernel-mode libraries of functions rather than actual device
drivers. Port drivers are almost always written by Microsoft because the interfaces are typically
standardized in such a way that different vendors can still share the same port driver. However,
in certain cases, third parties may need to write their own for specialized hardware. In some
cases, the concept of “I/O port” extends to cover logical ports as well. For example, NDIS is the
network “port” driver, and Dxgport/Videoprt are the DirectX/video “port” drivers.

m Miniport drivers map a generic /O request to a type of port into an adapter type, such as a
specific network adapter. Miniport drivers are actual device drivers that import the functions
supplied by a port driver. Miniport drivers are written by third parties, and they provide the
interface for the port driver. Like miniclass drivers, they are kernel-mode DLLs and do not do
IRP processing directly.

A simplified example for illustrative purposes will help demonstrate how device drivers work at a
high level. A file system driver accepts a request to write data to a certain location within a particular
file. It translates the request into a request to write a certain number of bytes to the disk at a par-
ticular (that is, the logical) location. It then passes this request (via the I/O manager) to a simple disk
driver. The disk driver, in turn, translates the request into a physical location on the disk and commu-
nicates with the disk to write the data. This layering is illustrated in Figure 8-3.

I/O System 7

Environment

subsystem
or DLL

User mode

Kernel mode
@ NtWriteFile(file_handle, char_buffer)

System services

@ Write data at specified
byte offset within a file 1/0

— manager

File system
driver \
v N .
@) Translate file-relative byte \
offset into volume-relative 0
byte offset and call next :
driver (via I/O manager) /

@ call driver to write data

Disk driver .
at volume-relative byte offset

® Translate volume-relative byte
offset into disk-relative offset
and transfer data

FIGURE 8-3 Layering of a file system driver and a disk driver

This figure illustrates the division of labor between two layered drivers. The I/O manager receives a
write request that is relative to the beginning of a particular file. The I/O manager passes the request
to the file system driver, which translates the write operation from a file-relative operation to a start-
ing location (a sector boundary on the disk) and a number of bytes to write. The file system driver
calls the I/O manager to pass the request to the disk driver, which translates the request to a physical
disk location and transfers the data.

Because all drivers—both device drivers and file system drivers—present the same framework to
the operating system, another driver can easily be inserted into the hierarchy without altering the
existing drivers or the 1/0 system. For example, several disks can be made to seem like a very large
single disk by adding a driver. This logical, volume manager driver is located between the file system
and the disk drivers, as shown in the conceptual, simplified architectural diagram presented in Figure
8-4. (For the actual storage driver stack diagram, see Figure 9-3 in Chapter 9, “Storage Manage-
ment”). Volume manager drivers are described in more detail in Chapter 9.

Windows Internals, Sixth Edition, Part 2

Environment
subsystem
or DLL

User mode

1

@ NtWriteFile(file_handle, char_buffer)

Kernel mode

System services

@ Write data at specified
byte offset within a file

File system
driver

—
_/V~\

@) Translate file-relative byte
offset into volume-relative
byte offset and call next
driver (via I/O manager)

@ Call driver to write data at
volume-relative byte offset

Volume
manager disk
driver

@ Translate volume-relative
byte offset into disk
number and offset,
and call next driver
(via I/O manager)

Disk driver

@ Call next driver to write
data to disk 3 at disk-

relative byte offset

h,’
V\\

1/0
manager

Translate disk-relative byte offset into physical

2

location on disk 3 and transfer data

FIGURE 8-4 Adding a layered driver

1/O System

9

i

10

EXPERIMENT: Viewing the Loaded Driver List

You can see a list of registered drivers by executing the Msinfo32.exe utility from the Run dialog
box of the Start menu. Select the System Drivers entry under Software Environment to see the
list of drivers configured on the system. Those that are loaded have the text “Yes” in the Started
column, as shown here:

& System Information =3 |IoR[5)
File Edit View Help

System Summary Name Description File Type started Start Mode State Status Error Control Accept Pause AcceptStop

(- Hardware Resources i Microsoft ACPI Driver cywindows\s... Kernel Driver s Running Critical Yes. E
Components adp9dxx adpgaxc c\windows\s.. Kemel Driver No Disabled Stopped oK Normal No No
5 Software Environment adpahci adpahdi c\windows\s.. Kemel Driver No Disabled Stopped OK Normal No No
Szemitivers adpu1som adpul60m cwindows\s.. Kernel Driver No Disabled Stopped OK Normal No No
Signed Drivers adpu320 adpu320 c\windows\s.. Kernel Driver No Disabled Stopped 0K Normal No No
E:‘:::b'":"t Variables || ey Ancilliary Function Driver for Wo. c\windows\s.. Kernel Driver Yes System Running oK Normal No Yes
Network Connections agpa4o Intel AGP Bus Filter c\windows\s... Kernel Driver No Manual Stopped /3 Normal No No
Running Tasks aicTge aic78x0¢ c\windows\s... Kernel Driver No Disabled Stopped oK Normal No No
Loaded Modules aliide aliide c\windows\s, Kernel Driver No Disabled Stopped oK Critical No No
Services amdagp AMD AGP Bus Filter Driver c\windows\s.. Kemel Driver No Manual Stopped K Normal No No
Program Groups amdide amdide Cwwindows\s... Kemel Driver No Disabled Stopped 0K critical No No
Startup Programs amdk7 AAMD K7 Processor Driver c\windows\s.. Kemel Driver ~ No Disabled Stopped oK Normal No No
OLE Registration amdke AAMD K8 Processor Driver c\windows\s.. Kernel Driver No Disabled Stopped oK Normal No No
Windows Error Reporting || arc arc c\windows\s.. Kernel Driver No Disabled Stopped oK Normal No No
arcsas arcsas Gwwindows\s.. Kemel Driver No Disabled Stopped 0K Normal No No

asyncmac RAS Asynchronous Media Driver cwindowsis... Kerel Driver No Manual Stopped 0K Normal No No -

- Foa
[Tl search selected category only [Csearch category names only
|

You can also view the list of loaded kernel-mode drivers with Process Explorer from Windows
Sysinternals (http://www.microsoft.com/technet/sysinternals). Run P