

UNIX Power Tools, 3rd Edition

Table of Contents
A Note Regarding Supplemental Files
How to Use This Book
Preface

A Book for Browsing
Like an Almanac
Like a News Magazine
Like a Hypertext Database
Programs on the Web
About Unix Versions
Cross-References
What's New in the Third Edition
Typefaces and Other Conventions
The Authors
The Fine Print
Request for Comments
Acknowledgments for the First Edition
Acknowledgments for the Second Edition
Acknowledgments for the Third Edition

I. Basic Unix Environment
1. Introduction

1.1. What's Special About Unix?
1.2. Power Grows on You
1.3. The Core of Unix
1.4. Communication with Unix
1.5. Programs Are Designed to Work Together
1.6. There Are Many Shells
1.7. Which Shell Am I Running?
1.8. Anyone Can Program the Shell
1.9. Internal and External Commands
1.10. The Kernel and Daemons
1.11. Filenames
1.12. Filename Extensions
1.13. Wildcards
1.14. The Tree Structure of the Filesystem
1.15. Your Home Directory
1.16. Making Pathnames
1.17. File Access Permissions
1.18. The Superuser (Root)
1.19. When Is a File Not a File?
1.20. Scripting
1.21. Unix Networking and Communications

1.22. The X Window System
2. Getting Help

2.1. The man Command
2.2. whatis: One-Line Command Summaries
2.3. whereis: Finding Where a Command Is Located
2.4. Searching Online Manual Pages
2.5. How Unix Systems Remember Their Names
2.6. Which Version Am I Using?
2.7. What tty Am I On?
2.8. Who's On?
2.9. The info Command

II. Customizing Your Environment
3. Setting Up Your Unix Shell

3.1. What Happens When You Log In
3.2. The Mac OS X Terminal Application
3.3. Shell Setup Files — Which, Where, and Why
3.4. Login Shells, Interactive Shells

3.4.1. Login Shells
3.4.2. Interactive Shells

3.5. What Goes in Shell Setup Files?
3.6. Tip for Changing Account Setup: Keep a Shell Ready
3.7. Use Absolute Pathnames in Shell Setup Files
3.8. Setup Files Aren't Read When You Want?
3.9. Gotchas in set prompt Test
3.10. Automatic Setups for Different Terminals
3.11. Terminal Setup: Testing TERM
3.12. Terminal Setup: Testing Remote Hostname and X Display
3.13. Terminal Setup: Testing Port
3.14. Terminal Setup: Testing Environment Variables
3.15. Terminal Setup: Searching Terminal Table
3.16. Terminal Setup: Testing Window Size
3.17. Terminal Setup: Setting and Testing Window Name
3.18. A .cshrc.$HOST File for Per Host Setup
3.19. Making a "Login" Shell
3.20. RC Files
3.21. Make Your Own Manpages Without Learning troff
3.22. Writing a Simple Manpage with the -man Macros

4. Interacting with Your Environment
4.1. Basics of Setting the Prompt
4.2. Static Prompts
4.3. Dynamic Prompts
4.4. Simulating Dynamic Prompts
4.5. C-Shell Prompt Causes Problems in vi, rsh, etc.
4.6. Faster Prompt Setting with Built-ins
4.7. Multiline Shell Prompts

4.8. Session Info in Window Title or Status Line
4.9. A "Menu Prompt" for Naive Users
4.10. Highlighting and Color in Shell Prompts
4.11. Right-Side Prompts
4.12. Show Subshell Level with $SHLVL
4.13. What Good Is a Blank Shell Prompt?
4.14. dirs in Your Prompt: Better Than $cwd
4.15. External Commands Send Signals to Set Variables
4.16. Preprompt, Pre-execution, and Periodic Commands
4.17. Running Commands When You Log Out
4.18. Running Commands at Bourne/Korn Shell Logout
4.19. Stop Accidental Bourne-Shell Logouts

5. Getting the Most out of Terminals, xterm, and X Windows
5.1. There's a Lot to Know About Terminals
5.2. The Idea of a Terminal Database
5.3. Setting the Terminal Type When You Log In
5.4. Querying Your Terminal Type: qterm
5.5. Querying Your xterm Size: resize
5.6. Checklist: Terminal Hangs When I Log In

5.6.1. Output Stopped?
5.6.2. Job Stopped?
5.6.3. Program Waiting for Input?
5.6.4. Stalled Data Connection?
5.6.5. Aborting Programs

5.7. Find Out Terminal Settings with stty
5.8. Setting Your Erase, Kill, and Interrupt Characters
5.9. Working with xterm and Friends
5.10. Login xterms and rxvts
5.11. Working with Scrollbars
5.12. How Many Lines to Save?
5.13. Simple Copy and Paste in xterm
5.14. Defining What Makes Up a Word for Selection Purposes
5.15. Setting the Titlebar and Icon Text
5.16. The Simple Way to Pick a Font
5.17. The xterm Menus
5.18. Changing Fonts Dynamically

5.18.1. VT Fonts Menu
5.18.2. Enabling Escape Sequence and Selection

5.19. Working with xclipboard
5.20. Problems with Large Selections
5.21. Tips for Copy and Paste Between Windows
5.22. Running a Single Command with xterm -e
5.23. Don't Quote Arguments to xterm -e

6. Your X Environment
6.1. Defining Keys and Button Presses with xmodmap

6.2. Using xev to Learn Keysym Mappings
6.3. X Resource Syntax
6.4. X Event Translations
6.5. Setting X Resources: Overview
6.6. Setting Resources with the -xrm Option
6.7. How -name Affects Resources
6.8. Setting Resources with xrdb
6.9. Listing the Current Resources for a Client: appres
6.10. Starting Remote X Clients

6.10.1. Starting Remote X Clients from Interactive Logins
6.10.2. Starting a Remote Client with rsh and ssh

III. Working with Files and Directories
7. Directory Organization

7.1. What? Me, Organized?
7.2. Many Homes
7.3. Access to Directories
7.4. A bin Directory for Your Programs and Scripts
7.5. Private (Personal) Directories
7.6. Naming Files
7.7. Make More Directories!
7.8. Making Directories Made Easier

8. Directories and Files
8.1. Everything but the find Command
8.2. The Three Unix File Times
8.3. Finding Oldest or Newest Files with ls -t and ls -u
8.4. List All Subdirectories with ls -R
8.5. The ls -d Option
8.6. Color ls

8.6.1. Trying It
8.6.2. Configuring It
8.6.3. The -- color Option
8.6.4. Another color ls

8.7. Some GNU ls Features
8.8. A csh Alias to List Recently Changed Files
8.9. Showing Hidden Files with ls -A and -a
8.10. Useful ls Aliases
8.11. Can't Access a File? Look for Spaces in the Name
8.12. Showing Nonprintable Characters in Filenames
8.13. Counting Files by Types
8.14. Listing Files by Age and Size
8.15. newer: Print the Name of the Newest File
8.16. oldlinks: Find Unconnected Symbolic Links
8.17. Picking a Unique Filename Automatically

9. Finding Files with find
9.1. How to Use find

9.2. Delving Through a Deep Directory Tree
9.3. Don't Forget -print
9.4. Looking for Files with Particular Names
9.5. Searching for Old Files
9.6. Be an Expert on find Search Operators
9.7. The Times That find Finds
9.8. Exact File-Time Comparisons
9.9. Running Commands on What You Find
9.10. Using -exec to Create Custom Tests
9.11. Custom -exec Tests Applied
9.12. Finding Many Things with One Command
9.13. Searching for Files by Type
9.14. Searching for Files by Size
9.15. Searching for Files by Permission
9.16. Searching by Owner and Group
9.17. Duplicating a Directory Tree
9.18. Using "Fast find" Databases
9.19. Wildcards with "Fast find" Database
9.20. Finding Files (Much) Faster with a find Database
9.21. grepping a Directory Tree
9.22. lookfor: Which File Has That Word?
9.23. Using Shell Arrays to Browse Directories

9.23.1. Using the Stored Lists
9.23.2. Expanding Ranges

9.24. Finding the (Hard) Links to a File
9.25. Finding Files with -prune
9.26. Quick finds in the Current Directory
9.27. Skipping Parts of a Tree in find
9.28. Keeping find from Searching Networked Filesystem

10. Linking, Renaming, and Copying Files
10.1. What's So Complicated About Copying Files
10.2. What's Really in a Directory?
10.3. Files with Two or More Names
10.4. More About Links

10.4.1. Differences Between Hard and Symbolic Links
10.4.2. Links to a Directory

10.5. Creating and Removing Links
10.6. Stale Symbolic Links
10.7. Linking Directories
10.8. Showing the Actual Filenames for Symbolic Links
10.9. Renaming, Copying, or Comparing a Set of Files
10.10. Renaming a List of Files Interactively
10.11. One More Way to Do It
10.12. Copying Directory Trees with cp -r
10.13. Copying Directory Trees with tar and Pipes

11. Comparing Files
11.1. Checking Differences with diff
11.2. Comparing Three Different Versions with diff3
11.3. Context diffs
11.4. Side-by-Side diffs: sdiff
11.5. Choosing Sides with sdiff
11.6. Problems with diff and Tabstops
11.7. cmp and diff
11.8. Comparing Two Files with comm
11.9. More Friendly comm Output
11.10. make Isn't Just for Programmers!
11.11. Even More Uses for make

12. Showing What's in a File
12.1. Cracking the Nut
12.2. What Good Is a cat?
12.3. "less" is More
12.4. Show Nonprinting Characters with cat -v or od -c
12.5. What's in That Whitespace?
12.6. Finding File Types
12.7. Squash Extra Blank Lines
12.8. How to Look at the End of a File: tail
12.9. Finer Control on tail
12.10. How to Look at Files as They Grow
12.11. GNU tail File Following
12.12. Printing the Top of a File
12.13. Numbering Lines

13. Searching Through Files
13.1. Different Versions of grep
13.2. Searching for Text with grep
13.3. Finding Text That Doesn't Match
13.4. Extended Searching for Text with egrep
13.5. grepping for a List of Patterns
13.6. Approximate grep: agrep
13.7. Search RCS Files with rcsgrep

13.7.1. rcsgrep, rcsegrep, rcsfgrep
13.7.2. rcsegrep.fast

13.8. GNU Context greps
13.9. A Multiline Context grep Using sed
13.10. Compound Searches
13.11. Narrowing a Search Quickly
13.12. Faking Case-Insensitive Searches
13.13. Finding a Character in a Column
13.14. Fast Searches and Spelling Checks with "look"
13.15. Finding Words Inside Binary Files
13.16. A Highlighting grep

14. Removing Files
14.1. The Cycle of Creation and Destruction
14.2. How Unix Keeps Track of Files: Inodes
14.3. rm and Its Dangers
14.4. Tricks for Making rm Safer
14.5. Answer "Yes" or "No" Forever with yes
14.6. Remove Some, Leave Some
14.7. A Faster Way to Remove Files Interactively
14.8. Safer File Deletion in Some Directories
14.9. Safe Delete: Pros and Cons
14.10. Deletion with Prejudice: rm -f
14.11. Deleting Files with Odd Names
14.12. Using Wildcards to Delete Files with Strange Names
14.13. Handling a Filename Starting with a Dash (-)
14.14. Using unlink to Remove a File with a Strange Name
14.15. Removing a Strange File by its i-number
14.16. Problems Deleting Directories
14.17. Deleting Stale Files
14.18. Removing Every File but One
14.19. Using find to Clear Out Unneeded Files

15. Optimizing Disk Space
15.1. Disk Space Is Cheap
15.2. Instead of Removing a File, Empty It
15.3. Save Space with "Bit Bucket" Log Files and Mailboxes
15.4. Save Space with a Link
15.5. Limiting File Sizes

15.5.1. limit and ulimit
15.5.2. Other Ideas

15.6. Compressing Files to Save Space
15.7. Save Space: tar and compress a Directory Tree
15.8. How Much Disk Space?
15.9. Compressing a Directory Tree: Fine-Tuning
15.10. Save Space in Executable Files with strip
15.11. Disk Quotas

IV. Basic Editing
16. Spell Checking, Word Counting, and Textual Analysis

16.1. The Unix spell Command
16.2. Check Spelling Interactively with ispell
16.3. How Do I Spell That Word?
16.4. Inside spell
16.5. Adding Words to ispell's Dictionary
16.6. Counting Lines, Words, and Characters: wc
16.7. Find a a Doubled Word
16.8. Looking for Closure
16.9. Just the Words, Please

17. vi Tips and Tricks
17.1. The vi Editor: Why So Much Material?
17.2. What We Cover
17.3. Editing Multiple Files with vi
17.4. Edits Between Files
17.5. Local Settings for vi
17.6. Using Buffers to Move or Copy Text
17.7. Get Back What You Deleted with Numbered Buffers
17.8. Using Search Patterns and Global Commands

17.8.1. Global Searches
17.9. Confirming Substitutions in vi
17.10. Keep Your Original File, Write to a New File
17.11. Saving Part of a File
17.12. Appending to an Existing File
17.13. Moving Blocks of Text by Patterns
17.14. Useful Global Commands (with Pattern Matches)
17.15. Counting Occurrences; Stopping Search Wraps
17.16. Capitalizing Every Word on a Line
17.17. Per-File Setups in Separate Files
17.18. Filtering Text Through a Unix Command
17.19. vi File Recovery Versus Networked Filesystems
17.20. Be Careful with vi -r Recovered Buffers
17.21. Shell Escapes: Running One UnixCommand While Using Another
17.22. vi Compound Searches
17.23. vi Word Abbreviation
17.24. Using vi Abbreviations as Commands (Cut and Paste Between vi's)
17.25. Fixing Typos with vi Abbreviations
17.26. vi Line Commands Versus Character Commands
17.27. Out of Temporary Space? Use Another Directory
17.28. Neatening Lines
17.29. Finding Your Place with Undo
17.30. Setting Up vi with the .exrc File

18. Creating Custom Commands in vi
18.1. Why Type More Than You Have To?
18.2. Save Time and Typing with the vi map Commands

18.2.1. Command Mode Maps
18.2.2. Text-Input Mode Maps

18.3. What You Lose When You Use map!
18.4. vi @-Functions

18.4.1. Defining and Using Simple @-Functions
18.4.2. Combining @-Functions
18.4.3. Reusing a Definition
18.4.4. Newlines in an @-Function

18.5. Keymaps for Pasting into a Window Running vi
18.6. Protecting Keys from Interpretation by ex

18.7. Maps for Repeated Edits
18.8. More Examples of Mapping Keys in vi
18.9. Repeating a vi Keymap
18.10. Typing in Uppercase Without CAPS LOCK
18.11. Text-Input Mode Cursor Motion with No Arrow Keys
18.12. Don't Lose Important Functions with vi Maps: Use noremap
18.13. vi Macro for Splitting Long Lines
18.14. File-Backup Macros

19. GNU Emacs
19.1. Emacs: The Other Editor
19.2. Emacs Features: A Laundry List
19.3. Customizations and How to Avoid Them
19.4. Backup and Auto-Save Files
19.5. Putting Emacs in Overwrite Mode
19.6. Command Completion
19.7. Mike's Favorite Timesavers
19.8. Rational Searches
19.9. Unset PWD Before Using Emacs
19.10. Inserting Binary Characters into Files
19.11. Using Word-Abbreviation Mode

19.11.1. Trying Word Abbreviations for One Session
19.11.2. Making Word Abbreviations Part of Your Startup

19.12. Directories for Emacs Hacks
19.13. An Absurd Amusement

20. Batch Editing
20.1. Why Line Editors Aren't Dinosaurs
20.2. Writing Editing Scripts
20.3. Line Addressing
20.4. Useful ex Commands
20.5. Running Editing Scripts Within vi
20.6. Change Many Files by Editing Just One
20.7. ed/ex Batch Edits: A Typical Example
20.8. Batch Editing Gotcha: Editors Fail on Big Files
20.9. patch: Generalized Updating of Files That Differ
20.10. Quick Reference: awk

20.10.1. Command-Line Syntax
20.10.2. Patterns and Procedures
20.10.3. awk System Variables
20.10.4. Operators
20.10.5. Variables and Array Assignments
20.10.6. Group Listing of awk Commands
20.10.7. Alphabetical Summary of Commands

20.11. Versions of awk
21. You Can't Quite Call This Editing

21.1. And Why Not?

21.2. Neatening Text with fmt
21.3. Alternatives to fmt
21.4. Clean Up Program Comment Blocks

21.4.1. The recomment Script
21.4.2. fmt -p

21.5. Remove Mail/News Headers with behead
21.6. Low-Level File Butchery with dd
21.7. offset: Indent Text
21.8. Centering Lines in a File
21.9. Splitting Files at Fixed Points: split
21.10. Splitting Files by Context: csplit
21.11. Hacking on Characters with tr
21.12. Encoding "Binary" Files into ASCII

21.12.1. uuencoding
21.12.2. MIME Encoding

21.13. Text Conversion with dd
21.14. Cutting Columns or Fields
21.15. Making Text in Columns with pr

21.15.1. One File per Column: -m
21.15.2. One File, Several Columns: -number
21.15.3. Order Lines Across Columns: -l

21.16. Make Columns Automatically with column
21.17. Straightening Jagged Columns
21.18. Pasting Things in Columns
21.19. Joining Lines with join
21.20. What Is (or Isn't) Unique?
21.21. Rotating Text

22. Sorting
22.1. Putting Things in Order
22.2. Sort Fields: How sort Sorts
22.3. Changing the sort Field Delimiter
22.4. Confusion with Whitespace Field Delimiters
22.5. Alphabetic and Numeric Sorting
22.6. Miscellaneous sort Hints

22.6.1. Dealing with Repeated Lines
22.6.2. Ignoring Blanks
22.6.3. Case-Insensitive Sorts
22.6.4. Dictionary Order
22.6.5. Month Order
22.6.6. Reverse Sort

22.7. lensort: Sort Lines by Length
22.8. Sorting a List of People by Last Name

V. Processes and the Kernel
23. Job Control

23.1. Job Control in a Nutshell

23.2. Job Control Basics
23.2.1. How Job Control Works
23.2.2. Using Job Control from Your Shell

23.3. Using jobs Effectively
23.4. Some Gotchas with Job Control
23.5. The "Current Job" Isn't Always What You Expect
23.6. Job Control and autowrite: Real Timesavers!
23.7. System Overloaded? Try Stopping Some Jobs
23.8. Notification When Jobs Change State
23.9. Stop Background Output with stty tostop
23.10. nohup
23.11. Disowning Processes
23.12. Linux Virtual Consoles

23.12.1. What Are They?
23.12.2. Scrolling, Using a Mouse

23.13. Stopping Remote Login Sessions
24. Starting, Stopping, and Killing Processes

24.1. What's in This Chapter
24.2. fork and exec
24.3. Managing Processes: Overall Concepts
24.4. Subshells
24.5. The ps Command
24.6. The Controlling Terminal
24.7. Tracking Down Processes

24.7.1. System V
24.7.2. BSD

24.8. Why ps Prints Some Commands in Parentheses
24.9. The /proc Filesystem

24.9.1. Memory Information
24.9.2. Kernel and System Statistics
24.9.3. Statistics of the Current Process
24.9.4. Statistics of Processes by PID
24.9.5. A Glimpse at Hardware

24.10. What Are Signals?
24.11. Killing Foreground Jobs
24.12. Destroying Processes with kill
24.13. Printer Queue Watcher: A Restartable Daemon Shell Script
24.14. Killing All Your Processes
24.15. Killing Processes by Name?
24.16. Kill Processes Interactively

24.16.1. killall -i
24.16.2. zap

24.17. Processes Out of Control? Just STOP Them
24.18. Cleaning Up an Unkillable Process
24.19. Why You Can't Kill a Zombie

24.20. The Process Chain to Your Window
24.21. Terminal Windows Without Shells
24.22. Close a Window by Killing Its Process(es)

24.22.1. Example #1: An xterm Window
24.22.2. Example #2: A Web Browser
24.22.3. Closing a Window from a Shell Script

25. Delayed Execution
25.1. Building Software Robots the Easy Way
25.2. Periodic Program Execution: The cron Facility

25.2.1. Execution Scheduling
25.2.2. A Little Help, etc.

25.3. Adding crontab Entries
25.4. Including Standard Input Within a cron Entry
25.5. The at Command
25.6. Making Your at Jobs Quiet
25.7. Checking and Removing Jobs
25.8. Avoiding Other at and cron Jobs
25.9. Waiting a Little While: sleep

26. System Performance and Profiling
26.1. Timing Is Everything
26.2. Timing Programs
26.3. What Commands Are Running and How Long Do They Take?
26.4. Checking System Load: uptime
26.5. Know When to Be "nice" to Other Users...and When Not To

26.5.1. BSD C Shell nice
26.5.2. BSD Standalone nice
26.5.3. System V C Shell nice
26.5.4. System V Standalone nice

26.6. A nice Gotcha
26.7. Changing a Running Job's Niceness

VI. Scripting
27. Shell Interpretation

27.1. What the Shell Does
27.2. How the Shell Executes Other Commands
27.3. What's a Shell, Anyway?

27.3.1. How Shells Run Other Programs
27.3.2. Interactive Use Versus Shell Scripts
27.3.3. Types of Shells
27.3.4. Shell Search Paths
27.3.5. Bourne Shell Used Here
27.3.6. Default Commands

27.4. Command Evaluation and Accidentally Overwriting Files
27.5. Output Command-Line Arguments One by One
27.6. Controlling Shell Command Searches
27.7. Wildcards Inside Aliases

27.8. eval: When You Need Another Chance
27.9. Which One Will bash Use?
27.10. Which One Will the C Shell Use?
27.11. Is It "2>&1 file" or "> file 2>&1"? Why?
27.12. Bourne Shell Quoting

27.12.1. Special Characters
27.12.2. How Quoting Works
27.12.3. Single Quotes Inside Single Quotes?
27.12.4. Multiline Quoting

27.13. Differences Between Bourne and C Shell Quoting
27.13.1. Special Characters
27.13.2. How Quoting Works

27.14. Quoting Special Characters in Filenames
27.15. Verbose and Echo Settings Show Quoting
27.16. Here Documents
27.17. "Special" Characters and Operators
27.18. How Many Backslashes?

28. Saving Time on the Command Line
28.1. What's Special About the Unix Command Line
28.2. Reprinting Your Command Line with CTRL-r
28.3. Use Wildcards to Create Files?
28.4. Build Strings with { }
28.5. String Editing (Colon) Operators
28.6. Automatic Completion

28.6.1. General Example: Filename Completion
28.6.2. Menu Completion
28.6.3. Command-Specific Completion
28.6.4. Editor Functions for Completion

28.7. Don't Match Useless Files in Filename Completion
28.8. Repeating Commands
28.9. Repeating and Varying Commands

28.9.1. A foreach Loop
28.9.2. A for Loop

28.10. Repeating a Command with Copy-and-Paste
28.11. Repeating a Time-Varying Command
28.12. Multiline Commands, Secondary Prompts
28.13. Here Document Example #1: Unformatted Form Letters
28.14. Command Substitution
28.15. Handling Lots of Text with Temporary Files
28.16. Separating Commands with Semicolons
28.17. Dealing with Too Many Arguments
28.18. Expect

28.18.1. Dialback
28.18.2. Automating /bin/passwd
28.18.3. Testing: A Story

28.18.4. Other Problems
29. Custom Commands

29.1. Creating Custom Commands
29.2. Introduction to Shell Aliases
29.3. C-Shell Aliases with Command-Line Arguments
29.4. Setting and Unsetting Bourne-Type Aliases
29.5. Korn-Shell Aliases
29.6. zsh Aliases
29.7. Sourceable Scripts
29.8. Avoiding C-Shell Alias Loops
29.9. How to Put if-then-else in a C-Shell Alias
29.10. Fix Quoting in csh Aliases with makealias and quote
29.11. Shell Function Basics

29.11.1. Simple Functions: ls with Options
29.11.2. Functions with Loops: Internet Lookup
29.11.3. Setting Current Shell Environment: The work Function
29.11.4. Functions Calling Functions: Factorials
29.11.5. Conclusion

29.12. Shell Function Specifics
29.13. Propagating Shell Functions

29.13.1. Exporting bash Functions
29.13.2. FPATH Search Path

29.14. Simulated Bourne Shell Functions and Aliases
30. The Use of History

30.1. The Lessons of History
30.2. History in a Nutshell
30.3. My Favorite Is !$
30.4. My Favorite Is !:n*
30.5. My Favorite Is ^^
30.6. Using !$ for Safety with Wildcards
30.7. History by Number
30.8. History Substitutions
30.9. Repeating a Cycle of Commands
30.10. Running a Series of Commands on a File
30.11. Check Your History First with :p
30.12. Picking Up Where You Left Off

30.12.1. bash, ksh, zsh
30.12.2. C Shells

30.13. Pass History to Another Shell
30.14. Shell Command-Line Editing

30.14.1. vi Editing Mode
30.14.2. Emacs Editing Mode
30.14.3. tcsh Editing
30.14.4. ksh Editing
30.14.5. bash Editing

30.14.6. zsh Editing
30.15. Changing History Characters with histchars
30.16. Instead of Changing History Characters

31. Moving Around in a Hurry
31.1. Getting Around the Filesystem
31.2. Using Relative and Absolute Pathnames
31.3. What Good Is a Current Directory?
31.4. How Does Unix Find Your Current Directory?
31.5. Saving Time When You Change Directories: cdpath
31.6. Loop Control: break and continue
31.7. The Shells' pushd and popd Commands
31.8. Nice Aliases for pushd
31.9. Quick cds with Aliases
31.10. cd by Directory Initials
31.11. Finding (Anyone's) Home Directory, Quickly
31.12. Marking Your Place with a Shell Variable
31.13. Automatic Setup When You Enter/Exit a Directory

32. Regular Expressions (Pattern Matching)
32.1. That's an Expression
32.2. Don't Confuse Regular Expressions with Wildcards
32.3. Understanding Expressions
32.4. Using Metacharacters in Regular Expressions
32.5. Regular Expressions: The Anchor Characters ̂and $
32.6. Regular Expressions: Matching a Character with a Character Set
32.7. Regular Expressions: Match Any Character with . (Dot)
32.8. Regular Expressions: Specifying a Range of Characters with [...]
32.9. Regular Expressions: Exceptions in a Character Set
32.10. Regular Expressions: Repeating Character Sets with *
32.11. Regular Expressions: Matching a Specific Number of Sets with \ { and \ }
32.12. Regular Expressions: Matching Words with \ < and \ >
32.13. Regular Expressions: Remembering Patterns with \ (, \), and \1
32.14. Regular Expressions: Potential Problems
32.15. Extended Regular Expressions
32.16. Getting Regular Expressions Right
32.17. Just What Does a Regular Expression Match?
32.18. Limiting the Extent of a Match
32.19. I Never Meta Character I Didn't Like
32.20. Valid Metacharacters for Different Unix Programs
32.21. Pattern Matching Quick Reference with Examples

32.21.1. Examples of Searching
32.21.2. Examples of Searching and Replacing

33. Wildcards
33.1. File-Naming Wildcards
33.2. Filename Wildcards in a Nutshell
33.3. Who Handles Wildcards?

33.4. What if a Wildcard Doesn't Match?
33.5. Maybe You Shouldn't Use Wildcards in Pathnames
33.6. Getting a List of Matching Files with grep -l
33.7. Getting a List of Nonmatching Files

33.7.1. Using grep -c
33.7.2. The vgrep Script

33.8. nom: List Files That Don't Match a Wildcard
34. The sed Stream Editor

34.1. sed Sermon^H^H^H^H^H^HSummary
34.2. Two Things You Must Know About sed
34.3. Invoking sed
34.4. Testing and Using a sed Script: checksed, runsed

34.4.1. checksed
34.4.2. runsed

34.5. sed Addressing Basics
34.6. Order of Commands in a Script
34.7. One Thing at a Time
34.8. Delimiting a Regular Expression
34.9. Newlines in a sed Replacement
34.10. Referencing the Search String in a Replacement
34.11. Referencing Portions of a Search String
34.12. Search and Replacement: One Match Among Many
34.13. Transformations on Text
34.14. Hold Space: The Set-Aside Buffer
34.15. Transforming Part of a Line
34.16. Making Edits Across Line Boundaries
34.17. The Deliberate Scrivener
34.18. Searching for Patterns Split Across Lines
34.19. Multiline Delete
34.20. Making Edits Everywhere Except...
34.21. The sed Test Command
34.22. Uses of the sed Quit Command
34.23. Dangers of the sed Quit Command
34.24. sed Newlines, Quoting, and Backslashes in a Shell Script

35. Shell Programming for the Uninitiated
35.1. Writing a Simple Shell Program
35.2. Everyone Should Learn Some Shell Programming
35.3. What Environment Variables Are Good For
35.4. Parent-Child Relationships
35.5. Predefined Environment Variables
35.6. The PATH Environment Variable
35.7. PATH and path
35.8. The DISPLAY Environment Variable
35.9. Shell Variables
35.10. Test String Values with Bourne-Shell case

35.11. Pattern Matching in case Statements
35.12. Exit Status of Unix Processes
35.13. Test Exit Status with the if Statement
35.14. Testing Your Success
35.15. Loops That Test Exit Status

35.15.1. Looping Until a Command Succeeds
35.15.2. Looping Until a Command Fails

35.16. Set Exit Status of a Shell (Script)
35.17. Trapping Exits Caused by Interrupts
35.18. read: Reading from the Keyboard
35.19. Shell Script "Wrappers" for awk, sed, etc.
35.20. Handling Command-Line Arguments in Shell Scripts

35.20.1. With the "$@" Parameter
35.20.2. With a Loop
35.20.3. Counting Arguments with $#

35.21. Handling Command-Line Arguments with a for Loop
35.22. Handling Arguments with while and shift
35.23. Loop Control: break and continue
35.24. Standard Command-Line Parsing
35.25. The Bourne Shell set Command

35.25.1. Setting Options
35.25.2. Setting (and Parsing) Parameters
35.25.3. (Avoiding?) set with No Arguments
35.25.4. Watch Your Quoting
35.25.5. Can't Set $0

35.26. test: Testing Files and Strings
35.27. Picking a Name for a New Command
35.28. Finding a Program Name and Giving Your Program Multiple Names
35.29. Reading Files with the . and source Commands
35.30. Using Shell Functions in Shell Scripts

36. Shell Programming for the Initiated
36.1. Beyond the Basics
36.2. The Story of : # #!
36.3. Don't Need a Shell for Your Script? Don't Use One
36.4. Making #! Search the PATH
36.5. The exec Command
36.6. The Unappreciated Bourne Shell ":" Operator
36.7. Parameter Substitution
36.8. Save Disk Space and Programming: Multiple Names for a Program
36.9. Finding the Last Command-Line Argument
36.10. How to Unset All Command-Line Parameters
36.11. Standard Input to a for Loop
36.12. Making a for Loop with Multiple Variables
36.13. Using basename and dirname

36.13.1. Introduction to basename and dirname

36.13.2. Use with Loops
36.14. A while Loop with Several Loop Control Commands
36.15. Overview: Open Files and File Descriptors
36.16. n>&m: Swap Standard Output and Standard Error
36.17. A Shell Can Read a Script from Its Standard Input, but...
36.18. Shell Scripts On-the-Fly from Standard Input
36.19. Quoted hereis Document Terminators: sh Versus csh
36.20. Turn Off echo for "Secret" Answers
36.21. Quick Reference: expr

36.21.1. Syntax
36.21.2. Examples

36.22. Testing Characters in a String with expr
36.23. Grabbing Parts of a String

36.23.1. Matching with expr
36.23.2. Using echo with awk or cut
36.23.3. Using set and IFS
36.23.4. Using sed

36.24. Nested Command Substitution
36.25. Testing Two Strings with One case Statement
36.26. Outputting Text to an X Window
36.27. Shell Lockfile

37. Shell Script Debugging and Gotchas
37.1. Tips for Debugging Shell Scripts

37.1.1. Use -xv
37.1.2. Unmatched Operators
37.1.3. Exit Early
37.1.4. Missing or Extra esac, ;;, fi, etc.
37.1.5. Line Numbers Reset Inside Redirected Loops

37.2. Bourne Shell Debugger Shows a Shell Variable
37.3. Stop Syntax Errors in Numeric Tests
37.4. Stop Syntax Errors in String Tests
37.5. Quoting and Command-Line Parameters
37.6. How Unix Keeps Time
37.7. Copy What You Do with script
37.8. Cleaning script Files
37.9. Making an Arbitrary-Size File for Testing

VII. Extending and Managing Your Environment
38. Backing Up Files

38.1. What Is This "Backup" Thing?
38.2. tar in a Nutshell
38.3. Make Your Own Backups
38.4. More Ways to Back Up
38.5. How to Make Backups to a Local Device

38.5.1. What to Back Up
38.5.2. Backing Up to Tape

38.5.3. Backing Up to Floppies or Zip Disks
38.5.4. To gzip, or Not to gzip?

38.6. Restoring Files from Tape with tar
38.6.1. Restoring a Few Files
38.6.2. Remote Restoring

38.7. Using tar to a Remote Tape Drive
38.8. Using GNU tar with a Remote Tape Drive
38.9. On-Demand Incremental Backups of a Project
38.10. Using Wildcards with tar

38.10.1. Without GNU tar
38.10.2. With GNU tar
38.10.3. Wildcard Gotchas in GNU tar

38.11. Avoid Absolute Paths with tar
38.12. Getting tar's Arguments in the Right Order
38.13. The cpio Tape Archiver
38.14. Industrial Strength Backups

39. Creating and Reading Archives
39.1. Packing Up and Moving
39.2. Using tar to Create and Unpack Archives
39.3. GNU tar Sampler
39.4. Managing and Sharing Files with RCS and CVS
39.5. RCS Basics
39.6. List RCS Revision Numbers with rcsrevs
39.7. CVS Basics
39.8. More CVS

40. Software Installation
40.1. /usr/bin and Other Software Directories
40.2. The Challenges of Software Installation on Unix
40.3. Which make?
40.4. Simplifying the make Process
40.5. Using Debian's dselect

40.5.1. Choosing the Access Method
40.5.2. Updating Information on Available Packages
40.5.3. Choosing Packages for Installation or Removal
40.5.4. Exiting the Select Function
40.5.5. Installing Packages
40.5.6. Configuring Packages
40.5.7. Removing Packages
40.5.8. Exiting dselect

40.6. Installing Software with Debian's Apt-Get
40.6.1. Configuring the sources.list File
40.6.2. Using apt-get

40.7. Interruptable gets with wget
40.8. The curl Application and One-Step GNU-Darwin Auto-Installer for OS X
40.9. Installation with FreeBSD Ports

40.10. Installing with FreeBSD Packages
40.11. Finding and Installing RPM Packaged Software

41. Perl
41.1. High-Octane Shell Scripting
41.2. Checking your Perl Installation
41.3. Compiling Perl from Scratch
41.4. Perl Boot Camp, Part 1: Typical Script Anatomy
41.5. Perl Boot Camp, Part 2: Variables and Data Types

41.5.1. Scalars
41.5.2. Arrays
41.5.3. Hashes
41.5.4. References

41.6. Perl Boot Camp, Part 3: Branching and Looping
41.7. Perl Boot Camp, Part 4: Pattern Matching
41.8. Perl Boot Camp, Part 5: Perl Knows Unix
41.9. Perl Boot Camp, Part 6: Modules
41.10. Perl Boot Camp, Part 7: perldoc
41.11. CPAN

41.11.1. Installing Modules the Easy Way
41.11.2. Installing Modules the Hard Way
41.11.3. Browsing the CPAN Web Site

41.12. Make Custom grep Commands (etc.) with Perl
41.13. Perl and the Internet

41.13.1. Be Your Own Web Browser with LWP
41.13.2. Sending Mail with Mail::Sendmail
41.13.3. CGI Teaser

42. Python
42.1. What Is Python?
42.2. Installation and Distutils
42.3. Python Basics

42.3.1. Indentation
42.3.2. Functions
42.3.3. Everything's an Object
42.3.4. Modules and Packages
42.3.5. I/O and Formatting
42.3.6. wxPython

42.4. Python and the Web
42.5. urllib
42.6. urllib2
42.7. htmllib and HTMLParser
42.8. cgi
42.9. mod_python
42.10. What About Perl?

VIII. Communication and Connectivity
43. Redirecting Input and Output

43.1. Using Standard Input and Output
43.2. One Argument with a cat Isn't Enough
43.3. Send (Only) Standard Error Down a Pipe
43.4. Problems Piping to a Pager
43.5. Redirection in C Shell: Capture Errors, Too?
43.6. Safe I/O Redirection with noclobber
43.7. The () Subshell Operators

43.7.1. Combining Several Commands
43.7.2. Temporary Change of Directory and Environment

43.8. Send Output Two or More Places
43.9. How to tee Several Commands into One Place
43.10. Redirecting Output to More Than One Place
43.11. Named Pipes: FIFOs
43.12. What Can You Do with an Empty File?

44. Devices
44.1. Quick Introduction to Hardware
44.2. Reading Kernel Boot Output
44.3. Basic Kernel Configuration
44.4. Disk Partitioning
44.5. Filesystem Types and /etc/fstab
44.6. Mounting and Unmounting Removable Filesystems
44.7. Loopback Mounts
44.8. Network Devices — ifconfig
44.9. Mounting Network Filesystems — NFS, SMBFS
44.10. Win Is a Modem Not a Modem?
44.11. Setting Up a Dialup PPP Session
44.12. USB Configuration
44.13. Dealing with Sound Cards and Other Annoying Hardware
44.14. Decapitating Your Machine — Serial Consoles

45. Printing
45.1. Introduction to Printing
45.2. Introduction to Printing on Unix

45.2.1. lpr-Style Printing Commands
45.2.2. lp-Style Printing Commands

45.3. Printer Control with lpc
45.4. Using Different Printers
45.5. Using Symbolic Links for Spooling
45.6. Formatting Plain Text: pr
45.7. Formatting Plain Text: enscript
45.8. Printing Over a Network
45.9. Printing Over Samba

45.9.1. Printing to Unix Printers from Windows
45.9.2. Printing to Windows Printers from Unix

45.10. Introduction to Typesetting
45.11. A Bit of Unix Typesetting History

45.12. Typesetting Manpages: nroff
45.13. Formatting Markup Languages — troff, LATEX, HTML, and So On
45.14. Printing Languages — PostScript, PCL, DVI, PDF
45.15. Converting Text Files into a Printing Language
45.16. Converting Typeset Files into a Printing Language
45.17. Converting Source Files Automagically Within the Spooler
45.18. The Common Unix Printing System (CUPS)
45.19. The Portable Bitmap Package

46. Connectivity
46.1. TCP/IP — IP Addresses and Ports

46.1.1. Internet Protocol (IP)
46.1.2. Layer 4 Protocols: TCP, UDP, and ICMP

46.2. /etc/services Is Your Friend
46.3. Status and Troubleshooting
46.4. Where, Oh Where Did That Packet Go?
46.5. The Director of Operations: inetd
46.6. Secure Shell (SSH)
46.7. Configuring an Anonymous FTP Server
46.8. Mail — SMTP, POP, and IMAP
46.9. Domain Name Service (DNS)
46.10. Dynamic Host Configuration Protocol (DHCP)
46.11. Gateways and NAT
46.12. Firewalls
46.13. Gatewaying from a Personal LAN over a Modem

47. Connecting to MS Windows
47.1. Building Bridges
47.2. Installing and Configuring Samba
47.3. Securing Samba
47.4. SWAT and GUI SMB Browsers
47.5. Printing with Samba
47.6. Connecting to SMB Shares from Unix
47.7. Sharing Desktops with VNC

47.7.1. Connecting to a Windows VNC server
47.7.2. Setting up VNC on Unix

47.8. Of Emulators and APIs
47.8.1. VMWare
47.8.2. Wine

47.9. Citrix: Making Windows Multiuser
47.9.1. Citrix Metaframe
47.9.2. rdesktop
47.9.3. Hob

IX. Security
48. Security Basics

48.1. Understanding Points of Vulnerability
48.2. CERT Security Checklists

48.3. Keeping Up with Security Alerts
48.4. What We Mean by Buffer Overflow
48.5. What We Mean by DoS
48.6. Beware of Sluggish Performance

48.6.1. Check Processes
48.6.2. Checking Swap Space
48.6.3. Check Network Connections
48.6.4. Other Checks

48.7. Intruder Detection
48.8. Importance of MOTD
48.9. The Linux proc Filesystem
48.10. Disabling inetd
48.11. Disallow rlogin and rsh
48.12. TCP Wrappers

49. Root, Group, and User Management
49.1. Unix User/Group Infrastructure
49.2. When Does a User Become a User
49.3. Forgetting the root Password
49.4. Setting an Exact umask
49.5. Group Permissions in a Directory with the setgid Bit
49.6. Groups and Group Ownership
49.7. Add Users to a Group to Deny Permissions
49.8. Care and Feeding of SUID and SGID Scripts
49.9. Substitute Identity with su
49.10. Never Log In as root
49.11. Providing Superpowers with sudo
49.12. Enabling Root in Darwin
49.13. Disable logins

50. File Security, Ownership, and Sharing
50.1. Introduction to File Ownership and Security
50.2. Tutorial on File and Directory Permissions

50.2.1. User, Group, and World
50.2.2. Which Group is Which?

50.3. Who Will Own a New File?
50.4. Protecting Files with the Sticky Bit
50.5. Using chmod to Change File Permission
50.6. The Handy chmod = Operator
50.7. Protect Important Files: Make Them Unwritable
50.8. cx, cw, c-w: Quick File Permission Changes
50.9. A Loophole: Modifying Files Without Write Access
50.10. A Directory That People Can Access but Can't List
50.11. Juggling Permissions
50.12. File Verification with md5sum
50.13. Shell Scripts Must Be Readable and (Usually) Executable
50.14. Why Can't You Change File Ownership?

50.15. How to Change File Ownership Without chown
51. SSH

51.1. Enabling Remote Access on Mac OS X
51.2. Protecting Access Through SSH
51.3. Free SSH with OpenSSH
51.4. SSH Problems and Solutions
51.5. General and Authentication Problems
51.6. Key and Agent Problems
51.7. Server and Client Problems

Glossary
Index

UNIX Power Tools, 3rd Edition

Jerry Peek

Shelley Powers

Tim O'Reilly

Mike Loukides

Editor

Laurie Petrycki

Copyright © 2009 O'Reilly Media, Inc.

O'Reilly Media

A Note Regarding Supplemental Files

Supplemental files and examples for this book can be found at
http://examples.oreilly.com/9780596003302/. Please use a standard desktop web browser to access
these files, as they may not be accessible from all ereader devices.

All code files or examples referenced in the book will be available online. For physical books that
ship with an accompanying disc, whenever possible, we’ve posted all CD/DVD content. Note that
while we provide as much of the media content as we are able via free download, we are sometimes
limited by licensing restrictions. Please direct any questions or concerns to booktech@oreilly.com.

http://examples.oreilly.com/9780596003302/
mailto:booktech@oreilly.com

How to Use This Book

This section refers to conventions used in the print book and explains how they were modified for the
Safari version. The numbers in the following images correspond to the list below.

1. Summary Boxes. You'll see gray shaded summary boxes all through the book. (On Safari, the
Summary Boxes are bordered sidebars with the title "Summary Box.") They summarize a topic
and point you to articles with examples and further explanation.

2. Article/Section Number. The first two digits indicate in which chapter the article resides; the
last two digits indicate the number of the article within that chapter. The article number is used
to refer to this article in all cross-references throughout the book. (On Safari, Article numbers
correspond to Section numbers.)

3. Cross-Reference in a Sentence. To find out more about the topic displayed in gray type (On
Safari, this text is displayed in boldface.), see the article referenced by the number in

parentheses immediately following the term.
4. Cross-Reference in a Code Example. When a cross-reference occurs in an example, the cross-

referenced text and related article number appear in the left margin. (On Safari, these cross-
references appear above the code example.)

1. Globe If you don't want to type this script into a file yourself, or if we're talking about a C
program that isn't shown, you can download it from the book's web site. See the Preface for full
details on the content available for download. (Online version available at
http://examples.oreilly.com/upt3)

2. Screw. Be careful with this feature, or you might get screwed.

http://examples.oreilly.com/upt3

1. Pushpin. A note to keep in mind, or a helpful tip.
2. Bomb. A bomb icon in the margin is a cross-reference to another article that explains the

possible trouble you might encounter using the tip or script in the current article. (You can think
of the bomb as a cross-referenced screw.) (On Safari, the Bomb appears above the paragraph it
refers to.)

3. Author's Initials. The author's full name is listed in the Preface.

Preface

A Book for Browsing

Technical books can be boring. But this is not an ordinary technical book! This book is like an
almanac, a news magazine, and a hypertext database all rolled into one. Instead of trying to put the
topics in perfect order — and expecting you to start at the beginning, then read through to the end —
we hope that you'll browse. Start anywhere. Read what you want. (That's not quite true. First, you
should read this Preface and the pages before it titled How to Use This Book. They will help you get
the most out of your time with this book. Next, you may want to skim through the Unix fundamentals in
Chapter 1. Then read what you want.)

Like an Almanac

The book is full of practical information. The main purpose isn't to teach you concepts (though they're
in here). We've picked a lot of common problems, and we'll show you how to solve them.

Even though it's not designed to be read in strict order, the book is organized into chapters with
related subject matter. If you want to find a specific subject, the table of contents is still a good place
to start. In addition, several of the chapters contain shaded boxes. These are like small tables of
contents on a particular subject, which might be even more limited than the scope of the chapter itself.
Use the Index when you're trying to find a specific piece of information instead of a general group of
articles about a topic.

Like a News Magazine

This book has short articles. Most show a problem and a solution — in one page or less. The
articles are numbered within each chapter. Not all articles are "how-to" tips. Some articles have
background information and concepts.

Like a Hypertext Database

Each article doesn't define all the concepts and words used. Instead, it gives you "links" that let you
get more information if you need it. It's easy to get more information when you need it, but just skip
the link if you don't. Unix Power Tools uses two kinds of links: those in a sentence and those in the
margin. For examples, see the pages before this Preface titled How to Use This Book.

Programs on the Web

The book describes scripts and freely available programs that are available on the web site. An
article about a program or file that's on the web site will have a globe icon next to it, like this. To get
one of these programs, visit the web site:
http://www.oreilly.com/catalog/upt3/

http://www.oreilly.com/catalog/upt3/

About Unix Versions

There are lots of similarities between different versions of Unix. But it's almost impossible to write a
book that covers every detail of every version correctly. Where we know there might be big
differences or problems, we'll print a note in the text. Other places, we're forced to use "weasel
words" like "Some versions of XXX will do...," without telling you exactly which versions. When
you see those weasel words, what can you do?

If the command or feature won't destroy anything when it doesn't work, try it! For instance, don't
experiment with rm, the command that removes files. But cat, a command that shows files,
probably won't hurt anything if some feature doesn't work with your version.
Look at the online manual or check your vendor's latest printed manuals. However, even these
can be wrong. For instance, your system administrator may have installed a local version of a
command that works differently — but not updated the online documentation. Be careful with
"generic" manuals, the kind you buy at a bookstore; there are lots of versions of Unix, and the
manual may not match your version closely enough.
Ask your system administrator or another "guru" for help before you use a command that might
be dangerous.

Cross-References

If a cross-reference is to a single word — for example, a command name like this: tar — the cross
reference is probably to an article that introduces that command. Cross references to phrases — like
this: from a parent process to child process — are to an article that explains more about the concept
or problem printed in gray.

Cross references don't necessarily give a complete list of all articles about a topic. We've tried to
pick one or a few articles that give the best information. For a more complete list, use the Index.

What's New in the Third Edition

There have been some big changes in Unix since we wrote the first edition in the early 1990s, and
there's been a surprising number of changes since the second edition, released in the late 1990s. Well
over half of the articles have been revised, and we've expanded our coverage of the so-called small
Unix flavors: Linux, FreeBSD, Mac OS X's Darwin, and so on.

A major change to this edition was the addition of several new topics relevant to today's connected
world, including protecting your machine from attack and several articles related to Internet
protocols. We've also added chapters with coverage of two of the more popular languages used in
Unix: Perl and Python.

Typefaces and Other Conventions

Italic
Is used for the names of all Unix utilities, switches, directories, and filenames and to emphasize
new terms and concepts when they are first introduced. It's also used in programs and examples
to explain what's happening or what's been left out at the . . . marks.

Bold
Is used occasionally within text to make words easy to find — just like movie stars' names in the
People section of your local newspaper.

Constant width
Is used for sample code fragments and examples. A reference in text to a word or item used in an
example or code fragment is also shown in constant width font.

Constant width bold
Is used in examples to show commands or text that would be typed in literally by the user.

Constant width italic, bold italic
Are used in code fragments and examples to show variables for which a context-specific
substitution should be made. (The variable filename, for example, would be replaced by some
actual filename.)

function(n)
Is a reference to a manual page in Section n of the Unix programmer's manual. For example,
getopt(3) refers to a page called getopt in Section 3.

%
Is the C-shell prompt.

$
Is the Bourne-shell prompt.

:-)
Is a "smiley face" that means "don't take this seriously." The idea started on Usenet and spread.

& . . .
Stands for text (usually computer output) that's been omitted for clarity or to save space.

CTRL
Starts a control character. To create CTRL-d, for example, hold down the "control" key and
press the "d" key. Control characters are not case sensitive; "d" refers to both the upper- and
lowercase letter. The notation ^D also means CTRL-d. Also, you'll sometimes see the key
sequence in bold (for example, CTRL-d is used when we want to make it clear exactly what you
should type.

·
Is used in some examples to represent a space chara·cter.

TAB
Is used in some examples to represent a TAB character.

The Authors

This book is the effort of several authors who have contributed to one edition or another since the
first edition was released. Much of the material for the first and second edition came from three
authors: Jerry Peek, Tim O'Reilly, and Mike Loukides. Their work is still present, though edited for
current times. This third edition brought in four new authors, who edited the previous material, in
addition to contributing new articles: Shelley Powers, Steven Champeon, Deborah Hooker, and Joe
Johnston.

In addition, we also had several other authors contribute to all three editions — either people who
originally posted a good tip to Usenet, authors of Nutshell Handbooks who let us take material from
their books, or authors of software packages who let us take a few paragraphs from README files
or other documentation.

Here's a list of authors and their initials:
AD Angus Duggan JIK Jonathan I. Kamens

AF AEleen Frisch JM Jeff Moskow

AN Adrian Nye JP Jerry Peek

BA Brandon S. Allbery JJ Joe Johnston

BB Bruce Barnett JS John Strang

BR Bill Rosenblatt LK Lar Kaufman

CT Chris Torek LL Linda Lamb

DC Debra Cameron LM Linda Mui

DD Dale Dougherty LW Larry Wall

DG Daniel Gilly MAL Maarten Litmaath

DH Dave Hitz ML Mike Loukides

DJPH Deborah Hooker MS Mike Stansbery

DL Don Libes RS Randal Schwartz

DR Daniel Romike SP Shelley Powers

DS Daniel Smith SG Simson Garfinkel

EK Eileen Kramer SC Steve Champeon

EP Eric Pearce SW Sun Wu

GS Gene Spafford TC Tom Christiansen

GU Greg Ubben TOR Tim O'Reilly

HS Henry Spencer UM Udi Manber

The Fine Print

Where we show an article from an author on Usenet, that person may not have thought of the idea
originally, but may just be passing on something he or she learned. We attribute everything we can.

Request for Comments

Please tell us about any errors you find in this book or ways you think it could be improved. Our U.S.
mail address, phone numbers, and electronic mail address are as follows:

O'Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)
bookquestions@oreilly.com (email)

mailto:bookquestions@oreilly.com

Acknowledgments for the First Edition

This book wouldn't exist without Ron Petrusha. As the technical book buyer at Golden-Lee, a major
book distributor, he discovered us soon after we started publishing Nutshell Handbooks in the mid-
1980s. He was one of our early boosters, and we owed him one. So when he became an editor at
Bantam (whose computer-book publishing operations were later acquired by Random House), we
took him seriously when he started asking if there was anything we could do together.

At first nothing seemed to fit, since by that time we were doing pretty well as a publisher. We needed
to find something that we could do together that might sell better than something that either company
might do alone. Eventually, Ron suggested that we copublish a Unix book for Bantam's "Power
Tools" series. This made sense for both of us. It gave Bantam access to our Unix expertise and
reputation, and it gave us a chance to learn from Bantam about the mass market bookstore trade, as
well as build on their successful "Power Tools" series.

But what would the book contain? There were two features of Bantam's original DOS Power Tools
that we decided to emulate: its in-depth treatment of under-documented system features and its large
collection of freely available scripts and utilities. However, we didn't want to write yet another book
that duplicated the format of many others on the market, in which chapters on each of the major Unix
tools follow one another in predictable succession. Our goal was certainly to provide essential
technical information on Unix utilities, but more importantly, to show how the utilities can be
combined and used to solve common (and uncommon) problems.

Similarly, because we were weary of the multitude of endless tutorial books about Unix utilities, we
wanted to keep the tone brisk and to the point. The solution I came up with, a kind of "hypertext in
print," actually owes a lot to Dale Dougherty. Dale has been working for several years on hypertext
and online information delivery, and I was trying to get him to work with me on this project. So I tried
to imagine the kind of book that he might like to create. (We have a kind of friendly rivalry, in which
we try to leapfrog each other with ideas for new and better books!) Dale's involvement never went
far beyond the early brainstorming stage, but the book still bears his indirect stamp. In some of the
first books he wrote for me, he introduced the idea that sidebars — asides that illuminate and expand
on the topic under discussion — could be used effectively in a technical book. Well, Dale, here's a
book that's nothing but sidebars!

Dale, Mike Loukides, and I worked out the basic outline for the book in a week or two of
brainstorming and mail exchanges. We thought we could throw it together pretty quickly by mining
many of our existing books for the tips and tricks buried in them. Unfortunately, none of us was ever
able to find enough time, and the book looked to be dying a slow death. (Mike was the only one who
got any writing done.) Steve Talbott rescued the project by insisting that it was just too good an idea
to let go; he recruited Jerry Peek, who had just joined the company as a writer and Unix
consultant/tools developer for our production department.

Production lost the resulting tug of war, and Jerry plunged in. Jerry has forgotten more Unix tips and
tricks than Mike, Dale, or I ever knew; he fleshed out our outline and spent a solid year writing and
collecting the bulk of the book. I sat back in amazement and delight as Jerry made my ideas take
shape. Finally, though, Jerry had had enough. The book was just too big, and he'd never signed on to
do it all alone! (It was about 1,000 pages at that point, and only half done.) Jerry, Mike, and I spent a

week locked up in our conference room, refining the outline, writing and cutting articles, and
generally trying to make Jerry feel a little less like Sisyphus.

From that point on, Jerry continued to carry the ball, but not quite alone, with Mike and I playing "tag
team," writing and editing to fill in gaps. I'm especially grateful to Mike for pitching in, since he had
many other books to edit and this was supposed to be "my" project. I am continually amazed by the
breadth of Mike's knowledge and his knack for putting important concepts in perspective.

Toward the end of the project, Linda Mui finished up another book she was working on and joined the
project, documenting many of the freely available utilities that we'd planned to include but hadn't
gotten around to writing up. Linda, you really saved us at the end!

Thanks also to all the other authors, who allowed us to use (and sometimes abuse!) their material. In
particular, we're grateful to Bruce Barnett, who let us use so much of what he's written, even though
we haven't yet published his book, and Chris Torek, who let us use many of the gems he's posted to
the Net over the years. (Chris didn't keep copies of most of these articles; they were saved and sent in
by Usenet readers, including Dan Duval, Kurt J. Lidl, and Jarkko Hietaniemi.)

Jonathan Kamens and Tom Christiansen not only contributed articles but read parts of the book with
learned and critical eyes. They saved us from many a "power goof." If we'd been able to give them
enough time to read the whole thing, we wouldn't have to issue the standard disclaimer that any errors
that remain are our own. H. Milton Peek provided technical review and proofreading. Four sharp-
eyed Usenet readers helped with debugging: Casper Dik of the University of Amsterdam, Byron
Ratzikis of Network Appliance Corporation, Dave Barr of the Population Research Institute, and
Duncan Sinclair.

In addition to all the acknowledged contributors, there are many unacknowledged ones — people
who have posted questions or answers to the Net over the years and who have helped to build the rich
texture of the Unix culture that we've tried to reflect in this book. Jerry also singles out one major
contributor to his own mastery of Unix. He says: "Daniel Romike of Tektronix, Inc. (who wrote
Section 28.5 and Section 30.8 in the early 1980s, by the way) led the first Unix workshop I attended.
He took the time to answer a ton of questions as I taught myself Unix in the early 1980s. I'm sure some
of the insights and neat tricks that I thought I've figured out myself actually came from Dan instead."

James Revell and Bryan Buus scoured "the Net" for useful and interesting free software that we
weren't aware of. Bryan also compiled most of the software he collected so we could try it out and
gradually winnow down the list.

Thanks also to all of the authors of the software packages we wrote about! Without their efforts, we
wouldn't have had anything to write about; without their generosity in making their software free in
the first place, we wouldn't be able to distribute hundreds of megabytes of software for the price of a
book.

Jeff Moskow of Ready-to-Run Software solved the problem we had been putting off to the end: that of
packaging up all the software for the original disk, porting it to the major Unix platforms, and making
it easy to install. This was a much bigger job than we'd anticipated, and we could never have done it
without Jeff and the RTR staff. We might have been able to distribute source code and binaries for a
few platforms, but without their porting expertise, we could never have ported all these programs to
every supported platform. Eric Pearce worked with RTR to pre-master the software for CD-ROM

duplication, wrote the installation instructions, and made sure that everything came together at the
end! (Eric, thanks for pitching in at the last minute. You were right that there were a lot of details that
might fall through the cracks.)

Edie Freedman worked with us to design the format of the book — quite an achievement considering
everything we wanted the format to do! She met the challenge of presenting thousands of inline cross-
references without distracting the reader or creating a visual monstrosity. What she created is as
attractive as it is useful — a real breakthrough in technical book design, and one that we plan to use
again and again!

Lenny Muellner was given the frightful task of implementing all of our ideas in troff — no mean feat,
and one that added to his store of grey hair.

Eileen Kramer was the copyeditor, proofreader, and critic who made sure that everything came
together. For a thousand-plus page book with multiple authors, it's hard to imagine just how much
work that was.

Ellie Cutler wrote the index; Chris Reilley created the illustrations. Additional administrative support
was provided by Bonnie Hyland, Donna Woonteiler, and Jane Appleyard.

—Tim O'Reilly

Acknowledgments for the Second Edition

After teaching myself about Unix for the past 15 years, I'm off to graduate school in Computer
Science. Frank Willison, O'Reilly's Editor-in-Chief, fit this project into the summer between leaving
my position at ORA and starting school. Frank didn't just give me something to do in the summer: the
royalties should help to pay for my coursework. (So, buy this book and support a student! ;-)) Gigi
Estabrook edited this edition and fielded my zillions of questions along the way. Many thanks to Gigi,
Frank, and ORA's Production staff. Clairemarie Fisher O'Leary and Nancy Wolfe Kotary shared the
jobs of production editor and project manager. Madeleine Newell and Kismet McDonough-Chan
provided production support. Sheryl Avruch, Nicole Gipson Arigo, and Danny Marcus provided
quality control checks. Lenny Muellner provided extensive troff assistance and technical support.
Chris Reilley created the technical illustrations.

When time was short, I got expert advice from Arnold Robbins, the maintainer of the GNU gawk
utility, and coauthor of O'Reilly's sed & awk, Second Edition. He reviewed parts of the book and
gave me thorough comments.

I'd also like to thank all the readers who took a moment to send us comments and corrections. I read
every message, and the ideas in them made a big difference in this second edition. Three peoples'
comments were extensive enough to mention specially. Ted Timar spotted problems that showed his
deep knowledge of Unix. I'm glad he still found the book useful enough to read it — and to spot goofs
in some of our hairier tips. Andrew T. Young sent two long email messages: one a few years ago and
another after I contacted him. He caught plenty of techno-goofs and also sent fixes for them. Andy
doesn't know just Unix: his background in English helped to sharpen a few rough spots in our folksy
writing style. Finally, Greg Ubben sent a 15-page (!) email message that took me most of a week to
work through. When I tracked him down, three years after writing his message, he was even more
helpful. Greg wrote enough to make into a small book — and, in fact, agreed to write a few new
articles, too. He's an expert in sed and regular expressions (and Unix) who taught me a lot in our
month of email messages back and forth. I deeply appreciate all that he's given to this book's readers.

—Jerry Peek, jpeek@jpeek.com

mailto:jpeek@jpeek.com

Acknowledgments for the Third Edition

Though much of this book is new material or has been newly updated for changes in Unix, there is a
core that remains from previous editions. The fact that this material has continued to be fresh, useful,
and relevant through the years is a testament to the abilities — technical and writing — of the original
authors. These includes Tim O'Reilly and Jerry Peek, among others previously mentioned, who
contributed to past editions. We, the authors of this current edition, thank you. We had a number of
terrific reviewers comment on this version of the text. We appreciate the work of Dave Carrano,
Chris DiBona, Schuyler Erle, Jeff Kawski, Werner Klauser, Adam Langley, Arnold Robbins, Jaron
Rubenstein, Kevin Schmidt, Jay Sekora, Joe Sloan, Nat Torkington, and Jay Ts. Thanks also to
Stephen Samuel.

In addition, I would like to thank those who contribute their time and efforts on Unix systems,
particularly the open source versions of Unix such as FreeBSD, Linux, and now Darwin.

—Shelley Powers
I'd just like to thank you all for inviting me to contribute to a book that helped me learn Unix a long
time ago. It's nice to be able to give something back, given how much the book helped me back in
1994 when I was just another Unix newbie.

—Steven Champeon
Thank you, Amy and Joel, for the input and review and just for putting up with me through it, and
Jasper, for being my strength when I needed it.

—Deborah Hooker

Part I. Basic Unix Environment

Part I contains the following chapters:

Chapter 1

Chapter 2

Chapter 1. Introduction

What's Special About Unix?

If we were writing about any other operating system, "power tools" might mean "nifty add-on utilities
to extend the power of your operating system." That sounds suspiciously like a definition of Unix: an
operating system loaded with decades' worth of nifty add-on utilities.

Unix is unique in that it wasn't designed as a commercial operating system meant to run application
programs, but as a hacker's toolset, by and for programmers. In fact, an early release of the operating
system went by the name PWB (Programmer's Work Bench).

When Ken Thompson and Dennis Ritchie first wrote Unix at AT&T Bell Labs, it was for their own
use and for their friends and coworkers. Utility programs were added by various people as they had
problems to solve. Because Bell Labs wasn't in the computer business, source code was given out to
universities for a nominal fee. Brilliant researchers wrote their own software and added it to Unix in
a spree of creative anarchy, which has been equaled only with Linux, in the introduction of the X
Window System (Section 1.22), and especially the blend of Mac and Unix with Darwin included in
the Mac OS X.

Unlike most other operating systems, where free software remains an unsupported add-on, Unix has
taken as its own the work of thousands of independent programmers. During the commercialization of
Unix within the past several years, this incorporation of outside software has slowed down for larger
Unix installations, such as Sun's Solaris and HP's hp-ux, but not stopped entirely. This is especially
true with the newer lighter versions of Unix, such as the various flavors of Linux and Darwin.

Therefore, a book on Unix inevitably has to focus not just on add-on utilities (though we do include
many of those), but on how to use clever features of the many utilities that have been made part of
Unix over the years.

Unix is also important to power users because it's one of the last popular operating systems that
doesn't force you to work behind an interface of menus, windows, and mouse with a "one-size(-
doesn't)-fit-all" programming interface. Yes, you can use Unix interfaces with windows and menus —
and they can be great time savers in a lot of cases. But Unix also gives you building blocks that, with
some training and practice, will give you many more choices than any software designer can cram
onto a set of menus. If you learn to use Unix and its utilities from the command line, you don't have to
be a programmer to do very powerful things with a few keystrokes.

So, it's also essential that this book teach you some of the underlying principles that make Unix such a
tinkerer's paradise.

In the body of this book, we assume that you are already moderately familiar with Unix — a
journeyman hacker wanting to become a master. But at the same time, we don't want to leave
beginners entirely at sea; so in this chapter, we include some fundamental concepts. We've tried to
intersperse some simple tips and tricks to keep things interesting, but the ratio of concept articles to
tips is much higher than in any other part of the book. The concepts covered are also much more
basic. If you aren't a beginner, you can safely skip this chapter, though we may bounce you back here
if you don't understand something later in the book.

Don't expect a complete introduction to Unix — if you need that, buy an introductory book. What
you'll find here is a selection of key concepts that you'll need to understand to progress beyond the

beginner stage, as well as answers to frequently asked questions and problems. In some ways,
consider this introduction a teaser. If you are a beginner, we want to show you enough of Unix to whet
your appetite for more.

Also, don't expect everything to be in order. Because we don't want you to get in the habit of reading
through each chapter from beginning to end, as in most books, the articles in this chapter are in loose
order. We've tried not to make you jump around too much, but we've also avoided a lot of the
transitional material that makes reading most books a chore.

—TOR, JP, and SP

Power Grows on You

It has been said that Unix is not an operating system as much as it is a way of thinking. In The UNIX
Programming Environment, Kernighan and Pike write that at the heart of the Unix philosophy "is the
idea that the power of a system comes more from the relationships among programs than from the
programs themselves."

Most of the nongraphical utility programs that have run under Unix since the beginning, some 30 years
ago, share the same user interface. It's a minimal interface, to be sure — but one that allows programs
to be strung together in pipelines to do jobs that no single program could do alone.

Most operating systems — including modern Unix and Linux systems — have graphical interfaces that
are powerful and a pleasure to use. But none of them are so powerful or exciting to use as classic
Unix pipes and filters, and the programming power of the shell.

A new user starts by stringing together simple pipelines and, when they get long enough, saving them
for later execution in a file (Section 1.8), alias (Section 29.2), or function (Section 29.11).
Gradually, if the user has the right temperament, he gets the idea that the computer can do more of the
boring part of many jobs. Perhaps he starts out with a for loop (Section 28.9) to apply the same
editing script to a series of files. Conditions and cases soon follow and before long, he finds himself
programming.

On most systems, you need to learn consciously how to program. You must take up the study of one or
more programming languages and expend a fair amount of concentrated effort before you can do
anything productive. Unix, on the other hand, teaches programming imperceptibly — it is a slow but
steady extension of the work you do simply by interacting with the computer.

Before long, you can step outside the bounds of the tools that have already been provided by the
designers of the system and solve problems that don't quite fit the mold. This is sometimes called
hacking; in other contexts, it is called "engineering." In essence, it is the ability to build a tool when
the right one is not already on hand.

No single program, however well thought out, will solve every problem. There is always a special
case, a special need, a situation that runs counter to the expected. But Unix is not a single program. It
is a collection of hundreds of them, and with these basic tools, a clever or dedicated person can meet
just about any computing problem.

Like the fruits of any advanced system, these capabilities don't fall unbidden into the hands of new
users. But they are there for the reaching. And over time, even those users who want a system they
don't have to think about will gradually reach out for these capabilities. Faced with a choice between
an hour spent on a boring, repetitive task and an hour putting together a tool that will do the task in a
flash, most of us will choose the latter.

— TOR

The Core of Unix

In recent times, more attention has been paid on the newer and more lightweight varieties of Unix:
FreeBSD, Linux, and now Darwin — the version of BSD Unix that Apple used as the platform for the
new Mac OS X. If you've worked with the larger Unix versions, you might be curious to see how it
differs within these new environments.

For the most part, basic Unix functionality differs very little between implementations. For instance,
I've not worked with a Unix box that doesn't have vi (Section 21.7) installed. Additionally, I've also
not found any Unix system that doesn't have basic functionality, such as traversing directories with cd
(Section 1.16) or getting additional help with man (Section 2.1).

However, what can differ between flavors of Unix is the behavior of some of the utilities and built-in
commands, as well as the options. Even within a specific Unix flavor, such as FreeBSD, installations
can differ because one installation uses the built-in version of a utility such as make (Section 40.3)
and another installation has a GNU version of the same application.

An attempt was made to create some form of standardization with the POSIX effort. POSIX, which
stands for Portable Operating System Interface, is an IEEE standard to work towards application
interoperability. With this, C programs written on one flavor of Unix should work, with minimum
modification, on another flavor of Unix.

Unfortunately, though the POSIX effort has had some impact on interoperability, there still are
significant differences between Unix versions. In particular, something such as System V Unix can
differ considerably from something such as Darwin.

However, there is stability in this seeming chaos: for the most part, the basic Unix utilities and
commands behave the same in all Unix flavors, and aside from some optional differences, how a
command works within one environment is exactly the same as in another environment. And if there
are differences, using the facilities described in Chapter 2 should help you resolve these quickly.

— SP

Communication with Unix

Probably the single most important concept for would-be power users to grasp is that you don't "talk"
directly to the Unix operating system. Instead, you talk to a program — and that program either talks
to Unix itself or it talks to another program that talks to Unix. (When we say "talk" here, we mean
communication using a keyboard and a mouse.)

There are three general kinds of programs you'll probably "talk" to:

 The program called the shell (Section 27.1). A shell is a command interpreter. Its main job is
to interpret the commands you type and to run the programs you specify in your command lines.
By default, the shell reads commands from your tty and arranges for other programs to write
their results there. The shell protects Unix from the user (and the user from Unix). It's the main
focus of this book (and the rest of this article).
 An interactive command, running "inside" a tty, that reads what you type directly. These take
input directly from the user, without intervention from the shell. The shell's only job is to start
them up. A text editor, a mail program, or almost any application program (such as word
processing) includes its own command interpreter with its own rules. This book covers a few
interactive commands — such as the vi editor — but its main focus is the shell and
"noninteractive" utilities that the shell coordinates to do what needs doing.
 A Graphical User Interface (GUI) with a desktop, windows, and so on. On Unix, a GUI is
implemented with a set of running programs (all of which talk to Unix for you).
Unix was around long before GUIs were common, and there's no need to use a GUI to use Unix.
In fact, Unix started in the days of teletypes, those clattering printing devices used to send
telegrams. Unix terminals are still referred to as teletypes or ttys (Section 2.7).

The core of the Unix operating system is referred to as the kernel (Section 1.10). Usually, only
programs talk to the kernel (through system calls). Users talk to one of the three previous types of
programs, which interprets their commands and either executes them directly or passes them on to
other programs. These programs may, in turn, request lower-level services from the kernel.

Let's look at a specific example of using the shell. When you type a command to display files whose
four-character filenames start with the letter "m":

??? Section 1.13
% cat m???

it is the shell that finds the filenames, makes a complete list of them, and calls the cat (Section 12.2)
command to print the expanded list. The cat command calls on the kernel to find each file on the disk
and print its contents as a stream of characters on the display.

Why is this important? First of all, you can choose between several different shells (Section 1.6),
each of which may have different rules for interpreting command lines.

Second, the shell has to interpret the command line you type and package it up for the command you
are calling. Because the shell reads the command line first, it's important to understand just how the
shell changes what it reads.

For example, one basic rule is that the shell uses "whitespace" (spaces or tabs) to separate each

"argument" of a command. But sometimes, you want the shell to interpret its arguments differently.
For example, if you are calling grep (Section 13.1), a program for searching through files for a
matching line of text, you might want to supply an entire phrase as a single argument. The shell lets
you do this by quoting (Section 27.12) arguments. For example:
% grep "Power Tools" articles/*

Understanding how the shell interprets the command line, and when to keep it from doing so, can be
very important in a lot of special cases, especially when dealing with wildcards (Section 1.13), like
the * (asterisk) in the previous example.

You can think of the relationship of the kernel, the shell, and various Unix utilities and applications as
looking like Figure 1-1.

Figure 1-1. Relationship of kernel, shell, utilities, and applications

Figure 1-1 shows that a user can interact with the shell, as well as directly with interactive commands
like cat and ls. The shell transfers control to the commands it starts for you — then those commands
may write the output you see. The shell also has some built-in commands (Section 1.9) that run
directly within the shell itself. All of the commands shown in Figure 1-1 interact directly with Unix
itself.

—TOR and JP

Programs Are Designed to Work Together

As pointed out by Kernighan and Pike in The UNIX Programming Environment, there are a number
of principles that distinguish the Unix environment. One key concept is that programs are tools. Like
all good tools, they should be specific in function, but usable for many different purposes.

In order for programs to become general-purpose tools, they must be data independent. This means
three things:

1. Within limits, the output of any program should be usable as the input to another.
2. All of the information needed by a program should be either contained in the data stream passed

to it or specified on the command line. A program should not prompt for input or do unnecessary
formatting of output. In most cases, this means that Unix programs work with plain text files that
don't contain "nonprintable" or "control" characters.

3. If no arguments are given, a program should read the standard input (usually the terminal
keyboard) and write the standard output (usually the terminal screen).

Programs that can be used in this way are often called filters.

One of the most important consequences of these guidelines is that programs can be strung together in
"pipelines" in which the output of one program is used as the input of another. A vertical bar (|)
represents pipe and means "take the output of the program on the left and feed it into the program on
the right."

For example, you can pipe the output of a search program to another program that sorts the output, and
then pipe the result to the printer program or redirect it to a file (Section 43.1).

Not all Unix programs work together in this way. An interactive program like the Emacs editor
(Section 19.1) generally doesn't read from or write to pipes you'd create on the command line.
Instead, once the shell has started Emacs, the editor works independently of the shell (Section 1.4),
reading its input and output directly from the terminal. And there are even exceptions to this
exception. A program like less (Section 12.3) can read its standard input from a pipe and still interact
with you at the keyboard. It does that by reading directly from your tty (Section 2.7).

— TOR

There Are Many Shells

With most operating systems, the command intepreter is built in; it is an integral part of the operating
system. With Unix, your command interpreter is just another program. Traditionally, a command
interpreter is called a "shell," perhaps because it protects you from the underlying kernel — or
because it protects the kernel from you!

In the early 1980s, the most common shells were the Bourne shell (sh) and the C shell (csh). The
Bourne shell (Section 3.3) (named after its creator, Steve Bourne) came first. It was excellent for
shell programming (Section 1.8). But many Unix users (who were also writing programs in the C
language) wanted a more familiar programming syntax — as well as more features for interactive use.
So the C shell came from Berkeley as part of their Unix implementation. Soon (on systems that gave
you the choice, at least) csh was much more popular for interactive use than sh. The C shell had a lot
of nice features that weren't available in the original Bourne shell, including job control (Section
23.1) and history (Section 30.2). However, it wasn't hard for a shell programmer or an advanced
user to push the C shell to its limits.

The Korn shell (also named after its creator, David Korn) arrived in the mid-1980s. The ksh is
compatible with the Bourne shell, but has most of the C shell's features plus features like history
editing (Section 30.14), often called command-line editing. The Korn shell was available only with
a proprietary version of Unix, System V — but now a public-domain version named pdksh is widely
available.

These days, most original C shell users have probably switched to tcsh (pronounced "T-shell"). It has
all the features of csh and more — as well as fewer mis-features and outright bugs.

The "Bourne-again" shell, bash, is from the Free Software Foundation. It's fairly similar to the Korn
shell. It has most of the C shell's features, plus command-line editing and a built-in help command.
The programming syntax, though, is much more like the original Bourne shell — and many systems
(including Linux) use bash in place of the original Bourne shell (but still call it sh).

The Z shell, zsh, is an interesting hybrid. It tries to be compatible with most features of all the other
shells, with compatibility modes and a slew of options that turn off conflicting features. In its soul,
though, zsh has a different way of doing some things. It's been accused of feature creep. But zsh users
love its flexibility.

There are other shells. If you're a fan of the Bell Labs research operating system named Plan 9
(actually, Plan 9 from Outer Space), you'll be happy to know that its shell, rc, has been ported to
Unix. If you program in Tcl, you'll probably be familiar with tclsh , which lets you intermix Unix
commands with Tcl commands. (And we can't forget wish , the shell that's a superset of tclsh: it uses
Tcl/Tk commands to let you build graphical interfaces as you go.) Least — but certainly not last — if
you're a minimalist who needs the original sh, a newer shell named ash emulates the late-1980s
Bourne shell.

In this book, we try to be as generic as we can. Where we need to get specific, many examples are
shown in the style of both the Bourne shell and the C shell — for instance, we'll often show Bourne-
shell functions side-by-side with C-shell aliases. Because bash and ksh can read scripts written for
the original Bourne shell, we use original sh syntax to make our shell programming as portable as

possible.

Where we talk about "the Bourne shell" or sh, it's usually a safe bet that the information applies to
bash and ksh too. In the same way, "the C shell" generally also means tcsh.

—JP and ML

Which Shell Am I Running?

You can usually tell which family your shell belongs to by a character in the prompt it displays.
Bourne-type shells, such as bash , usually have $ in the prompt. The C shell uses % (but tcsh users
often use >).

If your shell has superuser (Section 1.18) privileges, though, the prompt typically ends with a hash,
#.

To check the shell that runs automatically when you log in to Unix, type one of these commands (the
second is for systems that use NIS, Sun's Network Information Service, to manage network-wide
files):
% grep
 yourloginname /etc/passwd
% ypmatch
 yourloginname passwd

You should get back the contents of your entry in the system password file. For example:
shelleyp:*:1006:1006:Shelley Powers:/usr/home/shelleyp:/usr/local/bin/bash

The fields are separated by colons, and the default shell is usually specified in the last field.

Note that in Mac OS X, passwords are managed and stored in Netinfo by default. To store the
passwords in /etc/passwd, you'll need to configure this using Netinfo.

—TOR and SP

Anyone Can Program the Shell

One of the really wonderful things about the shell is that it doesn't just read and execute the commands
you type at a prompt. The shell is a complete programming language.

The ease of shell programming is one of the real highlights of Unix for novices. A shell program need
be no more than a single complex command line saved in a file — or a series of commands.

For example, let's say that you occasionally need to convert a Macintosh Microsoft Word file for use
on your Unix system. Word lets you save the file in ASCII format. But there's a catch: the Mac uses a
carriage return ASCII character 015 to mark the end of each line, while Unix uses a linefeed (ASCII
012). As a result, with Unix, the file looks like one long paragraph, with no end in sight.

That's easy to fix: the Unix tr (Section 21.11) command can convert every occurrence of one
character in a file to another:
bash-2.04$ tr '\015' '\012' <
 file.mac
 >
 file.unix

But you're a novice, and you don't want to remember this particular piece of magic. Fine. Save the
first part of this command line in a file called mac2unix in your personal bin directory (Section 7.4):
tr '\015' '\012'

Make the file executable with chmod (Section 50.5):
bash-2.04$ chmod +x mac2unix

Now you can say:
bash-2.04$ mac2unix <
 file.mac
 >
 file.unix

But why settle for that? What if you want to convert a bunch of files at once? Easy. The shell includes
a general way of referring to arguments passed to a script and a number of looping constructs. The
script:

for Section 35.21, $x Section 35.9
for x
do
 echo "Converting $x"
 tr '\015' '\012' < "$x" > "tmp.$x"
 mv "tmp.$x" "$x"
done

will convert any number of files with one command, replacing each original with the converted
version:
bash-2.04$ mac2unix
 file1 file2 file3 ...

As you become more familiar with Unix, it quickly becomes apparent that doing just a little
homework can save hours of tedium. This script incorporates only two simple programming
constructs: the for loop and variable substitution (Section 35.9, Section 35.3).[1] As a new user with
no programming experience, I learned these two constructs by example: I saved a skeleton for loop in
a file and simply filled in the blanks with whatever commands I wanted to repeat. Section 35.2 has
more about shell programming.

In short, Unix is sometimes difficult because it is so rich and complex. The user who doesn't want to
learn the complexity doesn't have to — the basic housekeeping commands are simple and
straightforward. But the user who wants to take the time to investigate the possibilities can uncover a
wealth of useful tools.

— TOR

[1] [Tim is keeping this article simple, as an illustration of how easy writing a shell program can be. If
you're writing this little script for general use, you can make it work like a filter (Section 1.5) by
adding four or five more lines of code: a case (Section 35.10) or if (Section 35.13) statement that
tests the number of command-line arguments. With no filename arguments, the script would simply run
tr '\015' '\012'. — JP]

Internal and External Commands

Some commands that you type are internal, which means they are built into the shell, and it's the shell
that performs the action. For example, the cd command is built-in. The ls command, on the other hand,
is an external program stored in the file /bin/ls.

The shell doesn't start a separate process to run internal commands. External commands require the
shell to fork and exec (Section 27.2) a new subprocess (Section 24.3); this takes some time,
especially on a busy system.

When you type the name of a command, the shell first checks to see if it is a built-in command and, if
so, executes it. If the command name is an absolute pathname (Section 1.16) beginning with /, like
/bin/ls, there is no problem: the command is likewise executed. If the command is neither built-in nor
specified with an absolute pathname, most shells (except the original Bourne shell) will check for
aliases (Section 29.2) or shell functions (Section 29.11), which may have been defined by the user
— often in a shell setup file (Section 3.3) that was read when the shell started. Most shells also
"remember" the location of external commands (Section 27.6); this saves a long hunt down the
search path. Finally, all shells look in the search path for an executable program or script with the
given name.

The search path is exactly what its name implies: a list of directories that the shell should look
through for a command whose name matches what is typed.

The search path isn't built into the shell; it's something you specify in your shell setup files.

By tradition, Unix system programs are kept in directories called /bin and /usr/bin, with additional
programs usually used only by system administrators in either /etc and /usr/etc or /sbin and /usr/sbin.
Many versions of Unix also have programs stored in /usr/ucb (named after the University of
California at Berkeley, where many Unix programs were written). There may be other directories
containing programs. For example, the programs that make up the X Window System (Section 1.22)
are stored in /usr/bin/X11. Users or sites often also have their own directories where custom
commands and scripts are kept, such as /usr/local/bin or /opt.

The search path is stored in an environment variable (Section 35.3) called PATH (Section 35.6). A
typical PATH setting might look something like this:
PATH=/bin:/usr/bin:/usr/bin/X11:/usr/ucb:/home/tim/bin:

The path is searched in order, so if there are two commands with the same name, the one that is found
first in the path will be executed. For example, your system certainly has the ls command we
mentioned earlier — and it's probably in /bin/ls.

You can add new directories to your search path on the fly, but the path is usually set in shell setup
files.

— TOR

The Kernel and Daemons

If you have arrived at Unix via Windows 2000 or some other personal computer operating system,
you will notice some big differences. Unix was, is, and always will be a multiuser operating system.
It is a multiuser operating system even when you're the only person using it; it is a multiuser operating
system even when it is running on a PC with a single keyboard; and this fact has important
ramifications for everything that you do.

Why does this make a difference? Well, for one thing, you're never the only one using the system,
even when you think you are. Don't bother to look under your desk to see if there's an extra terminal
hidden down there. There isn't. But Unix is always doing things "behind your back," running programs
of its own, whether you are aware of it or not. The most important of these programs, the kernel, is
the heart of the Unix operating system itself. The kernel assigns memory to each of the programs that
are running, partitions time fairly so that each program can get its job done, handles all I/O
(input/output) operations, and so on. Another important group of programs, called daemons, are the
system's "helpers." They run continuously — or from time to time — performing small but important
tasks like handling mail, running network communications, feeding data to your printer, keeping track
of the time, and so on.

Not only are you sharing the computer with the kernel and some mysterious daemons, you're also
sharing it with yourself. You can issue the ps x (Section 24.5) command to get a list of all processes
running on your system. For example:
 PID TTY STAT TIME COMMAND
18034 tty2 S 0:00 -zsh
18059 ? S 0:01 ssh-agent
18088 tty2 S 0:00 sh /usr/X11R6/bin/startx
18096 tty2 S 0:00 xinit /etc/X11/xinit/xinitrc -- :0 -auth /home/jpeek/
18101 tty2 S 0:00 /usr/bin/gnome-session
18123 tty2 S 0:33 enlightenment -clientId default2
18127 tty2 S 0:01 magicdev --sm-client-id=default12
18141 tty2 S 0:03 panel --sm-client-id default8
18145 tty2 S 0:01 gmc --sm-client-id default10
18166 ? S 1:20 gnomepager_applet --activate-goad-server gnomepager_a
18172 tty2 S 0:01 gnome-terminal
18174 tty2 S 0:00 gnome-pty-helper
18175 pts/0 S 0:00 zsh
18202 tty2 S 0:49 gnome-terminal
18203 tty2 S 0:00 gnome-pty-helper
18204 pts/1 S 0:01 zsh
18427 pts/1 T 0:00 man zshjp
18428 pts/1 T 0:00 sh -c /bin/gunzip -c /home/jpeek/.man/cat1/zshjp.1.gz
18430 pts/1 T 0:03 /usr/bin/less -is
18914 pts/1 T 0:02 vi upt3_changes.html
 1263 pts/1 T 0:00 vi urls.html
 1511 pts/1 T 0:00 less coding
 3363 pts/1 S 0:00 vi 1007.sgm
 4844 tty2 S 0:24 /usr/lib/netscape/netscape-communicator -irix-session
 4860 tty2 S 0:00 (dns helper)
 5055 pts/1 R 0:00 ps x

This output tells us that the user has only three windows open. You may think that they're only running
four or five programs, but the computer is actually doing a lot more. (And, to keep this brief, we
aren't showing all the lines of output!) The user logged into his Linux system on virtual console
(Section 23.12) 2, which shows as tty2 in the TTY column; a lot of programs are running there,
including the X Window System (Section 1.22) (which actually runs itself as another user — root —

so its process isn't listed here). The user is also running Gnome and Enlightenment, which keep track
of the workstation's display. Two of the windows are Gnome terminals, which are windows that act
like separate terminals; each has its own tty, pts/0 and pts/1. And the list continues.

If you are running a different window system (or no window system at all) or different utility
programs, you will see something different. But we guarantee that you're running at least two
programs, and quite likely many more. If you want to see everything that's running, including the
daemons, type the command ps aux (Berkeley-style ps) or ps -el (for many other flavors of ps).
You'll be impressed.

Because there is so much going on at once, Unix requires a different way of thinking. The Unix kernel
is a traffic cop that mediates different demands for time, memory, disks, and so on. Not only does the
kernel need to run your programs, but it also needs to run the daemons, any programs that other users
might want to start, or any programs that you may have scheduled to run automatically, as discussed in
Chapter 23. When it runs a program, the kernel allocates a small slice of time — up to a second —
and lets the program run until that slice is used up or until the program decides to take a rest of its
own accord (this is called "sleeping"). At this point, regardless of whether the program is finished,
the kernel finds some other program to run. The Unix kernel never takes a vacation: it is always
watching over the system.

Once you understand that the kernel is a manager that schedules many different kinds of activity, you
understand a lot about how Unix works. For example, if you have used any computer system
previously, you know that it's a bad idea to turn the computer off while it is writing something to disk.
You will probably destroy the disk, and you could conceivably damage the disk drive. The same is
true for Unix — but with an important complication. Any of the programs that are running can start
doing something to the disk at any time. One of the daemons makes a point of accessing the disk drive
every 30 seconds or so, just to stay in touch. Therefore, you can't just turn a Unix computer off. You
might do all sorts of damage to the system's files — and not just your own, but conceivably files
belonging to many other users. To turn a Unix system off, you must first run a program called
shutdown, which kicks everyone off the system, makes sure that a daemon won't try to play with a
disk drive when you aren't looking, and runs a program named sync to make sure that the disks have
the latest version of everything. Only then is it safe to pull the switch. When you start up a Unix
system, it automatically runs a program called fsck , which stands for "filesystem check"; its job is to
find out if you shut down the system correctly and try to fix any damage that might have happened if
you didn't.

—ML and JP

Filenames

Like all operating systems, Unix files have names. (Unix directories, devices, and so on also have
filenames — and are treated like files (Section 1.19).) The names are words (sequences of
characters) that let you identify a file. Older versions of Unix had some restrictions on the length of a
filename (14 characters), but modern versions have removed these restrictions for all practical
purposes. Sooner or later you will run into a limit, but if so, you are probably being unnecessarily
verbose.

Technically, a filename can be made from almost any group of characters (including nonprinting
characters and numbers) except a slash (/). However, you should avoid filenames containing most
punctuation marks and all nonprinting characters. To be safe, limit your filenames to the following
characters:
Upper- and lowercase characters

Unix filenames are always case sensitive. That is, upper- and lowercase letters are always
different (unlike Microsoft Windows and others that consider upper- and lowercase letters the
same). Therefore, myfile and Myfile are different files. It is usually a bad idea to have files
whose names differ only in their capitalization, but that's your decision.

Underscores (_)
Underscores are handy for separating "words" in a filename to make them more readable. For
example, my_long_filename is easier to read than mylongfilename.

Periods (.)
Periods are used by some programs (such as the C compiler) to separate filenames from
filename extensions (Section 1.12). Extensions are used by these programs to recognize the
type of file to be processed, but they are not treated specially by the shell, the kernel, or other
Unix programs.
Filenames that begin with a period are treated specially by the shell: wildcards won't match
(Section 1.13) them unless you include the period (like .*). The ls command, which lists your
files, ignores files whose names begin with a period unless you give it a special option (ls -a
(Section 8.9)). Special configuration files are often "hidden" in directories by beginning their
names with a period.

Certain other punctuation
About the only other punctuation mark that is always safe is the comma (,), although it isn't part
of the POSIX-portable character set.

I'm so dead-set against using weird, nonprinting characters in filenames that I won't even tell you how
to do it. I will give you some special techniques for deleting files with weird names (Section
14.11), though, in case you create some by accident.

Some things to be aware of:

Unix does not have any concept of a file version. There are some revision control programs
(Section 39.4) that implement their own notion of a version, but there is nothing built into the
operating system that handles this for you. If you are editing a file, don't count on Unix to save
your previous versions — you can program this (Section 35.16, Section 18.14) though, if you
want to; the GNU Emacs editor also makes backups (Section 19.4).

Once you delete a file in Unix, it is gone forever (Section 14.3). You can't get it back without
restoring it from a backup. So be careful when you delete files. Later, we'll show you programs
that will give you a "grace period" between the time you delete a file and the time it actually
disappears.

— ML

Filename Extensions

In Microsoft Windows and some other operating systems, filenames often have the form
name.extension. For example, plain text files have extensions such as .txt. The operating system
treats the extension as separate from the filename and has rules about how long it must be, and so
forth.

Unix doesn't have any special rules about extensions. The dot has no special meaning as a separator,
and extensions can be any length. However, a number of programs (especially compilers) make use of
extensions to recognize the different types of files they work with. In addition, there are a number of
conventions that users have adopted to make clear the contents of their files. For example, you might
name a text file containing some design notes notes.txt.
Table 1-1 lists some of the filename extensions you might see and a brief description of the programs
that recognize them.

Table 1-1. Filename extensions that programs expect

Extension Description

.a Archive file (library)

.c C program source file

.f FORTRAN program source file

.F FORTRAN program source file to preprocess

.gz gzip ped file (Section 15.6)

.h C program header file

.html or .htm HTML file for web servers

.xhtml XHTML file for web servers

.o Object file (compiled and assembled code)

.s Assembly language code

.z Packed file

.Z Compressed file Section 15.6)

.1 to .8 Online manual (Section 2.1) source file

~ Emacs editor backup file (Section 19.4)

In Table 1-2 are some extensions often used by users to signal the contents of a file, but are not
actually recognized by the programs themselves.

Table 1-2. Filename extensions for user's benefit

Table 1-2. Filename extensions for user's benefit

Extension Description

.tar tar archive (Section 39.2)

.tar.gz or .tgz gzip ped (Section 15.6) tar archive (Section 39.2)

.shar Shell archive

.sh Bourne shell script (Section 1.8)

.csh C shell script

.mm Text file containing troff's mm macros

.ms Text file containing troff's ms macros

.ps PostScript source file

.pdf Adobe Portable Document Format

—ML and TOR

Wildcards

The shells provide a number of wildcards that you can use to abbreviate filenames or refer to groups
of files. For example, let's say you want to delete all filenames ending in .txt in the current directory
(Section 1.16). You could delete these files one by one, but that would be boring if there were only 5
and very boring if there were 100. Instead, you can use a wildcarded name to say, "I want all files
whose names end with .txt, regardless of what the first part is." The wildcard is the "regardless" part.
Like a wildcard in a poker game, a wildcard in a filename can have any value.

The wildcard you see most often is * (an asterisk), but we'll start with something simpler: ? (a
question mark). When it appears in a filename, the ? matches any single character. For example,
letter? refers to any filename that begins with letter and has exactly one character after that. This
would include letterA, letter1, as well as filenames with a nonprinting character as their last letter,
such as letter^C.

The * wildcard matches any character or group of zero or more characters. For example, *.txt
matches all files whose names end with .txt; c* matches all files whose names start with c; c*b*
matches names starting with c and containing at least one b; and so on.

The * and ? wildcards are sufficient for 90 percent of the situations that you will find. However,
there are some situations that they can't handle. For example, you may want to list files whose names
end with .txt, mail, or let. There's no way to do this with a single *; it won't let you exclude the files
you don't want. In this situation, use a separate * with each filename ending:
*.txt *mail *let

Sometimes you need to match a particular group of characters. For example, you may want to list all
filenames that begin with digits or all filenames that begin with uppercase letters. Let's assume that
you want to work with the files program.n, where n is a single-digit number. Use the filename:
program.[0123456789]

In other words, the wildcard [character-list] matches any single character that appears in the
list. The character list can be any group of ASCII characters; however, if they are consecutive (e.g.,
A-Z, a-z, 0-9, or 3-5, for that matter), you can use a hyphen as shorthand for the range. For example,
[a-zA-Z] means any alphabetic English character.

There is one exception to these wildcarding rules. Wildcards never match /, which is both the name
of the filesystem root (Section 1.14) and the character used to separate directory names in a path
(Section 1.16). The only way to match on this character is to escape it using the backslash character (
\). However, you'll find it difficult to use the forward slash within a filename anyway (the system
will keep trying to use it as a directory command).

If you are new to computers, you probably will catch on to Unix wildcarding quickly. If you have
used any other computer system, you have to watch out for one important detail. Virtually all
computer systems except for Unix consider a period (.) a special character within a filename. Many
operating systems even require a filename to have a period in it. With these operating systems, a *
does not match a period; you have to say *.*. Therefore, the equivalent of rm * does virtually
nothing on some operating systems. Under Unix, it is dangerous: it means "delete all the files in the
current directory, regardless of their name." You only want to give this command when you really
mean it.

But here's the exception to the exception. The shells and the ls command consider a . special if it is
the first character of a filename. This is often used to hide initialization files and other files with
which you aren't normally concerned; the ls command doesn't show these files unless you ask
(Section 8.9) for them. If a file's name begins with ., you always have to type the . explicitly. For
example, .*rc matches all files whose names begin with . and end with rc. This is a common
convention for the names of Unix initialization files.

Table 1-3 has a summary of common wildcards.

Table 1-3. Common shell wildcards

Wildcard Matches

? Any single character

* Any group of zero or more characters

[ab] Either a or b

[a-z] Any character between a and z, inclusive

Wildcards can be used at any point or points within a path. Remember, wildcards only match names
that already exist. You can't use them to create new files (Section 28.3) — though many shells have
curly braces ({}) for doing that. Section 33.3 explains how wildcards are handled, and Section 33.2
has more about wildcards, including specialized wildcards in each of the shells.

— ML

The Tree Structure of the Filesystem

A multiuser system needs a way to let different users have different files with the same name. It also
needs a way to keep files in logical groups. With thousands of system files and hundreds of files per
user, it would be disastrous to have all of the files in one big heap. Even single-user operating
systems have found it necessary to go beyond "flat" filesystem structures.

Almost every operating system solved this problem by implementing a tree-structured, or
hierarchical, filesystem. Unix is no exception. A hierarchical filesystem is not much different from a
set of filing cabinets at the office. Your set of cabinets consists of many individual cabinets. Each
individual cabinet has several drawers; each drawer may have several partitions in it; each partition
may have several hanging (Pendaflex) folders; and each hanging folder may have several files. You
can specify an individual file by naming the filing cabinet, the drawer, the partition, the group of
folders, and the individual folder. For example, you might say to someone: "Get me the `meeting of
July 9' file from the Kaiser folder in the Medical Insurance Plans partition in the Benefits drawer of
the Personnel file cabinet." This is backwards from the way you'd specify a filename, because it starts
with the most specific part, but the idea is essentially the same.

You could give a complete path like this to any file in any of your cabinets, as shown in Figure 1-2.
The concept of a "path" lets you distinguish your July 9 meeting with Kaiser from your July 9
interview with a job applicant or your July 9 policy-planning meeting. It also lets you keep related
topics together: it's easy to browse through the "Medical Insurance" section of one drawer or to scan
all your literature and notes about the Kaiser plan. The Unix filesystem works in exactly the same way
(as do most other hierarchical filesystems). Rather than having a heap of assorted files, files are
organized into directories. A directory is really nothing more than a special kind of file that lists a
bunch of other files (see Section 10.2). A directory can contain any number of files (although for
performance reasons, it's a good idea to keep the number of files in one directory relatively small —
under 100, when you can). A directory can also contain other directories. Because a directory is
nothing more than a special kind of file, directories also have names. At the top (the filesystem "tree"
is really upside down) is a directory called the "root," which has the special name / (pronounced
"slash," but never spelled out).

Figure 1-2. A hierarchical filesystem

To locate any file, we can give a sequence of names, starting from the filesystem's root, that shows the
file's exact position in the filesystem: we start with the root and then list the directories you go
through to find the file, separating them by slashes. This is called a path. For examples, let's look at
the simple filesystem represented by Figure 1-3. The names /home/mkl/mystuff/stuff and
/home/hun/publick/stuff both refer to files named stuff. However, these files are in different
directories, so they are different files. The names home, hun, and so on are all names of directories.
Complete paths like these are called "absolute paths." There are shorter ways to refer to a file:
relative paths (Section 1.16).

— ML

Figure 1-3. A Unix filesystem tree

Your Home Directory

Microsoft Windows and the Mac OS have hierarchical filesystems (Section 1.14), much like those
in Unix and other large systems. But there is an important difference. On many Windows and Mac
systems, you start right at the "root" of the filesystem tree. In effect, you start with a blank slate and
create subdirectories to organize your files.

A Unix system comes with an enormous filesystem tree already developed. When you log in, you start
somewhere down in that tree, in a directory created for you by the system administrator (who may
even be yourself, if you are administering your own system).

This directory — the one place in the filesystem that is your very own, to store your files (especially
the shell setup files (Section 3.3) and rc files (Section 3.20) that you use to customize the rest of your
environment) — is called your home directory.

Home directories were originally stored in a directory called /usr (and still are on some systems),
but are now often stored in other directories, such as /home. Within the Linux Filesystem Hierarchy
Standard (FHS), the home directory is always at /home, as configuration files are always in /etc and
so on.

To change your current directory (Section 1.16) to your home, type cd with no pathname; the shell
will assume you mean your home directory.

Within the Mac OS X environment, home is in the /Users/username directory by default.

— TOR

Making Pathnames

Pathnames locate a file (or directory, or any other object) in the Unix filesystem. As you read this
article, refer to Figure 1-4. It's a diagram of a (very) small part of a Unix filesystem.

Figure 1-4. Part of a Unix filesystem tree

Whenever you are using Unix, you have a current directory. By default, Unix looks for any mentioned
files or directories within the current directory. That is, if you don't give an absolute pathname
(Section 1.14) (starting from the root, /), Unix tries to look up files relative to the current directory.
When you first log in, your current directory is your home directory (Section 1.15), which the system
administrator will assign to you. It typically has a name like /u/mike or /home/mike. You can change
your current directory by giving the cd command, followed by the name of a new directory (for
example, cd /usr/bin). You can find out your current directory by giving the pwd ("print working
directory") command.

If your current directory is /home/mike and you give the command cat textfile, you are asking
Unix to locate the file textfile within the directory /home/mike. This is equivalent to the absolute path
/home/mike/textfile. If you give the command cat notes/textfile, you are asking Unix to locate
the file textfile within the directory notes, within the current directory /home/mike.

A number of abbreviations help you to form relative pathnames more conveniently. You can use the
abbreviation . (dot) to refer to the current working directory. You can use .. (dot dot) to refer to the
parent of the current working directory. For example, if your current directory is /home/mike,
./textfile is the same as textfile, which is the same as /home/mike/textfile. The relative path
../gina/textfile is the same as /home/gina/textfile; .. moves up one level from /home/mike (to
/home) and then searches for the directory gina and the file textfile.

You can use either the abbreviation ~ (tilde) or the environment variables $HOME or $LOGDIR, to refer
to your home directory. In most shells, ~ name refers to the home directory of the user name. See
Section 31.11.

Here's a summary of the rules that Unix uses to interpret paths:
If the pathname begins with /

It is an absolute path, starting from the root.

If the pathname begins with ~ or with ~ name
Most shells turn it into an absolute pathname starting at your home directory (~) or at the home
directory of the user name (~ name).

If the pathname does not begin with a /
The pathname is relative to the current directory. Two relative special cases use entries that are
in every Unix directory:

1. If the pathname begins with ./, the path is relative to the current directory, e.g., ./textfile,
though this can also execute the file if it is given executable file permissions.

2. If the pathname begins with ../, the path is relative to the parent of the current directory.
For example, if your current directory is /home/mike/work, then ../src means
/home/mike/src.

Section 10.2 explains where . and .. come from.

Note
The . and .. may appear at any point within a path. They mean "the current directory at this point in the path" and "the parent of the current directory at this point in the path." You commonly see paths starting with ../../ (or more) to
refer to the grandparent or great-grandparent of the current directory . However, they can appear at other places in a pathname as well. For example, /usr/ucb/./bin is the same as /usr/ucb/bin, and /usr/ucb/bin/../lib is the same as /usr/ucb/lib.
Placing . or .. in the middle of a path may be helpful in building paths within shell scripts, but I have never seen them used in any other useful way .

—ML and JP

File Access Permissions

Under Unix, access to files is based on the concept of users and groups.

Every "user" on a system has a unique account with a unique login name and a unique UID (Section
24.3) (user ID number). It is possible, and sometimes convenient, to create accounts that are shared
by groups of people. For example, in a transaction-processing application, all of the order-entry
personnel might be assigned a common login name (as far as Unix is concerned, they only count as
one user). In a research and development environment, certain administrative operations might be
easier if members of a team shared the same account, in addition to having their own accounts.
However, in most situations each person using the system has one and only one user ID, and vice
versa.

Every user may be a member of one or more "groups."[2] The user's entry in the master password file
(/etc/passwd (Section 22.3)) defines his "primary group membership." The /etc/group (Section 49.6)
file defines the groups that are available and can also assign other users to these groups as needed.
For example, I am a member of three groups: staff, editors, and research. My primary group is staff;
the group file says that I am also a member of the editors and research groups. We call editors and
research my "secondary groups." The system administrator is responsible for maintaining the group
and passwd files. You don't need to worry about them unless you're administering your own system.

Every file belongs to one user and one group. When a file is first created, its owner is the user who
created it; its group is the user's primary group or the group of the directory in which it's created. For
example, all files I create are owned by the user mikel and the group staff. As the file's owner, I am
allowed to use the chgrp command to change the file's group. On filesystems that don't have quotas
(Section 15.11), I can also use the chown command to change the file's owner. (To change ownership
on systems with quotas, see Section 50.15.) For example, to change the file data so that it is owned
by the user george and the group others, I give the commands:
% chgrp others data
% chown george data

Warning
If y ou need to change both owner and group, change the group first! You won't have permission to change the group after y ou aren't the owner.

Some versions of chown can change both owner and group at the same time:
% chown george.others data

File access is based on a file's user and group ownership and a set of access bits (commonly called
the mode bits). When you try to access a file, you are put into one of three classes. You are either the
file's owner, a member of the file's group, or an "other." Three bits then determine whether you are
allowed to read, write, or execute the file. So, as Figure 1-1 shows, there are a total of nine mode bits
(three for each class) that set the basic access permissions.

— ML

[2] In most newer Unix systems, users have the access privileges of all groups to which they belong,

all at the same time. In other Unix systems, you use a command like newgrp (Section 48.6) to change
the group to which you currently belong. Your system may even support both methods.

The Superuser (Root)

In general, a process (Section 24.1) is a program that's running: a shell, the ls command, the vi editor,
and so on. In order to kill a process (Section 24.12), change its priority (Section 26.5), or
manipulate it in any other way, you have to be the process' owner (i.e., the user who started it). In
order to delete a job from a print queue (Section 45.1), you must be the user who started it.

As you might guess, there needs to be a way to circumvent all of this security. Someone has to be able
to kill runaway programs, modify the system's files, and so on. Under Unix, a special user known as
root (and commonly called the "superuser") is allowed to do anything.

To become the superuser, you can either log in as root or use the su (Section 49.9) command. In this
book, though, we'll assume that you don't have the superuser password. Almost all of what we
describe can be done without becoming superuser.

— ML

When Is a File Not a File?

Unix differs from most operating systems in that it is file oriented. The designers of Unix decided that
they could make the operating system much simpler if they treated everything as if it were a file. As
far as Unix is concerned, disk drives, terminals, modems, network connections, etc. are all just files.
Recent versions of Unix (such as Linux) have gone further: files can be pipes (FIFOs) (Section
43.11) and processes are files (Section 24.9). Like waves and particles in quantum physics, the
boundary between files and the rest of the world can be extremely fine: whether you consider a disk a
piece of hardware or a special kind of file depends primarily on your perspective and what you want
to do with it.

Therefore, to understand Unix, you have to understand what files are. A file is nothing more than a
stream of bytes — that is, an arbitrarily long string of bytes with no special structure. There are no
special file structures and only a few special file types (for keeping track of disks and a few other
purposes). The structure of any file is defined by the programs that use it, not by the Unix operating
system.[3] You may hear users talk about file headers and so on, but these are defined by the
applications that use the files, not by the Unix filesystem itself.

Unix programs do abide by one convention, however. Text files use a single newline character
(linefeed) between lines of text, rather than the carriage return-linefeed combination used in
Microsoft Windows or the carriage returns used in the Macintosh. This difference may cause
problems when you bring files from other operating systems over to Unix. Windows files will often
be littered with carriage returns (Ctrl-M), which are necessary for that operating system but
superfluous for Unix. These carriage returns will look ugly if you try to edit or print the file and may
confuse some Unix programs. Mac text files will appear to be one long line with no breaks. Of
course, you can use Unix utilities to convert Mac and Windows files for Unix.

— ML

[3] Many executable files — programs — begin with a magic number. This is a special two-byte-long
sequence that tells the kernel how to execute the file.

Scripting

Scripting languages and scripting applications differ from compiled languages and applications in that
the application is interpreted as run rather than compiled into a machine-understandable format. You
can use shell scripting for many of your scripting needs, but there are times when you'll want to use
something more sophisticated. Though not directly a part of a Unix system, most Unix installations
come with the tools you need for this more complex scripting — Perl (Chapter 41), Python (Chapter
42), and Tcl.

These three scripting languages seem so prevelant within the Unix world that I think of them as the
Unix Scripting Language Triumvirate. .

Perl is probably the granddaddy of scripting. Created by Larry Wall, this language is probably used
more than any other for creating complex scripts to perform sophisticated functionality with Unix and
other operating systems. The language is particularly noted for its ability to handle regular
expressions, as well as working with files and other forms of I/O.

Python isn't as widespread as Perl, but its popularity is growing. One reason it's gaining popularity is
that as a language, Python is more structured and a little more verbose than Perl, and therefore a little
easier to read. In addition, according to its fans, Python has more object-oriented and data-
manipulation features than the file-manipulation and regular-expression manipulation of Perl.

Tcl is particularly prevalent within Linux systems, though its use is widespread throughout all Unix
systems. It's popular because it's simpler to learn than Perl and allows scripters to get up to speed
more quickly than you can with Perl or Python. In addition, the language also has access to a very
popular graphical user interface library called the Tk toolkit. You'll rarely hear about Tcl without the
associated Tk.

—TOR and SP

Unix Networking and Communications

Generally speaking, a network lets two or more computers communicate and work together. Partly
because of the open design of Unix, a lot of networking development has been done in this operating
system. Just as there are different versions of Unix, there are different ways and programs to use
networks from Unix.

There's an entire chapter devoted to Connectivity (Chapter 46), but for now, here's a quick review of
the major networking components.
The Internet

The Internet is a worldwide network of computers. Internet users can transfer files, log into other
computers, and use a wide range of programs and services.

WWW
The World Wide Web is a set of information servers on the Internet. The servers are linked into
a hypertext web of documents, graphics, sound, and more. Point-and-click browser programs
turn that hypertext into an easy-to-use Internet interface. (For many people, the Web is the
Internet. But Unix lets you do much more.)

mail
A Unix facility that's been around for years, long before networking was common, is electronic
mail. Users can send electronic memos, usually called email messages, between themselves.
When you send email, your message waits for the other user to start his own mail program.
System programs can send you mail to tell you about problems or give you information. You can
send mail to programs, asking them for information. Worldwide mailing lists connect users into
discussion groups.

ftp
The ftp program is one way to transfer files between your computer and another computer with
TCP/IP, often over the Internet network, using the File Transfer Protocol (FTP).

UUCP
Unix-to-Unix Copy is a family of programs (uucp, uux, uulog, and others) for transferring files
and email between computers. UUCP is usually used with modems over telephone lines and has
been mostly superceded by Internet-type connections.

Usenet
Usenet isn't exactly a network. It's a collection of hundreds of thousands (millions?) of
computers worldwide that exchange files called news articles. This "net news" system has
thousands of interactive discussion groups — electronic bulletin boards — for discussing
everything from technical topics to erotic art.

telnet
This utility logs you into a remote computer over a network (such as the Internet) using TCP/IP.
You can work on the remote computer as if it were your local computer. The telnet program is
available on many operating systems; telnet can log you into other operating systems from your
Unix host and vice versa.

rsh
This starts a "remote shell" to run a command on a remote system without needing to log in
interactively. If you don't give a command, rsh acts like rlogin. This is often used to start remote
X Window System (Section 1.22) programs whose display opens on your local system. Section

6.10 has examples — as well as details on problems you can have running rsh for any
application.

ssh
ssh acts like rsh (and rlogin), but it makes a secure encrypted connection to the remote
computer. It also can encrypt X Window System (Section 1.22) connections, as well as other
types of connections, between hosts. The utility ssh-agent allows remote logins without typing a
passphrase. We've included an entire chapter on ssh (Chapter 51).

rcp
This is a "remote cp" program for copying files between computers. It has the same command-
line syntax as cp except that hostnames are added to the remote pathnames.

scp
This is a secure version of rcp that uses the ssh protocol. ssh-agent works here, too.

NFS
NFS isn't a user utility. The Network FileSystem and related packages like NIS (the Network
Information Service) let your system administrator mount remote computers' filesystems onto
your local computer. You can use the remote filesystem as easily as if it were on your local
computer.

write
This sends messsages to another user's screen. Two users can have a discussion with write.

talk
A more sophisticated program than write, talk splits the screen into two pieces and lets users
type at the same time if they wish. talk can be used over networks, though not all versions of talk
can talk to one another.

irc
Internet Relay Chat allows multiple users to carry on multiple discussions across the Internet and
other networks. One popular IRC client is irc.

— JP

The X Window System

In 1988, an organization called the MIT (Massachusetts Institute of Technology) X Consortium was
formed to promote and develop a vendor-neutral windowing system called the X Window System. (It
was called "X" because it was a follow-on to a window system called "W" that was developed at
Stanford University.) The organization eventually moved away from MIT and became known as the X
Consortium. The XFree86 Project, Inc. is another major group developing X; they produce a freely
redistributable version that's used on Linux and other Unix-like systems such as Darwin.

A window system is a way of dividing up the large screen of a workstation into multiple virtual
terminals, or windows. Each window can interact with a separate application program — or a single
application can have many windows. While the "big win" is to have applications with point-and-click
mouse-driven user interfaces, one of the most common applications is still a simple terminal emulator
(xterm (Section 5.9)). X thus allows a workstation to display multiple simultaneous terminal
sessions — which makes many of the standard Unix multitasking features such as job control less
important because programs can all be running in the foreground in separate windows. X also runs on
many kinds of hardware, and it lets you run a program on a remote computer (across a network) while
the program's windows are displayed on your local system. Because Unix systems also run on many
kinds of hardware, this makes X a good match for Unix.

Unix boxes are, by default, character-based systems. GUI Communication with Unixsystems are
added to facilitate ease of use, as well as to provide access to a great number of sophisticated
applications. The Mac OS X, though, is already a GUI, built on the BSD-based Unix environment,
Darwin.

Though Darwin doesn't come with the X Window System, versions of X are available for Mac OS
X..

—TOR and JP

Chapter 2. Getting Help

The man Command

The Unix operating system was one of the first to include online documentation. It's not the best in the
world — most users who haven't internalized the manual set curse it once a week — but it has proven
surprisingly resilient. What's particularly interesting about Unix's online documentation is that, unlike
other early help systems, it isn't an adjunct to another set of printed documentation that contains the
"real" truth. The online manual is complete, authoritative, and usually more current than any printed
documentation.

The basis for Unix's online documentation is the man command. Most simply, you use it as follows:
% man
 topic

where topic is usually the name of some command; but it can also be the name of a system call, a
library routine, an I/O device, or an administrative file (or file type). The output from man is usually
sent to a pager like more, which allows you to page through the results.

There are several command-line options for the man command that can differ based on system. For
instance, to look at a command within a specific section, on a System V machine use the -s "section"
option, with the following format:
% man
 section topic
% man -s
 section topic

For example, if you want to read documentation about the /etc/passwd file (rather than the passwd
command) on a System V machine, give the command:
% man -s 4 passwd

This is an easy way to distinguish between topics with the same name, but in different sections. For
other Unix systems, such as FreeBSD, the option to search a section could be something different,
such as -S.

Another useful command-line option is the -k option, which is equivalent to the apropos command.
This option searches database files for matches of a given keyword, returning the results. This is
particularly helpful in finding commands that contain a specific keyword if you're not quite sure what
the command is.

Your system may have a configuration file for man named /etc/man.config. If it does, reading it will
show you the directories in which manpages are stored, the order in which manpages are searched by
default, and more. Even if you don't have an /etc/man.config file, your man command may understand
the MANPATH (Section 3.21) environment variable, a list of where man should search. You can set
your own MANPATH, for example, to show manpages for local versions of commands before
standard versions with the same name.

Your system may also have a different manual page system: info (Section 2.9).

—ML and JP

whatis: One-Line Command Summaries

whatis is almost identical to apropos or the use of man -k (Section 2.1), but it requires a command
name as an argument — rather than an arbitrary string. Why is this useful? Well, let's say you forget
what cat (Section 12.2) does. On my system, apropos cat gives you several screenfuls of output. You
may not want to read the entire manual page. But whatis cat gives you a nice one-line summary:
% whatis cat
cat (1V) - concatenate and display

The whatis command is equivalent to man -f on most systems.

Before running whatis the first time on your system — particularly if you're running a standalone
machine using FreeBSD, Linux, or Darwin — you'll want to run the makewhatis at
/usr/libexec/makewhatis, which creates the whatis database by scanning the command names from
the existing manpages.

— ML

whereis: Finding Where a Command Is Located

The whereis command helps you to locate the executable file, source code, and manual pages for a
program. I use it primarily as a sanity check; if I type cat useless.txt and get the message "cat:
command not found," I immediately try whereis cat. This gives me a lot of information about what
went wrong: someone may have removed cat (Section 12.2) from the system, or my PATH (Section
35.6) environment variable may be set incorrectly, etc.

Output from whereis typically looks like this:
% whereis cat
cat: /bin/cat /usr/share/man/man1/cat.1.gz

This says that the executable file is /bin/cat and the manual page is /usr/share/man/man1/cat.1.gz.

whereis has a few options worth mentioning:
-b

Only report the executable name
-m

Only report the location of the manual page
-s

Only search for source files
-u

Only issue a report if any of the requested information (executable, manual page, source) is
missing

There are other options for modifying the list of directories through which whereis searches; if you
need these, check your manual pages. In addition, the functionality and flags for whereis can differ
between versions of Unix. For instance, much of the basic functionality of the command was removed
in version 4.4 of FreeBSD as well as Darwin. Again, the manual pages will show you this
information.

—ML and SP

Searching Online Manual Pages

When the other techniques in this chapter don't find the information you want, you can try searching
the online manual page (Section 2.1) files. You'll probably have to wade through a lot of stuff that
you don't want to see, but this method can work when nothing else does. As an example, you
remember that there's some command for chopping columns out of a file. You try man -k or apropos,
but it only mentions colrm and pr, and those aren't what you want. You'll usually be able to narrow
your search to one or two manual page sections (Section 2.1); here, you know that user commands
are in section 1. So you go to the manual pages and do a case-insensitive search through all the files
for "column" or "chop":
% cd /usr/man/man1
% egrep -i 'column|chop' *
awk.1:Add up first column, print sum and average:
colrm.1:colrm \- remove characters from specified columns within each line
 ...
cut.1:.IX cut "" "\fIcut\fP \(em remove columns from file"
 ...

It's cut ! Notice that awk also handles columns, but apropos doesn't say so.

(I cheated on that example: there were other ways to find cut — using the synonym apropos field
instead of apropos column, for instance. But this method does work in tougher cases.) To search the
manual page files, you'll need to know where they're stored. There are lots of possibilities. If your
system has an /etc/man.config file, it'll probably tell you. Otherwise, the directories /usr/man or
/usr/share/man are good places to look. If the command is local, try /usr/local/man and maybe /opt
(a big tree where find (Section 9.4) can help). If your system has fast find or locate (Section 9.18),
try searching for man or */man*.

Your manpage files may be compressed (Section 15.6). In that case, use grep (Section 13.2) with the
-Z option, grep -Z.

You'll probably find subdirectories with names like man1, man2, . . . and/or cat1, cat2, . . . Directory
names like manN will have unformatted source files for section N; the catN directories have
formatted source files. Or you may just find files named command.N, where N is 1 for section 1, 2 for
section 2, and so on.

There are two types of manpage files: unformatted (shown in Section 3.22) and formatted. The
unformatted pages are easier to search because none of the words will have embedded backspace
characters. The previous example shows how. The unformatted pages have nroff commands and
macros in them, though, which can make searching and reading tougher.

To search formatted pages, you'll want to strip the embedded backspace characters. Otherwise, grep
might miss the word you want because it was boldfaced or underlined — with backspaces in it. In the
following example, a shell loop (Section 28.9) applies a series of commands to each file. First, col -b
removes the overstriking. grep does a search (case insensitive, as before). Because grep is reading
its standard input, it doesn't know the filename, so a little sed command adds the name to the start of
every line grep outputs.
$ cd /usr/man/cat1

* Section 1.13
$ for file in *

> do col -b < $file | grep -i column | sed "s/^/${file}:/"
> done
awk.1: Add up first column, print sum and average:
 ...
cut.1: Use cut to cut out columns from a table or fields from each
 ...

If your manpage files are compressed, replace col -b < $file with:
zcat $file | col -b

In Bourne shells, you can pipe the output of the loop to a pager (like less (Section 12.3)) to see the
output a screenful at a time and quit (with q) when you're done. To do that, change the last line of the
for loop to:
done | less

— JP

How Unix Systems Remember Their Names

Each computer on a network needs a name. On many Unix versions, the uname -n command shows
you this name. On some systems, the command hostname or uuname -l (two us, lowercase L) may be
what you want. If you use more than one system, the hostname is great to use in a shell prompt — or
any time you forget where you're logged in.

— JP

Which Version Am I Using?

Your system may have several versions of a particular command — for instance, a BSD-compatible
version in one directory and a System V-compatible version somewhere else (and you might have
added a private version in your own bin directory (Section 7.4)). Which command you'll get
depends on your PATH (Section 35.6) environment variable. It's often essential to know which
version you're using. For example:
$ type sort
sort is /bin/sort

tells me exactly which version of the sort program I'm using. (On one system I've used, there were
two sorts; I had also defined an alias for sort.) If I want to see all versions, bash supports a -all
option:
$ type -all sort
sort is aliased to `TMPDIR=/var/tmp /bin/sort'
sort is /bin/sort
sort is /usr/5bin/sort

A similar command is whence .

But type and whence are built into shells and are also Unix-version dependent (not all Unix systems
have them), so they won't work everywhere. The which command is usually external (Section 1.9),
so it works everywhere — although, because it isn't built into the shells, it can't always find out about
aliases defined in your current shell. For example:
% which sort
/usr/bin/sort

You'll find that which comes in handy in lots of other situations. I find that I'm always using which
inside of backquotes to get a precise path. (whence and type may print extra text.) For example, when
I was writing these articles, I started wondering whether or not man, apropos, and whatis were really
the same executable. It's a simple question, but one I had never bothered to think about. There's one
good way to find out:
% ls -li `which man` `which apropos` `which whatis`
102352 -rwxr-xr-x 3 root 24576 Feb 8 2001 /usr/ucb/apropos
102352 -rwxr-xr-x 3 root 24576 Feb 8 2001 /usr/ucb/man
102352 -rwxr-xr-x 3 root 24576 Feb 8 2001 /usr/ucb/whatis

What does this tell us? Well, within this system the three commands have the same file size, which
means that they're likely to be identical; furthermore, each file has three links, meaning that each file
has three names. The -i option confirms it; all three files have the same i-number. So, apropos, man,
and whatis are just one executable file that has three hard links.

However, running the same command in another environment, such as in Darwin, results in a different
output:
117804 -r-xr-xr-x 1 root wheel 14332 sep 2 2001 /usr/bin/apropos
117807 -r-xr-xr-x 1 root wheel 19020 sep 2 2001 /usr/bin/man
117808 -r-xr-xr-x 1 root wheel 14336 sep 2 2001 /usr/bin/whatis

In Darwin, the commands are separate entities.

A few System V implementations don't have a which command.

—ML, JP, MAL, and SP

What tty Am I On?

Each login session has its own tty (Section 24.6) — a Unix device file that handles input and output
for your terminal, window, etc. Each tty has its own filename. If you're logged on more than once and
other users want to write or talk (Section 1.21) to you, they need to know which tty to use. If you
have processes running on several ttys, you can tell which process is where.

To do that, run the tty command at a shell prompt in the window:
% tty
/dev/tty07

You can tell other users to type write your-username tty07.

Most systems have different kinds of ttys: a few dialup terminals, some network ports for rlogin and
telnet, etc. (Section 1.21). A system file like /etc/ttys lists which ttys are used for what. You can use
this to make your login setup more automatic. For example, most network terminals on our computers
have names like /dev/ttyp x or /dev/pts/ x, where x is a single digit or letter. I have a test in my
.logout file (Section 4.17) that clears the screen on all ttys except network:
Clear screen non-network ttys:

` ` Section 28.14
if ("`tty`" !~ /dev/ttyp?) then
 clear
endif

(Of course, you don't need to clear the terminal screen if you're using an xterm window that you close
when you log out.)

— JP

Who's On?

The who command lists the users logged on to the system now. Here's an example of the output on my
system:
% who
naylor ttyZ1 Nov 6 08:25
hal ttyp0 Oct 20 16:04 (zebra.ora.com:0.)
pmui ttyp1 Nov 4 17:21 (dud.ora.com:0.0)
jpeek ttyp2 Nov 5 23:08 (jpeek.com)
hal ttyp3 Oct 28 15:43 (zebra.ora.com:0.)
 ...

Each line shows a different terminal or window. The columns show the username logged on, the tty
(Section 2.7) number, the login time, and, if the user is coming in via a network (Section 1.21), you'll
see their location (in parentheses). The user hal is logged on twice, for instance.

It's handy to search the output of who with grep (Section 13.1) — especially on systems with a lot of
users. For example:
% who | grep "^hal "
 ...where is hal logged on?
% who | grep "Nov 6"
 ...who logged on today?

-v Section 13.3
% who | grep -v "Nov 6"
 ...who logged on before today?
 ...

Your version may have more options. To find out, type man who.

— JP

The info Command

An information system gaining popularity on the more lightweight Unix-based systems is info. It's
particularly relevant for finding information within Linux and FreeBSD.

Unlike man — which displays all information on a topic at once, usually routed through some form of
paging system such as cat — info is based on a hypertext like linkage between topic components. You
connect to each of the subtopics using character-based commands and typing part or all of the
subtopic title — at least enough to distinguish one subtopic from another.

To use info, you type the command info followed by the Unix command about which you're trying to
find information. For instance, to find out more about info itself, you would use the following
command line:
info info

This will return the main info introduction page and a menu of subtopics such as:
Getting Started
Advanced Info
Creating an Info File

To access the subtopic, you type the letter m for menu, and then in the prompt that opens at the bottom
of the screen, type enough of the letters to distinguish the subtopic menu item from any other. You
don't have to complete the command: you can just type enough of the letters followed by a TAB to fill
in the rest. Once the subtopic menu item has been filled in, hitting ENTER sends you to the
information.

To learn more about using info, you can type the letter h when you're in info and no command line
buffer is showing. This brings up basic information about the info command, including the commands
you use within info to use the application. These letters are summarized in Table 2-1.

Table 2-1. info commands

Command Action

h To get help on using info

m To access a subtopic menu item

n To get to next related subtopic

p To get to the previous related subtopic

space To move forward in the display if it exceeds page size

delete To move backward in the display if it exceeds page size

Ctrl-l To clean up the display if it gets mangled

b To get to the first page of the display

? To get a list of info commands

q To quit info
d To return to highest level of info topics
mEmacsreturn To access the Emacs manual

s To search for string within current node

Note that the letter commands are case insensitive: U works the same as u.

Use the d command to pull up the Directory node, the menu of info major topics. In fact, this is a good
way to become familiar with info and its contained subtopics — type d and then use the menu
commands to explore each of the major subtopic areas.

For instance, from the Directory Node, typing m followed by typing strings into the command buffer
pulls up the strings info node.

When using the info command, if the information doesn't fit within a page, header and footer
information will provide you some details about the subtopic, such as the info file, node, and the next
nodes within the hierarchy. For instance, when accessing information about man, depending on your
system the header reads as follows:
File: *manpages*, Node:man, Up: (dir)

This translates to the info file manpages and the node for man. Typing the u will move you up to the
dir info page. Within Emacs, use mouse button two to click on and access a subtopic.

The footer provides a summary of the header information and also provides the number of lines for
the topic if the topic page extends past the current screen. To see more information, type the space to
page through the topic, just as you do with man.

Much of the help information within info is pulled over as is from manpages and hasn't been
converted to the hypertext format of info. Because of this, the use of the m command won't pull up any
subtopic. You'll need to use the space key to access the additional information.

To search within an info node/page, type s and then type the search string into the command buffer.
The cursor is moved to the first occurance of the string.

— SP

Part II. Customizing Your Environment

Part II contains the following chapters:

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 3. Setting Up Your Unix Shell

What Happens When You Log In

When you first log in to a Unix system, the login program performs various security measures. These
vary slightly from Unix variant to Unix variant, but they are largely the same.

First, login checks to see if you are not the root user and whether the file /etc/nologin exists (it is
created by the shutdown command to indicate that the system is being brought down for maintenance).
If both of these conditions are true, the login program prints the contents of that file to the terminal,
and the login fails. If you are the root user, however, you will be allowed to log in.

Second, login checks to see if there are any special conditions on your login attempt (which may be
defined in /etc/usertty or /etc/securetty), such as on which tty you're coming in. Linux systems do
this, for example. Some systems (such as Darwin and other BSD-based systems) also check
/etc/fbtab and may restrict your access to any devices listed in that file. These systems may also log
failed login attempts to a file, such as /var/log/failedlogin, if it exists.

login may also record the time of login in the file /var/log/lastlog, make an entry in the file
/var/run/utmp , showing that you are successfully logged in (it is removed once you log out), and
append the utmp entry to the file /var/log/wtmp , showing that you logged in. This wtmp record will
be updated on logout, showing the duration of your login session.

If the file .hushlogin exists in the user's home directory, the login will be quiet; otherwise, the
following sequence of events will occur. If the system has any special copyright information to
display, it will be printed to the terminal, followed by the message of the day (usually stored in
/etc/motd), and the user's last login time and system of origin (from the wtmp file, as discussed in the
previous paragraph). If you want your login to be quiet, simply touch ~/.hushlogin. If you want it to
be noisy, remove the file.

Finally, if all other checks have passed and restrictions have been performed, login starts a shell for
you. Which shell depends on what is set in your user database entry (/etc/passwd, NIS, or possibly
NetInfo under Darwin). If the shell specified for you is not interactive (Section 3.4), you may well
be denied a command line. This is common for POP and ftp-only user accounts, where /bin/true and
/bin/false are often specified as shells to disallow shell logins from those accounts.

—JP and SJC

The Mac OS X Terminal Application

Throughout the book, we will refer to terminals, terminal emulators, and other software that allows
you, the end user, to interact with the computer via some character-driven screen. In the old days,
most terminals were separate hardware, but nowadays they're usually software. Mac OS X is no
exception: its Terminal application, found in the Utilities folder of your Applications folder, is
a terminal emulator.

You can launch Terminal by double-clicking on the icon in the Finder, or if you have the Terminal
icon in your Dock, by single-clicking on that icon.

Once launched, Terminal may be configured as most Mac applications can: by setting preferences in
the Preferences dialog and choosing a font family and size from the Font menu.

One big difference between Terminal and other, X-specific applications is that instead of running
individual instances of xterm, you run one instance of Terminal and may have multiple windows,
known as "shells," which may have saved settings (such as color, size, font choice, and various other
settings). You can't run a shell in Mac OS X without running Terminal.

— SJC

Shell Setup Files — Which, Where, and Why

To understand setup files, you need to understand that a shell can act like a login shell or a nonlogin
shell (Section 3.4). There are different setup files for nonlogin and login shells.

When you log in to a Unix system — but not under a window system — the login program starts a
shell for you. The login program sets a special flag (Section 3.19) to tell a shell that it's a login shell.
If the shell doesn't have that flag set, it won't act like a login shell. Opening a new window in a
window system may or may not set the "login shell" flag — that depends on the configuration. (For
example, the command xterm -ls starts a login shell in an xterm window (Section 24.20); xterm +ls
starts a nonlogin shell.) When you connect to a system with programs like ftp and scp, that usually
starts a nonlogin shell. And a subshell (Section 24.4) is never a login shell (unless you set a
command-line option to force a login shell, like bash -l).

How can you tell whether your shell is a login shell? The answer is "it depends." When you first log
in to a system, you want a login shell that sets things like the terminal type (Section 5.2, Section 5.3).
Other shells on the same terminal should be nonlogin shells — to avoid redoing those one-time-only
setup commands. Different shells have their own methods for handling first-time shell invocations
versus later invocations, and that's what the rest of this article is about.

Parenthesis operators (Section 43.7) don't read any setup file. Instead, they start another instance of
your current shell. Parentheses are called "subshell operators," but the subshell they start doesn't print
a prompt and usually has a short lifetime.

Next, let's look at the setup files — login and nonlogin — for the major shells. I recommend that you
read about all of them. Then experiment with your shell's setup files until you get things working the
way you want them.
System-wide setup

Your login(1) command probably sets some environment variables (Section 35.3) like
HOME, PATH, SHELL, TERM, MAIL, and LOGNAME or USER; check its manual page. Your
system may set some environment variables or other parameters that apply to all shells or to all
shells of a particular type (all bash shells, zsh shells, etc.). All of these will be passed through
the environment, from parent process to child process (Section 35.4), to all of your shells,
login and nonlogin.

Once login or your window system starts your individual shell, it may also read its own system-wide
setup files. These files, if any, will be read before your personal setup files. Check your shell's
manual page and the /etc directory for files like csh.login, bashrc, zshrc, and so on. On Red Hat
systems, for example, there is a directory named /etc/profile.d containing package-specific C and
Bash shell config files that are sourced (read into the current shell) on startup of a shell. On Mac OS
X, when you use Terminal (Section 3.2), your shell (which is tcsh by default) reads
/private/etc/csh.cshrc, as well as any user-specific files (e.g., ~/.tcshrc).
Bourne shell

The original Bourne shell has one file that it reads when you log in: it's called .profile and is in
your home directory. Put all your setup commands there. Later versions of the Bourne shell may
also read /etc/profile before your local setup file is read and may also read the contents of
whatever file is named in the ENV environment variable (Section 35.3) (but only for

interactive shells). You may set this variable from your own .profile:
ENV=$HOME/.mystartup; export ENV

The Bourne shell doesn't read .profile when you start a nonlogin shell or subshell (Section
43.7), though. Subshells are set up through inheritance of environment variables (Section 35.3)
that were set when you first logged in (in system-wide setup files or .profile) or from commands
you typed since.

C shell
C shell users have several shell setup files available:

The .cshrc file is read any time a C shell starts — that includes shell escapes and shell
scripts.[1] This is the place to put commands that should run every time you start a shell. For
instance, shell variables like cdpath (Section 31.5) and prompt should be set here. Aliases
(Section 29.2) should, too. Those things aren't passed to subshells through the environment,
so they belong in .cshrc (or .tcshrc). See the upcoming section on tcsh for more details.
Alternately, you can put aliases into a separate file and use the source command to read the
file into the current shell from your .cshrc/.tcshrc — if you're the sort who likes to have
custom init files for every host you log in to, but like your aliases to be common wherever
you go. This provides a quick and easy way for you to copy your .csh.aliases (or whatever
name you give it, being careful to distinguish between it and the slightly different format
required by bash aliases) from host to host without clobbering your custom, localized init
files.
 When csh starts up, on recent systems it may read a system-wide setup file, such as
/etc/csh.cshrc ,[2] and for login shells, /etc/csh.login .
 Your .login file is read when you start a login shell. You should set several things here.
Set environment variables (Section 35.3) (which Unix will pass to subshells
automatically). Run commands like tset (Section 5.3) and stty (Section 5.7, Section 5.8)
that set up your terminal. Finally, include commands you want to run every time you log in
— checking for mail and news (Section 1.21), running fortune, checking your calendar for
the day, etc.
Note that .cshrc is read before .login, by csh, but that tcsh may be compiled such that the
order is reversed, and .tcshrc may be read after .login in some environments. Check the
version shell variable to find out how your environment is set up.
The shell reads .logout when you end a login shell. Section 3.8 has tips for reading .logout
from nonlogin shells.

Korn shell
The Korn shell is a lot like the Bourne shell. A login Korn shell (Section 3.4) will read the
.profile first; recent versions do so only after reading /etc/profile , if present. The .profile can
set the ENV (Section 35.5) environment variable to the pathname of a file (typically
$HOME/.kshrc). Any child Korn shell started by that login shell — including all subshells —
will read the file named by $ENV as it starts up, before printing a prompt or running other
commands.
The public domain Korn shell often found on Linux may also be further restricted when invoked
as a "privileged" shell, using a pattern that matches r*sh, in which case neither the ~/.profile nor
the file named by the ENV environment variable will be read. Instead, the shell will be

initialized using /etc/suid_profile, if present.
bash

bash is something of a cross between the Bourne and C shells. A login bash will read
.bash_profile , .bash_login, or .profile. A noninteractive bash will read a file named .bashrc in
your home directory. The shell reads .bash_logout when you end a login shell; you can set a
trap (Section 4.18) to handle nonlogin shells.
bash also uses GNU Readline for reading and editing text you enter at a shell prompt. The
.inputrc file configures Readline for a given user; /etc/inputrc is for global configuration.

tcsh
tcsh is like the C shell but more flexible. If a tcsh shell is run, it first tries to read .tcshrc and, if
not found, then tries .cshrc. In addition, tcsh will also load either .history or the value of the
histfile variable, if set; then it may try to read .cshdirs or the value of the dirsfile variable.

zsh
As always, zsh is very flexible. Startup files are read from the directory named in the ZDOTDIR
environment variable, if any;[3] otherwise, from HOME. All shells read the global /etc/zshenv
and your .zshenv files. If the shell is a login shell, commands are read from /etc/zprofile and
then your .zprofile. Then, if the shell is interactive, commands are read from /etc/zshrc and your
.zshrc. Finally, if the shell is a login shell, /etc/zlogin and your .zlogin files are read.

—JP and SJC

[1] If you write a csh (or tcsh) script, you probably should use the -f option to keep scripts from
reading .cshrc (or .tcshrc). However, you probably shouldn't use csh or tcsh for scripts.
[2] On Mac OS X, /etc is a symbolic link to /private/etc. The actual initialization files for tcsh are in
/usr/share/init/tcsh.
[3] ZDOTDIR may be hard to set on your first login — when your zsh is a login shell — because it's
hard to set an environment variable before your first shell starts. (The system program that starts your
shell, like login(1), could do the job, I guess.)

Login Shells, Interactive Shells

Each Unix shell (sh, csh, etc.) can be in interactive mode or noninteractive mode. A shell also can
act as a login shell or a nonlogin shell. A shell is a shell is a shell — e.g., a login bash shell is the
same program (like /bin/bash) as a nonlogin bash shell. The difference is in the way that the shell
acts: which setup files it reads, whether it sets a shell prompt, and so on.

Login Shells

When you first log in to a Unix system from a terminal, the system normally starts a login shell.
(Section 3.4) A login shell is typcally the top-level shell in the "tree" of processes that starts with the
init (Section 24.2) process. Many characteristics of processes are passed from parent to child
process down this "tree" — especially environment variables (Section 35.3), such as the search
path (Section 35.6). The changes you make in a login shell will affect all the other processes that the
top-level shell starts — including any subshells (Section 24.4).

So, a login shell is where you do general setup that's done only the first time you log in — initialize
your terminal, set environment variables, and so on. A shell "knows" (Section 3.19) when it's a login
shell — and, if it is, the shell reads special setup files (Section 3.3) for login shells. For instance,
login C shells read your .login file, and Bourne-type login shells read .profile. Bash may also read
/etc/profile, and ~/.bash_profile or ~/.bash_login or ~/.profile, depending on whether those files
exist and whether the -noprofile option has been passed (which would disable reading of any
startup files).

Nonlogin shells are either subshells (started from the login shell), shells started by your window
system (Section 24.20), or "disconnected" shells started by at (Section 25.5), rsh (Section 1.21), etc.
These shells don't read .login or .profile. In addition, bash allows a nonlogin shell to read ~/.bashrc
or not, depending on whether the -norc or -rcfile options have been passed as arguments during
invocation. The former simply disables reading of the file, and the latter allows a substitute file to be
specified as an argument.

Some shells make it easy to know if a particular invocation is a login shell. For instance, tcsh sets the
variable loginsh. Check your shell's manual page for details. Section 4.12 shows another solution: the
SHLVL variable that's set in most modern shells. Or you can add the following line to the beginning of
a setup file that's only read by login shells (Section 3.3). The line sets a shell variable (Section
35.9) named loginshell :
set loginsh=yes ...csh

loginshell=yes ...bash and other sh-type shells

Now wherever you need to know the type of shell, use tests like:

if Section 35.13
if ($?loginsh) ...csh-type shells

if [-n "$loginshell"] ...sh-type shells (including bash)

This works because the flag variable will only be defined if a shell has read a setup file for login
shells. Note that none of the variable declarations use the "export" keyword — this is so that the
variable is not passed on to subsequent shells, thereby ruining its purpose as a flag specific to login
shells.

Interactive Shells

In general, shells are used for two jobs. Sometimes, a shell handles commands that you type at a
prompt. These are interactive shells. Other times, a shell reads commands from a file — a shell
script (Section 35.2). In this case, the shell doesn't need to print a prompt, to handle command-line
editing, and so on. These shells can be noninteractive shells . (There's no rule that only
noninteractive shells can read shell scripts or that only interactive shells can read commands from a
terminal. But this is generally true.)

One other difference between interactive and noninteractive shells is that interactive shells tie
STDOUT and STDERR to the current terminal, unless otherwise specified.

It's usually easy to see whether a particular invocation of your shell is interactive. In C shells, the
prompt variable will be set. In the Korn shell and bash, the -i flag is set. Your current flags may be
displayed using the $- variable:
prompt$ echo $-
imH

The previous example, from an interactive bash shell, shows that the flags for an interactive shell (i),
monitor mode (m), and history substitution (H) have been set.

—JP and SJC

What Goes in Shell Setup Files?

Setup files for login shells (Section 3.4) — such as .login and .profile — typically do at least the
following:

Set the search path (Section 27.6) if the system default path isn't what you want.
Set the terminal type (Section 5.3) and make various terminal settings (Section 5.7, Section
5.8) if the system might not know your terminal (if you log in from various terminals over a
dialup line or from a terminal emulator on a desktop machine, for instance).
Set environment variables (Section 35.3) that might be needed by programs or scripts that you
typically run.
Run one or more commands that you want to run whenever you log in. For example, if your
system login program doesn't show the message of the day, your setup file can. Many people
also like to print an amusing or instructive fortune. You also might want to run who (Section 2.8)
or uptime (Section 26.4) or w (a combination of the other two, but not found on all systems) for
information about the system.

In the C shell, the .cshrc file is used to establish settings that will apply to every instance of the C
shell, not just login shells. For example, you typically want aliases (Section 28.2) available in every
interactive shell you run — but these aren't passed through the environment, so a setup file has to do
the job. You may wish to put all of your aliases into another file, such as .aliases, or qualify the name
with the shell's name, such as .csh.aliases, to allow for different alias formats between shells, and
then you can use the source command to read in that file on startup from .cshrc.

Even novices can write simple setup files. The trick is to make these setup scripts really work for
you. Here are some of the things you might want to try:

Creating a custom prompt.
Coordinating custom setup files on different machines (Section 3.18).
Making different terminal settings depending on which terminal you're using (Section 3.10 and
others).
Seeing the message of the day only when it changes.
Doing all of the above without making your login take forever.

—TOR and SJC

Tip for Changing Account Setup: Keep a Shell Ready

The shell is your interface to Unix. If you make a bad mistake when you change your setup file
(Section 3.3) or your password, it can be tough to log in and fix things.

Before you change your setup, it's a good idea to start a login session to the same account from
somewhere else. Use that session for making your changes. Log in again elsewhere to test your
changes.

Don't have a terminal with multiple windows or another terminal close to your desk? You can get the
same result by using rlogin or telnet (Section 1.21) to log in to your host again from the same
terminal. What I mean is:
somehost% vi .cshrc
 ...Make edits to the file...
somehost% rlogin localhost
 ...Logs you in to your same account...
 An error message
somehost% logout
Connection closed.
somehost% vi .cshrc
 ...Edit to fix mistake...

If you don't have rlogin or telnet, the command su - username, where username is your username,
will do almost the same thing. Or, if you're testing your login shell configuration, login will do as
well.

—JP and SJC

Use Absolute Pathnames in Shell Setup Files

One common mistake in shell setup files (Section 3.3) is lines like these:

$$ Section 27.17, `...` Section 28.14
source .aliases

echo "Shell PID $$ started at `date`" >> login.log

What's wrong with those lines? Both use relative pathnames (Section 1.16) for the files (.aliases,
login.log), assuming the files are in the home directory. Those lines won't work when you start a
subshell (Section 24.4) from somewhere besides your home directory because your setup files for
nonlogin shells (like .cshrc) are read whenever a shell starts. If you ever use the source or .
commands (Section 35.29) to read the setup files from outside your home directory, you'll have the
same problem.

Use absolute pathnames instead. As Section 31.11 explains, the pathname of your home directory is in
the tilde (~) operator or the $HOME or $LOGDIR environment variable:
source ~/.aliases
echo "Shell PID $$ started at `date`" >> ~/login.log

— JP

Setup Files Aren't Read When You Want?

The C shell reads its .cshrc, .login, and .logout setup files at particular times (Section 3.3). Only
"login" C shells (Section 3.4) will read the .login and .logout files. Back when csh was designed,
this restriction worked fine. The shell that started as you logged in was flagged as a login shell, and it
read all three files. You started other shells (shell escapes, shell scripts, etc.) from that login shell,
and they would read only .cshrc. The same can be said of other shell variants, such as tcsh, though
they may have multiple startup files — the problem of distinguishing between login and nonlogin shell
startup is the same.

Now, Unix has interactive shells started by window systems (like xterm (Section 24.20)), remote
shells (like rsh (Section 1.21) or ssh), and other shells that might need some things set from the .login
or .logout files. Depending on how these shells are invoked, these might not be login shells — so they
might read only .cshrc (or .tcshrc, etc.). How can you handle that? Putting all your setup commands in
.cshrc isn't a good idea because all subshells (Section 24.4) read it . . . you definitely don't want to
run terminal-setting commands like tset (Section 5.3) during shell escapes!

Most other shells have the same problem. Some, like zsh and bash, have several setup files that are
read at different times — and probably can be set up to do what you want. For other shells, though,
you'll probably need to do some tweaking.

To handle problems at login time, put almost all of your setup commands in a file that's read by all
instances of your shell, login or nonlogin. (In the C shell, use .cshrc instead of .login.) After the
"login-only" commands have been read from the setup file, set the ENV_SET environment variable
(Section 35.3) as a flag. (There's nothing special about this name. You can pick any name you want.)
You can then use this variable to test whether the login-only commands have already been run and
skip running them again in nonlogin shells.

Because the environment variables from a parent process are passed to any child processes it starts,
the shell will copy the "flag" variable to subshells, and the .cshrc can test for it. If the variable exists,
the login-only commands are skipped. That'll keep the commands from being read again in a child
shell.

Here are parts of a .cshrc that show the idea:
...Normal .cshrc stuff...
if ($?prompt && ! $?ENV_SET) then
 # Do commands that used to go in .login file:
 setenv EDITOR /usr/ucb/vi
 tset
 ...
 setenv ENV_SET done
endif

You might put a comment in the file you've bypassed — the csh .login file, the ksh .profile file, etc.
— to explain what you've done.

The file that runs when you log out (in the C shell, that's .logout) should probably be read only once
— when your last ("top-level") shell exits. If your top-level shell isn't a login shell, you can make it
read the logout file anyway. Here's how: first, along with the previous fixes to your .cshrc-type file,
add an alias that will read your logout file when you use the exit command. Also set your shell to
force you to use the exit command (Section 35.12) to log out — in csh, for example, use set

ignoreeof. Here's what the chunk of your .bashrc will look like:

case Section 35.10, / Section 36.25, function Section 29.11, . Section 35.29
case "$-/${ENV_SET:-no}" in
i/no)
 # This is an interactive shell / $ENV_SET was not set earlier.
 # Make all top-level interactive shells read .bash_logout file:
 set -o ignoreeof
 function exit {
 . ~/.bash_logout
 builtin exit
 }
 ;;
esac

The builtin exit (Section 27.9) prevents a loop; it makes sure bash uses its internal exit command
instead of the exit function you've just defined. In the C shell, use ""exit (Section 27.10) instead.
This isn't needed on all shells though. If you can't tell from your manual page, test with another shell
(Section 3.6) and be ready to kill (Section 24.12) a looping shell.

—JP and SJC

Gotchas in set prompt Test

Lots of users add an if (! $?prompt) exit test to their .cshrc files. It's gotten so common that some
vendors add a workaround to defeat the test. For instance, some versions of the which command
(Section 2.6) set the prompt variable so that it can see your aliases "hidden" inside the $?prompt
test. I've also seen a version of at that starts an interactive shell to run jobs.

If you've buried commands after if (! $?prompt) that should only be run on interactive shells or at
login time, then you may have trouble.

There are workarounds. What you'll need depends on the problem you're trying to work around.

Here's a way to stop the standard which from reading parts of your .cshrc that you don't want it
to read. The first time you log in, this scheme sets a CSHRC_READ environment variable
(Section 35.3). The variable will be copied into all subshells (Section 24.4) (like the one that
which starts). In subshells, the test if ($?CSHRC_READ) will branch to the end of your .cshrc
file:
if (! $?prompt) goto cshrc_end

COMMANDS BELOW HERE ARE READ ONLY BY INTERACTIVE SHELLS:
alias foo bar
 ...

if ($?CSHRC_READ) goto cshrc_end

COMMANDS BELOW HERE ARE READ ONLY AT LOGIN TIME:
setenv CSHRC_READ yes
 ...

cshrc_end:

If you have a buggy version of at (Section 25.5) that runs jobs from interactive shells, make your
own frontend to at (Section 29.1) that sets an environment variable named AT temporarily
before it submits the at job. Add a test to your .cshrc that quits if AT is set:
() Section 43.7, \at Section 29.8
at JOBS RUN INTERACTIVE SHELLS ON MY BUGGY VERSION OF UNIX.
WORKAROUND IS HERE AND IN THE at ALIAS BELOW:
if ($?AT) goto cshrc_end

 ...
alias at '(setenv AT yes; \at \!*)'
 ...

cshrc_end:

Most modern versions of at save a copy of your environment when you submit the job and use it
when the at job is run. At that time, the AT environment variable will be set; the C shell will
skip the parts of your .cshrc that you want it to. It's ugly, but it works.

Those workarounds probably won't solve all the problems on your version of Unix, but I hope they'll
give you some ideas.

—JP and SJC

Automatic Setups for Different Terminals

If you work at several kinds of terminals or terminal emulators, terminal setup can be tough. For
instance, my X terminal sends a backspace character when I push the upper-right key, but the same
key on another terminal sends a delete character — I want stty erase (Section 5.8) to set the correct
erase character automatically.[4] Maybe you want a full set of calendar programs started when you log
in to the terminal at your desk, but not when you make a quick login from somewhere else.

The next seven articles have ideas for changing your login sequence automatically. Some examples
are for the C shell and use that shell's switch and if. Examples for Bourne-type shells use case
(Section 35.10) and if (Section 35.13). If you use the other type of shell, the idea still applies; just
swap the syntax.

If you use several kinds of terminals or terminal emulators, try testing the TERM environment
variable (Section 3.11). Testing other environment variables (Section 3.14) can identify the
frontend system (like a window system) you're using.
Test the output of who am i (Section 3.12) to find out about the remote system from which
you've logged in.
If you log into different kinds of ports — network, hardwired, and so on — search for the port
type (Section 3.15) in a table like /etc/ttys (in BSD derivatives) or /etc/inittab (in some other
variants). Testing the port name (Section 3.13) may also work.
In the X Window System, you can test the window size (Section 3.16) and make various
settings based on that. Naming windows (Section 3.17) lets you identify a particular window by
reading its environment.
You can also handle some of these cases using the venerable but obscure tset (Section 5.3)
program to select and initialize the correct terminal type. Another program that sets the terminal
type is qterm (Section 5.4).

Because your terminal type doesn't change after you've logged in, many of these tests probably belong
in your .profile or .login file. Those setup files are read when you first log in to a tty. Other tests,
especially ones that involve windows, will probably fit better in a per-shell setup file such as
.bashrc or .cshrc. Section 3.3 can help you choose.

—JP and SJC

[4] Of course, it is all arbitrary and contingent on your keyboard layout and configuration.

Terminal Setup: Testing TERM

If you use several different kinds of terminals (or, as is far more common these days, terminal
emulators) and your TERM environment variable is set differently on each terminal, you can add a
test like this to your C shell .login file:
switch ($TERM)
case vt100:
 ...do commands for vt100
 breaksw
case xxx:
 ...do commands for xxx
 breaksw
default:
 ...do commands for other terminals
 breaksw
endsw

If you have a Bourne-type shell, use a case statement (Section 35.10) in your .profile instead:
case "$TERM" in
 vt100)
 ...do commands for vt100
 ;;
 xterm)
 ...do commands for xterm
 ;;
 *)
 ...do commands for other terminals
 ;;
esac

—JP and SJC

Terminal Setup: Testing Remote Hostname and X Display

If you log in from other hosts (Section 1.21) or from hosts running the X Window System (Section
24.20), the who am i [5] command will probably show a hostname and/or window information in
parentheses:
schampeo@fugazi:1002 $ who am i
schampeo ttyp7 Jun 19 03:28 (fugazi:0.0)

(Long hostnames may be truncated. Also, note that some versions of who am i prepend the name of the
local host to the username and don't include the remote hostname at all in their output. Check yours
before you write this test.) The information in parentheses can help you configure your terminal based
on where you've logged in from and/or which display you're using. To test it, add commands such as
the following to your .profile file. (In C-type shells, use a switch statement in .login instead.)

case Section 35.10
case "`who am i | sed -n 's/.*(\(.*\))/\1/p'`" in

\(..\) \1 Section 34.11
*0.0) ...do commands for X display 0 ;;
mac2*) ...do commands for the host mac2.foo.com ;;
"") ...no output (probably not a remote login) ;;
*) ...do commands for other situations ;;
esac

That uses sed (Section 34.1) to give the text between the parentheses for that remote host to the case.
This *0.0 case matches lines ending with 0.0; the mac2 case matches lines that start with mac2; an
empty string means sed probably didn't find any parentheses; and the * case catches everything else.

—JP and SJC

[5] Also try "who mom likes" or maybe "who is responsible?" — the who doesn't really care, as long
as there are only two arguments. So, "who let the dogs out?", as you might expect, causes an error.

Terminal Setup: Testing Port

If you know that certain port (tty) numbers are used for certain kinds of logins, you can test that and
change your terminal setup based on the tty you're currently using. For example, some systems use
ttyp0, ttyq1, etc. as network ports for rlogin and ssh (Section 1.21), while others use pty0, etc. This
Bourne-type case statement branches on the port name:

tty Section 2.7
case "`tty`" in
/dev/tty[pqrs]?)
 # rlogin, telnet:
 ...
/dev/tty02)
 # terminal on my desk:
 ...
"not a tty") ;; ...not a terminal login session; do nothing
esac

In C-type shells, try a switch or if statement instead.

On Linux, you may need to look for patterns to match /dev/pts/0, /dev/pts/1, etc.

—JP and SJC

Terminal Setup: Testing Environment Variables

Certain systems set certain environment variables. For example, the X Window System sets a
DISPLAY environment variable (Section 35.5). If you've logged in from a remote system using ssh
(Section 1.21), look for variables like SSH_CLIENT and SSH_TTY or SSH_AUTH_SOCK on the
system you log in to. (If you aren't sure about your system, use the env or printenv command (Section
35.3) to look for changes in your environment at different systems.)

Your shell setup file (Section 3.3) makes decisions based on the environment variables that have
been set. Here are examples for both C-type and Bourne-type shells:

[] Section 35.26
if ($?DISPLAY) then if [-n "$DISPLAY"]; then
 # on X window system # on X window system

else if ($?XDARWIN_VERSION) then elif [-n "$XDARWIN_VERSION"]; then
 # on MacOS X system # on MacOS X system

else else

endif fi

—JP and SJC

Terminal Setup: Searching Terminal Table

Your system may have an /etc/ttytab or /etc/ttys file that lists the type of each terminal port (tty
(Section 24.6)).[6] Here are lines from /etc/ttys on a NetBSD system I use:
console "/usr/libexec/getty std.9600" vt100 on local
tty00 "/usr/libexec/getty std.9600" dialup off local
tty01 "/usr/libexec/getty std.9600" plugboard off local
 ...
ttyp0 none network off
 ...

For example, port ttyp0 is network, the type used by xterm (Section 24.20), telnet (Section 1.21),
etc.

To change your account configuration based on the tty port type, match the first column of that file to
the output of the tty (Section 2.7) command, which shows your current tty pathname. The output of tty
starts with /dev or /dev/pts. So, to match your current tty to the file, you need to strip the name to its
tail. For example, in bash and ksh, these three lines would put the terminal port type (vt100,
plugboard, etc.) into the ttykind shell variable:
tty=`tty`
ttytail=${tty#/dev/}

awk Section 20.10
ttykind=`awk '$1 == "'$ttytail'" {print $3}' /etc/ttys`

Then you can test the value with case (Section 35.10) or if (Section 35.13). In C shells, you can set
ttytail by using the :t string modifier (Section 28.5) and test its value with switch or if.
—JP and SJC

[6] Then again, it may not. The RedHat Linux system I tested this on did not; the MacOS X 10.1.5 box I
tested it on did.

Terminal Setup: Testing Window Size

I use several terminal windows of different sizes. I don't stretch the windows after I open them;
instead, I set the size as I start each xterm . Here's an excerpt from my X setup file (Section 3.20) that
opens the windows:

-e Section 5.22
xterm -title SETI -geometry 80x9+768+1 -e setiathome -verbose -nice 10 &
xterm -title "work xterm" -geometry 80x74+329-81 &

The first window has 9 rows (80x9) and the second has 74 rows (80x74).[7] I'd like the less (Section
12.3) pager to use different jump-target lines in larger windows. If the window has more than 24
lines, I want less to use its option -j3 to show search-matches on the third line of the window instead
of the first.

On many systems, the command stty size gives the number of rows and columns in the current
window, like this:
$ stty size
74 80

Your system might need the command stty -a instead — or it could have environment variables
named LINES and COLUMNS. We'll use stty size in the following Bourne shell setup file. The set
(Section 35.25) command puts the number of rows into the $2 shell parameter. (Using set this way is
portable to all shells, but it's a clumsy way to split stty's output into words. If you have a newer shell
with array support, it'll be easier.) Then a series of if (Section 35.13)/then (Section 35.26) tests
handle different window sizes:
LESS=emqc; export LESS
Put number of rows into $2, configure session based on that:
set x `stty size`
if [-z "$2" -o "$2" -lt 1]
then echo ".profile: bogus number of rows ($2) in window!?" 1>&2
elif ["$2" -gt 24]
then LESS=j3$LESS
 ...
fi

Additionally, you may be able to run resize on machines with the X Window System installed; it may
output something like this:
schampeo@fugazi:1046 $ resize
COLUMNS=80;
LINES=37;
export COLUMNS LINES;

You may then capture the output and read it for the current setting or simply check the COLUMNS or
LINES environment variables.

—JP and SJC

[7] Both windows have 80 columns. This is a Unix custom that comes from "the old days" when
terminals all were 80 columns wide. But it's still a common width today — and a good default when
you don't need a wider window. Some people are even sort of weird about it, especially for reading
email.

Terminal Setup: Setting and Testing Window Name

I use several xterm windows. Here's an excerpt from my X setup file (Section 3.20):
WINNAME=console xterm -C -title Console -geometry 80x9+0+0 &
WINNAME=work xterm -title "work xterm" -geometry 80x74+329-81 &

The WINNAME= name sets an environment variable named WINNAME for the particular command line
it's on. This is passed through the environment, through the xterm process, to the shell running inside
the window. So the shell's setup file can test for this variable — and, by knowing the window name
stored in that variable, do specific setup for just that window. For example, in tcsh :

-f Section 11.10, { } Section 28.4
if ($?WINNAME) then
 switch ($WINNAME)
 case console:
 # Watch logs:
 tail -f /var/log/{messages,maillog,secure} ~/tmp/startx.log &
 breaksw
 case work:
 /usr/games/fortune
 fetchmail
 breaksw
 endsw
endif

On the console terminal, this .tcshrc file starts a job in the background (Section 23.2) to watch log
files. On the work xterm, I get a fortune and grab email from the POP server.

—JP and SJC

A .cshrc.$HOST File for Per Host Setup

I work with different types of machines every day. It is often necessary to set things up differently for,
say, a Linux box than a SPARCstation or a MacOS X box. Going beyond that, you may want to set
things up differently on a per-host basis.

I have this test in my .cshrc file:

setenv Section 35.3
setenv HOST "`uname -n`"

~ Section 31.11
if (-e ~/lib/cshrc.hosts/cshrc.$HOST) then
 source ~/lib/cshrc.hosts/cshrc.$HOST
endif

So, if I log in to a machine named (Section 2.5) bosco, and I have a file called
~/lib/cshrc.hosts/cshrc.bosco, I can source (Section 35.29) it to customize my environment for that
one machine. These are examples of things you would put in a .cshrc.$HOST file:
Search path (Section 27.6)

Some machines have /usr/local/bin, and some have /opt. The same goes for cdpath (Section
31.5).

Terminal settings (Section 5.8)
I always like to reach for the upper-right part of a keyboard to erase characters. Sometimes this
is the location for the BACKSPACE key, and sometimes it is the DELETE key. I set things up so
that I can consistently get "erase" behavior from whatever key is there.

Other shell variables (Section 35.9) and environment variables (Section 35.3)
These may be different. You may run a package on a certain machine that relies on a few
environment variables. No need to always set them and use up a little bit of memory if you only
use them in one place!

In general, this idea allows you to group together whatever exceptions you want for a machine, rather
than having to write a series of switch or if statements throughout your .cshrc and .login files. The
principle carries over directly to the newer shells as well.

—DS and SJC

Making a "Login" Shell

When you log in to most Unix systems, your shell is a login shell. When a shell is a login shell, it acts
differently (Section 3.4).

Sometimes, when you're testing an account or using a window system, you want to start a login shell
without logging in. Unix shells act like login shells when they are executed with a name that starts
with a dash (-).[8] This is easy to do if you're using a system call in the exec(3) family. These system
calls let a C-language programmer give both the filename of an executable file, like sh or /bin/sh, as
well as the name that should be used to identify the process (in a ps (Section 24.5) listing, for
example), like -sh.

If you're currently using zsh , you can invoke another shell this way by typing a dash and a space
before the shell's name:
zsh% - csh
 ...C shell starts, acting like a login shell...
%

C programmers can write a little program that runs the actual shell but tells the shell that its name
starts with a dash. This is how the Unix login process does it:
run_login_csh()
{
 execl("/bin/csh", "-csh", 0);
}

A more general solution is to make a link (Section 10.4) to the shell and give the link a filename
starting with a dash. If your own bin subdirectory is on the same filesystem as /bin (or wherever the
executable shell file is), you can use a hard link. Otherwise, make a symbolic link, as shown here:

bin Section 7.4, ./- Section 14.13
$ cd $HOME/bin
$ ln -s /bin/csh ./-csh

Then you can execute your new shell by typing its name:
$ -csh
 ...normal C shell login process...
% ...run whatever commands you want...
% logout
$...back to original shell

—JP and SJC

[8] bash also has a command-line option, -login, that makes it act like a login shell. zsh -l
(lowercase L) does the same for zsh.

RC Files

One way to set defaults for your applications is with environment variables (Section 35.3) that the
applications might read. This can get messy, though, if your environment has tens or hundreds of
variables in it. A lot of applications have a different way to choose defaults: setup files, similar to
shell setup files (Section 3.3). Most of these filenames end with rc, so they're often called RC files.[9]

Today's more-complex applications also use their own setup subdirectories. Almost all of these files
and directories are hidden (Section 8.9) in your home directory; you'll need ls -A to see them.

This article describes some of the most common setup files. For a more complete list, check your
application's manpage:
.emacs

For the Emacs editor. See Section 19.3.
.exrc

For the vi (actually, ex) editor. See Section 17.5.
.inputrc

For the GNU Readline library and applications that use it, such as the bash shell.
.mailrc

For the mail (Section 1.21) program and others like it. This can be handy if you use mail from
the command line to send quick messages. For example:
If I send mail to "bookquestions", send it to myself too:
alias bookquestions bookquestions@oreilly.com, jerry
When I send a message, prompt me for "cc:" addresses:
set askcc

.mh_profile
For the MH email system.

.netrc
A listing of hostnames, accounts — and possibly passwords — used for connecting to remote
hosts with ftp and some other programs. Should have file access mode (Section 50.2) 600 or
400 for security, but this may not be enough protection for passwords! Best used for Anonymous
ftp.

.newsrc
For news readers (Section 1.21). (Some newer news readers have more complex files.) A list
of newsgroups in the order you want to see them. For example:
comp.security.announce: 1-118
news.announce.important: 1
comp.org.usenix: 1-1745
comp.sys.palmtops! 1-55069,55071
 ...

A newsgroup name ending with a colon (:) means you want to read that newsgroup; an
exclamation point (!) means you don't. After each name is a list of the article numbers you've
read in that newsgroup; a range like 1-55069 means you've read all articles between number 1
and number 55069.

.rhosts
A list of remote hostnames that are allowed to access your local machine with clients like rsh
and rlogin (Section 1.21). Remote usernames are assumed the same as your local username
unless the remote username is listed after the hostname. This file can be a security hole; make its
file access mode (Section 50.2) 600 or 400. We suggest you only use it if your system or

network administrator approves. For example:
rodan Allow a user with same username from host rodan
foo.bar.com joe Allow username joe from host foo.bar.com

.Xauthority
For xauth, a program that handles authorization information used in connecting to the X Window
System server.

.Xdefaults
A resource file (Section 6.5) for the X Window System. Sometimes also called .xrdb.

.xinitrc
A shell script (Section 35.2) that runs as you log in to an X Window System session using xinit.
(Also see .xsession, later in this list.)

All commands except the last typically end with an ampersand (&), which makes those clients run in
the background. The last command becomes the controlling process; when that process exits (for
instance, you use the window manager's "quit" command), the window system shuts down. For
example:

$Id Section 39.5, exec > Section 36.5, -v Section 35.25, uname -n Section 2.5 , ${..:=..} Section
36.7, export Section 35.3, xrdb Section 6.8, sh -c Section 24.21, exec Section 36.5
#! /bin/sh
$Id: ch03.xml,v 1.36 2002/10/13 03:50:01 troutman Exp troutman $
Usage: .xinitrc [DISPLAY]

wm=fvwm2 # window manager

Put all output into log that you can watch from a window (tail -f):
mv -f $HOME/tmp/startx.log $HOME/tmp/,startx.log
exec > $HOME/tmp/startx.log 2>&1
set -v

Set DISPLAY from $1 if the X server isn't on same host as client:
if [$# -gt 0]
then
 if [$# -ne 1]
 then
 echo "Usage: .xintirc [DISPLAY]" 1>&2
 exit 1
 else
 DISPLAY=$1
 fi
else
 host=`uname -n`
 DISPLAY=${DISPLAY:=$host:0.0}
fi
export DISPLAY
xrdb -load $HOME/.xrdb

#
Clients
#
xterm -C -geometry 80x9+0+0 -sl 2000 &
oclock -geometry -1+1 &
xterm -title "SETI console" -bg blue -fg white -geometry 80x9+768+1 -e \
 sh -c 'cd /var/cache/seti && exec ./setiathome -nice 5 -verbose' &
Don't use -e because Mozilla crashes; start by hand from prompt:
xterm -title "Mozilla console" -bg orange -geometry 80x9-0+1 &
xterm -geometry 80x74+329-81 &

#
Start window manager
#
exec $wm

.xsession
An executable file (generally a shell script (Section 35.2), but it can be any executable) that runs
as you log into an X Window System session using xdm. See .xinitrc, earlier in this list.

/etc/rc*
Last but not least, your system probably has a lot of setup files in its /etc directory. Look for
subdirectory or filenames starting with rc. These are read when your system reboots or changes
its runlevel (for example, from single-user mode to multiuser mode). These files are basically
shell scripts (Section 35.2). If you know a little about shell programming, you can learn a lot
about your system by looking around these files.

—JP and SJC

[9] Don't ask me why. It's one of those acronyms, like spool (Section 45.2), that's open to
interpretation, though one theory is that it is derived from "runcom files," (possibly short for "run
commands") on the Compatible Time-Sharing System, c.1962-63 (source: The Jargon File).

Make Your Own Manpages Without Learning troff

We strongly suggest that you write a manual page for each command that you place in your bin
directory. Unix manual pages typically have the following format, which we suggest you follow:
NAME
 The program's name; one line summary of what it does.

SYNOPSIS
 How to invoke the program, including all arguments and
 command-line options. (Optional arguments are placed in
 square brackets.)

DESCRIPTION
 A description of what the program does—as long as
 is necessary.

OPTIONS
 An explanation of each option.

EXAMPLES
 One or more examples of how to use the program.

ENVIRONMENT
 Any environment variables that control the program's behavior.

FILES
 Files the program internals will read or write. May include
 temporary files; doesn't include files on the command line.

BUGS
 Any known bugs. The standard manual pages don't take
 bug recording seriously, but this can be very helpful.

AUTHOR
 Who wrote the program.

To see how a "real" manual page looks, type man ls.

Feel free to add any other sections that you think are necessary. You can use the nroff -man macros
(Section 3.22) if you want a nicely formatted manual page. However, nroff is fairly complicated and,
for this purpose, not really necessary. Just create a text file that looks like the one we showed
previously. If you are using a BSD system and want your manual pages formatted with nroff, look at
any of the files in /usr/man/man1, and copy it.

Note
If y ou insist on formatting y our manual page properly , using the troff or groff "man" macros, y ou can use nroff to preview the file.

The man (Section 2.1) command is essentially the same as this:

-s Section 11.7
% nroff -e -man
 filename
 | more -s

 Go to http://examples.oreilly.com/upt3 for more information on: gnroffawf

You can safely omit the -e option to nroff and the -s option to more, or even substitute in your

http://examples.oreilly.com/upt3

favorite pager, such as less. And remember that nroff may not be available on all systems, but the
web site has gnroff and awf. In fact, on some systems, nroff is simply a script that emulates the real
nroff using groff.
Now, you want to make this manual page "readable" by the standard man command. There are a few
ways to do this, depending on your system. Create the directory man in your home directory; create
the directory cat1 as a subdirectory of man; then copy your manual entry into cat1, with the name
program.1 (where program is the name of your special command). When you want to read the
manual page, try the command:

~ Section 31.11
% man -M ~/man
 program

Note
We like to be more strict about naming things properly , but y ou can omit the man directory and just put the cat1 directory into y our home directory . In this case, the command would be as follows:

% man -M ~
 program

Some systems have a MANPATH environment variable (Section 35.3), a colon-separated list of
directories where the man command should look. For example, my MANPATH contains:
/home/mike/man:/usr/local/man:/usr/man

MANPATH can be more convenient than the -M option.

Note
We are telling y ou to put the manual page into the cat1 directory rather than the man1 directory because the man program assumes that files in cat1 are already formatted.

If you are sharing your program with other people on the system, you should put your manual entry in
a public place. Become superuser and copy your documentation into /usr/local/man/catl, giving it the
name program.l (the "l" stands for "local"). You may need to create /usr/local and /usr/local/man
first. If you can't become superuser, get the system administrator to do it for you. Make sure that
everyone can read the manual page; the permissions should be something like this:
% ls -l /usr/local/man/catl
-r--r--r-- 1 root 468 Aug 5 09:21 program.l

Then give the command man program to read your documentation.

If you are working on some other systems, the rules are a little different. The organization of the
manual pages and the man command itself are slightly different — and really, not as good. Write your
manual entry, and place it in your doc directory. Then create the following C shell alias (Section
29.3):

less Section 12.3
alias myman "(cd ~/doc; man -d \!$ | less)"

or shell function (Section 29.11):
myman() { (cd $HOME/doc; man -d "$1" | less); }

Now the command myman docfilename will retrieve your manual page. Note that if you use a

section-number extension like .1, you have to give the entire filename (e.g., program.1), not just the
program's name.

If you want to make your manual page publicly available, copy the file into the system manual page
directory for section 1; you may have to become superuser to do so. Make sure that anyone on the
system can read your file. If the entry is extremely long and you want to save space in your filesystem,
you can use the gzip (Section 15.6) utility on your documentation file. The resulting file will have the
name program.1.gz; newer versions of the man command will automatically uncompress the file on-
the-fly.

—ML and SJC

Writing a Simple Manpage with the -man Macros

If you're not satisfied with the simple manual pages we discussed in Section 3.21, here's how to go all
the way and create a "real" manual page. As we said, the best way to create a manual page is to copy
one that already exists. So here's a sample for you to copy. Rather than discuss it blow by blow, I'll
include lots of comments (these start with .\" or \").
.\" Title: Program name, manual section, and date

1 Section 2.1
.TH GRIND 1
.\" Section heading: NAME, followed by command name and one line summary
.\" It's important to copy this exactly; the "whatis" database (used
.\" for apropos) looks for the summary line.
.SH NAME
grind \- create output from input
.\" Section heading: SYNOPSIS, followed by syntax summary
.SH SYNOPSIS
.B grind \" .B: bold font; use it for the command name.
[-b] [-c] [-d] \" Put optional arguments in square brackets.
[input [output]] \" Arguments can be spread across several lines.
.br \" End the synopsis with an explicit line break (.br)
.\" A new section: DESCRIPTION, followed by what the command does
.SH DESCRIPTION
.I Grind \" .I: Italic font for the word "Grind"
performs lots of computations. Input to
.IR grind , \" .IR: One word italic, next word roman, no space between.
is taken from the file
.IR input ,
and output is sent to the file
.IR output ,
which default to standard input and standard output if not specified.
.\" Another section: now we're going to discuss the -b, -c, and -d options
.SH OPTIONS
.\" The .TP macro precedes each option
.TP
.B \-b \" print the -b option in bold.

Print output in binary.
.TP
.B \-c \" \- requests a minus sign, which is preferable to a hyphen (-)
Eliminate ASCII characters from input before processing.
.TP
.B \-d
Cause daemons to overrun your computer.
.\" OK, we're done with the description and the options; now mention
.\" other requirements (like environment and files needed) as well as
.\" what can go wrong. You can add any other sections you want.
.SH FILES
.PD 0
.TP 20
.B /dev/null
data file
.TP
.B /tmp/grind*
temporary file (typically 314.159 Gigabytes)
.PD
.SH BUGS
In order to optimize computational speed, this program always produces
the same result, independent of the input.
.\" Use .LP between paragraphs
.LP
If the moon is full,
.I grind
may destroy your input file. To say nothing of your sex life.
.\" Good manual pages end by stating who wrote the program.

.SH AUTHOR
I wouldn't admit to this hack if my life depended on it.

After all that, you should have noticed that there are four important macros (listed in Table 3-1) to
know about.

Table 3-1. Important -man macros

Macro Meaning

.TH Title of the manual page.

.SH Section heading; one for each section.

.TP Formats options correctly (sets up the "hanging indent").

.LP Used between paragraphs in a section.

For some arcane reason, all manual pages use the silly .B, .BI, etc. macros to make font changes. I've
adhered to this style in the example, but it's much easier to use inline font changes: \fI for italic, \fB
for bold, and \fR for roman. There may be some systems on which this doesn't work properly, but
I've never seen any.

—ML and SJC

Chapter 4. Interacting with Your Environment

Basics of Setting the Prompt

The prompt displayed by your shell is contained in a shell variable (Section 35.9) called prompt in
C-type shells and PS1 in Bourne-type shells. As such, it can be set like any other shell variable.

There are two or three ways to set a prompt. One is a static prompt (Section 4.2) that doesn't change
during your login session (as you change directories, as the time of day changes, etc.). Some shells let
you set a dynamic prompt (Section 4.3) string that is interpreted by the shell before each prompt is
printed. Even on shells that don't interpret prompt strings dynamically, you can simulate a dynamic
prompt (Section 4.4) by changing the prompt string automatically.[1]

Depending on your shell's capabilties, you can use or combine those three techniques — and those
found in the rest of this chapter — to do a lot. But, of course, you don't want to type that prompt-
setting command every time you log in. So after you've perfected your prompt on the command line,
store it in the correct shell setup file (Section 3.3): use the file that's read by interactive shells or add
an interactive shell test to your setup file. (Setting the prompt in noninteractive shells is pointless —
and it can even cause problems (Section 4.5).)

—JP, TOR, and SJC

[1] I haven't seen prompts described this way before. I invented the terms static prompt and dynamic
prompt to make them easier to talk about.

Static Prompts

As Section 4.1 explains, the simplest prompts — which I call static prompts — are prompts whose
value are set once. The prompt doesn't change (until you reset the prompt variable, of course).

The default bash prompt is a good example of a static prompt. It's "bash$ " (with a space at the end,
to make the command you type stand out from the rest of the prompt). You could set that prompt with
the simple command:
PS1='bash$ '.

Notice the single quotes (Section 11.3) around the value; this is a good idea unless you want special
characters in the prompt value to be interpreted before it's set. You can try it now: type that command
on a command line, just as you would to set any other shell variable. Experiment a bit. The same
prompt works on ksh and sh .

If you use csh or tcsh, try one of these, then experiment:
set prompt='csh% '
set prompt='tcsh> '

(zsh users: you can use any of the previous styles, but omit the set from the set prompt style.) Those
prompts are fairly useless, right? If you log in to more than one machine, on more than one account,
it's nice to have your hostname and username in the prompt. So try one of the following prompts.
(From here on, I won't show a separate tcsh version with a > instead of a %. You can do that yourself,
though, if you like.) If your system doesn't have uname, try hostname instead:
PS1="$USER@`uname -n`$ "
set prompt="$user@`uname -n`% "

Notice that I've used double quotes (Section 12.3) around the values, which lets the shell expand the
values inside the prompt string before the prompt is stored. The shell interprets the variable $USER
or $user — and it runs the command substitution (Section 28.14) that gives the hostname — once,
before the prompt is set. Using double quotes is more efficient if your prompt won't change as you
move around the system.

—JP and SJC

Dynamic Prompts

Many shells can interpret the stored prompt string as each prompt is printed. As Section 4.1
explains, I call these dynamic prompts.

Special character sequences in the prompt let you include the current directory, date and time,
username, hostname, and much more. Your shell's manual page should list these at the PS1 or prompt
variable. (If you use the Korn shell or the original C shell, you don't have these special sequences.
Section 4.4 has a technique that should work for you.)

It's simplest to put single quotes around the prompt string to prevent interpretation (Section 27.1) as
the prompt is stored. For example, the following prompt shows the date and time, separated by
spaces. It also has a special sequence at the end (\$ in bash, %# in tcsh and zsh) that's printed as a
hash mark (#) if you're the superuser, or the usual prompt character for that shell otherwise. The first
command in the following code listing works only in bash; the second only in tcsh:
PS1='\d \t \$ ' ...bash
set prompt='%w %D %Y %P %# ' ...tcsh
PS1='%W %* %# ' ...zsh

Having the history number in your prompt, as Section 4.14 shows, makes it easy to use history
(Section 30.8) to repeat or modify a previous command. You can glance up your screen to the prompt
where you ran the command, spot the history number (for example, 27), and type !27 to repeat it,
!27:$ to grab the filename off the end of the line, and much more. In csh, tcsh, and bash prompts, use
\! to get the history number. In zsh, use %! instead.

—JP, TOR, and SJC

Simulating Dynamic Prompts

Some shells don't have the special "dynamic" prompt-setting sequences shown in Section 4.3. If you
still want a dynamic prompt, you probably can simulate one. Both ksh and bash will expand variables
(like $PWD), do command substitution (to run a command like 'date'), and do arithmetic as they print
the prompt. So, for example, you can put single quotes around the prompt string to prevent
interpretation of these items as the prompt is stored. When the prompt string is interpreted, the current
values will be put into each prompt. (zsh gives control over whether this happens as a prompt is
printed. If you want it to happen, put the command setopt prompt_subst (Section 28.14) in your
.zshrc file (Section 3.3).)

The following prompt stores the $PWD parameter to give the current directory, followed by a
backquoted date command. The argument to date is a format string; because the format string is inside
single quotes, I've used nested double quotes around it. Because it's in single quotes, it's stored
verbatim — and the shell gets the latest values from date and $PWD each time a prompt is printed. Try
this prompt, then cd around the filesystem a bit:
PS1='`date "+%D %T"` $PWD $ '

That prompt prints a lot of text. If you want all of it, think about a multiline prompt (Section 4.7). Or
you could write a simple shell function (Section 29.11) named, say, do_prompt:
for bash
function do_prompt {
 date=`date '+%D %T'`
 dir=`echo $PWD | sed "s@$HOME@~@"`
 echo "$date $dir"
 unset date dir
}

for ksh
do_prompt() {
 date=`date '+%D %T'`
 dir=`echo $PWD | sed "s@$HOME@~@"`
 echo "$date $dir"
 unset date dir
}

and use its output in your prompt:
PS1='`do_prompt` $ ' ...for sh-type shells

The original C shell does almost no interpretation inside its prompt variable. You can work around
this by writing a shell alias (Section 29.2) named something like setprompt (Section 4.14) that
resets the prompt variable after you do something like changing your current directory. Then, every
time csh needs to print a prompt, it uses the latest value of prompt, as stored by the most recent run of
setprompt. (Original Bourne shell users, see Section 4.15 for a similar trick.)

—JP, TOR, and SJC

C-Shell Prompt Causes Problems in vi, rsh, etc.

Stray prompts can cause trouble for many commands that start a noninteractive shell. This problem
may have (and probably has) been fixed in your C shell, but some of the following tricks will speed
up your .cshrc, so keep reading.

If you set prompt in your .cshrc file without carefully checking first whether prompt was already set
(Section 4.1), many older versions of the C shell will cheerfully print prompts into the pipe vi uses to
expand glob characters, such as filename wildcards (*, ?, []) (Section 1.13) and the tilde (~)
(Section 31.11).

When you type :r abc*, vi opens a pipe to the C shell, writes the command echo abc* down the
pipe, then reads the response. If the response contains spaces or newlines, vi gets confused. If you set
your prompt to (n) in your .cshrc [i.e., if you show the history number in parentheses as the prompt
— TOR], vi tends to get:
(1) abc.file (2)

back from the C shell, instead of just abc.file.

The solution is to kludge your .cshrc like this:
if ($?prompt) then
 # things to do for an interactive shell, like:
 set prompt='(\!) '
endif

This works because a noninteractive shell has no initial prompt, while an interactive shell has it set to
% .

If you have a large .cshrc, this can speed things up quite a bit when programs run other programs with
csh -c ' command ', if you put all of it inside that test.

— CT

Faster Prompt Setting with Built-ins

To set your prompt, you execute a command (on most shells, that command sets a shell variable).
Before setting the prompt, you may run other commands to get information for it: the current directory
name, for example. A shell can run two kinds of commands: built-in and external (Section 1.9).
Built-in commands usually run faster than external commands. On a slow computer, the difference
may be important — waiting a few seconds for your prompt to reset can get irritating (though the
computer would have to be quite slow nowadays for it to matter that much). Creative use of your
shell's built-in commands might pay off there, and they are still quite useful for those trying to squeeze
the most performance out of their system. Let's look at some examples:

 Section 4.3 has examples of some shells' special characters, such as %D to give the current date.
Check your shell's manual page; if it has these features, using them won't slow you down the way
an external command in backquotes (Section 28.14), like 'date', might.
If you're putting your current directory in your prompt, you may only want the tail of the
pathname (the name past the last slash). How can you edit a pathname? You might think of using
basename (Section 36.13) or sed (Section 34.1) with the current directory from $cwd — as in
the first command in the following code listing, and probably in an alias like setprompt (Section
4.7) to make sure the prompt is updated whenever you change directories. The faster way is with
the second command, using the C shell's built-in "tail" operator, :t:
set prompt="`basename $cwd`% "

{} Section 35.9
set prompt="${cwd:t}% "

If your current directory is /usr/users/hanna/projects, either of those prompts would look like
"projects% " (with a space after the percent sign).
The C shell has several of these built-in string operators (Section 28.5) like :t; the Korn
Shell, zsh, and bash have more-powerful string operators (Section 28.5).
If your prompt gets complex, you can use a shell function (Section 29.11) to access other built-
in commands and edit the prompt. This can be faster than using an external shell or Perl script
because functions run within the shell instead of in an external process. Here's an example from
my .zshrc file:
${+} Section 36.7, $(...) Section 28.14
Change "script" prompt automatically so I remember I'm in one.
alias script='SCRIPT=yes /usr/bin/script'

#
Functions:
#
setprompt() {
 case "${TTY##*/}" in
 tty[1-9]) xpi=':tty%l' ;; # Virtual console
 *) xpi= ;;
 esac

 PS1="
$USER@%m$xpi $(dirs)
%* \$(folder -list)
${SCRIPT+SCRIPT-}%!%# "
}

Before the function, I set an alias that temporarily sets an environment variable named SCRIPT
while the script (Section 37.7) program is running. The setprompt function, running in the child
shell under script, sees that this environment variable has been set and adds the string SCRIPT-
before the prompt. This reminds me that I'm logging to a script file. (If this is hard to visualize,
Section 24.3 and Section 35.3 have some background.)
The setprompt function itself has two parts. The first is a case statement (Section 35.11) that
tests $TTY, the name of the tty (Section 2.7) I'm currently using. If the name ends in tty1, tty2,
etc., it's one of my Linux virtual consoles (Section 23.12). In that case, I want to add the
console name (tty1, etc.) to my prompt — so I store the name in the xpi (extra prompt info) shell
variable. This variable's value — if it's been set — is expanded when the prompt is printed. The
second part sets the prompt variable PS1. The whole prompt looks like this:
jpeek@kludge:tty1 ~/pt/art
15:38:30 inbox pt
501%

The first line shows my username, hostname, the virtual console name (if any), and the current
directory (in this example, there was nothing else on the directory stack (Section 31.7)). The
second line has the time — and my email folder stack, from the MH folder -list command, which
is the only nonbuilt-in command used in the prompt. And here's a subtle point that's worth
perusing. The whole prompt string is inside double quotes (Section 27.12) so that variable and
command substitution will happen whenever setprompt is run. But, the way my prompt is set, the
MH folder stack may change between the times that setprompt resets the prompt. So I escape the
$ in \$(folder -list). This stores the command substitution without executing folder! So,
when every prompt is about to be printed, the shell will evaulate the prompt string and expand
the $(...) operators into the current folder stack. The third line sets the end of the prompt
string: the zsh prompt substitution at %m, %*, %! and %#.
On a slow machine, I'd try hard to find a way to eliminate the external folder -list command. But
my Linux box is fast enough so that I don't notice any delay before a prompt. To make this work,
I needed a good understanding of what's evaluated when. It's this sort of subtlety that makes
prompt setting a challenge — and a pleasure, too, when you get it working just right.

As another example, Section 4.14 shows more about using dirs in a shell prompt.

—JP and SJC

Multiline Shell Prompts

Lots of people like lots of information in their prompts: hostname, directory name, history number,
and maybe username. Lots of people have spent lots of time trying to make their prompts short enough
to fit across the screen and still leave room for typing a command longer than ls:
<elaineq@applefarm> [/usr/elaineq/projects/april/week4] 23 % ls

Even with fairly short prompts, if you look back at a screen after running a few commands, telling the
data from the prompts can be a little tough (real terminals don't show user input in boldface, so I
won't do it here either):
+<elaineq@applefarm> [~] 56% cd beta
<elaineq@applefarm> [~/beta] 57% which prog
/usr/tst/applefarm/bin/beta/prog
<elaineq@applefarm> [~/beta] 58% prog
61,102 units inventoried; 3142 to do
<elaineq@applefarm> [~/beta] 59%

 Go to http://examples.oreilly.com/upt3 for more information on: mlprompt.cshmlprompt.sh

One nice answer is to make a prompt that has more than one line. Here's part of a .cshrc file that sets
a three-line prompt: one blank line, one line with the hostname and current directory, and a third line
with the history number and a percent sign. (If this were a tcsh, I could have gotten the hostname with
%m.) The C shell quoting (Section 27.13) is ugly — doubly ugly because the prompt is set inside an
alias — but otherwise it's straightforward:

uname -n Section 2.5, {..} Section 35.9
set hostname=`uname -n`
alias setprompt 'set prompt="\\
${hostname}:${cwd}\\
\! % "'
alias cd 'chdir \!* && setprompt'
alias pushd 'pushd \!* && setprompt'
alias popd 'popd \!* && setprompt'
setprompt # to set the initial prompt

(There's a version on the Web for Bourne-type shells.) The prompts look like this:
applefarm:/usr/elaineq/projects/april/week4
23 % prog | tee /dev/tty | mail -s "prog results" bigboss@corpoffice
61,102 units inventoried; 3142 to do

applefarm:/usr/elaineq/projects/april/week4
24 % cd ~/beta

applefarm:/usr/elaineq/beta
25 % prog | mail joanne

The blank lines separate each command — though you may want to save space by omitting them. For
example, Mike Sierra of O'Reilly & Associates has used a row of asterisks:
***** 23 *** <mike@mymac> *** ~/calendar *****
% cd Sep*
***** 24 *** <mike@mymac> *** ~/calendar/September *****
%

Other shells have different syntax, but the idea is the same: embed newlines to get multiline prompts.
In Bourne-type shells you'll need zero or one backslash before each newline; Section 27.12 explains.
In bash, put a \n (which stands for a newline character) anywhere you want the prompt to break to a
new line.

http://examples.oreilly.com/upt3

What I like best about multiline prompts is that you get a lot of information but have the whole screen
width for typing. Of course, you can put different information in the prompt than I've shown here. The
important idea is that if you want more information and need room to type, try a multiline prompt.

—JP and SJC

Session Info in Window Title or Status Line

Some people don't like to put the current directory, hostname, etc. into their prompts because it makes
the screen look cluttered to them. Here's another idea. If your terminal or window system has a status
line or titlebar, you might be able to put the information there. That's nice because you can see the
information while you run programs. The down side is that the information can get out of date if you
use a command that takes you to another host or directory without updating the status line. The latest
bash and zsh shells do this by default when you're using an xterm window. For the rest of you, here's
how to do it yourself. Because neither csh or tcsh do this by default, I'll show C-shell-type syntax.
But you can do the same thing in Bourne-type shells with a shell function and case (Section 35.10)
statement; there's a ready-to-use version on the web site.

When you use cd, pushd, or popd, an alias uses the echo command to write special escape sequences
to the terminal or window.

Here are cd aliases and other commands for your .cshrc or .tcshrc file. If I were logged in to
www.jpeek.com in the directory /home/jpeek, this alias would put:
www:/home/jpeek

in the status area or window title, depending on which terminal type I'm using. Of course, you can
change the format of the status line. Change the following command string, ${host:h}:${cwd}, to do
what you need; see your shell's manual page for a list of variables, or create your own custom
information.

:h Section 28.5, && Section 35.14

 Go to http://examples.oreilly.com/upt3 for more information on: stattitle.cshstattitle.sh
set e=`echo x | tr x '\033'` # Make an ESCape character

set g=`echo x | tr x '\07'` # And a Ctrl-g
set host=`uname -n`
Puts $host and $cwd in VT102 status line. Escape sequences are:
${e}7 = save cursor position, ${e}[25;1f = go to start of status
line (line 25), ${e}[0K = erase line, ${e}8 = restore cursor
alias setstatline 'echo -n "${e}7${e}[25;1f${e}[0K ${host:h}:${cwd}${e}8"'
alias settitle 'echo -n "${e}]2;${host:h}:${cwd}${g}"'
switch ($TERM)
case vt10?:
 alias cd 'cd \!* && setstatline'
 alias pushd 'pushd \!* && setstatline'
 alias popd 'popd \!* && setstatline'
 breaksw
case xterm*:
 alias cd 'cd \!* && settitle'
 alias pushd 'pushd \!* && settitle'
 alias popd 'popd \!* && settitle'
 breaksw
endsw

(Section 5.15 has more about how this works in xterms.)

The ESC and CTRL-g characters are stored with a trick that should work on all Unix shells. Most
modern echos will let you make a nonprintable character directly, like this: g='echo '\07''.

If you always use a VT102-type terminal (and many people do), the setstatline alias will work fine.
If you use a different terminal, try it anyway! Otherwise, read the terminal manual or its

http://examples.oreilly.com/upt3

termcap/terminfo entry and find the escape sequences that work for it; then add a new case to the
switch statement.

Note that you might have some trouble here: if this code is in your .cshrc file but your terminal type is
set in your .login file, the terminal type may not be set until after the alias has been read. There are
workarounds (Section 3.8).

The status line or titlebar can also get out of sync with reality if you use remote logins (Section
1.21), subshells (Section 24.4), etc. These might make a new status line or titlebar but not reset the
original one when needed. To fix this, just type setstatline or settitle at a shell prompt. Or, if you
don't want to bother to think of the name of the alias, use the following command to change to the
current directory (.), which will use the correct alias and reset the status or title:
% cd .

If you're using tcsh , its special alias cwdcmd will be run every time you change the shell's current
directory. So, in tcsh, you can replace the three aliases for cd, pushd, and popd with something like
this:
alias cwdcmd settitle

—JP and SJC

A "Menu Prompt" for Naive Users

Some people don't want to be faced with a Unix % or $ shell prompt. If you (or, if you're a sys admin
on a multiuser system, your users) usually run only a few particular Unix commands, you can put those
command names in the shell prompt. Here's a simple one-line Bourne-shell prompt for a .profile:
PS1='Type "rn", "mailx", "wp", or "logout": '

Next, a multiline prompt (Section 4.7) for the C shell .cshrc or .tcshrc file:
if ($?prompt) then
set prompt='\\
Type "pine" to read the news,\\
type "mutt" to read and send mail,\\
type "wp" for word processing, or\\
type "logout" to log out.\\
YES, MASTER? '
endif

You get the idea.

—JP and SJC

Highlighting and Color in Shell Prompts

If your prompt has some information that you want to stand out — or if you want your whole prompt
to stand out from the rest of the text on the screen — you might be able to make it in enhanced
characters or colors. If your terminal has special escape sequences for enhancing the characters (and
most do), you can use them to make part or all of your prompt stand out. Newer versions of xterm
also have color capability, as does the Mac OS X Terminal program, though Terminal may not
properly support the escape sequences we discuss later. (The GNU dircolors (Section 8.6) command
sets up a color-capable terminal.)

 Go to http://examples.oreilly.com/upt3 for more information on: blinkprompt.cshblinkprompt.sh

Let's say that you want to make sure people notice that they're logged in as root (the superuser) by
making part of the root prompt flash. Here are lines for the root .cshrc:
Put ESCape character in $e. Use to start blinking mode (${e}[5m)
and go back to normal mode (${e}[0m) on VT100-series terminals:
set e="`echo x | tr x '\033'`"

uname -n Section 2.5
set prompt="${e}[5mroot${e}[0m@`uname -n`# "

That prompt might look like this, with the word root flashing:
root@www.jpeek.com#

Note
Shells with command-line editing need to calculate the width of y our prompt string. When y ou put nonprinting escape sequences in a prompt (as we're doing here), in zsh and tcsh y ou have to delimit them with %{ and %}. In bash , bracket
nonprinting characters with \[and \]. In the Korn shell, prefix y our prompt with a nonprinting character (such as CTRL-a) followed by a RETURN, and delimit the escape codes with this same nonprinting character. As the pdksh manual
page say s, "Don't blame me for this hack; it's in the original ksh."

The prompt is set inside double quotes ("), so the uname' -n command is run once, when the PS1
string is first stored. In some shells, like bash and pdksh, you can put single quotes (') around the
PS1 string; this stores the backquotes (`) in the string, and the shell will interpret them before it prints
each prompt. (In this case, that's useless because the output of uname -n will always be the same in a
particular invocation of a shell. But if you want constantly updated information in your prompt, it's
very handy.) Section 4.6 and Section 27.12 have more info.

Because the same escape sequences won't work on all terminals, it's probably a good idea to add an
if test that only sets the prompt if the terminal type $TERM is in the Digital Equipment Corporation
VT100 series (or one that emulates it). Table 4-1 shows a few escape sequences for VT100 and
compatible terminals. (The ESC in each sequence stands for an ESCape character.)

Table 4-1. VT100 escape sequences for highlighting

Sequence What it does

ESC[1m Bold, intensify foreground

ESC[4m Underscore

ESC[5m Blink

http://examples.oreilly.com/upt3

ESC[7m Reverse video

ESC[0m All attributes off

Of course, you can use different escape sequences if your terminal needs them. Better, read your
terminal's terminfo or termcap database with a program like tput or tcap to get the correct escape
sequences for your terminal. Store the escape sequences in shell variables (Section 35.9).

bash interprets octal character codes (like \033) in the prompt. It also has special-backslashed
special-prompt characters — for instance, bash Version 2 has \e, which outputs an ESCape
character, and \H, which gives the complete hostname. The string \$ is replaced by a dollar sign ($)
on non-root shells and a hash mark (#) if you're currently root. So, on bash, you can make the
previous csh prompt this way:
PS1='\[\e[5m\]root\[\e[0m\]@\H\$ '

(The delimiters for nonprinting characters, \[and \], might make it look complicated. Try spotting
them first, as you look at the prompt string, so you can see what's left.)

Eight-bit-clean versions of tcsh can put standout, boldface, and underline — and any other terminal
escape sequence, too — into your shell prompt. For instance, %S starts standout mode and %s ends it;
the tcsh manpage has details for your version. The next example shows how to make the same prompt
as earlier with the word root in standout mode. (tcsh puts the hostname into %m.) Because tcsh
"knows" the width of its special %S and %s formatting sequences, they don't need to be delimited with
%{ or %}:
set prompt = '%Sroot%s@%m# '

You also can add color to your prompt! For instance, make the previous prompt for bash using bright
red (1;31) on a blue background (44):
PS1='\[\e[1;31;44m\]root\[\e[0m\]@\H# '

—JP and SJC

Right-Side Prompts

Both zsh and tcsh have an optional prompt at the right side of the screen. Unlike the normal left-side
prompt, the cursor doesn't sit next to the right-side prompt (though the right prompt disappears if you
type a long command line and the cursor passes over it). It's stored in the zsh RPROMPT variable and
in tcsh rprompt.
What can you do with a right-hand prompt? Anything you want to! (You'll probably want to keep it
fairly short, though.) Put the time of day on the right-hand side, for instance; on tcsh, it's this easy:
[jpeek@ruby ~]% set rprompt='%t'
[jpeek@ruby ~]% users 3:44pm
jpeek ollie
[jpeek@ruby ~]% 3:45pm

As another idea, you could use sched to remind you of an important meeting by setting the right-hand
prompt. Here's a shell function for zsh that sets the right prompt to "LEAVE NOW" at a particular
time. You can give it one argument to set the time to remind you. Or, with no argument, it removes the
right-hand prompt:
leave() {
 case "$#" in
 0) unset RPROMPT ;;
 1) sched "$1" "RPROMPT='LEAVE NOW'" ;;
 *) echo "Usage: leave [time]" 1>&2 ;;
 esac
}

Here's an example:
jpeek$ date
Fri May 12 15:48:49 MST 2000
jpeek$ leave 15:55
 ...do some work...
jpeek$ pwd
/u/jpeek/pt
jpeek$ date LEAVE NOW
Fri May 12 15:55:22 MST 2000
jpeek$ lpr report LEAVE NOW
jpeek$ leave LEAVE NOW
jpeek$

—JP and SJC

Show Subshell Level with $SHLVL

If you're like me, when you start a shell escape (Section 17.21) or any subshell (Section 24.4), you
can forget that you aren't in your login shell. Your shell history (Section 30.1) might get confused,
shell variables (Section 35.9) may not be set, and other problems may come up. zsh and bash have a
built-in SHLVL environment variable (Section 35.3) that lets you track how many subshells deep
your current shell is. tcsh has a shlvl shell variable that's automatically set from (and sets) SHLVL.
So, all three shells cooperate with each other to set the right value, even if you start one shell from
another. (For other shells that don't have SHLVL — ksh and csh — you can set up something similar
with a bit of arithmetic in the ENV (Section 35.5) file or the .cshrc file, respectively.)

In your top-level shell, the value of $shlvl is 1 (one). In the first subshell, it's 2; in a sub-subshell,
it's 3; and so on. You can use this to control your shell startup files — for example, have some
commands in your .cshrc that run when you first log in (and $shlvl is 1), but don't run in subshells.
You can also put $shlvl in your prompt (but only during subshells, if you'd like — as a reminder that
you aren't in your top-level shell). You can set your prompt to mike% in top-level shells, (1) mike%
in a first-level subshell, (2) mike% in a second-level subshell, and so on. Here's some sample
prompt-setting code for your .tcshrc:
If this is a subshell, put shell level in prompt:
if ($shlvl == 1) then
 set prompt="${USER}% "
else
 set prompt="($SHLVL) ${USER}% "
endif

bash doesn't need an if because login shells read your .bash_profile (or .profile) and subshells read
your .bashrc. Here are commands to set the prompts I mentioned earlier:
PS1='\u\$ ' ...for the .bash_profile
PS1='($SHLVL) \u\$ ' ...for the .bashrc

Does your account run a windowing system that's started from your top-level shell startup file (like
.login)? If it does, lines like the following examples (these are for .login) will reset SHLVL so that
the shell in the window will start at a SHLVL of 1 — and act like a top-level shell. This code
assumes that your first login shell starts on a tty named /dev/tty1 through /dev/tty6 (which are the
Linux virtual consoles (Section 23.12)) and that the windows that open won't have a tty with the same
name (which is true on Linux). (If you aren't sure, check who (Section 2.8).) You may need to adapt
this. The trick is to make SHLVL 0 (zero) before you start the windowing system. When the windows'
shells start, they'll raise SHLVL to 1:
If on a virtual console, bury this shell and start X right away:
if ("`tty`" =~ /dev/tty[1-6]) then
 setenv SHLVL 0
 startx
endif

Getting this to work right in every situation (rsh (Section 1.21), ssh, su, shell escapes (Section
17.21) — both interactive and noninteractive (Section 3.4) — subshells, window systems, at jobs
(Section 25.5), and so on) can be a challenge (Section 3.8)! It takes a little planning. Sit down and
think about all the ways you start subshells — which subshells are interactive and which aren't — and
whether they'll get SHLVL passed from their parent process. (If you aren't sure, test that with an env
or printenv command (Section 35.3).) Then plan which kind of shell needs which SHLVL settings. If
it gets too complicated, make it work in most cases! If you use many subshells, this system can be too

handy to ignore.

—JP and SJC

What Good Is a Blank Shell Prompt?

Note
This tip is also great if y ou use a mouse to copy and paste command lines in your window.

Some terminals I've used (like old Hewlett-Packard and Tektronix terminals) had local editing. You
could move your cursor up the screen to a previous command line, maybe make some edits to it, then
press a SEND LINE key to resend that line to the host. This didn't have anything to do with
sophisticated command-line editing (Section 30.14) that modern Unix shells have, though. Maybe
your terminal can do that, too. Depending on how your emacs editor is configured, shell-mode may
work that way, as well.

The problem was that unless I erased the shell prompt (%) on my screen, it would be sent back to the
shell and give the error "%: Command not found." So I set my shell prompt to this:
set prompt=' '

That's right: four spaces. Most Unix commands start their output at column 1, so my command lines
were easy to find because they were indented. The shell didn't care if I sent four spaces before the
command line. So everything was fine until I got my new terminal without a SEND LINE key . . .

If you want some information in your prompt, too, make a multiline prompt (Section 4.7) with four
spaces in the last line.

—JP and SJC

dirs in Your Prompt: Better Than $cwd

Many people use the current directory in their prompts. If you use the pushd and popd (Section 30.7)
commands, you may not always remember exactly what's in your directory stack (I don't, at least).
Here's how: run the dirs command, and use its output in your prompt. A simple csh and tcsh alias
looks like this:
alias cd 'chdir \!* && set prompt="`dirs`% "'

and the prompts look like:
/work/project % cd
~ % cd bin
~/bin %

Here's what to put in .cshrc or .tcshrc to make a multiline prompt (Section 4.7) that shows the
directory stack:

uname -n Section 2.5, expr Section 36.21
PUT hostname.domain.name IN $hostname AND hostname IN $HOST:
set hostname=`uname -n`
setenv HOST `expr $hostname : '\([^.]*\).*'`
alias setprompt 'set prompt="\\

 Go to http://examples.oreilly.com/upt3 for more information on: dirs-prompt.cshdirs-prompt.sh
${USER}@${HOST} `dirs`\\
\! % "'
alias cd 'chdir \!* && setprompt'
alias pushd 'pushd \!* && setprompt'
alias popd 'popd \!* && setprompt'
setprompt # SET THE INITIAL PROMPT

Because bash can run a command each time it sets its prompt, and because it has built-in prompt
operators (Section 4.3) like \u, the bash version of all the previous stuff fits on one line:

$(...) Section 28.14
PS1='\n\u@\h $(dirs)\n\! \$ '

That makes a blank line before each prompt; if you don't want that, join the first and second lines of
the setprompt alias or remove the first \n. Let's push a couple of directories and watch the prompt:
jerry@ora ~
1 % pushd /work/src/perl
/work/src/perl ~

jerry@ora /work/src/perl ~
2 % cd ../cnews

jerry@ora /work/src/cnews ~
3 % pushd ~/bin
~/bin /work/src/cnews ~

jerry@ora ~/bin /work/src/cnews ~
4 %

Of course, the prompt looks a little redundant here because each pushd command also shows the dirs
output. A few commands later, though, having your directory stack in the prompt will be handy. If
your directory stack has a lot of entries, the first line of the prompt can get wider than the screen. In
that case, store the dirs output in a shell array, and edit it with a command like sed or with the built-in
csh string editing (Section 28.5).

http://examples.oreilly.com/upt3

For example, to show just the tail of each path in the dirs output, use the following alias; the C shell
operator :gt globally edits all words, to the tail of each pathname:

 Go to http://examples.oreilly.com/upt3 for more information on: dirstail-prompt.csh
alias setprompt 'set dirs=(`dirs`); set prompt="\\
${USER}@${HOST} $dirs:gt\\
\! % "'

Watch the prompt. If you forget what the names in the prompt mean, just type dirs:
jerry@ora bin cnews jerry
5 % pushd ~/tmp/test
~/tmp/test ~/bin /work/src/cnews ~
 ...
jerry@ora test bin cnews jerry
12 % dirs
~/tmp/test ~/bin /work/src/cnews ~

—JP and SJC

http://examples.oreilly.com/upt3

External Commands Send Signals to Set Variables

The Bourne shell's trap (Section 35.17) will run one or more commands when the shell gets a signal
(Section 24.10) (usually, from the kill command). The shell will run any command, including
commands that set shell variables. For instance, the shell could reread a configuration file; Section
24.13 shows that. Or it could set a new PS1 prompt variable that's updated any time an external
command (like another shell script or a cron job (Section 25.2)) sends the shell a signal. There are
lots of possibilities.

This trick takes over signal 5 (SIGTRAP), which usually isn't used. When the shell gets signal 5, a
trap runs a command to get the date and time, then resets the prompt. A background (Section 23.2)
job springs this trap once a minute. So, every minute, after you type any command, your prompt will
change.

You can use any command's output in your prompt (possibly with some editing, probably with sed
(Section 34.1) or expr (Section 36.21)): count the number of users, show the load average (Section
26.4), whatever. Newer shells, like bash, can run a command in backquotes (Section 28.14) each
time the prompt is displayed — Section 4.10 has an example. But, to have an external command
update a shell variable at any random time, this trap trick is still the best.

 Go to http://examples.oreilly.com/upt3 for more information on: date- prompt.sh

Now on to the specific example of putting date and time in the old Bourne shell's prompt. If your
system's date command doesn't understand date formats (like +%a), get one that does. Put these lines
in your .profile file (or just type them in at a Bourne shell prompt):
Put date and time in prompt; update every 60 seconds:
trap 'PS1=`date "+%a %D %H:%M%n"`\
$\ ' 5
while :

: Section 36.6
do
 sleep 60
 kill -5 $$
done &
promptpid=$!

Now, every minute after you type a command, your prompt will change:
Thu 06/20/02 02:33
$ cc bigprog.c
undefined symbol first referenced in file
xputc bigprog.o
ld fatal: Symbol referencing errors.
Thu 06/20/02 02:34
$ ls
bigprog.c
bigprog.o
Thu 06/20/02 02:35
$

The prompt format is up to you. This example makes a two-line prompt (Section 3.7) with
backslashes (\) to protect the newline and space from the trap; a single-line prompt might be easier
to design. The manual page for date lists what you can put in the prompt.

This setup starts a while loop (Section 35.15) in the background. The promptpid variable holds the

http://examples.oreilly.com/upt3

process ID number (Section 24.3) of the background shell. Before you log out, you should kill
(Section 24.12) the loop. You can type the command:
kill $promptpid

at a prompt or put it in a file that's executed when you log out (Section 4.18).

—JP and SJC

Preprompt, Pre-execution, and Periodic Commands

bash, tcsh, and zsh can run a Unix command, or multiple commands, before printing each prompt.
tcsh and zsh also can do something you specify before executing the command you've typed at a
prompt. Finally, tcsh and zsh can do something periodically (every n seconds) before whatever
prompt comes next. (Section 4.15 shows how to execute commands periodically in the original
Bourne shell.) These commands don't have anything to do with setting the prompt itself, though they
can. The command could do some system checking, reset shell variables, or almost anything that you
could type at a shell prompt. If the commands run slowly, they'll delay whatever else you're doing, so
keep that in mind.

Let's start with precmd , the tcsh alias that's run after your command line is read and before the
command is executed. In zsh, the same thing is done by the shell function named preexec. Shell
history is available, so you can use history substitution (Section 30.8) inside the alias or function.
Here's a nice example adapted from the tcsh manual page: showing the command line you're running
in your xterm window titlebar. It's ugly because it has ESC and CTRL-g characters embedded
directly in the alias; I'd rather store the escape sequences in shell variables, as shown in the xterm
titlebar article (Section 4.8). The if sets the alias only if you're using an xterm terminal:
Show each command line in xterm title bar:
if ($TERM == xterm) alias postcmd 'echo -n "^[]2;\!#^G"'

Next, let's look at running a command periodically. You'd like to watch the load average by running
uptime (Section 26.4) every minute, before a prompt. Here's how to do it in zsh: put code like this in
your .zshrc file (Section 3.3) (or just type it at a prompt to try it). The PERIOD shell variable is the
interval, in seconds, between runs of the periodic function as shown in the following code:
Run "uptime" every 60 seconds; put blank line before:
periodic() {echo "\n==> $(uptime) <==";}
PERIOD=60

Here's how it looks:
jpeek@ruby$ pwd
/u/jpeek/pt

==> 5:16pm up 4:07, 6 users, load average: 0.22, 0.15, 0.08 <==
jpeek@ruby$ lpr xrefs
jpeek@ruby$ mail -s "xrefs list" jan < xrefs

==> 5:17pm up 4:08, 7 users, load average: 1.29, 0.55, 0.23 <==
jpeek@ruby$

Finally, here's how to set preprompt commands. These are run before each shell prompt is printed. In
tcsh, define a precmd alias. In zsh, define a precmd function. In bash, store the command(s) in the
PROMPT_COMMAND shell variable. Let's look at bash this time. Here's a silly example that I used
to have in my bash setup file (Section 3.3):

IFS Section 36.23, set Section 35.25, shift $# Section 36.10
PROMPT_COMMAND='
Save old $IFS; set IFS to tab:
OIFS="$IFS"; IFS=" "
Put x in $1, face in $2, explanation[s] in $3[, $4, ...]:
set x `smiley`
Put face into $face and explanation(s) into $explan:
face="$2"; shift 2; explan="$*"
Restore shell environment:
shift $#; IFS="$OIFS"'

Prompt I use (includes the latest $face):
PS1='\u@\h $face '

The first part is a series of shell commands that are stored in the PROMPT_COMMAND variable;
they're surrounded by a pair of single quotes ('' '), one on the first line (after the =) and the other
after IFS is reset. That series of commands is executed before every prompt. It sets two shell
variables, $face and $explan, with new values before each prompt is set. The prompt is set on the
last line; it includes the value of $face.

Here's what my screen looked like with this ridiculous setup. Notice that the prompt keeps changing
as the PROMPT_COMMAND resets $face and $explan. If I wanted the explanation of a face I saw
as I went along, I could type echo <">$explan<">:
jerry@ruby :-{) echo "$explan"
normal smiling face with a moustache
jerry@ruby +<||-) vi proj.cc
 ...
jerry@ruby :-O echo "$explan"
Mr. Bill
 Wow!
 ohh, big mouth, Mick Jagger
 uh oh
jerry@ruby :-) < g++ -Wall proj.cc
 ...

(It was even more useless than psychoanalyze-pinhead (Section 19.13), but it was fun while it
lasted.) Seriously now, I'll say again: preprompt commands do not have to be used to set a prompt.
You can use them to do anything. If the commands in PROMPT_COMMAND — or any of the other
functions or aliases we've covered — write to standard output or standard error, you'll see that text
on your screen, before or after the prompt, at the point where the commands are executed.

—JP and SJC

Running Commands When You Log Out

Is there something you want to do every time you log out: run a program that deletes temporary files,
asks you a question, or prints a fortune to your screen? If you use the C shell, make a file named
.logout (Section 3.3) in your home directory and put the commands there. Before a login C shell exits,
it will read that file. A login bash reads .bash_logout, and zsh reads .zlogout. But not all shells are
login shells; you might want these shells to read your logout-type file, too. Section 3.18 shows a fix
for the Bourne and Korn shells; Section 3.8 and Section 3.4 have background information.

Some ideas for your logout file are:

A command like fortune to give you something fun to think about when you log out.
A command to list a "reminder" file — for example, work to take home.
A script that prompts you for the hours you've worked on projects so you can make a timesheet
later.
 The command clear to erase your screen. This keeps the next user from reading what you did.[2]

In the Mac OS X Terminal application, command-k will delete the scrollback buffer. It also
helps to stop "burn-in" damage to old, monochrome monitors caused by characters left over from
your login session (though this is hardly a concern nowadays; most of us have moved on to color
screens that are not subject to burn-in). (Some Unixes clear the screen before printing the login:
prompt. Of course, this won't help users who connect with a data switch or port manager
because the connection will be broken before the next login prompt.)

If you connect to this host over a network, with a slow modem or on a data switch — and you don't
see all the logout commands run before your connection closes — try putting the command sleep 2
(Section 25.9) at the end of the file. That makes the shell wait two seconds before it exits, which
gives output more time to get to your screen.

—JP and SJC

[2] Some terminals and windows have "scroll back" memory of previous screens. clear usually
doesn't erase all of that. To set scrollback in xterm, use the -sb and -sl options. Most other terminal
emulators have similar mechanisms to set the number of lines to keep in the scrollback buffer.

Running Commands at Bourne/Korn Shell Logout

Section 4.17 describes logout files. Commands in those files are run when you log out. The Bourne
and Korn shells don't have a logout file, though. Here's how to make one:

1. In your .profile file, add the line:
trap Section 35.17, . Section 35.29
trap '. $HOME/.sh_logout; exit' 0

(Some systems may need $LOGDIR instead of $HOME.)
2. Make a file in your home directory named .sh_logout. Put in the commands you want to be run

when you log out. For example:
if Section 35.13, [-f Section 35.26
clear
if [-f $HOME/todo.tomorrow]
then
 echo "=========== STUFF TO DO TOMORROW: ============"
 cat $HOME/todo.tomorrow
fi

The trap will read the .sh_logout file when the shell exits.

—JP and SJC

Stop Accidental Bourne-Shell Logouts

It's pretty easy to type one too many CTRL-d characters and log out of a Bourne shell without meaning
to. The C shell has an ignoreeof shell variable that won't let you log out with CTRL-d. So do the
Korn shell and bash; use set -o ignoreeof.

Here's a different sort of solution for the Bourne shell. When you end the shell, it asks if you're sure.
If you don't answer yes, a new shell is started to replace your old one.

First, make a file like the C shell's .logout that will be read when your Bourne shell exits (Section
4.18). Save your tty (Section 2.7) name in an environment variable (Section 35.3), too — you'll
need it later:

trap Section 35.17
TTY=`tty`; export TTY
trap '. $HOME/.sh_logout; exit' 0

(Your system may need $LOGDIR instead of $HOME.) Put the following lines in your new .sh_logout
file:

exec < Section 36.15, case Section 35.11, exec Section 24.2, -sh Section 3.19
exec < $TTY
echo "Do you really want to log out? \c"
read ans
case "$ans" in
[Yy]*) ;;
*) exec $HOME/bin/-sh ;;
esac

The last line uses some trickery to start a new login shell (Section 3.19). The shell closes your tty
(Section 36.15) before reading your .sh_logout file; the exec < $TTY reconnects the shell's standard
input to your terminal.

Note that if your system is very slow, you may not get the reminder message for a couple of seconds
— consequently, you might forget that it's coming and walk away. That hasn't been a problem where
I've tested this. If it is for you, though, replace the read ans with a program like grabchars that times
out and gives a default answer after a while. There may be some Bourne shells that need other tricks
— and others that don't need these tricks — but this should give you an idea of what to do.

—JP and SJC

Chapter 5. Getting the Most out of Terminals, xterm, and X
Windows

There's a Lot to Know About Terminals

This chapter covers most of what you need to know to set up your terminal or terminal emulator from
your shell setup files (Section 3.3).

In the latter half of the chapter, we cover the ins and outs of working with some of the most popular
terminal-emulator software for the X Window System, including xterm, rxvt, and others, where
applicable. The list of terminals and emulators you might come into contact with is long and getting
longer, though, so the advice we give in the first section of the chapter regarding how to configure
your terminal will be helpful. As you find yourself suddenly confronted with the prospect of
configuring the terminal emulator on your cell phone or tablet computer, remember: you can usually
make it work, with enough time and effort.

It is important to remember, however, that the tricks and tips we discuss in this chapter, if
implemented incorrectly, may cause your terminal to hang. One way around a hung terminal is always
to keep at least one other terminal emulator window, with sane settings, open all the time you're
modifying the setup of the other. That way, if you hang up the terminal you're actively modifying, you
can always go back to the other and save yourself. On systems that support virtual consoles, such as
Linux, you can also use command keys (e.g., ALT and the first five function keys) to switch between
various virtual consoles, just as you might with a terminal emulator. Don't just reach for the power
switch!

—TOR and SJC

The Idea of a Terminal Database

In the past few years, terminals have been standardized to a few types. In fact, most terminals
nowadays are terminal emulators (like xterm) that simulate a terminal on a graphical display. Years
ago, though, terminals differed widely. Rather than simply being implemented in software, they were
hardware — keyboards and monitors or even teletypes, with which the user interacted to
communicate with an often faraway mainframe or other big iron. All were specialized, and
differences between them often came down to how much you paid and to what manufacturer. This lets
you take advantage of other features of the manufacturer's primary hardware — the big computers they
considered their main product. Manufacturers produced a variety of terminals, each one including a
particular set of features for a certain price. There were smart terminals and dumb ones, terminals
with big screens and terminals with small screens, printing terminals and video displays, and
terminals with all sorts of special features.

Differences between terminals do not matter much to programs like cat (Section 12.2) or who
(Section 2.8) that use the terminal screen as a sort of typewriter with an endless scroll of paper.
These programs produce sequential output and do not make use of the terminal's special features; they
do not need to know much to do their job. Only programs such as screen editors, which make use of
screen-handling features, need to know a lot about differences between terminals.

However, even today, we find a wide variety of terminal emulators across a multitude of platforms.
My new Kyocera Smartphone, for example, is a Palm device integrated with a PCS telephone; one of
the main reasons I bought it was for remote, emergency ssh access to my servers, using a tiny terminal
emulator that runs on the PalmOS. Many Unix programs assume a basic environment that this terminal
emulator does not provide — an 80-column screen — so even simple commands such as w, which
prints a list of who is logged in, where they logged in from, and what they're currently running,
become impossible to run. But let's go back to the early days and revisit some of the old problems
that plagued early Unix developers, so that we might better understand how to deal with today's
problems.

In the late 1970s, Bill Joy created the vi (Section 17.2) text editor at UC Berkeley. Like all screen-
oriented editors, vi uses the terminal screen nonsequentially (in stark contrast to earlier editors such
as ed, which were designed for a teletype, and so use even more terse commands and feature even
more terse output). A program performing nonsequential output does not just print character after
character, but must manipulate the text that was sent before, scroll the page, move the cursor, delete
lines, insert characters, and more. While it would be possible to keep redrawing the screen in its
entirety, many features are provided in hardware or firmware by the terminal itself, saving too much
time and trouble to be ignored.

The first version of vi was written specifically for Lear Siegler ADM3a terminals. vi was such an
improvement over line-oriented editors that there was great demand to port vi to other brands of
terminals. The problem was that each terminal had different features and used different control codes
to manipulate the features that they did have in common.

Rather than write separate terminal drivers for each terminal type, Bill Joy did something very
clever, which all Unix users now take for granted. He wrote a version of vi with generic commands to
manipulate the screen instead of hardcoding the control codes and dimensions for a particular

terminal.[1]

Joy came up with a generic terminal-handling mechanism that had two parts: a database describing
the capabilities of each of the terminals to be supported and a subroutine library that allows programs
to query that database and make use of the capability values it contains. Both the library and the
database were given the name termcap, which is short for terminal capabilities.

At this point, users take for granted that you can use just about any terminal with a Unix system and
use screen-oriented programs like vi without any problem. But this is really quite remarkable!

The termcap database is contained in a single text file, which grew quite large over the years to
include descriptions of hundreds of different terminals. To improve performance, AT&T later
introduced a database called terminfo, which stores terminal descriptions in compiled form in a
separate file for each terminal.

If a program is designed to use termcap or terminfo, it queries an environment variable called TERM
to determine the terminal type (or terminal type being emulated), then looks up the entry for that
terminal in the terminal database, and reads the definition of any capabilities it plans to use as
external variables. Programs that use termcap or terminfo range from screen editors like vi and
emacs (Section 19.1), which use the complete terminal description, to a program like clear, which
needs to know only one capability (the escape sequence to clear the screen). Other programs include
more, pg, rogue , tset (Section 5.3), ul, and nroff.
—JS and SJC

[1] When we refer to terminals throughout this and other chapters, understand that we mean, more
often than not, the set of standard terminal-emulation control codes implemented by terminal
emulators, such as vt100 or ANSI color. So, though we may refer to a vt100 terminal, we're more
likely referring to any terminal-emulator software that can understand and react to that set of control
codes.

Setting the Terminal Type When You Log In

If you always work at the same terminal or use the same terminal emulator, there's no problem with
setting the terminal type explicitly in your shell setup file (Section 3.3) — like .login or .profile. Just
set the TERM environment variable (Section 35.3):
setenv TERM vt100 ...csh, tcsh
TERM=vt100; export TERM ...sh, ksh, zsh
export TERM=vt100 ...pdksh, bash, zsh

In fact, on a hardwired terminal, your terminal type may already have been set in a system file like
/etc/ttys or /etc/ttytype (Section 3.15). But if, like many Unix users, you might log in from time to
time at different terminals, from home, or on different systems over a network, you may need some
more intelligent method for setting the terminal type. To find out, try logging in at each place and
starting a screen-oriented program like vi. Do various operations: scrolling up, inserting text that
wraps onto another line, deleting lines. If the screen scrambles or the cursor gets "out of sync," your
terminal type may need to be set.

It's possible to set up various tests (Section 3.10) in your shell setup files to do this. But you can also
do a surprising amount of terminal type testing with tset, even though it was nominally designed for
initializing the terminal:

If no arguments (Section 1.4) are specified and TERM is already set, tset uses the value of
TERM to determine the terminal type.
If no arguments are specified and TERM is not set, then tset uses the value specified in the
system file /etc/ttytype or /etc/ttys (BSD 4.3 and later and its derivatives only). On Linux
systems, the terminal type is determined by getty, based on a similar process but using the
/etc/inittab file or other configuration files used by getty during initialization. On SVR4
systems, a similar process is managed by ttymon and listen.[2]

If a terminal type is specified as an argument, that argument is used as the terminal type,
regardless of the value of TERM.
The -m (map) option allows a fine degree of control in cases where the terminal type may be
ambiguous. For example, if you sometimes log in on a dialup line, sometimes over a local area
network, and sometimes on a hardwired line, the -m option can be specified to determine which
login is currently being used, and the terminal type can be set accordingly.

In Bourne-type shells, tset can be used to set the value of TERM as follows:
export TERM=`tset - -Q options` ...newer shells
TERM=`tset - -Q options`; export TERM ...all shells

(Given the - option, tset prints the value determined for the terminal type to standard output (
Section 43.1). Otherwise, it initializes the terminal (Section 5.3), but keeps the terminal type to
itself. The -Q (quiet) option causes tset to suppress printing a message it normally prints regarding the
values set for the erase and kill characters — a job it does in its alternate role as terminal initializer.
The backquotes (Section 28.14) surrounding the tset command interpolate its output into the
command line.)

In the C shell, you should use the eval (Section 27.8) command to capture the output of tset; this will
also allow you to set the TERMCAP variable (Section 35.5). (You must also issue the command

set noglob .) To simplify the rest of this article, we'll show examples for the C shell; if you don't
use a C-type shell, please translate to Bourne-shell syntax (as shown earlier).

To see what tset can do, consider a case where the terminal's serial line is connected to a dialup
modem, through which several different users might be connected, each using a different type of
terminal. Accordingly, the default terminal type in /etc/ttytype or /etc/ttys should be set to dialup .
The tset command could then be used in the .login file as follows, with the appropriate terminal type
set for each user:
set noglob
eval `tset -s -Q -m 'dialup:vt100'`

This means that if ttytype says dialup, use vt100 as the terminal type. A colon separates the ttytype
value and the value to which it is to be mapped. If a user wants to be prompted to be sure, place a
question mark after the colon and before the mapped terminal type:
set noglob
eval `tset -s -Q -m 'dialup:?vt100'`

The prompt will look like this:
TERM = (vt100)

If the user presses RETURN, the preferred terminal type will be used. Alternately, another terminal
type could be entered at that time.

You can cause tset to prompt for a terminal type even without testing a generic entry like dialup. Just
specify the desired terminal type, preceded by a question mark, after the -m option. For example:
set noglob
eval `tset -s -Q -m '?vt100'`

It is also possible to specify different terminal types for different line speeds. For example, say that
you normally used a Wyse-50 with a 9600-bps modem when dialing in from home, but used a
portable PC with a VT100 terminal emulator and 2400-bps modem on the road.[3] You might then use
a tset command like this:
set noglob
eval `tset -s -Q -m 'dialup@2400:vt100' wy50`

Assuming that the type is set in /etc/ttys or /etc/ttytype as dialup, tset will use the type vt100 if at
2400 bps and, if not, will use the type wy50. See the tset(1) manual page for more choices. Watch out
for the line-speed switches. They don't work on a lot of networked systems — usually, the line speed
at the computer's port is higher than the speed at the terminal. The same problem occurs with dialup
modems that use data compression. The stty command will tell you what data rate the system believes
you're using.

Multiple -m options can be specified; the first map to be satisfied will be used. If no match is found, a
final value specified on the line without a -m option (as in the previous example) will be used. If no
value is specified, the type in /etc/ttytype or /etc/ttys will be used.

—TOR and SJC

[2] getty is spawned by the init at multiuser system startup, and it sets up all ttys, handles the initial
login prompt, and then hands successful logins over to login to complete.
[3] Sure, you don't have to worry about whether there is a local TYMNET dialup nowadays, but back

in the day . . .

Querying Your Terminal Type: qterm

tset (Section 5.3) is a powerful tool to use if you often log in at different terminals. You can use tset
to prompt you with a default terminal type, giving you the opportunity to specify a new terminal type
when you log in:
TERM = (vt100)

However, tset requires you to know your terminal type. You might log in at a new terminal and have
no idea what to set the terminal type to. Or your terminal might be configured to emulate another
terminal type without your knowledge. New users in particular are confused by the tset prompt. In
some respects, this is not a surprise, as the prompt itself can be confusing without a bit of context.

 Go to http://examples.oreilly.com/upt3 for more information on: qterm

As an alternative, try Michael Cooper's qterm program. qterm sends the terminal a test string and
determines what sort of terminal you're using based on how the terminal responds. Using qterm, you
can make sure you always use the correct terminal type by placing the following line in your .login :

'...' Section 28.14
setenv TERM `qterm`

or in .profile :
TERM=`qterm`;export TERM

The advantage of qterm is that it sets the terminal type without your intervention. You don't need to
know your terminal type; it gets set automatically.

qterm works by sending the terminal a query string and returning the terminal type depending on the
terminal's response. qterm is configured using a listing of responses and the terminals to which they
correspond. By default, qterm looks for the listings in a system-wide location such as
/usr/local/lib/qtermtab. In addition, you can call qterm with the + usrtab option, so that it will look
for a file called .qtermtab in your home directory.

The string used to query the terminal is usually ESC Z. The sample qtermtab file distributed with
qterm defines the responses several different terminals give for that string:
#
QtermTab - Query terminal table for qterm.
#
#SendStr ReceiveStr TermName FullTermName
#
^[Z ^[[?1;0c vt100 Base vt100
^[Z ^[[?1;1c vt100 vt100 with STP
^[Z ^[[?1;2c vt100 ANSI/VT100 Clone
 ...
^[Z ^[/K h29 Zenith z29 in zenith mode
^[Z ^[/Z vt52 Generic vt52
^[Z ^[[0n vt100 AT&T Unix PC 7300

If your terminal isn't listed here, you can just add it. To find out your terminal's response to the query
string, just echo ESC Z to your terminal and see what the response is. For example, I logged in from
my Macintosh terminal emulator at home and found that qterm didn't recognize my terminal type:
% qterm
Terminal NOT recognized - defaults to "vt100".
vt100

qterm defaults to the right terminal description, but I'd still rather define my own entry. I find out my

http://examples.oreilly.com/upt3

terminal's response to the ESC Z string:
% echo "^[Z"
^[[E;Y|

(Note that ESC prints as ^[.) Then I add the entry to my qterm description file:
^[Z ^[[E;Y| vt100 Macintosh terminal emulator

Now when I run qterm, the terminal is recognized:
% qterm
Terminal recognized as vt100 (Macintosh terminal emulator)
vt100

The string Terminal recognized as ... is sent to standard error (Section 43.1); only the terminal
type itself is sent to standard output (Section 43.1). So if you use the following command line:
% setenv TERM `qterm`
Terminal recognized as vt100 (Macintosh terminal emulator)

the TERM variable is set correctly:
% echo $TERM
vt100

Now for the caveat: qterm's results are only as accurate as the qtermtab file. Not all terminals
respond to the ESC Z string, and you may not find a string to which it responds uniquely. And some
terminals do uncanny imitations of others. For example, I'm currently using an xterm (Section 24.20)
window, but qterm thinks I'm using a vt100:
% echo $TERM
xterm
% qterm
Terminal recognized as vt100 (ANSI/VT100 Clone)
vt100

As a hack, you can just edit your .qtermtab file. For example, I could comment out the old vt100 entry
and map ^[[?1;2c to xterm instead:
#^[Z ^[[?1;2c vt100 ANSI/VT100 Clone
^[Z ^[[?1;2c xterm xterm window

and then call qterm with the +usrtab command-line option:
setenv TERM `qterm +usrtab`

—LM and SJC

Querying Your xterm Size: resize

When the xterm client is called, it not only sets the TERM environment variable, but it also adjusts
the terminal definition for the size of the window being created. The size of xterm windows,
however, can be changed later on by using the window manager. If the window is resized, then the
user's shell may need to be passed the new size information as well, or programs that use termcap and
terminfo won't work correctly. The resize client is provided for redefining the number of lines and
columns for the terminal database used in an xterm window. Note that resize cannot be used for
terminal emulators other than xterm (except for those, like rxvt, that emulate xterm) because it
depends on xterm's escape sequences.

Some systems can send a "window size changed" signal (SIGWINCH) to programs and do not require
resize to be run for a resized xterm window. We recommend using resize only if terminal-based
programs start to have problems with your window size. A typical terminal-based program that is
having problems with the window size will fill only some of the lines in the window — or may scroll
lines down the window when it shouldn't.

The resize client is typically used immediately after the dimensions of an xterm window are changed.
A peculiarity of the resize client is that it does not access the shell itself, but simply returns the shell
commands that would be needed; to have those commands read by the shell, you either save its output
in a file and read the file with the shell commands source or . (Section 35.29), or evaluate resize
output using the shell command eval (Section 27.8). For example, after resizing a window, you would
type in that shell:

`...` Section 28.14
% eval `resize`

When you call the resize command under a termcap system, it produces the commands for resetting
the TERMCAP environment variable with the li# and co# capabilities reflecting the current
dimensions. When you call the resize command under a terminfo system, it produces the commands
for resetting the LINES and COLUMNS environment variables.

The resize command consults the value of your SHELL environment variable and generates the
commands for setting variables within that shell. If you're using a nonstandard shell, resize may still
recognize your shell; as of X Release 5, resize recognizes tcsh, jcsh, ksh, bash, and jsh. But if resize
does not recognize your shell, try using the -c or -u options to force resize to use C- or Bourne-shell
syntax (respectively), depending on which syntax is appropriate for your shell.

—LM, EP, and SJC

Checklist: Terminal Hangs When I Log In

If your terminal seems to "hang" (freeze, lock up) when you log in, here are some things to try:

Have another user look at your shell's setup files (Section 3.3). There could be some obvious
mistakes that you didn't catch.
Log in to another account and use the su stucklogin command (if the stuck account uses Bourne-
type shells) or the su -f stucklogin command (if the stuck account uses csh or tcsh). Change (cd)
to the home directory. Rename the account's setup files so the shell won't see them as you log in.
(If you have superuser access (Section 1.18), you also can use it to rename the file.)[4]

If you can log in after that, you know that the problem is with the account's setup files.
Set shell debugging (Section 27.15) on the stuck account's setup files. From another account or
as the superuser, start an editor and put the following line at the top of an sh-like setup file (such
as .profile). It'll tell you whether .profile is being read at all and where it hangs:
set -xv

You'll see each line read from the .profile and the commands executed on the screen. If you don't
see anything, then the shell probably didn't read .profile. Bash users would want to check
.bashrc or .bash_profile.
C-shell users should put this command at the top of .cshrc (or .tcshrc, for tcsh) instead:
set echo verbose

Note that on many Unix systems, the shell won't read its startup files if the files aren't owned by
you. You might use ls -l (Section 50.2) to check.
Look at the entry in the /etc/passwd file (Section 22.3) for this user. Be sure it has the correct
number of fields (separated by :). Also, see if there's another user with the same login name. (If
your system has commands like useradd, linuxconf, or vipw(8) and pwck(8), using them to edit
and check the passwd file will avoid many of these problems, as those programs perform sanity
checks on any modifications you make before taking them live.)
 Does your account use any directories remotely mounted (by NFS) (Section 1.21)? If the
remote host or network is down and any command in your startup files (especially set path)
tries to access those directories, the shell may hang there.
To fix that problem, su to the account as explained earlier, and take the command or directory
name out of your startup file. Or, if this problem happens a lot, the system administrator can
mount an NFS filesystem "soft" (instead of "hard," the default) and limit the number of retrys.
What looks like a "hang" might also be that you just aren't getting any output to the terminal, for
some very weird reason. Then the set -xv wouldn't help you. In that case, try adding this line to
the start of the .profile:
exec > /tmp/sh.out.$$ 2>&1

If the Bourne shell starts reading .profile, it'll make a file in /tmp called sh.out.nnn with output
from the commands and the shell's set -xv.
There's no command like that for the C shell or tcsh.

Here are a few more tips for dealing with stuck terminals.

Output Stopped?

If your terminal has a HOLD SCREEN or SCROLL LOCK button, did you accidentally press it? Try
pressing it and see if things start working again. If pressing the button once doesn't fix the problem,
you should probably press it once more to undo the screen hold. Otherwise, you may lock up your
session worse than it was before!

Another way to stop output is by pressing CTRL-s. The way to restart stopped output is with CTRL-q
— try pressing that now. (Unlike a SCROLL LOCK button, though, if CTRL-q doesn't help, you don't
need to undo it.)

Job Stopped?

If you're at a shell prompt instead of in the program you thought you were running — and if your Unix
has job control — you may have stopped a job. Try the jobs command (Section 23.1); if the job is
stopped, restart it.

Program Waiting for Input?

The program may be waiting for you to answer a question or type text to its standard input.

Warning
If the program y ou were running does something that's hard to undo — like removing files — don't try this step unless y ou've thought about it carefully .

If y our sy stem has job control, y ou can find out by putting the job in the background with CTRL-z and bg. If the job was waiting for input, y ou'll see the message:

[1] + Stopped (tty input) grep pat

You can bring the job back into the foreground and answer its question, if y ou know what that question is. Otherwise, now that the job is stopped, y ou can kill it. See the following directions.

On sy stems without job control, y ou might satisfy the program by pressing RETURN or some other key that the program is expecting, like y or n. You could also try pressing CTRL-d or whatever y our "end of input" character is set to. That
might log y ou out, though, unless y ou've set the ignoreeof variable.

Stalled Data Connection?

Be sure that the wires haven't come loose.

If you're using a modem and the modem has function lights, try pressing keys to see if the Send Data
(SD) light flashes. If it does, your terminal is sending data to the host computer. If the Receive Data
(RD) light flashes, the computer is sending data to your terminal. If you don't see anything, there might
be something wrong on your terminal.

If you're connected with rlogin or telnet or ssh (Section 1.21), the network to the remote computer
might be down or really slow. Try opening another connection to the same remote host — if you get a
response like Connection timed out, you have two choices:

1. Wait for your original connection to unfreeze. The connection may come back and let you keep
working where you left off. Or the connection may end when rlogin, telnet, or ssh notices the
network problem.

2. Quit the session, and try again later.

Aborting Programs

To abort a program, most users press CTRL-c. Your account may be set up to use a different interrupt
character, such as DELETE. If this doesn't work, try CTRL-\ (CTRL-backslash). Under most
circumstances, this will force the program to terminate. Otherwise, do the following:

1. Log in at another terminal or window.
2. Enter the command ps x, or, if that doesn't work, use ps -u yourname, where yourname is your

Unix username. This displays a list of the programs you are running, something like this:
% ps x
PID TTY STAT TIME COMMAND
163 i26 I 0:41 -csh (csh)
8532 i26 TW 2:17 vi ts.ms
22202 i26 S 12:50 vi UNIXintro.ms
8963 pb R 0:00 ps -x
24077 pb S 0:05 -bin/csh (csh)
%

3. Search through this list to find the command that has backfired. Note the process identification
(PID) number for this command.

4. Enter the command kill PID (Section 24.12), where PID is the identification number from the
previous step. If that doesn't work, try kill -1 PID to send a HUP signal. You can also try
various other signals, including -2 or -15. If none of them work, you may need kill -9, but try the
other kills first.

5. If the Unix shell prompt (such as % or $) has appeared at your original terminal, things are
probably back to normal. You may still have to take the terminal out of a strange mode though.
If the shell prompt hasn't come back, find the shell associated with your terminal (identified by a
tty number), and kill it. The command name for the C shell is csh. For the Bourne shell, it is sh.
In most cases, this will destroy any other commands running from your terminal. Be sure to kill
the shell on your own terminal, not the terminal you borrowed to enter these commands. The tty
you borrowed is the one running ps; look at the previous example and check the TTY column. In
this case, the borrowed terminal is TTY pb.
Check ps to ensure that your shell has died. If it is still there, take more drastic action with the
command kill -9 PID.

6. Run ps x or ps -u yourname again to be sure that all processes on the other tty have died. (In
some cases, processes will remain.) If there are still processes on the other tty, kill them.

7. At this point, you should be able to log in again from your own terminal.

The ps (Section 24.5) command, which lists some or all of the programs you are running, also gives
you useful information about the status of each program and the amount of CPU time it has consumed.

—JP and SJC

[4] Note that there is no user named stucklogin; you're expected to supply the actual login username as
an argument to su.

Find Out Terminal Settings with stty

 Go to http://examples.oreilly.com/upt3 for more information on: stty

It may hardly seem appropriate to follow Chris Torek's learned article about how stty works with
some basics, but this book is designed for beginners as well as those who already know everything.
:-) [Good idea, Tim. This is also a handy place to put the globe icon for the GNU version. ;^) —
JP]

So, to find out what settings your terminal line currently has, type:
% stty

For a more complete listing, type:
% stty -a

On older BSD-style systems, use stty everything instead. On most newer BSD-derived systems,
stty everything and stty -a are both supported, but with slightly different output formats. The
former prints a tabular layout, while the latter prints each control character setting in a name = value
format.

As Jerry Peek said in an editorial aside to Chris's article, be sure to have your stty manual page
handy!

—TOR and SJC

http://examples.oreilly.com/upt3

Setting Your Erase, Kill, and Interrupt Characters

Have you ever sat down at a terminal where the "erase" key (the character that deletes the last thing
you typed) wasn't where you thought it would be? If you have, you know how disorienting this can be!
On Linux, there's loadkeys. If you're using the X Window System, check into the xmodmap (Section
5.1) command. Newer shells, like bash and zsh, tend to do their own handling of these special
characters — especially during their built-in command-line editing (Section 30.14). Check your
shell's manual page about readline . The most portable method is with the stty (Section 5.7)
command. All of these give you a way of changing the erase character (along with several others) so
you can restore some order to your world.

stty takes two kinds of input. If you want to give the command interactively, type stty erase char,
where char is the key you normally use for erase — BACKSPACE, DELETE, whatever — followed
by RETURN. This will do the trick, provided that the character you type isn't already used for
something. If the character is in use or if you're putting stty commands into your .login, .profile, or
.bash_profile file, it's better to "spell these characters out." "Control" characters in .login are
allowed, but they aren't a great idea. If you like to use the BACKSPACE key as the erase key, add the
following line:
stty erase ^h

If you want to use the DELETE key, quote the ? character so the shell won't treat it as a wildcard
(Section 1.13):
stty erase ^\?

That is, stty lets you represent a control key with the two-character combination ^ x, where ^ is the
literal key ^ (caret) and x is any single character. You may need to put a \ before the x to prevent the
shell from interpreting it as a wildcard [and a \ before the ^ to prevent old Bourne shells from
interpreting it as a pipe! — JP].

Of course, you're not limited to the BACKSPACE or DELETE keys; you can choose any other key
you want. If you want to use "Z" as your DELETE key, type stty erase Z. Just make sure you never
want to type a real Z!

Table 5-1 lists functions that stty can change.

Table 5-1. Keys to set with stty

Character Function Good setting See article

erase Erases the previous character. \̂? (DELETE) Section 5.8

kill Erases the entire line. ^u (CTRL-u) Section 5.8

werase Erases the previous word. ^w (CTRL-w) Section 5.8

intr Terminates the current job. ĉ (CTRL-c) Section 24.11

quit Terminates the current job; makes a core file. \̂ (CTRL-\) Section 24.11

susp Stops the current job (so you can put it in the background). ẑ (CTRL-z) Section 23.3

rprnt Redisplays the current line. r̂ (CTRL-r) Section 28.2

The command stty everything (BSD derivatives) or stty -a (Linux and System V derivatives) shows
all your current terminal settings. The werase and rprnt characters aren't implemented on some older
versions of Unix, though they are on Linux and Darwin and most other modern Unix variants.

It's amazing how often you'll see even moderately experienced Unix users holding down the
BACKSPACE or DELETE key to delete a partially completed command line that contains an error.

It's usually easier to use the line-kill characters — typically CTRL-u or CTRL-x. (The command stty
-a or stty everything (Section 41.3) will tell you which. Section 5.7 shows how to change them.)
The line-kill character will work on a command line (at a shell prompt (Section 4.1)) and in other
places where the terminal is in cooked mode. Some Unix programs that don't run in cooked mode, like
vi, understand the line-kill character, too.

Even better, many stystems have a "word-erase" character, usually CTRL-2, which deletes only back
to the previous whitespce. There's no need to delete the entire command line if you want to change
only part of it!

As a historical note, the erase character was originally #, and the kill character was originally @.
These assignments go back to the olden days, when terminals printed with real ink on real paper and
made lots of noise. However, I'm told that there are some modern systems on which these settings are
still the default.[5]

Note
Terminal emulators, editors, and other programs can fool around with all of this stuff. They should be well behaved and reset y our terminal when y ou leave them, but that's often not true. So don't expect y our settings to work within a terminal
emulator; they may , or they may not. And don't expect y our settings to be correct after y ou exit from y our terminal emulator. Again, they may , or they may not. This is primarily due to the fact that some terminal-emulator programs lie
about the extent to which they support a given set of control codes.

The tset program also fools around (Section 5.3) with key settings. Therefore, in y our shell setup files (Section 3.3), put stty after tset.

—ML, JP, SJC, and TOR

[5] . . . for some values of "modern", anyway . . . — SJC

Working with xterm and Friends

xterm is by far the most commonly used X client, although more and more people are switching from
xterm to similar or related programs, such as rxvt — which is a lightweight xterm derivative without
the Tektronix terminal emulation support. Regardless, the most commonly used clients are largely
derivatives of xterm, so we're devoting the rest of this section to this single client and its family.

xterm [6] gives you a window containing your standard shell prompt (as specified in your /etc/passwd
entry). You can use this window to run any command-line-oriented Unix program or to start
additional X applications.

The uncustomized xterm window should be sufficient for many users' needs. Certainly you can do
anything in a vanilla xterm window that you can from a character-based terminal. But xterm also has
special features you can use, and since you spend so much time in xterm, you might as well use them.

The rest of this chapter gives you a set of tricks and tips about using xterm, including the following:

Specifying and using a scrollbar (Section 5.11).
Copying and pasting text selections (Section 5.13).
Modifying text-selection behavior (Section 5.14).
Printing the current directory in the xterm titlebar (Section 5.15).
Dynamically changing fonts and other features (Section 5.17, Section 5.18).

Note
The articles in this chapter use terms that y ou may want defined:

A pointer , or pointing device, is a piece of hardware designed for navigating a screen. Most people use a mouse as their pointer, but there are also trackballs, touchpads, and others.
The best pointer to use with X has three buttons. When we refer to the first button or button 1, we mean the button y ou click with y our index finger. For right-handed people, this is usually the left button on a mouse. But the X client
xmodmap (Section 6.1) lets left-handed users swap mouse buttons to make the rightmost button the "first."
Even though the actual image on the screen is called a cursor, throughout this chapter we refer to "moving the pointer" to avoid confusion with the standard text cursor that can appear in an xterm window.

—LM, VQ, and SJC

[6] When we refer, throughout the rest of the chapter, to xterm, we're often referring to xterm proper,
as well as rxvt and other related terminal programs.

Login xterms and rxvts

If you want your xterm or rxvt to run a login shell (Section 3.4), give it the -ls flag, or put a line like
one of the following in your X resource file (Section 6.5):
xterm*loginShell: true ...for xterm
XTerm*loginShell: true ...for xterm or rxvt
Rxvt*loginShell: true ...for rxvt

Once you've defined the appropriate resource, you can get a nonlogin shell (which is otherwise the
default) with xterm +ls.

—JP and SJC

Working with Scrollbars

The scrollbar is a favorite xterm feature, particularly among those whose terminals lacked the ability
to scroll backwards. Using the scrollbar, you can re-examine the output or error from a command,
select previous text to supply in another command line or to paste into a file, or to hide your current
screen from a nosy coworker.

There are many ways to start up the scrollbar. You can specify the -sb option on the command line:
% xterm -sb &
% rxvt -sb &

or you can set the scrollBar resource (Section 6.5) to true:
XTerm*scrollBar: true ...for xterm or rxvt
Rxvt*scrollBar: true ...for rxvt

or for an xterm window that's already running, you can call up the VT Options menu (Section 5.17)
by holding down the CTRL key and the center mouse button or by selecting Enable Scrollbar. These
menus are not supported by rxvt.
A scrollbar appears on the left side of the xterm window, as shown in Figure 5-1.

Figure 5-1. xterm window with scrollbar

—LM and SJC

How Many Lines to Save?

If you use the scrollbar in xterm (Section 5.11), you'll find that by default the scrollbar retains only
64 previous lines of text. You can change this by using the -sl command-line option:
% xterm -sb -sl 200 &
% rxvt -sb -sl 200 &

or by setting the saveLines resource:
XTerm*saveLines: 200

You don't want to go crazy with the number of saved lines, though. Too many lines saved may crunch
on virtual memory and also make it hard to scroll.

—LM and SJC

Simple Copy and Paste in xterm

You can use the pointer to select text to copy and paste within the same xterm window or between
xterm windows. You don't need to be in a text editor to copy and paste. You can also copy or paste
text to and from the command line, between the command line and a file, etc.

There are several ways to select (copy) text; all require you to use the pointer. You can select a
passage of text, or you can select text by individual words or lines.

When you select text, it is highlighted and copied into global memory from which you can paste it into
any xterm window. Regardless of the number of xterm windows you're running, you can store only
one selection in memory at a time. However, you can paste that selection as many times as you like.
When you make another selection, the new text replaces the previous selection in memory.

Table 5-2 summarizes all of the text-selection methods.

Table 5-2. Button combinations to select text for copying

To
select Do this

Passage
Click the first button at the start of the selection and the third button at the end of the
selection. Or at the beginning of the selection, hold down the first button; drag the pointer to
the end of the desired text; release the button.

Word Double-click the first button anywhere on the word.

Line Triple-click the first button anywhere on the line.

To clear the highlighting, move the pointer off the selection, and click the first button anywhere else in
the window. Note, however, that the text still remains in memory until you make another selection.

Of the two methods for selecting a passage, the first is generally easier. Hypothetically, you can
select a passage of any length; in practice, we've found there to be limitations. The size of the
window limits the amount of text you can highlight in one action. You can extend a selection beyond
the parameters of a window. Copying an extremely long selection, however, doesn't seem to work
reliably. Also, when pasting a long selection, the text can become garbled.

You can paste text into any xterm window, either onto the command line or into a text file you're
editing. In both cases, move the pointer into the window, and click the second button. The text will be
pasted; in other words, it will appear on the screen, just as if you typed it.

Warning
To paste into an open text file, the editing program must be in insert mode. (If not, when pasted, the selection may be interpreted as a stream of editor commands, such as in vi. The act of pasting the word "selection" in a vi editor not in insert
mode would be to ignore every thing up until the i, which would place vi into insert mode, and then the last three letters would be inserted into the buffer.)

—VQ and SJC

Defining What Makes Up a Word for Selection Purposes

You probably already know how to select text (Section 5.13) in an xterm, and you've probably
discovered that double-clicking Section 5.13 will select the entire word around the pointer. What you
may not know is that it is possible to change what defines a "word."

xterm maintains a table of all the ASCII characters and their character classes. Any sequence of
adjacent characters of the same class is treated as a word. Numbers, letters, and the underscore are in
class 48 (which is the ASCII code for the character 0) and SPACE and TAB are in class 32 (the
ASCII code for SPACE). By default, all the other characters are in classes by themselves.

For Unix users, this isn't the most useful default; it would be better if you could select filenames,
email addresses, URLs, resource specifications, etc. as single words even though they often contain
punctuation characters.

You can modify the character class table with xterm's charClass resource variable (Section 6.3).
The value this resource accepts is a comma-separated list; each item on the list is an ASCII character
code or range of characters, followed by a colon, followed by the character class to which the
character should be added. I set the charClass resource as follows:
xterm*charClass: 33:48, 37:48, 42:48, 45-47:48, 63-64:48, 126:48

This tells xterm to treat !, %, *, -, ., /, ?, @, and ~ as characters of the same class as numbers and
letters. You may also want to treat : as a member of this class, for URLs; in that case, use the
following charClass string:
xterm*charClass: 33:48, 37:48, 42:48, 45-47:48, 58:48, 63-64:48, 126:48

—DJF and SJC

Setting the Titlebar and Icon Text

Under most modern window managers, most windows (including xterm) are displayed with a
titlebar. You can change the text in the titlebar using the following xterm escape sequence:
^[]2;string^G

Note that this sequence has a close bracket (]) following the ESC (Escape, ^[) — not an open
bracket. It ends with a CTRL-g character — not a caret followed by a "g".

I use this sequence to display my current working directory and directory stack in the titlebar, where
they are visible but unobtrusive. I do this by adding a few lines to my shell setup file (Section 3.3).
Section 4.8 explains.

If you change the number "2" in the escape sequence to "1," it will set the text that appears in the
xterm's icon instead of its titlebar. If you change it to "0," it will set the text for both the icon and the
titlebar. If you use and iconify a number of xterms, you may find these sequences useful.

You may also wish simply to specify an icon name and/or title text for a given window, statically, for
those situations where the window is only used to display output from some program, and not for
interactive use. Both xterm and rxvt allow this, using the -n option to specify the icon name and the -
T option to specify the title. You may also use X resources to specify icon name or title.

The Mac OS X Terminal application lets you set the title from the Set Title command on the Shell
menu as well.

—DJF and SJC

The Simple Way to Pick a Font

X font names make the Rosetta Stone look like bedtime reading. Those hardy souls who want to
experiment with fonts or access fonts on remote machines must take the high road and learn the X font
naming conventions anyway. But if you just want to locate some fonts to use with xterm and other
clients, you can use the predefined aliases for some of the constant-width fonts available on most
systems.

Figure 5-2 lists the aliases for some constant-width fonts that should be appropriate for most of the
standard clients, including xterm. [These "aliases" are basically font names. They aren't the same as
shell aliases (Section 29.1). Also note that terminals should use constant-width fonts (where every
character — thin or wide — occupies the same horizontal width). Constant-width fonts ensure that,
for instance, the 54th character in every line of output from ls -l is always in the same horizontal
position on the screen — so columns will always be straight. — JP] To give you an idea of the range
of sizes, each alias is written in the font it identifies.

Figure 5-2. Miscellaneous fonts for xterm and other clients

In these cases, the aliases refer to the dimensions in pixels of each character in the font. (For example,
"10×20" is the alias for a font with characters 10 pixels wide by 20 pixels high.) Note, however, that
an alias can be virtually any character string.

The default font for many applications, including xterm, is a 6×13 pixel font that has two aliases:
"fixed" and "6×13." Many users consider this font to be too small. If you have enough screen space,
you might want to use the 10×20 font for xterm windows:
% xterm -fn 10x20 &

You can make this font the default for xterm by specifying it as the value for the font resource
variable (Section 6.3):
XTerm*font: 10x20

Another quick way to get a list of fonts that match a given string is to use the xlsfonts program, which
accepts a variety of options but may be used as simply as this:
% xlsfonts -fn *-10-*

This command will display all of the fonts that are 10 pixels wide. The string *-10-* is a
wildcard expression matching any font specification containing -10-. Be sure to escape the * and ?
characters when specifying a pattern on the command line, to avoid interpolation by the shell.

—VQ and SJC

The xterm Menus

xterm has four different menus, each providing items that serve different purposes. You display a
menu by placing the pointer on the window and simultaneously pressing the CTRL (keyboard) key
and a pointer button. When you're using a window manager that provides a titlebar or frame, the
pointer must rest within the window proper and not on any window decoration.

Table 5-3 describes the menus and how to display them.

Table 5-3. The xterm menus

Menu
title Display by holding Use to

Main
Options CTRL, pointer button 1 Enter secure mode; interrupt, stop, etc., the xterm process.

VT
Options CTRL, pointer button 2 Toggle user preferences, including scrollbar, reverse video,

margin bell; toggle Tektronix/VT100 mode.

VT
Fonts CTRL, pointer button 3 Select alternative display font.

Tek
Options

CTRL, pointer button 2, on
Tektronix window Toggle VT100/Tektronix mode; select display font.

As shown in Table 5-3, three of the four xterm menus are divided into sections separated by
horizontal lines. The top portion of each divided menu contains various modes that can be toggled.
(The one exception is the Redraw Window item on the Main Options menu, which is a command.) A
check mark appears next to a mode that is currently active. Selecting one of these modes toggles its
state.

The items on the VT Fonts menu change the font in which text is displayed in the xterm window.
Only one of these fonts can be active at a time. To turn one off, you must activate another. See Section
5.18 for information on using the VT Fonts menu.

When you display an xterm menu, the pointer becomes the arrow pointer and initially appears in the
menu's title. Once the menu appears, you can release any keyboard key. The menu will remain visible
as long as you continue to hold down the appropriate pointer button. (You can move the pointer off
the menu without it disappearing.) To toggle a mode or activate a command, drag the pointer down
the menu and release the pointer button on the item you want.

If you decide not to select a menu item after the menu has appeared, move the pointer off the menu and
release the button. The menu disappears and no action is taken.

You probably won't use the xterm menus too often. You can set most mode entries by using command-
line options when invoking xterm or by using entries in a resource file (Section 6.5). See the xterm
manpage for a complete list of options and resource variables.

The various modes on the menus are very helpful if you've set (or failed to set) a particular mode on

the command line and then decide you want the opposite characteristic. For instance, say you've run
xterm without a scrollbar and then decide you want one. You can toggle the scrollbar from the VT
Options menu.

The sections below the modes portion of each menu contain various commands. Selecting one of
these commands performs the indicated function. Many of these functions can be invoked only from
the xterm menus. However, some functions can be invoked in other ways, which are often more
convenient. For example, you can remove the xterm window using several of the items on the Main
Options menu, but it's probably simpler to type exit or logout, or use a window manager menu or
button. Of course, the xterm menus can be very helpful when other methods fail to invoke a function.
And some functions (such as Secure Keyboard) are not available in any other way — unless you do
a little customizing.

Most people tend to use the mode toggles on the VT Options menu (which allow you to turn features
like the scrollbar on and off) and the items on the VT Fonts menu (which allow you to change the
display font once the client is running). If you're concerned about security, you may want to invoke
secure keyboard mode from the Main Options menu before typing passwords or other sensitive
information.

Note that a Release 5 patch (Section 20.9) has eliminated xterm's logging capability for security
reasons. If this patch has been applied, your Main Options menu will not offer the Log to File
option.

—VQ and SJC

Changing Fonts Dynamically

Ideally, you want to set up your environment so that xterm windows (and other clients) come up
automatically with the characteristics you prefer, including the display font. I use the very large
10×20-pixel font (Section 5.16) for all my xterm windows by specifying the resource variable
(Section 6.3):
XTerm*font: 10x20

But if you start an xterm and then decide you want a different font, you do have an option.

VT Fonts Menu

The xterm VT Fonts menu (Section 5.17) allows you to change a window's font on the fly, which is a
very handy capability. You can change the font any number of times to accommodate a variety of uses.
You might choose to use a large font for text editing; you could then change to a smaller font while a
process is running, since you don't need to be reading or typing in that xterm. Since xterm's
dimensions are determined by the number of characters wide by the number of lines high, changing the
font also changes the size of the window.

When the focus is on an xterm, you display the menu by pressing CTRL and then the third pointer
button. The default menu is shown in Figure 5-3.

Figure 5-3. xterm's VT Fonts menu lets you change fonts dynamically

The items on the VT Fonts menu are toggles, each of which provides a different size display font. If
you have not toggled any items on this menu, a check mark will appear next to Default, which is the
font specified when the xterm was run. This font could have been specified on the xterm command
line or in a resource file. Whatever the case, this font remains the Default for the duration of the
current xterm process.

By default, the Unreadable, Tiny, Small, Medium, Large, and Huge menu choices toggle the
constant-width fonts shown in Table 5-4.

Table 5-4. VT Fonts menu defaults

Menu item Default font

Unreadable nil2

Tiny 5×7

Small 6×10

Medium 7×13

Large 9×15

Huge 10×20

Bring up the VT Fonts menu, and toggle some of these fonts to see what they look like. The first
choice is not called Unreadable for nothing, but it does have a practical use.

You can specify your own Unreadable, Tiny, Small, Medium, Large, and Huge fonts using the xterm
resource variables font1, font2, font3, font4, font5, and font6. You might want to specify bold
alternatives to some of the default fonts. For example, 7×13 bold is somewhat more readable than the
standard Medium font.

All of the references to fonts and command-line options also apply to rxvt , which does not, however,
support the VT Fonts menu supported by xterm.

Enabling Escape Sequence and Selection

When you first run an xterm window, the final two choices on the VT Fonts menu, Escape Sequence
and Selection, are not functional. (They will appear in a lighter typeface than the other selections.)
The average user may not care about these items, but if you're experimenting with fonts, they are
sometimes useful.

To enable Selection, you first have to select a font name. You can do this simply by highlighting a
font name with the pointer, as you would any text selection (Section 5.13). However, it's more likely
that you'll use Selection in concert with the xfontsel client. [This is a client that does point-and-click
selection of X11 font names; see its manpage. — JP] Once you've selected a font name, you can
toggle it using the Selection menu item. A serious limitation: Selection tries to use the last selected
text as a font name. If the last selected text was not a valid font name, toggling Selection will get you
nothing more than a beep. When there is no primary text selection in memory, the menu item is grayed
out again.

The Escape Sequence item is a little more complicated, but once set up it will be available for the
duration of the xterm process. To make it available, you first need to change the font by a more
primitive method, using a literal escape sequence that you send to the xterm using echo:
val@ruby 181% echo "Esc]50;7x13boldControl-g"

These are the literal keys you type to change the font to 7×13bold. But pressing ESC actually
generates the symbol ^[, and CTRL-g appears as ^G, so you'll get a line that looks like this:
val@ruby 181% echo "^[]50;7x13bold^G"

If you don't get this string, try typing the CTRL-v character before both the ESC and CTRL-g
characters, letting the system know you intend for the following character to be a literal.

I've used a short font name alias (Section 5.16), but you could use a full name or a name with
wildcards. Once you've changed the font in this manner, you can toggle it using the Escape Sequence
menu item. If you change the font again using the literal escape sequence, that font will be available
via the menu item. Note that the trick for changing the font discussed earlier also works in rxvt, but
does not enable any font menus.

—VQ and SJC

Working with xclipboard

The xclipboard client does exactly what you might think: it allows you to save multiple text
selections (Section 5.13) and copy them to other windows. Text you copy from an xterm window can
be made the CLIPBOARD selection (and thus automatically appear in the xclipboard window). To
set this up, you first need to customize xterm using resources.[7]

For text you copy from an xterm to be pasted automatically into xclipboard, the text must be made the
CLIPBOARD selection. You set this up to happen by specifying a few translations (Section 6.4) for
xterm.[8] Here are the translations I use to coordinate xterm with xclipboard:
*VT100.Translations: #override\
 Button1 <Btn3Down>: select-end(primary,CUT_BUFFER0,CLIPBOARD)\n\
 !Shift <Btn2Up>: insert-selection(CLIPBOARD)\n\
 ~Shift ~Ctrl ~Meta <Btn2Up>: insert-selection(primary,CUT_BUFFER0)

To let you store multiple text selections, the seemingly tiny xclipboard actually provides multiple
screens, each of which can be thought of as a separate buffer. Each time you use the pointer to make
text the CLIPBOARD selection, the xclipboard advances to a new screen in which it displays and
stores the text. If you make a long selection, it might take up more than one screen, but the clipboard
still considers it a single buffer. When you make a selection that extends beyond the bounds of the
xclipboard window (either horizontally, vertically, or both), scrollbars (Section 5.11) will be
activated in the window to allow you to view the entire selection.

To the right of the command buttons is a tiny box that displays a number corresponding to the
selection currently in the xclipboard window. Once you have saved multiple selections, you can click
on the client's Next and Prev command buttons to move forward and backward among these screens
of text.

If you've coordinated xterm with xclipboard using the guidelines outlined earlier, you paste the
CLIPBOARD selection in an xterm window by holding down the Shift key and clicking the second
pointer button. When you paste the CLIPBOARD selection, you get the selection that's currently being
displayed in the xclipboard window. Here's where the client really comes in handy. Suppose you
send four selections to xclipboard and you want to paste #2. Just go back to selection #2 using the
Prev command button; when you use the pointer command to paste the CLIPBOARD selection,
selection #2 is pasted. In Figure 5-4, we've pasted selection #2 into a new file. (Notice that the text is
too wide for the xclipboard window and that a horizontal scrollbar has been provided so we can
view the entire selection.)

Figure 5-4. Text you copy from an xterm appears in xclipboard

A selection remains available in xclipboard until you Quit the program or use the Delete button to
erase the current buffer.

Use the Save command button to save the text in the current buffer to a file. A dialog will ask you to
Accept or Cancel the save to a file with the default name clipboard. You can change the filename
using Text widget commands [these are listed in the xedit(1) manpage — JP]. If you want to save
multiple selections, you'll need to change the filename each time, or you'll overwrite the previous
save.

You can edit text you send to the xclipboard using Text widget commands. When you edit a screenful
of text, the xclipboard continues to store the edited version until you delete it or exit the program.

—VQ and SJC

[7] Since there can be only one CLIPBOARD selection at a time, you can only run one xclipboard per
display.
[8] If you're using a terminal emulator other than xterm, the program should also allow this sort of
customization. See the client manpage for the actions (the equivalents of select-end and insert-
selection) to include in the translation table.

Problems with Large Selections

If you experiment making large selections with xclipboard, you may discover what seems to be a bug
in the program. Though making a new selection usually causes the screen to advance and display the
new text, this does not happen reliably after a selection that vertically spans more than one screenful.
In these cases, the new selection is saved in the xclipboard (and the number in the small box is
incremented to indicate this); however, the xclipboard window does not automatically advance to
show you the new current selection. Instead, the previous long selection is still displayed. (For
example, though the box says "5," indicating that a fifth selection has been saved, the window is still
displaying selection #4.) This is a bit of xclipboard sleight of hand: the new selection has been
successfully made, but the appearance of the window belies this fact. The Next button will probably
add to your confusion; it will not be available for selection, suggesting that the text in the window is
the last selection saved. This is not the case.

To get around this problem and display the actual current selection, press the Previous button. The
same long selection (which is, in actuality, the Previous selection) will be displayed again. (The
small box will flip back to display the preceding number as well.) Then the Next button will be
enabled, and you can click on it to display the actual current selection. The selection displayed in the
window and the number in the small box will correspond.[9]

—VQ and SJC

[9] By this time, the observant reader will have concluded that xclipboard is a nuisance at best.

Tips for Copy and Paste Between Windows

One of my favorite uses for an xterm (which may seem natural to people who've grown up using
window systems, but was a pleasant surprise for a guy who started computing with teletypes in 1970)
is using a window to accept text pasted from some other window. For instance, in writing this book,
I'll have one window open with something happening that I want to put into the book. So I select the
text, then paste it into another xterm window — where there's usually a text editor (like vi, with its
keymaps for pasting text (Section 18.5)).

You can also use a text editor or Unix utilities to reformat text from one window before pasting it into
another. For instance, you'd like to send most of the text in your browser to another window where
you're composing an email message. But the web site used those irritating Microsoft Windows-
specific quote characters that show up as question marks (?) on any other platform. So you paste the
text into an Emacs window, do a quick run of text substitution, and copy the result to paste into the
email window.

 Go to http://examples.oreilly.com/upt3 for more information on: requote

Another problem with email messages comes when you're sending a reply to someone who's used
very long or jagged lines and the quoted text is a mess. But if you cut the messy text into an xterm
window running the requote shell script, you'll get a neatened version. In the following example, the
text I paste (cut from a quoted email message) is shown in boldface. Then I press CTRL-d, and the
result appears; I can paste it back into the email message:
$ requote
 > This is a long line of text that runs on and on and wraps to the next
 line without a quote character at the start and it goes on and on and on
 and well you know
 > This is the next line of text
CTRL-d
> This is a long line of text that runs on and on and wraps to the next
> line without a quote character at the start and it goes on and on and
> on and well you know This is the next line of text

You can pass a fmt width option to tell requote how wide to make the output lines. (Different
versions of fmt have different width options: -w, -l, etc.) requote also works great as a vi filter-
through (Section 17.18): paste the messy text into vi, and run a command like !{requote to requote
the text in place.

requote is a simple script that doesn't try to handle multiple levels of quoting (>> > >>, etc.). The
main formatting commands are shown here; the temporary file $temp makes sure fmt has read all the
text before the final sed outputs any of it:

${1+"$@"} Section 36.7
sed 's/^> //' |
fmt ${1+"$@"} > $temp
sed 's/^/> /' $temp

Here's another problem like the one requote solves. When I copy text from a browser window, my
browser usually puts some whitespace before each line. When I paste the text, it's a mess. I could use
a text editor to clean up the lines, but a one-line sed script can do the job faster.

Let's look at three examples of dedent. It removes all space and TAB characters from the start of each

http://examples.oreilly.com/upt3

line it reads on its standard input, and it writes the result to standard output.
$ dedent > order_confirmation
 ...paste text into xterm, press CTRL-d...
$ dedent | fmt > johnson
 ...paste text into xterm, press CTRL-d...
$ dedent | mail -s 'article I mentioned' ali
 ...paste text into xterm, press CTRL-d...
$

In the first example, I started dedent and pasted text into the xterm. After I pressed CTRL-d, dedent
removed leading whitespace from the pasted text and wrote the result to standard output, which the
shell had redirected to a file named order_confirmation. In the second example, dedent's output is
piped to fmt (Section 21.2) to make the lines neat. (Without dedent, most versions of fmt would
indent the reformatted text.) The third example removes leading whitespace, then emails (Section
1.21) the text to ali.
One more thing: many of the tricks discussed earlier may be implemented as shell functions or even
emacs functions or vi macro. If you use a mail user agent such as mutt, you can specify your favorite
editor for email messages and just call the functions or macros while you edit. This is how I requote
my replies to others' email, wrap it to a sane width, and so on. In emacs, ESC q is mapped to the
function fill-paragraph, so if I need a paragraph wrapped to a certain width (determined by
default-fill-column), I just position the cursor inside the paragraph and call the function. If the
fill-prefix variable is properly set (say, to >) it even knows how to wrap several levels of nested
quoting in email.

—JP and SJC

Running a Single Command with xterm -e

The -e option to xterm is useful for running a single command before exiting. For example, if you just
want to run a character-based mail program, type the following:
% xterm -e mail

When you quit the mail program, the xterm window exits.

The -e option needs to be the last xterm option on the command line. The remainder of the command
line is assumed to be part of the command to be executed by xterm. The new window has the
command name in its titlebar by default (unless overridden by other command-line options (Section
5.15)).

One use for xterm -e is for running a window with a login session to a remote system, like this:
% xterm -e ssh
 hostname
 &

 Go to http://examples.oreilly.com/upt3 for more information on: ssh-agent

The xterm process runs on the local system, but immediately logs you into the remote machine. You
are prompted for a password in the new xterm that pops up — before you can log in to the remote
system. This isn't as convenient as putting that command in your X setup file (like .xinitrc or
.xsession) — but it's far more secure because you don't need to put your hostname in your .rhosts or
.shosts file (Section 1.21), which is a potential security hole. (Or, if you use ssh for your remote
login — and you start ssh-agent before you start X — you won't need to type passwords at all during
your X session. This is the handiest setup by far.)

You can use -e to create a makeshift X display for any character-based programs you like to run. For
example, you might want to keep track of messages sent to the console, but you can't run xterm -C to
get console messages because you aren't actually logged in on the console. You might run something
like this:

tail -f Section 12.10
% xterm -e tail -f /var/log/messages &

Section 24.21 has more about how this works.

—LM, JP, and SJC

http://examples.oreilly.com/upt3

Don't Quote Arguments to xterm -e

Being a belt-and-suspenders kind of guy, I've gotten in the habit of quoting arguments to commands.
This makes good sense with lots of Unix shell commands, but it can get you in trouble with xterm -e.
For example, I wanted to set up a job that would open vi in a window to edit a file named .postit. At
first, I used the command:
 xterm ... -e 'vi .postit' &

only to receive the perplexing message in the resulting window:
Can't execvp vi .postit

The quotes passed the entire string to xterm as an argument, which parsed it as a single command
name, rather than a command plus argument. Removing the quotes solved the problem.

—TOR and SJC

Chapter 6. Your X Environment

Defining Keys and Button Presses with xmodmap

If you have a Linux system, you may want to use loadkeys instead of xmodmap. loadkeys is designed
to set the keymap used by the system as a whole, particularly the console, so use your own judgment.
Whatever is done in xmodmap will affect X but not the system console.

An important piece to the X Window System puzzle is filled by the xmodmap client. When the user
performs any action — such as typing a key or moving the mouse — the server sends a packet of
information to the client called an event. These events are then translated into actions by the client.
You can use the xmodmap utility to effectively change the event that is reported to the client.

Keysym mappings are mappings of keyboard events at the server level, before the event is sent to the
client. Keysyms are the symbols used for each key on the keyboard.

The X server maintains a keymap table , which contains a listing of keys on the keyboard and how
they should be interpreted. A client gets the keymap table from the server upon client startup. In most
cases, the keymap table is used to interpret keys literally — when you press the letter "a," a key code
is sent to the client that corresponds to the letter "a" in the keymap table.

You can use the xmodmap client to reassign key codes within the keymap table. xmodmap can
therefore be used to redefine how the key is interpreted by the client. You probably wouldn't want to
translate the alphanumeric keys on the keyboard, but you may want to translate others. For example,
you might want to change the BACKSPACE key to DELETE:
% xmodmap -e "keysym BackSpace = Delete"

Another example is if you mistakenly hit the CAPS LOCK key a bit too often, you can disable it
completely. Some people might disable CAPS LOCK the low-tech way (by just removing the key
from the keyboard!), but you can also render it harmless with the command:
% xmodmap -e "keysym Caps_Lock = "

effectively disabling the CAPS LOCK key entirely. Note that the symbol is now gone and can't be
redefined without using the hardware key code.

If you are a DVORAK typist, you can use xmodmap to translate every key on the keyboard and so
your QWERTY keyboard behaves like a DVORAK keyboard.

If it ever seems that keystrokes are not working correctly, you can check current keysym settings by
running xmodmap with the -pk argument. Use the xev client to determine exactly which key code a
key generates on your display. There is also a public domain client called xkeycaps that can be used
to display the keysyms for selected keyboards.

You can use xmodmap to add or remove keysyms, or even to redefine the key code associated with
that keysym. You can also use it to redefine the mouse buttons, using the pointer keyword. For
example, to have the second and third mouse button switch places, you can enter:
% xmodmap -e "pointer = 1 3 2"

If you have a large number of keys to remap, you can put the commands in a file that is read when
your X session starts. For example, create a file called .Xmodmap:
! my .Xmodmap file
remove Lock = Caps_Lock
remove Control = Control_L
keysym Control_L = Caps_Lock
keysym Caps_Lock = Control_L

add Lock = Caps_Lock
add Control = Control_L
 ...

These commands effectively reverse your CTRL and CAPS LOCK keys. (CTRL and CAPS LOCK
are "switched" on PC and Macintosh keyboards, which can be exceedingly frustrating.) This file can
then be read automatically in a X startup script:
 ...
xset b 10 100 10
xrdb $HOME/.Xdefaults
xmodmap $HOME/.Xmodmap
fvwm &
 ...

Alternately, you might want to assign different functions to little-used keys, such as making the tiny
"enter" key on Powerbook keyboards into another command key. Remember, too, that some keys may
have different names than what you're used to. Sun keyboards, for example, often come with a "meta"
key; Macintosh keyboards have an "option" key where PC users expect to find "alt" (though they act
the same); and so forth.

On Linux systems, the loadkeys command is often used to make system-level changes to key
mappings; it's common to see a variety of keytables already defined and a system default chosen from
among them. The system default is often found in /etc/sysconfig/keytable (Red Hat 6 and earlier) or
/etc/sysconfig/keyboard (Red Hat 7) or otherwise defined in a directory such as /usr/share/keymaps
or /usr/lib/kbd/keymaps. On Debian, the keytable is simply set in /etc/console-
tools/default.kmap.gz.

If you have a physical keyboard on which you've switched certain keys, you may want to modify the
system-level key mappings as well, so that they are always loaded properly for those times when you
need the console to work without any special user-level configuration. For example, on my Red Hat
systems, I always modify my keymap (in 6.* and earlier, found in
/usr/lib/kbd/keymaps/i386/qwerty/us.kmap.gz, and in 7.*, found in
/lib/kbd/keymaps/i386/qwerty/us.kmap.gz) to reflect the fact that the keyboard I carry with me to the
co-lo has swapped CAPS LOCK and CTRL keys. Just gunzip the file, edit, and then gzip it back up
again. Alternately, you can create a new file from an existing one, make your edits, and specify the
new file in your /etc/sysconfig/keytable or /etc/syscongig/keyboard file, as appropriate.

The keymaps directory tree is broken down by the platform (Amiga, Atari, i386, Mac, Sun) and then
by the layout type of the keyboard (DVORAK, QWERTY, and various other layouts) and finally by
the language or character set. So, there is a U.S. keymap, a U.K. keymap, a Hebrew keymap, and
dozens of various others, for all of the systems on which Linux is supported. The files are in a
relatively straightforward format:
keycode 54 = Shift
keycode 56 = Alt
keycode 57 = space
 control keycode 57 = nul
keycode 58 = Control
keycode 86 = less greater bar
keycode 97 = Control

First comes the keycode keyword, followed by the numeric value of the keysym generated when the
key is pressed, and then a keyword (or several) describing the character to be generated when a given
keysym is received. Modifiers may precede the keycode keyword, binding the combination of
modifier key and keysym to another character value.

Note
One danger of using xmodmap is that any thing set with xmodmap might remain in effect after y ou have logged out. This isn't a problem if y ou use the same X server every day , but be aware that if y ou use a coworker's X terminal in his
absence, he may come back complaining that y ou broke his CAPS LOCK key . This might happen if y ou use xdm, since the server is not restarted after every X session. On some X terminals, y ou can fix this problem by toggling "Retain X
Settings" on the X terminal setup menu.

—LM, EP, and SJC

Using xev to Learn Keysym Mappings

The xev client is essential for debugging X Window System keysym mappings (Section 6.1). When
you start up xev, a small "event window" appears. All events that take place within that window are
shown on standard output. This means screenfuls of output, but it also means that when you type a key,
you can immediately trace the resulting event. For example, if you need to know what keysym is sent
when you type the DELETE key on the keyboard, just run xev and type the DELETE key in the event
window. Typical output might be the following:
KeyPress event, serial 13, synthetic NO, window 0x800001,
 root 0x8006d, subw 0x800002, time 1762968270, (50,36),
 root:(190,176), state 0x0, keycode 27 (keysym 0xffff, Delete),
 same_screen YES, XLookupString gives 1 characters: "^?"

KeyRelease event, serial 15, synthetic NO, window 0x800001,
 root 0x8006d, subw 0x800002, time 1762968336, (50,36),
 root:(190,176), state 0x0, keycode 27 (keysym 0xffff, Delete),
 same_screen YES, XLookupString gives 1 characters: "^?"

This tells you that the DELETE key (keycode 27) is interpreted as keysym 0xffff, which is Delete
and character ^?. If you do an xmodmap -pk (Section 5.1), you should see a line resembling:[1]

27 0xffff (Delete)

If you redefine the DELETE key as the BACKSPACE key and do the same exercise (run xev and
press the DELETE key), you should see something like this:
% xmodmap -e "keysym Delete = BackSpace"
% xev
 ...
KeyPress event, serial 13, synthetic NO, window 0x800001,
 root 0x8006d, subw 0x800002, time 1763440073, (44,39),
 root:(240,235), state 0x0, keycode 27 (keysym 0xff08, BackSpace),
 same_screen YES, XLookupString gives 1 characters: "^H"

KeyRelease event, serial 15, synthetic NO, window 0x800001,
 root 0x8006d, subw 0x800002, time 1763440139, (44,39),
 root:(240,235), state 0x0, keycode 27 (keysym 0xff08, BackSpace),
 same_screen YES, XLookupString gives 1 characters: "^H"

This tells you that now the DELETE key (still keycode 27) is being interpreted as hexadecimal
0xff08, keysym BackSpace, and generates character "^H." xmodmap -pk should show you the
following:
27 0xff08 (BackSpace)

For more information, see O'Reilly & Associates' X Window System User's Guide, Volume 3.

—LM, EP, and SJC

[1] The keycode numbers may vary from system to system, depending on how your key mappings are
configured. For example, under a Debian 2.2 install running inside VirtualPC on a Powerbook G3,
DELETE is keycode 107, whereas under OroborusX on the same machine, the same keypress
produces keycode 59, the BACKSPACE character. On both systems, however, the hexadecimal
keysym values for DELETE and BACKSPACE are the same: 0xffff and 0xff08, respectively.

X Resource Syntax

Virtually all X Window System clients are customizable.[2] You can specify how a client looks on the
screen — its size and placement, its border and background color or pattern, whether the window has
a scrollbar, and so on. This article introduces X resources and shows their syntax.

Traditional Unix applications rely on command-line options to allow users to customize the way they
work. X applications support command-line options too, but often not for all features. Almost every
feature of an X program can be controlled by a variable called a resource; you can change the
behavior or appearance of a program by changing the value associated with a resource variable.

Resource variables may be Boolean (such as scrollBar: True) or take a numeric or string value
(borderWidth: 2 or foreground: blue). What's more, in applications written with the X Toolkit
(or an Xt-based toolkit such as the Motif toolkit), resources may be associated with separate objects
(or "widgets") within an application. There is a syntax that allows for separate control over both a
class of objects in the application and an individual instance of an object. This is illustrated by these
resource specifications for a hypothetical application called xclient:
xclient*Buttons.foreground: blue
xclient*help.foreground: red

The first resource specification makes the foreground color blue for all buttons in the xclient
application (in the class Buttons); the second resource specification makes the foreground color red
for the help button in this application (an instance of the class Buttons). Resource settings can be
even simpler than this.

The values of resources can be set as application defaults using a number of different mechanisms,
including resource files in your home directory and a program called xrdb (X resource database
manager). As we'll see, the xrdb program stores resources directly in the X server, making them
available to all clients, regardless of the machine on which the clients run.[3]

Placing resources in files allows you to set many resources at once without the restrictions
encountered when using command-line options. In addition to a primary resource file (often called
.Xdefaults, .Xresources, or xrdb) in your home directory, which determines defaults for the clients
you yourself run, the system administrator can create system-wide resource files to set defaults for all
instances of the application run on this machine. It is also possible to create resource files to set some
resources for just the local machine, some for all machines in a network, and some for one or more
specific machines.[4]

The various resource files are automatically read in and processed in a certain order within an
application by a set of routines called the resource manager. The syntax for resource specifications
and the rules of precedence by which the resource manager processes them are intended to give you
the maximum flexibility in setting resources with the minimum amount of text. You can specify a
resource that controls only one feature of a single application, such as the red help button in the
hypothetical xclient settings listed earlier. You can also specify a resource that controls one feature
of multiple objects within multiple applications with a single line.

Command-line options normally take precedence over any prior resource settings; so you can set up
the files to control the way you normally want your application to work and then use command-line
options (in an alias or shell function (Section 29.1), for instance) to specify changes you need for

only one or two instances of the application.

The basic syntax of a resource definition file is fairly simple. Each client recognizes certain resource
variables that can be assigned a value; see the client's manpage for a list.

Toolkits are a mechanism for simplifying the design and coding of applications and making them
operate in a consistent way. Toolkits provide a standard set of objects or widgets, such as menus,
command buttons, dialog boxes, scrollbars, and so on. If a client was built with the X Toolkit, this
should be noted on its manual page. In addition to certain application-specific resource variables,
most clients that use the X Toolkit recognize a common set of resource variables.

The most basic line you can have in a resource definition file consists of the name of a client,
followed by a dot (.) or an asterisk (*), and the name of a variable. A colon (:) and whitespace
separate the client and variable names from the actual value of the resource variable. The following
line gives a scrollbar to all instances of the xterm client:
xterm*scrollBar: True

If the name of the client is omitted, the variable is global: it applies to all instances of all clients (in
this case, all clients that can have a scrollbar). If the same variable is specified as a global variable
and a client-specific variable, the value of the client-specific variable takes precedence for that
client. However, if the name of the client is omitted, the line should generally begin with an asterisk.

Be sure not to omit the colon inadvertently at the end of a resource specification. This is an easy
mistake to make, and the resource manager provides no error messages. If there is an error in a
resource specification (including a syntax error such as the omission of the colon or a misspelling),
the specification is ignored. The value you set will simply not take effect.

A line starting with an exclamation point (!) is ignored as a comment. If the last character on a line is
a backslash (\), the resource definition on that line is assumed to continue on the next line.

—VQ and SJC

[2] Not to be confused with the extensive customization of window decorations and the like now
possible with window managers such as Enlightenment, Afterstep, FVWM, or Sawfish. If you have a
difficult time visualizing what is affected by these resource assignments apart from the fancy
decoration around the windows themselves, try killing your window manager and viewing just the X
clients themselves, in all of their sparse glory.
[3] Remember, in X the client server model is the inverse of what you may be used to; the server is
local, and displays clients that may be running remotely.
[4] While this is often okay for applications such as xterm that have not been modified much since the
early nineties, app-defaults files can be more trouble than they're worth in a rapid application
development environment, as they can quickly get out of sync with changes in the application itself
from one version to the next.

X Event Translations

This article introduces event translations, which are special X Window System resources that control
actions of things like mouse clicks. Section 6.3 introduces X resources and shows their syntax.
Section 6.5 through Section 6.9 explain how to set and check resources — as you log in and after.

We've discussed the basics of resource-naming syntax. From the sample resource settings, it appears
that what many resource variables do is self-evident or nearly so. Among the less obvious resource
variables, there is one type of specification, an event translation, that can be used with many clients
and warrants somewhat closer examination.

User input and several other types of information pass from the server to a client in the form of events
. An event is a packet of information that gives the client something to act on, such as keyboard input.
Moving the pointer or pressing a key causes input events to occur. When a program receives a
meaningful event, it responds with some sort of action.

For many clients, the resource manager recognizes mappings between certain input events (such as a
pointer button click) and some sort of action by the client program (such as selecting text). A mapping
between one or more events and an action is called a translation. A resource containing a list of
translations is called a translation table.

Many event translations are programmed into an application and are invisible to the user.[5] For our
purposes we are only concerned with very visible translations of certain input events, primarily the
translation of keystrokes and pointer button clicks to particular actions by a client program.

The operation of many clients, notably xterm, is partly determined by default input event translations.
For example, selecting text with the first pointer button (an event) saves that text into memory (an
action).

In this case, the input "event" is actually three separate X events:

1. Pressing the first pointer button.
2. Moving the pointer while holding down the first button.[6]

3. Releasing the button.

Each of these input events performs a part of the action of selecting text:

1. Unselects any previously selected text and begins selecting new text.
2. Extends the selection.
3. Ends the selection, saving the text into memory (both as the primary selection and

CUT_BUFFER0).

The event and action mappings would be expressed in a translation table as follows:
<Btn1Down>: select-start()\n\
<Btn1Motion>: select-extend()\n\
<Btn1Up>: select-end(primary,CUT_BUFFER0)

where each event is enclosed in angle brackets (<>) and produces the action that follows the colon
(:). A space or TAB generally precedes the action, though this is not mandatory:
<event>: action

A translation table must be a continuous string. To link multiple mappings as a continuous string, each
event-action line should be terminated by a newline character (\n), which is in turn followed by a
backslash (\) to escape the actual newline.

These are default translations for xterm.[7] All of the events are simple, comprised of a single button
motion. As we'll see, events can also have modifiers: i.e., additional button motions or keystrokes
(often CTRL or Meta) that must be performed with the primary event to produce the action. (Events
can also have modifiers that must not accompany the primary event if the action is to take place.)

As you can see, the default actions of keysym mappings are hardly intuitive. The client's manpage
usually lists the event-action mappings that you can modify.

You can specify nondefault translations using a translation table (a resource containing a list of
translations). Since actions are part of the client application and cannot be modified, you are actually
specifying alternative events to perform an action.[8] Keep in mind that only applications written with
the X Toolkit (or an Xt-based toolkit such as the Motif Toolkit) recognize translation-table syntax as
described here.

The basic syntax for specifying a translation table as a resource is as follows:
[object*[subobject...]]*translations: #override\
 [modifier]<event>: action

The first line is basically like any other resource specification with a few exceptions. First, the final
argument is always translations, indicating that one (or more) of the event-action bindings
associated with the [object *[subobject ...]] are being modified.

Second, note that #override is not the value of the resource; it is literal and indicates that what
follows should override any default translations. In effect, #override is no more than a pointer to the
true value of the resource: a new event-action mapping (on the following line) where the event may
take a modifier.

A not-so-obvious principle behind overriding translations is that you only literally "override" a
default translation when the event(s) of the new translation match the event(s) of a default translation
exactly. If the new translation does not conflict with any existing translation, it is merely appended to
the defaults.

To be specified as a resource, a translation table must be a single string. The #override is followed
by a backslash (\) to indicate that the subsequent line should be a continuation of the first.

In the previous basic syntax example, the value is a single event-action mapping. The value could
also be a list of several mappings, linked by the characters \n\ to make the resource a continuous
string.

The following xterm translation table shows multiple event-action mappings linked in this manner:
*VT100.Translations: #override\
 <Btn1Down>: select-start()\n\
 <Btn1Motion>: select-extend()\n\
 <Btn1Up>: select-end(primary,CUT_BUFFER0)

—VQ and SJC

[5] For more information on events and translations, see O'Reilly & Associates' X Window System

Guide, Volume 4.
[6] Actually, if there is no text to select, motion is recorded as a series of MotionNotify events.
[7] They are actually slightly simplified versions of default translations. Before you can understand the
actual translations listed in the xterm manual page, you must learn more about the syntax of
translations. We cover the basics here; for more information, see O'Reilly & Associates' X Window
System Guide, Volume 3M, Appendix F.
[8] As we'll see, in certain cases you may be able to supply an alternative argument (such as a
selection name) to an action. These changes are interpreted by the resource manager.

Setting X Resources: Overview

Learning to write resource specifications is a fairly manageable task, once you understand the basic
rules of syntax and precedence. In contrast, the multiple ways you can set resources — for a single
system, multiple systems, a single user, or for all users — can be confusing. For our purposes, we are
primarily concerned with specifying resources for a single user running applications both on the local
system and on remote systems in a network.

As we've said, resources are generally specified in files. A resource file can have any name you like.
Resources are generally "loaded" into the X server by the xrdb (Section 56.8) client, which is
normally run from your startup file or run automatically by xdm when you log in. Prior to Release 2 of
X, there was only one resource file called .Xdefaults, placed in the user's home directory. If no
resource file is loaded into the server by xrdb, the .Xdefaults file will still be read.

Remember that X allows clients to run on different machines across a network, not just on the
machine that supports the X server. One problem with the older .Xdefaults mechanism was that users
who were running clients on multiple machines had to maintain multiple .Xdefaults files, one on each
machine. By contrast, xrdb stores the application resources directly in the server, thus making them
available to all clients, regardless of the machine on which the clients are running. As we'll see, xrdb
also allows you to change resources without editing files.

Of course, you may want certain resources to be set on all machines and others to be set only on
particular machines. For a complex setup, check the detailed information in O'Reilly & Associates' X
Window System Guide, Volume 3M, Chapter 11.

In addition to loading resource files, you can specify defaults for a particular instance of an
application from the command line using two options: -xrm and -name.

A sample resources file follows. This file sets the border width for all clients to a default value of
two pixels, and it sets other specific variables for xclock and xterm. The meaning of each variable is
obvious from its name. (For example, xterm*scrollBar: True means that xterm windows should be
created with a scrollbar.)

Note that comments are preceded by an exclamation point (!).

For a detailed description of each variable, see the X client manpages.
*borderWidth: 2
!
! xclock resources
!
xclock*borderWidth: 5
xclock*geometry: 64x64
!
! xterm resources
!
xterm*curses: on
xterm*cursorColor: skyblue
xterm*pointerShape: pirate
xterm*jumpScroll: on
xterm*saveLines: 300
xterm*scrollBar: True
xterm*scrollKey: on
xterm*background: black
xterm*borderColor: blue
xterm*borderWidth: 3

xterm*foreground: white
xterm*font: 8x13

Section 6.6 takes a look at the use of the -xrm command-line option in standard X clients; Section 6.7
covers -name. Section 6.8 discusses various ways you can load resources using the xrdb program.
Section 6.9 shows how to list the resources for a client with appres.

—VQ and SJC

Setting Resources with the -xrm Option

The -xrm command-line option, which is supported by all X Window System clients written with the
X Toolkit, can be useful in specifying from the command line any specification that you would
otherwise put into a resources file (Section 6.5). For example:
% xterm -xrm 'xterm*Foreground: blue' &

Note that a resource specification on the command line must be quoted using the single quotes.

The -xrm option only specifies the resource(s) for the current instance of the application. Resources
specified in this way do not become part of the resource database.

The -xrm option is most useful for setting classes, since most clients have command-line options that
correspond to instance variable names. For example, the -fg command-line option sets the
foreground attribute of a window, but -xrm must be used to set Foreground.

Note also that a resource specified with the -xrm option will not take effect if a resource that takes
precedence has already been loaded with xrdb. For example, say you've loaded a resource file that
includes the specification:
xterm*pointerShape: pirate

The command-line specification of another cursor will fail:
% xterm -xrm '*pointerShape: gumby' &

because the resource xterm*pointerShape is more specific than the resource *pointerShape.
Instead, you'll get an xterm with the previously specified pirate cursor.

To override the resource database (and get the Gumby cursor), you'd need to use a resource equally
(or more) specific, such as the following:
% xterm -xrm 'xterm*pointerShape: gumby' &

—VQ and SJC

How -name Affects Resources

The command-line option -name lets you name one instance of an application; the server identifies
the single instance of the application by this name. The name of an application affects how resources
are interpreted. This option is supported by all X Window System clients written with the X Toolkit.

For example, the following command sets the xterm instance name to bigxterm:
% xterm -name bigxterm &

When this command is run, the client uses any resources specified for bigxterm rather than for
xterm.

The -name option allows you to create different instances of the same application, each using
different resources. For example, you could put the following entries into a resource file such as
.Xresources:
XTerm*Font: 8x13
smallxterm*Font: 6x10
smallxterm*Geometry: 80x10
bigxterm*Font: 9x15
bigxterm*Geometry: 80x55

You could then use these commands to create xterms of different specifications. The command:
% xterm &

would create an xterm with the default specifications, while:
% xterm -name bigxterm &

would create a big xterm, 80 characters across by 55 lines down, displaying in the font 9x15. The
command:
% xterm -name smallxterm &

would create a small xterm, 80 characters across by 10 lines down, displaying in the font 6x10.

—VQ and SJC

Setting Resources with xrdb

The xrdb program saves you from maintaining multiple resource files if you run clients on multiple
machines. It stores resources on the X server, where they are accessible to all clients using that
server. (This property is also called the resource database.)

Place the appropriate xrdb command line in your .xinitrc file or .xsession file to initialize resources
at login, although it can also be invoked interactively. It has the following syntax:
 xrdb [options] [filename]

The xrdb client takes several options, all of which are documented on its manual page. We'll discuss
the most useful options.

The optional filename argument specifies the name of a file from which the values of client variables
(resources) will be read. If no filename is specified, xrdb will expect to read its data from standard
input. Note that whatever you type will override the previous contents, so if you inadvertently type
xrdb without a filename argument and then quit with CTRL-d, you will delete any previous values.
(You can append new settings to current ones using the -merge option discussed later in this article.)

The resource filename can be anything you want. Two commonly used names are .Xresources and
.Xdefaults.

You should load a resource file with the xrdb -load option. For example, to load the contents of your
.Xresources file into the RESOURCE_MANAGER, you would type:
% xrdb -load .Xresources

Querying the resource database
You can find out what options are currently set by using the -query option. For example:
% xrdb -query
XTerm*ScrollBar: True
bigxterm*font: 9x15
bigxterm*Geometry: 80x55
smallxterm*Font: 6x10
smallxterm*Geometry: 80x10
xterm*borderWidth: 3

If xrdb has not been run, this command will produce no output.
Loading new values into the resource database

By default, xrdb reads its input (either a file or standard input) and stores the results into the
resource database, replacing the previous values. If you simply want to merge new values with
the currently active ones (perhaps by specifying a single value from standard input), you can use
the -merge option. Only the new values will be changed; variables that were already set will be
preserved rather than overwritten with empty values.
For example, let's say you wanted to add new resources listed in the file new.values. You could
say:
% xrdb -merge new.values

As another example, if you wanted all subsequently run xterm windows to have scrollbars, you
could use standard input and enter:
% xrdb -merge
xterm*scrollBar: True

and then press CTRL-d to end the standard input. Note that because of precedence rules for
resource naming, you may not get what you want automatically. For example, if you specify:
xterm*scrollBar: True

and the more specific value:

xterm*vt100.scrollBar: False

has already been set, your new, less specific setting will be ignored. The problem isn't that you
used the -merge option incorrectly — you just got caught by the rules of precedence.
If your specifications don't seem to work, use the -query option to list the values in the
RESOURCE_MANAGER property, and look for conflicting specifications.
Note also that when you add new specifications, they won't affect any programs already running
— only programs started after the new resource specifications are in effect. (This is also true
even if you overwrite the existing specifications by loading a new resource file. Only programs
run after this point will reflect the new specifications.)

Saving active resource definitions in a file
Assume that you've loaded the RESOURCE_MANAGER property from an .Xresources or other
file. However, you've dynamically loaded a different value using the -merge option, and you'd
like to make the new value your default.
You don't need to edit the file manually (although you certainly could.) The -edit option allows
you to write the current value of the RESOURCE_MANAGER property to a file. If the file
already exists, it is overwritten with the new values. However, xrdb is smart enough to preserve
any comments and preprocessor declarations in the file being overwritten, replacing only the
resource definitions. For example:
% xrdb -edit ~/.Xresources

will save the current contents of the RESOURCE_MANAGER property in the file .Xresources
in your home directory.
If you want to save a backup copy of an existing file, use the -backup option:
% xrdb -edit .mydefaults -backup old

The string following the -backup option is an extension appended to the old filename. In the
prior example, the previous copy of .mydefaults would be saved as .mydefaults.old.

Removing resource definitions
You can delete the definition of the RESOURCE_MANAGER property from the server by
calling xrdb with the -remove option.
There is no way to delete a single resource definition other than to read the current xrdb values
into a file. For example:
% xrdb -query >
 filename

Use an editor to edit the file, deleting the resource definitions you no longer want, and save the
file:
% vi
 filename

Then read the edited values back into the RESOURCE_MANAGER with xrdb (note that we're
replacing the values, not merging them, so we use -load):
% xrdb -load
 filename

—VQ and SJC

Listing the Current Resources for a Client: appres

The appres (application resource) program lists the resources that currently might apply to a client.
These resources may be derived from several sources, including the user's .Xresources file and a
system-wide application defaults file. The directory /usr/lib/X11/app-defaults contains application-
default files for several clients. (Note that it may be in a different place depending on how your X11
is installed; on Mac OS X, which does not come with X by default, you might find it in
/usr/X11R6/etc/app-defaults in one popular install or /usr/local/lib/X11/app-defaults in another.)
The function of these files is discussed in the next section. For now, be aware that all of the resources
contained in these files begin with the class name of the application.

Also be aware that appres has one serious limitation: it cannot distinguish between valid and invalid
resource specifications. It lists all resources that might apply to a client, regardless of whether the
resources are correctly specified.

appres lists the resources that apply to a client having the class_name and/or instance_name you
specify. Typically, you would use appres before running a client program to find out what resources
the client program will access.

For example, say you want to run xterm, but you can't remember the latest resources you've specified
for it, whether you've loaded them, what some of the application defaults are, etc. You can use the
appres client to check the current xterm resources. If you specify only a class name, as in this
command line:[9]

% appres XTerm

appres lists the resources that any xterm would load. In the case of xterm, this is an extensive list,
encompassing all of the system-wide application defaults, as well as any other defaults you have
specified in a resource file.

You can also specify an instance name to list the resources that applies to a particular instance of the
client, as in:
% appres XTerm bigxterm

If you omit the class name, xappres assumes the class -NoSuchClass-, which has no defaults, and
returns only the resources that would be loaded by the particular instance of the client.

Note that the instance can simply be the client name, e.g., xterm. In that case none of the system-wide
application defaults would be listed, since all begin with the class name XTerm. For example, the
command:
% appres xterm

might return resources settings similar to these:
xterm.vt100.scrollBar: True
xterm*PhonyResource: youbet
xterm*pointerShape: gumby
xterm*iconGeometry: +50+50
*VT100.Translations: #override\
 Button1 <Btn3Down>: select-end(CLIPBOARD)\n\
 ~Ctrl ~Meta <Btn2Up>: insert-selection(primary,CLIPBOARD)

Most of these resources set obvious features of xterm. The translation table sets up xterm to use the
xclipboard . Notice also that appres has returned an invalid resource called PhonyResource that we
created for demonstration purposes. You can't rely on appres to tell you what resources a client will

actually load because the appres program cannot distinguish a valid resource specification from an
invalid one. Still, it can be fairly useful to jog your memory as to the defaults you've specified in your
.Xresources file, as well as the system-wide application defaults.

—VQ and SJC

[9] The class name of xterm starts with two uppercase letters; this is contrary to the naming scheme
followed by most other application classes.

Starting Remote X Clients

One of the unique advantages of window systems such as X is that you can run applications remotely
and view them on the local display (as opposed to systems that merely allow for the execution of
shared applications by the local host, such as Windows and the Mac OS prior to OS X). Even Mac
OS X, except insofar as it can run an X server, does not allow for a split between an application's
display and its execution. Only X-aware applications may be executed in such a fashion.

Starting Remote X Clients from Interactive Logins

You can try this easily enough by doing an rlogin or telnet [10] to the remote host, setting the
DISPLAY environment variable and starting up an X client. Of course, it helps to have an X server
already running on your local machine. In the following example, we start up a new xload client
running on the host ruby:
sapphire:joan % rlogin ruby
Password:
Last login: Mon Mar 12 16:27:23 from sapphire.oreilly.com
NetBSD 1.4.2A (ORA-GENERIC) #6: Wed May 31 06:12:46 EEST 2000

TERM = (vt100) xterm

ruby:joan % setenv DISPLAY sapphire:0
ruby:joan % xload &

(You must, of course, have an account on the remote system.)

The first thing that might go wrong is that you may run into server access control. If you see the
following error:
Xlib: connection to "sapphire:0" refused by server
Xlib: Client is not authorized to connect to Server
Error: Can't open display: sapphire:0

you can probably fix it by typing xhost +ruby in a sapphire window and running the command again
on ruby.[11]

Once you have networking and access control issues solved, you should be able to display clients
from the remote machine. The next issue is how to run remote clients easily.

If you have ssh (Section 1.21), its X forwarding handles authorization (setting DISPLAY) and also
encrypts the connection to make it secure. Here's an example using ssh for an interactive login:
sapphire:joan % ssh ruby
joan's passphrase:
Last login: Mon Mar 12 16:27:23 from sapphire.oreilly.com
NetBSD 1.4.2A (ORA-GENERIC) #6: Wed May 31 06:12:46 EEST 2000

TERM = (vt100) xterm

ruby:joan % xload &

Starting a Remote Client with rsh and ssh

If you have ssh, that's the easiest way to start a remote client:
sapphire:joan % ssh ruby -n xterm &

If you aren't running an SSH agent, you'll need to enter your password before the remote command can
run. If you have trouble, try the ssh -f option — with no ampersand (&) at the end of the command
line.

If you don't have ssh, the best way to start a remote client is the same way you'd start any remote
command: using the rsh command:
sapphire:joan % rsh ruby -n xterm -display sapphire:0

There are a few issues to be ironed out first, though.

To run rsh successfully, make sure that you have permission to run remote shells on the remote
machine. This means that the local machine must be listed either in the remote machine's
/etc/hosts.equiv file or in your personal $HOME/.rhosts file on the remote machine. For example, an
.rhosts file might read:
sapphire.ora.com
harry.ora.com

If the host is properly set up on the remote machine, then rsh will execute properly, and rlogin will
no longer ask for a password when you try to connect to the remote machine. If it is not set up
properly, then rlogin will prompt for a password, and rsh will fail with the message Permission
denied.

Using .rhosts or /etc/hosts.equiv for this purpose might be considered a breach of security: it means
that if someone breaks into your account on one machine, he can break into your account on all other
machines as well. Clearly, you want to be careful what hosts you list in .rhosts. For that reason, it's
better to use the fully qualified domain name (i.e., harry.ora.com instead of just harry).

There are a few more rules:

For security reasons, the .rhosts file will be ignored if it is publically writable. Make sure that
the .rhosts file is writable only by you.
Make sure that you are running the correct rsh command. Some systems have a restricted shell,
also named rsh. If you get the following error:
ruby: ruby: No such file or directory

or:
ruby: ruby: cannot open

where ruby is the name of the system that you wanted to run the remote shell on, the problem is
probably that you are using the wrong rsh command. Use the which (Section 1.6) or whereis
(Section 1.3) command to see which rsh you are using:
sapphire:joan % which rsh
/bin/rsh
sapphire:joan % echo $path
/bin /usr/bin /usr/bin/X11 /usr/bsd

On some System V-derived systems such as IRIX, the restricted shell rsh might live in /bin,

while the remote shell rsh (the one you want) resides in /usr/bsd . /bin often shows up in search
paths earlier than /usr/bsd, so on those systems you need to redefine your path explicitly so that
/usr/bsd is searched before /bin. Alternately, you can supply the full path to the command when
you invoke it.
You may need to append the -n option to rsh to avoid a Stopped error message on some
machines.
You need to be sure that the directory containing X binaries is defined in your search path in
your shell setup file (Section 3.3) on the remote system.
If you are using host-based access control, you need to execute the xhost client to extend access
to the remote host before the rsh command is run. Otherwise, clients from the remote host will
not have permission to access your display. If you are using user-based access control, you may
need to run the xauth command to copy your access code to the remote machine.
You have to use the -display option in calling a remote shell, or the Can't Open display
error will be returned. (Alternatively, you can have your DISPLAY environment variable hard-
coded into your shell setup file (Section 3.3) on the remote machine, but this is a very bad
idea.) See Section 35.8 for more information on setting your display.
Be careful not to use unix:0.0 or :0.0 as the display name! Otherwise, the client will display
the window on the local display of the remote host. If this succeeds, the user on that display
could either become very annoyed or take advantage of the sudden access to your account by
reading personal files and sending nasty mail to your boss. You would have no warning; all you
would know is that your window didn't appear. So, before running another client, you may want
to log in to the remote system and do a ps to ensure that you're not already running the
application on the remote display.

ssh expects slightly different files than does rsh, although the server may be configured to allow the
use of both .rhosts and .shosts , as well as the system-level /etc/hosts.equiv and
/etc/ssh/shosts.equiv files. Many administrators have wisely chosen to avoid rsh and related
commands altogether, even to the point of disallowing fallback to rsh from a ssh login attempt. More
information about the peculiarities of ssh may be found in Chapter 51.

—LM, EP, JP, and SJC

[10] Most of the recent distributions of Unix default to the use of ssh as a secure replacement for the
various r* command, (rsh, rcp, rlogin, et al.), so you may want to skip ahead to Chapter 5.
[11] The security-conscious may prefer to use the fully qualified domain name on the xhost command
line (such as xhost +ruby.oreilly.com).

Part III. Working with Files and Directories

Part III contains the following chapters:

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Chapter 12

Chapter 13

Chapter 14

Chapter 15

Chapter 7. Directory Organization

What? Me, Organized?

Computers and offices have one thing in common: you lose things in them. If you walk into my office,
you'll see stacks of paper on top of other stacks of paper, with a few magazines and business cards in
the mix. I can often find things, but I'd be lying if I said that I could always find that article I was
reading the other day!

When you look at a new computer user's home directory (Section 31.11) , you often see something
similar to my office. You see a huge number of unrelated files with obscure names. He hasn't created
any subdirectories, aside from those the system administrator told him they needed; and those
probably aren't even being used. His home directory probably contains programs for several different
projects, personal mail, notes from meetings, a few data files, some half-finished documentation, a
spreadsheet for something he started last month but has now forgotten, and so on.

Remember that a computer's filesystem isn't that much different from any other filing system. If you
threw all of your papers into one giant filing cabinet without sorting them into different topics and
subtopics, the filing cabinet wouldn't do you much good at all: it would just be a mess. On a
computer, the solution to this problem is to sort your files into directories, which are analogous to the
filing cabinets and drawers.

The Unix filesystem can help you keep all of your material neatly sorted. Your directories are like
filing cabinets, with dividers and folders inside them. In this chapter, we'll give some hints for
organizing your computer "office." Of course, things occasionally get misplaced even in the most
efficient offices. Later we'll show some scripts that use the find (Section 8.3) and grep (Section 9.21)
commands to help you find files that are misplaced.

— ML

Many Homes

Various operating systems store users' home directories in many places, and you've probably already
noticed evidence of this throughout this book. Home directories may be in /home/ username, /u/
username, /Users/ username, or some other, more esoteric location.

The simplest way to find out where your system believes your home directory to be is to take
advantage of the fact that cd with no arguments changes to your home directory:
% cd
% pwd
/home/users/deb

Generally, the $HOME environment variable will point to your home directory:
% echo $HOME
/home/users/deb

Most shells also expand tilde (~) to a user's home directory as well, so ~/archive on my machine
becomes /home/users/deb/archive and ~joel/tmp expands to /home/users/joel/tmp.

Your home directory is set in your /etc/passwd entry (or equivalent — Netinfo on Darwin and NIS on
Solaris store the same information, for example). There is no actual requirement that all users' home
directories be in the same directory. In fact, I've seen systems that have lots of users organize home
directories by the first few letters of the username (so my home directory there was /home/d/de/deb).

If you add user accounts using a tool rather than by using vipw and adding them by hand, take a peek at
the documentation for your tool. It should tell you both where it wants to put home directories by
default and how to change that default should you want to.

— DJPH

Access to Directories

Unix uses the same mode bits (Section 50.2) for directories as for files, but they are interpreted
differently. This interpretation will make sense if you remember that a directory is nothing more than
a list of files. Creating a file, renaming a file, or deleting a file from a directory requires changing this
list: therefore, you need write access to the directory to create or delete a file. Modifying a file's
contents does not require you to change the directory; therefore, you can modify files even if you don't
have write access to the directory (provided that you have write access to the file).

Reading a directory is relatively straightforward: you need read access to list the contents of a
directory (find out what files it contains, etc.). If you don't have read access, you can't list the contents
of the directory. However (surprise!), you may still be able to access files in the directory, provided
that you already know their names.

Execute access for a directory has no meaning per se, so the designers of Unix have reassigned this. It
is called the search bit. Search access is needed to perform any operation within a directory and its
subdirectories. In other words, if you deny execute access to a directory, you are effectively denying
access to the directory and everything beneath it in the directory tree. Note that providing search
access to a directory without read access prevents people from listing the directory, but allows them
to access files if they know their names. This is particularly useful in situations where you want to
allow public access to areas, but only to people who know exactly what files to access; files
available via a web server are a good example.

The SUID bit (Section 50.4) is meaningless for directories, but the SGID bit set on a directory affects
group ownership of files created in that directory, and the sticky bit prohibits users with write access
to the directory from deleting or renaming files that they don't own.

The exception is, of course, that the superuser can do absolutely anything at any time.

— ML

A bin Directory for Your Programs and Scripts

If you compile programs or write shell scripts, it's good to put them in one directory. This can be a
subdirectory of your home directory. Or, if several people want to use these programs, you could pick
any other directory — as long as you have write access to it. Usually, the directory's name is
something like bin — though I name mine .bin (with a leading dot) to keep it from cluttering my ls
listings.

For instance, to make a bin under your home directory, type:
% cd
% mkdir bin

Once you have a directory for storing programs, be sure that the shell can find the programs in it.
Type the command echo $PATH and look for the directory's pathname. For instance, if your directory
is called /u/walt/bin, you should see:
% echo $PATH
...:/u/walt/bin:...

If the directory isn't in your PATH, add it in your .profile or .cshrc.

If other people are using your bin directory, use a command like chmod go+rx bin to give them
access. If you're concerned about security, prevent unauthorized users from adding, removing, or
renaming files in your directory by making sure that only you have write access; you can do this with
a command like chmod go-w bin . Also be sure that individual files can't be edited by people who
shouldn't have access to the files.

When you add a new program to your bin directory, if you use the C shell or a C-shell derivative, you
need to use the shell's rehash command to update its command search path.

— JP

Private (Personal) Directories

You might want to create a private directory for your personal files: love letters, financial data,
complaints about your boss, off-color jokes, or whatever you want to keep there. While you can set
any directory you own to be private, having one in your home directory is convenient to organize all
of your private directories together. For simplicity, you can just name it private; giving it a less
obvious name, however, can make it more difficult for prying eyes to discover.

Once you've created a private directory, you should set its file access mode (Section 50.2) to 700;
this means that you're the only person allowed to read, write, or even list the files that are in the
directory. Here's how:
% mkdir private
% chmod 700 private

On any Unix system, anyone who knows the root password can become superuser (Section 49.9) and
read any files he wants. So a private personal directory doesn't give you complete protection by any
means — especially on systems where most users know the root password. If you really need
security, you can always encrypt your files.

—ML and DJPH

Naming Files

Let's think about a filing cabinet again. If the files in your filing cabinet were called letter1, letter2,
letter3, and so on, you'd never be able to find anything — the names aren't descriptive enough. The
same is true on your computer — you should come up with a descriptive name for each file that you
create. Unix systems let you have very long filenames. A few older systems have a 14-character limit,
but most allow names that are 256 characters long — hopefully, longer than you will ever need.

Generally, a descriptive filename summarizes the contents with a few useful words. letter is not a
terribly useful summary, unless perhaps you've only ever written one letter and don't expect to write
another. The recipient's name (JohnShmoe, for example) would only be a useful summary if you
expect to send only one letter to that person. Even if you only plan to send one letter, the name doesn't
tell you anything about what you sent Mr. Shmoe.

OctoberGoldPriceTrends is a pretty good summary; it's obvious what the contents of that file are,
though you might want to know to which year it referred, looking back two years from now. I often
start time-specific files with the date, so that ls sorts the files in date order. If you do this, I
recommend a YYYYMMDD format to get proper sorting, so files look like 20021004-GoldPrices. If
you're going to have regular updates to something, you might want to make a directory to hold those
things (e.g., GoldPrices/20021004, GoldPrices/20021108, GoldPrices/20021206, and so forth).
Note that in this specific example, a filename of nothing but a date makes sense, because you don't
have anything else in that directory but information on gold prices.

Bruce Barnett has suggested that, by using long filenames, you can create a simple "relational
database." For example, you could find out everything you've recorded about the price of gold with a
command like more *Gold*Price*. Of course, if this starts to get very complex, using an actual
database is much simpler.

Similarly, if you're a programmer, the name of each file in your program should describe what the
code does. If the code diagonalizes matrices, the file should be called something like
MatrixDiagonalizer.cpp. If the code reads input from bank tellers, it should be called something like
teller_input.c. Some programming languages even enforce this by requiring a particular file-naming
convention; Java requires files to have only one object per file, and the name of the file and the object
within it must be the same. (Of course, if your object names aren't very good, you're right back where
you started.)

— DJPH

Make More Directories!

Creating many directories has several advantages:

First, it is easier to find any particular file if your home directory is well sorted. Imagine a rack
of filing cabinets that isn't sorted; people just insert files wherever they fit. You may as well
throw your data out; when you need something, you'll never be able to find it.
Second, Unix can access files much faster when directories are relatively small. Ideally,
directories should have at most 60 files in them.
Third, directories are an important part of Unix file protections. By setting the permissions on
the directories themselves, you can use directories to help protect certain groups of files against
access by others.

Create new directories liberally! Make a new directory for every new project you start; make
subdirectories within these directories for subtopics. Your home directory should ideally contain
nothing but subdirectories. Following are some recommended conventions.

If you're a programmer, create a new directory for each project. In the project directory, create a
directory called src for source files, a directory called doc or man for documentation, a directory
called obj for object files, a directory called rel for the current working version (or almost-working
version) of the program, a directory called test for test files and results, and so on. If the program is
large, your src and obj directories should also be split into different subdirectories, each containing
different parts of the project (or perhaps the subdirectory for each part of the project should have its
own src and obj directories).

Many users save all of their mail in one directory (often called Mail or Maildir, depending on your
mail system), which is then divided into subdirectories by topic. I use a variation of this scheme; I
keep general mail in my Mail directory, but I save correspondence about particular projects with the
project itself. For example, my Power Tools mail is shelved with the source code for this article.

— ML

Making Directories Made Easier

Earlier we told you that you should have lots of directories. Experienced Unix users are creating new
directories all the time. How do you make a directory?

It's easy. Use the mkdir command, followed by the name of your new directory:
% mkdir
 directory

This creates the new directory you want. It doesn't necessarily have to be in your current directory.
For example:
% cd /home/los/mikel
% mkdir /src/books/power/articles/files

The only requirements are:

The parent of the directory you want to create must exist (in this case,
/src/books/power/articles).
You must have write access to the parent directory.

What if the parent directory doesn't already exist? Assume, for example, that /src/books already
exists, but the power and articles directories do not. You can make these "by hand," or on many Unix
systems you can add the -p (parents) option:
% mkdir -p /src/books/power/articles/files

This tells mkdir to create all the intermediate directories that are needed. So the previous command
creates three directories:
/src/books/power
/src/books/power/articles
/src/books/power/articles/files

If your mkdir doesn't have -p, you can use history substitution :
% mkdir /src/books/power
% !!/articles
mkdir /src/books/power/articles
% !!/files
mkdir /src/books/power/articles/files

On some mkdirs, you can also supply the file protection mode to be assigned to the directory. (By
default, the file protection mode is derived from your umask.) To do so, use the -m option. For
example:
% mkdir -m 755 /src/books/power/articles/files

This creates the directory with access mode 755, which allows the owner to do anything with the
directory. Note that this must be a numeric mode.

— ML

Chapter 8. Directories and Files

Everything but the find Command

A computer isn't that much different from a house or an office; unless you're incredibly orderly, you
spend a lot of time looking for things that you've misplaced. Even if you are incredibly orderly, you
still spend some time looking for things you need — you just have a better idea of where to find them.
After all, librarians don't memorize the location of every book in the stacks, but they do know how to
find any book, quickly and efficiently, using whatever tools are available. A key to becoming a
proficient user of any system, then, is knowing how to find things.

This chapter is about how to find things. We're excluding the find (Section 9.1) utility itself because
it's complicated and deserves a chapter of its own. We'll concentrate on simpler ways to find files,
beginning with some different ways to use ls.

Well, okay, towards the end of the chapter we'll touch on a few simple uses of find, but to really get
into find, take a peek at Chapter 9.

— ML

The Three Unix File Times

When you're talking to experienced Unix users, you often hear the terms " change time" and
"modification time" thrown around casually. To most people (and most dictionaries), "change" and
"modification" are the same thing. What's the difference here?

The difference between a change and a modification is the difference between altering the label on a
package and altering its contents. If someone says chmod a-w myfile, that is a change; if someone says
echo foo >> myfile, that is a modification. A change modifies the file's inode; a modification
modifies the contents of the file itself. A file's modification time is also called the timestamp .

As long as we're talking about change times and modification times, we might as well mention
"access times," too. The access time is the last time the file was read or written. So reading a file
updates its access time, but not its change time (information about the file wasn't changed) or its
modification time (the file itself wasn't changed).

Incidentally, the change time or "ctime" is incorrectly documented as the "creation time" in many
places, including some Unix manuals. Do not believe them.

— CT

Finding Oldest or Newest Files with ls -t and ls -u

Your directory might have 50, 100, or more files. Which files haven't been used for a while? You
might save space by removing them. You read or edited a file yesterday, but you can't remember its
name? These commands will help you find it. (If you want a quick review of Unix file times, see
Section 8.2.)

In this example, I'll show you my bin (Section 7.4) directory full of shell scripts and other programs
— I want to see which programs I don't use very often. You can use the same technique for
directories with text or other files.

The ls command has options to change the way it orders files. By default, ls lists files alphabetically.
For finding old files, use the -t option. This sorts files by their modification time, or the last time the
file was changed. The newest files are listed first. Here's what happens:
jerry@ora ~/.bin
60 % ls -t
weather unshar scandrafts rn2mh recomp
crontab zloop tofrom rmmer mhprofile
rhyes showpr incc mhadd append
rhno rfl drmm fixsubj README
pickthis maillog reheader distprompter rtfm
cgrep c-w zrefile xmhprint saveart
dirtop cw zscan replf echoerr
which cx zfolders fols
tcx showmult alifile incs

I just added a shell script named weather yesterday; you can see it as the first file in the first column.
I also made a change to my script named crontab last week; it's shown next. The oldest program in
here is echoerr; it's listed last.[1]

ls -t is also great for file-time comparisons in a script (Section 8.15). ls -t is quite useful when I've
forgotten whether I've edited a file recently. If I've changed a file, it will be at or near the top of the ls
-t listing. For example, I might ask, "Have I made the changes to that letter I was going to send?" If I
haven't made the changes (but only think I have), my letter will most likely appear somewhere in the
middle of the listing.

The -u option shows the files' last-access time instead of the last-modification time. The -u option
doesn't do anything with plain ls — you have to use it with another option like -t or -l. The next
listing shows that I've recently used the rtfm and rmmer files. I haven't read README in a long time,
though — oops:
jerry@ora ~/.bin
62 % ls -tu
rtfm cx drmm saveart fixsubj
rmmer c-w zscan scandrafts echoerr
rfl cw zrefile rhno dirtop
mhprofile distprompter xmhprint rhyes cgrep
showmult recomp zloop replf append
tcx crontab zfolders reheader alifile
tofrom mhadd which incs README
rn2mh pickthis unshar maillog
weather incc showpr fols

(Some Unixes don't update the last-access time of executable files when you run them. Shell scripts
are always read, so their last-access times will always be updated.)

The -c option shows when the file's inode information was last changed. The inode time tells when

the file was created, when you used chmod to change the permissions, and so on.
jerry@ora ~/.bin
64 % ls -tc
weather maillog reheader recomp incs
crontab tcx rn2mh fols cx
cgrep zscan tofrom rmmer cw
zloop zrefile mhadd fixsubj c-w
dirtop rfl drmm mhprofile echoerr
pickthis showmult alifile append which
rhno rtfm showpr saveart README
unshar incc scandrafts distprompter
rhyes zfolders xmhprint replf

If you're wondering just how long ago a file was modified (or accessed), add the -l option for a long
listing. As before, adding -u shows the last-access time; -c shows inode change time. If I look at the
access times of a few specific files, I find that I haven't read README since 2001.
jerry@ora ~/.bin
65 % ls -ltu README alifile maillog
-rwxr-xr-x 1 jerry ora 59 Feb 2 2002 maillog
-rwxr-xr-x 1 jerry ora 213 Nov 29 2001 alifile
-rw-r--r-- 1 jerry ora 3654 Nov 27 2001 README

— JP

[1] On some systems, ls -t will list the files in one column, with the newest file first. Although that's
usually a pain, I actually find that more convenient when I'm interested in the most recent files. If your
system does that and you don't like the single-column display, you can use ls -Ct. On other systems, if
a single-column display would be handy, use ls -1t; the "1" option means "one column." You can also
use ls -lt, since long listings also list one file per line. Throughout this article, we'll assume you're
using an ls version that makes multicolumn output.

List All Subdirectories with ls -R

By default, ls lists just one directory. If you name one or more directories on the command line, ls
will list each one. The -R (uppercase R) option lists all subdirectories, recursively. That shows you
the whole directory tree starting at the current directory (or the directories you name on the command
line).

This list can get pretty long; you might want to pipe the output to a pager program such as less (
Section 12.3). The ls -C option is a good idea, too, to list the output in columns. (When the ls output
goes to a pipe, many versions of ls won't make output in columns automatically.)

— JP

The ls -d Option

If you give ls the pathname of a directory, ls lists the entries in the directory:
% ls -l /home/joanne
total 554
-rw-r--r-- 1 joanne 15329 Oct 5 14:33 catalog
-rw------- 1 joanne 58381 Oct 10 09:08 mail
 ...

With the -d option, ls lists the directory itself:
% ls -ld /home/joanne
drwxr-x--x 7 joanne 4608 Oct 10 10:13 /home/joanne

The -d option is especially handy when you're trying to list the names of some directories that match
a wildcard. Compare the listing with and without the -d option:
% ls -Fd [a-c]*
arc/ bm/ ctrl/
atcat.c cdecl/
atl.c.Z cleanscript.c
% ls -F [a-c]*
atcat.c atl.c.Z cleanscript.c

arc:
BugsEtc.Z arcadd.c arcext.c.Z arcmisc.c.Z
 ...
bm:
Execute.c.Z MakeDesc.c.Z MkDescVec.c.Z Search.c.Z
 ...

— JP

Color ls

The GNU ls command — which is on a lot of systems, including Linux — can display names in
colors. For instance, when I enable color listings on my system, directory names are in dark blue,
symbolic links are in sky blue, executable files (scripts, programs, etc.) are in green, and so on.

tcsh 's built-in ls -F command can display in colors, too. Just set color in your .cshrc to enable it, and
configure it using LS_COLORS as described later in this section. You may also want to look at Section
8.6.4 for another way to configure colors if - - color doesn't seem to work.

Trying It

 Go to http://examples.oreilly.com/upt3 for more information on: GNU ls

Has your system been set up for this? Simply try this command:
$ ls --color / /bin

If you don't get an error (ls: no such option — color, or something similar), you should see colors. If
you don't get an error, but you also don't get colors, try one of these commands, and see what you get:
$ ls --color=always / /bin | cat -v
^[[00m/:
^[[01;34mbin^[[00m
^[[01;34mboot^[[00m
 ...
^[[01;34mvar^[[00m

/bin:
^[[01;32march^[[00m
^[[01;36mawk^[[00m
^[[01;32mbasename^[[00m
 ...

$ ls --color=yes / /bin | cat -v
 ...same kind of output...

Those extra characters surrounding the filenames, such as ^[[01;34m and ^[[00m, are the escape
sequences that (you hope) make the colors. (The cat -v (Section 12.4) command makes the sequences
visible, if there are any to see.) The ^[is an ESC character; the next [starts a formatting code; the 01
code means "boldface"; the semicolon (;) is a code separator; the 34 means "blue"; and the m ends the
escape sequence. ^[[00m is an escape sequence that resets the attributes to normal. If you see the
escape sequences when you use cat -v, but you haven't gotten any highlighting effects when you don't
use it, there's probably some kind of mismatch between your termcap or terminfo entry (Section
5.2) (which should define the sequences) and the color database (see later in this section). If you don't
see the escape sequences at all, take a look at Section 8.6.4 for another way to configure color ls.

http://examples.oreilly.com/upt3

Configuring It

How are the colors set? Both GNU ls and tcsh's ls -F use the LS_COLORS environment variable to
decide how to format filenames. Here's a sample (truncated and split onto three lines for printing):
$ echo $LS_COLORS
LS_COLORS=no=00:fi=00:di=01;34:ln=01;36:pi=40;33:so=01;35:
bd=40;33;01:cd=40;33;01:or=01;05;37;41:mi=01;05;37;41:ex=01;32:
.cmd=01;32:.exe=01;32:*.com=01;32:*.btm=01;32:*.bat=01;32:
 ...

The LS_COLORS value is a series of item =attribute values with a colon (:) between each pair.
For instance, fi=00 means that files have the attribute (color) 00; di=01;34 means that directories
have the attributes 01 (bold) and 34 (blue); and *.exe=01;32 means that filenames ending with .exe
have the attributes 01 (bold) and 32 (green). There can be up to three numbers. The first is an attribute
code (bold, underscore, etc.); the second is a foreground color; the third is a background color. So,
01;37;41 indicates boldfaced white foreground (37) text on a red background (41).

The format is fairly obtuse, so you won't want to set LS_COLORS directly if you don't have to. The
easy way to set it is with the dircolors command — typically in a shell setup file (Section 3.3):

eval Section 27.8 '...' Section 28.14
eval `dircolors`

There, dircolors is reading the default database and outputting a command to set LS_COLORS. What
if you don't want the default database settings? You can make your own. An easy place to start is with
dircolors -p, which outputs a copy of the database. You can redirect the output to a file; a good option
is to use a .dircolorsrc file in your home directory. Then take a look at it:
$ dircolors -p > $HOME/.dircolorsrc
$ cat $HOME/.dircolorsrc
 ...
Below should be one TERM entry for each colorizable termtype
TERM linux
 ...
TERM vt100

Below are the color init strings for the basic file types. A color
init string consists of one or more of the following numeric codes:
Attribute codes:
00=none 01=bold 04=underscore 05=blink 07=reverse 08=concealed
Text color codes:
30=black 31=red 32=green 33=yellow 34=blue 35=magenta 36=cyan 37=white
Background color codes:
40=black 41=red 42=green 43=yellow 44=blue 45=magenta 46=cyan 47=white
NORMAL 00 # global default, although everything should be something.
FILE 00 # normal file
DIR 01;34 # directory
LINK 01;36 # symbolic link
 ...

List any file extensions like '.gz' or '.tar' that you would like ls
to colorize below. Put the extension, a space, and the color init string.
(and any comments you want to add after a '#')
.tar 01;31 # archives or compressed (bright red)
.tgz 01;31
 ...

The file starts with a listing of terminal type (Section 5.3) names that understand the color escape
sequences listed in this file. Fortunately, the escape sequences are almost universal; there are some
old terminals (like my old Tektronix 4106, I think . . . R.I.P.) that don't understand these, but not many.

(If you have a different terminal or an odd terminal emulator, you can select a setup file
automatically as you log in (Section 3.10).) The second section has a commented-out list of the
attributes that these terminals recognize. You can use that list in the third section — which has
standard attributes for files, directories, and so on. The fourth section lets you choose attributes for
files by their filename "extensions" — that is, the part of the filename after the final dot (like .tar).

If you make your own database, you'll need to use it (again, typically in a shell setup file) to set
LS_COLORS:
eval `dircolors $HOME/.dircolorsrc`

The -- color Option

For better or for worse, the way to activate color ls is by using the --color option on the command
line. Because almost no one will want to type those characters every time they run ls, most users need
to make an alias (Section 29.2, Section 29.4) for ls that runs ls --color. For example, here are the
three aliases defined for bash on my Linux system:
alias l.='ls .[a-zA-Z]* --color=auto'
alias ll='ls -l --color=auto'
alias ls='ls --color=auto'

If you're using tcsh, setting the color variable to enable ls -F's color also arranges to send --
color=auto to regular ls.

The -- color option gives you three choices of when the ls output should be colored: --
color=never to never output color, -- color=always to always output color, and -- color=auto
to only output color escape sequences if the standard output of ls is a terminal. I suggest using --
color=auto, because -- color=always means that when you pipe the output of ls to a printer or
redirect it to a file, it will still have the ugly escape sequences you saw earlier in this article.

Another color ls

Some systems have another way to configure and use color ls. My FreeBSD systems use this scheme;
if none of the configuration techniques described earlier work, use ls -G or set the CLICOLOR
environment variable. If this works, you'll want to use the LSCOLORS environment variable to
configure color information instead of LS_COLORS as described earlier. Spend a little time perusing
your ls(1) manpage for further details if your ls seems to work this way, as configuring it is likely to
be completely different from what we described previously.

—JP and DJPH

Some GNU ls Features

A lot of the GNU utilities came from Unix utilities — but with extra features. The GNU ls command
is no exception: as its info page (Section 2.9) says, "Because ls is such a fundamental program, it has
accumulated many options over the years." Amen. Let's look at three of the options that aren't covered
by other articles on ls.

An Emacs editor backup file (Section 19.4) has a name ending in ~ (tilde). If you use Emacs a lot,
these files can really clutter your directories. The ls -B option ignores Emacs backup files:
$ ls
bar.c bar.c~ baz.c baz.c~ foo.c foo.c~
$ ls -B
bar.c baz.c foo.c

The option -I (uppercase letter I) takes -B one step further: you can give a wildcard expression (shell
wildcard pattern, not grep-like expressions) for entries not to list. (Remember that — because you
want to pass the wildcard pattern to ls, and not let the shell expand it first — you need to quote
(Section 27.12) the pattern.) For instance, to skip all filenames ending in .a and .o, use the wildcard
pattern *.[ao], like this:
$ ls
bar.a bar.c bar.o baz.a baz.c baz.o foo.a foo.c foo.o
$ ls -I "*.[ao]"
bar.c baz.c foo.c

The "minimalist" side of me might argue that both -B and -I are feeping creatures because you can get
basically the same effect by combining plain old ls with one of the "not this file" shell wildcard
operators. This next option is in the same category. Instead of using -S to sort the files by size, you
could pipe the output of plain ls -l to sort -n (Section 22.5) and sort on the size field, then strip off
the information you didn't want and . . . ahem. (Grumble, grumble.) Okay, -S really is pretty useful. ;-
) I use it a lot when I'm cleaning out directories and want to find the most effective files to remove:
$ ls -lS
total 1724
-rw-rw-r-- 1 jerry ora 395927 Sep 9 06:21 SunTran_map.pdf
-rw------- 1 jerry ora 389120 Oct 31 09:55 core
-rw-r--r-- 1 jerry ora 178844 May 8 16:36 how
-rw------- 1 jerry ora 77122 Oct 29 08:46 dead.letter
 ...

— JP

A csh Alias to List Recently Changed Files

Looking for a recently changed file? Not sure of the name? Trying to do this in a directory with lots of
files? Try the lr alias:
alias lr "ls -lagFqt \!* | head"

This alias takes advantage of the -t option (Section 8.3) to ls, so that recent files can float to the top
of the listing. !* is the csh syntax for "put all of the arguments to the alias here." (We have to escape
the exclamation point to keep it from being interpreted when we set the alias.) head (Section 12.12)
shows just the first ten lines.

A simple lr in my home directory gives me:
bermuda:home/dansmith :-) lr
total 1616
-rw------- 1 dansmith staff 445092 Oct 7 20:11 .mush256
-rw-r--r-- 1 dansmith staff 1762 Oct 7 20:11 .history
drwxr-xr-x 30 dansmith staff 1024 Oct 7 12:59 text/
-rw------- 1 dansmith staff 201389 Oct 7 12:42 .record
drwxr-xr-x 31 dansmith staff 1024 Oct 4 09:41 src/
-rw-r--r-- 1 dansmith staff 4284 Oct 4 09:02 .mushrc
 ...

You can also give a wildcarded pattern to narrow the search. For example, here's the command to
show me the dot files that have changed lately:
bermuda:home/dansmith :-) lr .??*
-rw------- 1 dansmith staff 445092 Oct 7 20:11 .mush256
-rw-r--r-- 1 dansmith staff 1762 Oct 7 20:11 .history
-rw------- 1 dansmith staff 201389 Oct 7 12:42 .record
-rw-r--r-- 1 dansmith staff 4284 Oct 4 09:02 .mushrc
 ...

— DS

Showing Hidden Files with ls -A and -a

The ls command normally ignores any files whose names begin with a dot (.). This is often very
convenient: Unix has lots of small configuration files, scratch files, etc. that you really don't care
about and don't want to be bothered about most of the time. However, there are some times when you
care very much about these files. If you want to see "hidden" files, use the command ls -a. For
example:
% cd
% ls
 Don't show hidden files
Mail mail.txt performance powertools
% ls -a
 This time, show me EVERYTHING
. .emacs Mail powertools
.. .login mail.txt
.cshrc .mailrc performance

With the -a option, we see four additional files: two C-shell initialization files, the customization
files for the GNU Emacs editor, and mail. We also see two "special" entries, . and .., which
represent the current directory and the parent of the current directory. All Unix directories contain
these two entries (Section 10.2).

If you don't want to be bothered with . and .., many versions of ls also have a -A option:
% ls -A
 Show me everything but . and ..
.cshrc .login Mail performance
.emacs .mailrc mail.txt powertools

— ML

Useful ls Aliases

Because ls is one of the most commonly used Unix commands and provides numerous options, it's a
good idea to create aliases for the display formats that best suit your needs. For example, many users
always want to know about their "hidden" files. That's reasonable — they're just as important as any
other files you have. In some cases, they can grow to take up lots of room (for example, some editors
hide backup files), so it's worth being aware of them.

Rather than typing ls -a every time, you can create a convenient alias that supplies the -a or -A option
(Section 8.9) automatically:
$ alias la="ls -aF"
% alias la ls -aF

or:
$ alias la="ls -AF"
% alias la ls -AF

Two things to note here. First, I recommend using la as the name of the alias, rather than just renaming
ls. I personally think it's dangerous to hide the pure, unadulterated command underneath an alias; it's
better to pick a new name and get used to using that name. If you ever need the original ls for some
reason, you'll be able to get at it without problems.

Second, what's with the -F option? I just threw it in to see if you were paying attention. It's actually
quite useful; many users add it to their ls aliases. The -F option shows you the type of file in each
directory by printing an extra character after each filename. Table 8-1 lists what the extra character
can be.

Table 8-1. Filename types listed by ls -F

Character Definition

(nothing) The file is a regular file.

* The file is an executable.

/ The file is a directory.

@ The file is a symbolic link Section 10.4).

| The file is a FIFO (named pipe) Section 43.11).

= The file is a socket.

For example:
% la
 Alias includes -F functionality
.cshrc .login Mail/ performance/
.emacs .mailrc mail.txt powertools@

This says that Mail and performance are directories. powertools is a symbolic link (ls -l will show
you what it's linked to). There are no executables, FIFOs, or sockets in this directory.

[If you use tcsh , it has a built-in ls called ls -F, which not only prints this extra information, but also

supports color (Section 8.6) and caching of filesystem information for speed. I generally put alias ls
ls -F in my .cshrc. — DH]

You may want this version instead:
$ alias la="ls -aFC"
% alias la ls -aFC

The -C option lists the files in multiple columns. This option isn't needed with ls versions where
multicolumn output is the normal behavior. Note, however, that when piped to another command, ls
output is single-column unless -C is used. For example, use ls -C | less to preserve multiple
columns with a paged listing.

Finally, if you often need the full listing, use the alias:
$ alias ll="ls -l"
% alias ll ls -l

This alias may not seem like much of a shortcut until after you've typed it a dozen times. In addition,
it's easy to remember as "long listing." Some Unix systems even include ll as a regular command.

—DG and ML

Can't Access a File? Look for Spaces in the Name

What's wrong here?
% ls
afile exefiles j toobig
% lpr afile
lpr: afile: No such file or directory

Huh? ls shows that the file is there, doesn't it? Try using:

-v Section 12.4, -t -e Section 1125
% ls -l | cat -v -t -e
total 89$
-rw-rw-rw- 1 jerry 28 Mar 7 19:46 afile $
-rw-r--r-- 1 root 25179 Mar 4 20:34 exefiles$
-rw-rw-rw- 1 jerry 794 Mar 7 14:23 j$
-rw-r--r-- 1 root 100 Mar 5 18:24 toobig$

The cat -e option marks the ends of lines with a $. Notice that afile has a $ out past the end of the
column. Aha . . . the filename ends with a space. Whitespace characters like TABs have the same
problem, though the default ls -q (Section 8.12) option (on many Unix versions) shows them as ? if
you're using a terminal.

If you have the GNU version of ls, try its -Q option to put double quotes around each name:
$ ls -Q
"afile " "exefiles" "j" "toobig"

To rename afile, giving it a name without the space, type:
% mv "afile " afile

The quotes (Section 27.12) tell the shell to include the space as part of the first argument it passes to
mv. The same quoting works for other Unix commands as well, such as rm.

— JP

Showing Nonprintable Characters in Filenames

From time to time, you may get filenames with nonprinting characters, spaces, and other garbage in
them. This is usually the result of some mistake — but it's a pain nevertheless.

If you're using a version of ls that uses -q by default (and most do these days), the ls command gives
you some help; it converts all nonprinting characters to a question mark (?), giving you some idea that
something funny is there.[2] For example:
% ls
ab??cd

This shows that there are two nonprinting characters between ab and cd. To delete (or rename) this
file, you can use a wildcard pattern like ab??cd.

Warning
Be careful: when I was new to Unix, I once accidentally generated a lot of weird filenames. ls told me that they all began with ????, so I naively ty ped rm ????*. That's when my troubles began. See Section 14.3 for the rest of the gruesome
story . (I spent the next day and night try ing to undo the damage.) The moral is: it's alway s a good idea to use echo to test filenames with wildcards in them.

If you're using an ls that came from System V Unix, you have a different set of problems. System V's ls
doesn't convert the nonprinting characters to question marks. In fact, it doesn't do anything at all — it
just spits these weird characters at your terminal, which can respond in any number of strange and
hostile ways. Most of the nonprinting characters have special meanings — ranging from "don't take
any more input" to "clear the screen." [If you don't have a System V ls, but you want this behavior for
some reason, try GNU ls with its -N option. — JP]

To prevent this, or to see what's actually there instead of just the question marks, use the -b option.[3]

This tells ls to print the octal value of any nonprinting characters, preceeded by a backslash. For
example:
% ls -b
ab\013\014cd

This shows that the nonprinting characters have octal values 13 and 14, respectively. If you look up
these values in an ASCII table, you will see that they correspond to CTRL-k and CTRL-l. If you think
about what's happening — you'll realize that CTRL-l is a formfeed character, which tells many
terminals to clear the screen. That's why the regular ls command behaved so strangely.

Once you know what you're dealing with, you can use a wildcard pattern to delete or rename the file.

— ML

[2] Even in lses that use it, the -q option is the default only when ls's standard output is a terminal. If
you pipe the output or redirect it to a file, remember to add -q.
[3] On systems that don't support ls -b, pipe the ls -q output through cat -v or od -c (Section 12.4) to
see what the nonprinting characters are.

Counting Files by Types

I use awk (Section 20.10) a lot. One of my favorite features of awk is its associative arrays. This
means awk can use anything as an index into an array. In the next example, I use the output of the file
(Section 12.6) command as the index into an array to count how many files there are of each type:

xargs Section 28.17
#!/bin/sh
usage: count_types [directory ...]
Counts how many files there are of each type
Original by Bruce Barnett
Updated version by yu@math.duke.edu (Yunliang Yu)
find ${*-.} -type f -print | xargs file |
awk '{
 $1=NULL;
 t[$0]++;
}
END {
 for (i in t) printf("%d\t%s\n", t[i], i);
}' | sort -nr # Sort the result numerically, in reverse

The output of this might look like:
38 ascii text
32 English text
20 c program text
17 sparc executable not stripped
12 compressed data block compressed 16 bits
8 executable shell script
1 sparc demand paged dynamically linked executable
1 executable /bin/make script

— BB

Listing Files by Age and Size

If you find a large directory and most of the files are new, that directory may not be suitable for
removal, as it is still being used. Here is a script that lists a summary of file sizes, broken down into
the time of last modification. You may remember that ls -l will list the month, day, hour, and minute if
the file is less than six months old and show the month, day, and year if the file is more than six
months old. Using this, the script creates a summary for each of the last six months, as well as a
summary for each year for files older than that:

xargs Section 28.17
#!/bin/sh
usage: age_files [directory ...]
lists size of files by age
#
pick which version of ls you use
System V
#LS="ls -ls"
Berkeley
LS="ls -lsg"
#
find ${*:-.} -type f -print | xargs $LS | awk '
argument 7 is the month; argument 9 is either hh:mm or yyyy
test if argument is hh:mm or yyyy format
{
 if ($9 !~ /:/) {
 sz[$9]+=$1;
 } else {
 sz[$7]+=$1;
 }
}
END {
 for (i in sz) printf("%d\t%s\n", sz[i], i);
}' | sort -nr

The program might generate results like this:
5715 1991
3434 1992
2929 1989
1738 Dec
1495 1990
1227 Jan
1119 Nov
953 Oct
61 Aug
40 Sep

[For the book's third edition, I thought about replacing this venerable ten-year-old script with one
written in Perl. Perl, after all, lets you get at a file's inode information directly from the script,
without the ls -awk kludge. But I changed my mind because this technique — groveling through the
output of ls -l with a "summarizing" filter script — is really handy sometimes. — JP]

— BB

newer: Print the Name of the Newest File

Here's a quick alias that figures out which file in a group is the newest:

-d Section 8.5
alias newer "ls -dt \!* | head -1"

If your system doesn't have a head (Section 12.12) command, use sed 1q instead.

For example, let's say that you have two files named plan.v1 and plan.v2. If you're like me, you
(often) edit the wrong version by mistake — and then, a few hours later, can't remember what you
did. You can use this alias to figure out which file you changed most recently:
% newer plan.v*
plan.v1

I could also have used command substitution (Section 28.14) to handle this in one step:
% emacs `newer plan.*`

— ML

oldlinks: Find Unconnected Symbolic Links

One problem with symbolic links is that they're relatively "fragile" (Section 10.6). The link and the
file itself are different kinds of entities; the link only stores the name of the "real" file. Therefore, if
you delete or rename the real file, you can be left with a "dead" or "old" link: a link that points to a
file that doesn't exist.

This causes no end of confusion, particularly for new users. For example, you'll see things like this:
% ls -l nolink
lrwxrwxrwx 1 mikel users 12 Nov 2 13:57 nolink -> /u/joe/afile
% cat nolink
cat: nolink: No such file or directory

The file's obviously there, but cat tells you that it doesn't exist.

There's no real solution to this problem, except to be careful. Try writing a script that checks links to
see whether they exist. Here's one such script from Tom Christiansen; it uses find to track down all
links and then uses perl to print the names of links that point to nonexistent files. (If you're a Perl
hacker and you'll be using this script often, you could replace the Unix find utility with the Perl
File::Find module.)
#!/bin/sh
find . -type l -print | perl -nle '-e || print'

The script only lists "dead" links; it doesn't try to delete them or do anything drastic. If you want to
take some other action (such as deleting these links automatically), you can use the output of the script
in backquotes (Section 28.14). For example:
% rm `oldlinks`

— ML

Picking a Unique Filename Automatically

Shell scripts, aliases, and other programs often need temporary files to hold data to be used later. If
the program will be run more than once, or if the temp file needs to stay around after the program is
done, you need some way to make a unique filename. Generally these files are stored in /tmp or
/usr/tmp.

One way is with the shell's process ID number (Section 24.3), available in the $$ parameter. You
might name a file /tmp/ myprog$$; the shell will turn that into something like /tmp/ myprog1234 or
/tmp/ myprog28471. If your program needs more than one temporary file, add an informative suffix to
the names:
% errs=/tmp/
 myprog-errs$$
% output=/tmp/
 myprog-output$$

You can also use date's + option to get a representation of the date suitable for temporary filenames.
For example, to output the Year, month, day, Hour, Minute, and Second:
% date
Wed Mar 6 17:04:39 MST 2002
% date +'%Y%m%d%H%M%S'
20020306170515

Use a + parameter and backquotes (``) (Section 28.14) to get a temp file named for the current date
and/or time. For instance, on May 31 the following command would store foo.0531 in the Bourne
shell variable temp. On December 7, it would store foo.1207:
% temp=foo.`date +'%m%d'`

If you'll be generating a lot of temporary files in close proximity, you can use both the process ID and
the date/time:
% output=/tmp/
 myprog$$.`date +'%Y%m%d%H%M%S'`
% echo $output
/tmp/myprog25297.20020306170222

—JP and DJPH

Chapter 9. Finding Files with find

How to Use find

The utility find is one of the most useful and important of the Unix utilities. It finds files that match a
given set of parameters, ranging from the file's name to its modification date. In this chapter, we'll be
looking at many of the things it can do. As an introduction, here's a quick summary of its features and
basic operators:
% find
 path operators

where path is one or more directories in which find will begin to search and operators (or, in more
customary jargon, options) tell find which files you're interested in. The operators are as follows:
-name filename

Find files with the given filename. This is the most commonly used operator. filename may
include wildcards, but if it does, they must be quoted to prevent the shell from interpreting the
wildcards.

-perm mode
Find files with the given access mode. You must give the access mode in octal.

-type c
Find the files of the given type, specified by c. c is a one-letter code; for example, f for a plain
file, b for a block special file, l for a symbolic link, and so forth.

-user name
Find files belonging to user name. name may also be a user ID number.

-group name
Find files belonging to group name. name may also be a group ID number.

-size n
Find files that are n blocks long. A block usually equals 512 bytes. The notation + n says "find
files that are over n blocks long." The notation n c says "find files that are n characters long."
Can you guess what + n c means?

-inum n
Find files with the inode number n.

-atime n
Find files that were accessed n days ago. + n means "find files that were accessed over n days
ago" (i.e., not accessed in the last n days). - n means "find files that were accessed less than n
days ago" (i.e., accessed in the last n days).

-mtime n
Similar to -atime, except that it checks the time the file's contents were modified.

-ctime n
Similar to -atime, except that it checks the time the inode was last changed. "Changed" means
that the file was modified or that one of its attributes (for example, its owner) was changed.

-newer file
Find files that have been modified more recently than file.

You might want to take some action on files that match several criteria. So we need some way to
combine several operators:
operator1 -a operator2

Find files that match both operator1 and operator2. The -a isn't strictly necessary; when two

search parameters are provided, one after the other, find assumes you want files that match both
conditions.

operator1 -o operator2
Find files that match either operator1 or operator2.

! operator
Find all files that do not match the given operator. The ! performs a logical NOT operation.

\(expression \)
Logical precedence; in a complex expression, evaluate this part of the expression before the
rest.

Another group of operators tells find what action to take when it locates a file:
-print

Print the file's name on standard output. On most modern finds, this is the default action if no
action is given.

-ls
List the file's name on standard output with a format like ls -l. (Not on older versions.)

-exec command
Execute command. To include the pathname of the file that's just been found in command, use the
special symbol {}. command must end with a backslash followed by a semicolon (\;). For
example:
% find . -name "*.o" -exec rm -f {} \;

tells find to delete any files whose names end in .o.
-ok command

Same as -exec, except that find prompts you for permission before executing command. This is a
useful way to test find commands.

A last word: find is one of the tools that vendors frequently fiddle with, adding (or deleting) a few
operators that they like (or dislike). The GNU version, in particular, has many more. The operators
listed here should be valid on virtually any system. If you check your manual page, you may find
others.

— ML

Delving Through a Deep Directory Tree

The first, most obvious, use of this utility is find's ability to locate old, big, or unused files whose
locations you've forgotten. In particular, find's most fundamentally important characteristic is its
ability to travel down subdirectories.

Normally the shell provides the argument list to a command. That is, Unix programs are frequently
given filenames and not directory names. Only a few programs can be given a directory name and
march down the directory searching for subdirectories. The programs find, tar (Section 38.3), du,
and diff do this. Some versions of chmod (Section 50.5), chgrp, ls, rm, and cp will, but only if a -r or
-R option is specified.

In general, most commands do not understand directory structures and rely on the shell to expand
wildcards to directory names. That is, to delete all files whose names end with a .o in a group of
directories, you could type:
% rm *.o */*.o */*/*.o

Not only is this tedious to type, it may not find all of the files you are searching for. The shell has
certain blind spots. It will not match files in directories whose names start with a dot. And, if any
files match */*/*/*.o, they would not be deleted.

Another problem is typing the previous command and getting the error "Arguments too long." This
means the shell would expand too many arguments from the wildcards you typed.

find is the answer to these problems.

A simple example of find is using it to print the names of all the files in the directory and all
subdirectories. This is done with the simple command:
% find . -print

The first arguments to find are directory and file pathnames — in the example, a dot (.) is one name
for the current directory. The arguments after the pathnames always start with a minus sign (-) and tell
find what to do once it finds a file; these are the search operators. In this case, the filename is printed.

You can use the tilde (~), as well as particular paths. For example:
% find ~ ~barnett /usr/local -print

And if you have a very slow day, you can type:
% find / -print

This command will list every file on the system. This is okay on single-user workstations with their
own disks. However, it can tie up disks on multiuser systems enough to make users think of gruesome
crimes! If you really need that list and your system has fast find or locate, try the command find
'/*' or locate ' *' instead.

find sends its output to standard output, so once you've "found" a list of filenames, you can pass them
to other commands. One way to use this is with command substitution:
% ls -l `find . -print`

The find command is executed, and its output replaces the backquoted string. ls sees the output of find
and doesn't even know find was used.

An alternate method uses the xargs command. xargs and find work together beautifully. xargs

executes its arguments as commands and reads standard input to specify arguments to that command.
xargs knows the maximum number of arguments each command line can handle and does not exceed
that limit. While the command:
% ls -ld `find / -print`

might generate an error when the command line is too large, the equivalent command using xargs will
never generate that error:
% find / -print | xargs ls -ld

—BB and JP

Don't Forget -print

"Why didn't find find my file?" I wondered sometimes. "I know it's there!"

More often than not, I'd forgotten to use -print. Without -print (or -ls, on versions of find that have it),
find may not print any pathnames. For a long time, this quirk of find confused new users, so most
modern versions of find will assume -print if you don't supply an action; some will give you an error
message instead. If you don't get the output you expected from find, check to make sure that you
specified the action you meant.

—JP and DJPH

Looking for Files with Particular Names

You can look for particular files by using an expression with wildcards (Section 28.3) as an argument
to the -name operator. Because the shell also interprets wildcards, it is necessary to quote them so
they are passed to find unchanged. Any kind of quoting can be used:
% find . -name *.o -print
% find . -name '*.o' -print
% find . -name "[a-zA-Z]*.o" -print

Any directory along the path to the file is not matched with the -name operator, merely the name at the
end of the path. For example, the previous commands would not match the pathname ./subdir.o/afile
— but they would match ./subdir.o and ./src/subdir/prog.o.

Section 9.27 shows a way to match directories in the middle of a path. Here's a simpler "find file"
alias that can come in very handy:
 alias ff "find . -name '*\!{*}*' -ls"

Give it a file or directory name; the alias will give a long listing of any file or directory names that
contain the argument. For example:
% ff ch09
2796156 4 -rw-r--r-- 1 deb deb 628 Feb 2 10:41 ./oreilly/UPT/book/ch09.sgm

—BB and JP

Searching for Old Files

If you want to find a file that is seven days old, use the -mtime operator:
% find . -mtime 7 -print

An alternate way is to specify a range of times:
% find . -mtime +6 -mtime -8 -print

mtime is the last modified time of a file. If you want to look for files that have not been used, check
the access time with the -atime argument. Here is a command to list all files that have not been read
in 30 days or more:
% find . -type f -atime +30 -print

It is difficult to find directories that have not been accessed because the find command modifies the
directory's access time.

There is another time associated with each file, called the ctime, the inode change time. Access it
with the -ctime operator. The ctime will have a more recent value if the owner, group, permission, or
number of links has changed, while the file itself has not. If you want to search for files with a
specific number of links, use the -links operator.

Section 8.2 has more information about these three times, and Section 9.7 explains how find checks
them.

— BB

Be an Expert on find Search Operators

find is admittedly tricky. Once you get a handle on its abilities, you'll learn to appreciate its power.
But before thinking about anything remotely tricky, let's look at a simple find command:
% find . -name "*.c" -print

The . tells find to start its search in the current directory (.) and to search all subdirectories of the
current directory. The -name "*.c" tells find to find files whose names end in .c. The -print
operator tells find how to handle what it finds, i.e., print the names on standard output.

All find commands, no matter how complicated, are really just variations on this one. You can
specify many different names, look for old files, and so on; no matter how complex, you're really only
specifying a starting point, some search parameters, and what to do with the files (or directories or
links or . . .) you find.

The key to using find in a more sophisticated way is realizing that search parameters are really
"logical expressions" that find evaluates. That is, find:

Looks at every file, one at a time.
Uses the information in the file's inode to evaluate an expression given by the command-line
operators.
Takes the specified action (e.g., printing the file's name) if the expression's value is "true."

So, -name "*.c" is really a logical expression that evaluates to true if the file's name ends in .c.

Once you've gotten used to thinking this way, it's easy to use the AND, OR, NOT, and grouping
operators. So let's think about a more complicated find command. Let's look for files that end in .o or
.tmp AND that are more than five days old, AND let's print their pathnames. We want an expression
that evaluates true for files whose names match either *.o OR *.tmp:
-name "*.o" -o -name "*.tmp"

If either condition is true, we want to check the access time. So we put the previous expression within
parentheses (quoted with backslashes so the shell doesn't treat the parentheses as subshell operators).
We also add a -atime operator:
-atime +5 \(-name "*.o" -o -name "*.tmp" \)

The parentheses force find to evaluate what's inside as a unit. The expression is true if "the access
time is more than five days ago and \(either the name ends with .o or the name ends with .tmp \)." If
you didn't use parentheses, the expression would mean something different:
-atime +5 -name "*.o" -o -name "*.tmp" Wrong!

When find sees two operators next to each other with no -o between, that means AND. So the
"wrong" expression is true if "either \(the access time is more than five days ago and the name ends
with .o \) or the name ends with .tmp." This incorrect expression would be true for any name ending
with .tmp, no matter how recently the file was accessed — the -atime doesn't apply. (There's
nothing really "wrong" or illegal in this second expression — except that it's not what we want. find
will accept the expression and do what we asked — it just won't do what we want.)

The following command, which is what we want, lists files in the current directory and subdirectories
that match our criteria:
% find . -atime +5 \(-name "*.o" -o -name "*.tmp" \) -print

What if we wanted to list all files that do not match these criteria? All we want is the logical inverse
of this expression. The NOT operator is an exclamation point (!). Like the parentheses, in most shells
we need to escape ! with a backslash to keep the shell from interpreting it before find can get to it.
The ! operator applies to the expression on its right. Since we want it to apply to the entire
expression, and not just the -atime operator, we'll have to group everything from -atime to "*.tmp"
within another set of parentheses:
% find . \! \(-atime +5 \(-name "*.o" -o -name "*.tmp" \) \) -print

For that matter, even -print is an expression; it always evaluates to true. So are -exec and -ok; they
evaluate to true when the command they execute returns a zero status. (There are a few situations in
which this can be used to good effect.)

But before you try anything too complicated, you need to realize one thing. find isn't as sophisticated
as you might like it to be. You can't squeeze all the spaces out of expressions, as if it were a real
programming language. You need spaces before and after operators like !, (,), and {}, in addition to
spaces before and after every other operator. Therefore, a command line like the following won't
work:
% find . \!\(-atime +5 \(-name "*.o" -o -name "*.tmp"\)\) -print

A true power user will realize that find is relying on the shell to separate the command line into
meaningful chunks, or tokens. And the shell, in turn, is assuming that tokens are separated by spaces.
When the shell gives find a chunk of characters like *.tmp)) (without the double quotes or
backslashes — the shell took them away), find gets confused; it thinks you're talking about a weird
filename pattern that includes a couple of parentheses.

Once you start thinking about expressions, find's syntax ceases to be obscure — in some ways, it's
even elegant. It certainly allows you to say what you need to say with reasonable efficiency.

—ML and JP

The Times That find Finds

The times that go with the find operators -mtime , -atime, and -ctime often aren't documented very
well. The times are in days:

A number with no sign, for example, 3 (as in -mtime 3 or -atime 3), means the 24-hour period
that ended exactly 3 days ago (in other words, between 96 and 72 hours ago).
A number with a minus sign (-) refers to the period since that 24-hour period. For example, -3
(as in -mtime -3) is any time between now and 3 days ago (in other words, between 0 and 72
hours ago).
Naturally, a number with a plus sign (+) refers to the period before that 24-hour period. For
example, +3 (as in -mtime +3) is any time more than 3 days ago (in other words, more than 96
hours ago).

Got that? Then you should see that -atime -2 and -atime 1 are both true on files that have been
accessed between 48 and 24 hours ago. (-atime -2 is also true on files accessed 24 hours ago or
less.)

For more exact comparisons, use find -newer with touch Section 9.8).

— JP

Exact File-Time Comparisons

One problem with find's time operators (-atime and its brethren) is that they don't allow very exact
comparisons. They only allow you to specify time to within a day, and sometimes that's just not good
enough. You think that your system was corrupted at roughly 4 p.m. yesterday (March 20); you want to
find any files that were modified after that point, so you can inspect them. Obviously, you'd like
something more precise than "give me all the files that were modified in the last 24 hours."

Some versions of touch , and other freely available commands like it, can create a file with an
arbitrary timestamp. That is, you can use touch to make a file that's backdated to any point in the past
(or, for that matter, postdated to some point in the future). This feature, combined with find's -newer
operator, lets you make comparisons accurate to one minute or less.

For example, to create a file dated 4 p.m., March 20, give the command:
% touch -t 03201600 /tmp/4PMyesterday

Then to find the files created after this, give the command:
% find . -newer /tmp/4PMyesterday -print

What about "older" files? Older files are "not newer" files, and find has a convenient NOT operator
(!) for just this purpose. So let's say that you want to find files that were created between 10:46 a.m.
on July 3, 1999 and 9:37 p.m. on June 4, 2001. You could use the following commands:[1]

% touch -t 199907031046 /tmp/file1
% touch -t 200106042137 /tmp/file2
% find . -newer /tmp/file1 \! -newer /tmp/file2 -print
% rm /tmp/file[12]

— ML

[1] Very old versions of find have trouble with using multiple -newer expressions in one command. If
find doesn't find files that it should, try using multiple explicit -mtime expressions instead. They're
not as precise, but they will work even on finds with buggy -newer handling.

Running Commands on What You Find

Often, when you find a file, you don't just want to see its name; you want to do something, like grep
(Section 13.2) for a text string. To do this, use the -exec operator. This allows you to specify a
command that is executed upon each file that is found.

The syntax is peculiar and in many cases, it is simpler just to pipe the output of find to xargs (Section
28.17). However, there are cases where -exec is just the thing, so let's plunge in and explain its
peculiarities.

The -exec operator allows you to execute any command, including another find command. If you
consider that for a moment, you realize that find needs some way to distinguish the command it's
executing from its own arguments. The obvious choice is to use the same end-of-command character
as the shell (the semicolon). But since the shell uses the semicolon itself, it is necessary to escape the
character with a backslash or quotes.

Therefore, every -exec operator ends with the characters \;. There is one more special argument that
find treats differently: {} . These two characters are used as the variable whose name is the file find
found. Don't bother rereading that last line: an example will clarify the usage. The following is a
trivial case and uses the -exec operator with echo to mimic the -print operator:
% find . -exec echo {} \;

The C shell (Section 29.1) uses the characters { and }, but doesn't change {} together, which is why
it is not necessary to quote these characters. The semicolon must be quoted, however. Quotes can be
used instead of a backslash:
% find . -exec echo {} ';'

as both will sneak the semicolon past the shell and get it to the find command. As I said before, find
can even call find. If you wanted to list every symbolic link in every directory owned by a group staff
under the current directory, you could execute:
% find `pwd` -type d -group staff -exec find {} -type l -print \;

To search for all files with group-write permission under the current directory and to remove the
permission, you can use:
% find . -perm -20 -exec chmod g-w {} \;

or:
% find . -perm -20 -print | xargs chmod g-w

The difference between -exec and xargs is subtle. The first one will execute the program once per
file, while xargs can handle several files with each process. However, xargs may have problems
with filenames that contain embedded spaces. (Versions of xargs that support the -0 option can avoid
this problem; they expect NUL characters as delimiters instead of spaces, and find 's -print0 option
generates output that way.)

Occasionally, people create a strange file that they can't delete. This could be caused by accidentally
creating a file with a space or some control character in the name. find and -exec can delete this file,
while xargs could not. In this case, use ls -il to list the files and i-numbers, and use the -inum
operator with -exec to delete the file:
% find . -inum 31246 -exec rm {} ';'

If you wish, you can use -ok , which does the same as -exec, except the program asks you to confirm

the action first before executing the command. It is a good idea to be cautious when using find,
because the program can make a mistake into a disaster. When in doubt, use echo as the command. Or
send the output to a file, and examine the file before using it as input to xargs. This is how I
discovered that find requires {} to stand alone in the arguments to -exec. I wanted to rename some
files using -exec mv {} {}.orig, but find wouldn't replace the {} in {}.orig. I learned that I have
to write a shell script that I tell find to execute.

Note
GNU find will replace the {} in {}.orig for y ou. If y ou don't have GNU find, a little Bourne shell while loop with redirected input can handle that too:

$ find ... -print |
> while read file
> do mv "$file" "$file.orig"
> done

find writes the filenames to its standard output. The while loop and its read command read the filenames from standard input then make them available as $file, one by one.

Section 9.12 and Section 9.27 have more examples of -exec.

— BB

Using -exec to Create Custom Tests

Here's something that will really make your head spin. Remember that -exec doesn't necessarily
evaluate to "true"; it only evaluates to true if the command it executes returns a zero exit status. You
can use this to construct custom find tests.

Assume that you want to list files that are "beautiful." You have written a program called beauty that
returns zero if a file is beautiful and nonzero otherwise. (This program can be a shell script, a perl
script, an executable from a C program, or anything you like.)

Here's an example:
% find . -exec beauty {} \; -print

In this command, -exec is just another find operator. The only difference is that we care about its
value; we're not assuming that it will always be "true." find executes the beauty command for every
file. Then -exec evaluates to true when find is looking at a "beautiful" program, causing find to print
the filename. (Excuse us, causing find to evaluate the -print. :-))

Of course, this ability is capable of infinite variation. If you're interested in finding beautiful C code,
you could use the command:
% find . -name "*.[ch]" -exec beauty {} \; -print

For performance reasons, it's a good idea to put the -exec operator as close to the end as possible.
This avoids starting processes unnecessarily; the -exec command will execute only when the previous
operators evaluate to true.

—JP and ML

Custom -exec Tests Applied

My favorite reason to use find 's -exec is for large recursive greps. Let's say I want to search through
a large directory with lots of subdirectories to find all of the .cc files that call the method GetRaw(
):
% find . -name *.cc -exec grep -n "GetRaw(" {} \; -print
58: string Database::GetRaw(const Name &owner) const {
67: string Database::GetRaw(const Name &owner,
./db/Database.cc
39: return new Object(owner, _database->GetRaw(owner));
51: string Object::GetRaw(const Property& property) const {
52: return _database->GetRaw(_owner, property);
86: Properties properties(_database->GetRaw(owner));
103: return _database->GetRaw(_owner);
./db/Object.cc
71: return new DatabaseObject(owner, GetDatabase().GetRaw(owner));
89: return Sexp::Parse(GetRaw(property));
92: SexpPtr parent = Sexp::Parse(GetRaw("_parent"))->Eval(this);
./tlisp/Object.cc

This output is from a real source directory for an open source project I'm working on; it shows me
each line that matched my grep along with its line number, followed by the name of the file where
those lines were found. Most versions of grep can search recursively (using -R), but they search all
files; you need find to grep through only certain files in a large directory tree.

—JP and DJPH

Finding Many Things with One Command

Running find is fairly time consuming, and for good reason: it has to read every inode in the directory
tree that it's searching. Therefore, combine as many things as you can into a single find command. If
you're going to walk the entire tree, you may as well accomplish as much as possible in the process.

Let's work from an example. Assume that you want to write a command (eventually for inclusion in a
Chapter 27 shell script) that sets file-access modes correctly. You want to give 771 access to all
directories, 600 access for all backup files (*.BAK), 755 access for all shell scripts (*.sh), and 644
access for all text files (*.txt). You can do all this with one command:
$ find . \(-type d -a -exec chmod 771 {} \; \) -o \
 \(-name "*.BAK" -a -exec chmod 600 {} \; \) -o \
 \(-name "*.sh" -a -exec chmod 755 {} \; \) -o \
 \(-name "*.txt" -a -exec chmod 644 {} \; \)

Why does this work? Remember that -exec is really just another part of the expression; it evaluates to
true when the following command is successful. It isn't an independent action that somehow applies to
the whole find operation. Therefore, -exec can be mixed freely with -type, -name, and so on.

However, there's another important trick here. Look at the first chunk of the command — the first
statement, that is, between the first pair of \(and \). It says, "If this file is a directory and the chmod
command executes successfully . . . " Wait. Why doesn't the -exec execute a chmod on every file in
the directory to see whether it's successful?

Logical expressions are evaluated from left to right; in any chunk of the expression, evaluation stops
once it's clear what the outcome is. Consider the logical expression "`A AND B' is true." If A is false,
you know that the result of "`A AND B' is true" will also be false — so there's no need to look the
rest of the statement, B.

So in the previous multilayered expression, when find is looking at a file, it checks whether the file is
a directory. If it is, -type d is true, and find evaluates the -exec (changing the file's mode). If the file is
not a directory, find knows that the result of the entire statement will be false, so it doesn't bother
wasting time with the -exec. find goes on to the next chunk after the OR operator — because,
logically, if one part of an OR expression isn't true, the next part may be — so evaluation of an OR . .
. OR . . . OR . . . expression has to continue until either one chunk is found to be true, or they've all
been found to be false. In this case having the directory first is important, so that directories named,
for example, blah.BAK don't lose their execute permissions.

Of course, there's no need for the -execs to run the same kind of command. Some could delete files,
some could change modes, some could move them to another directory, and so on.

One final point. Although understanding our multilayered find expression was difficult, it really was
no different from a "garden variety" command. Think about what the following command means:
% find . -name "*.c" -print

There are two operators: -name (which evaluates to true if the file's name ends in .c) and -print
(which is always true). The two operators are ANDed together; we could stick a -a between the two
without changing the result at all. If -name evaluates to false (i.e., if the file's name doesn't end in .c),
find knows that the entire expression will be false. So it doesn't bother with -print. But if -name
evaluates to true, find evaluates -print — which, as a side effect, prints the name.

As we said in Section 9.6, find's business is evaluating expressions — not locating files. Yes, find
certainly locates files; but that's really just a side effect. For me, understanding this point was the
conceptual breakthrough that made find much more useful.

— ML

Searching for Files by Type

If you are only interested in files of a certain type, use the -type argument, followed by one of the
characters in Table 9-1. Note, though that some versions of find don't have all of these.

Table 9-1. find -type characters

Character Meaning

b Block special file ("device file")

c Character special file ("device file")

d Directory

f Plain file

l Symbolic link

p Named pipe file

s Socket

Unless you are a system administrator, the important types are directories, plain files, or symbolic
links (i.e., types d, f, or l).

Using the -type operator, here is another way to list files recursively:
% find . -type f -print | xargs ls -l

It can be difficult to keep track of all the symbolic links in a directory. The next command will find
all the symbolic links in your home directory and print the files to which your symbolic links point.
$NF gives the last field of each line, which holds the name to which a symlink points. If your find
doesn't have a -ls operator, pipe to xargs ls -l as previously.
% find $HOME -type l -ls | awk '{print $NF}'

— BB

Searching for Files by Size

find has several operators that take a decimal integer. One such argument is -size. The number after
this argument is the size of the files in disk blocks. Unfortunately, this is a vague number. Earlier
versions of Unix used disk blocks of 512 bytes. Newer versions allow larger block sizes, so a
"block" of 512 bytes is misleading.

This confusion is aggravated when the command ls -s is used. The -s option supposedly lists the size
of the file in blocks. But if your system has a different block size than ls -s has been programmed to
assume, it can give a misleading answer. You can put a c after the number and specify the size in
bytes. To find a file with exactly 1,234 bytes (as in an ls -l listing), type:
% find . -size 1234c -print

To search for files using a range of file sizes, a minus or plus sign can be specified before the
number. The minus sign (-) means less than, and the plus sign (+) means greater than. This next
example lists all files that are greater than 10,000 bytes, but less than 32,000 bytes:
% find . -size +10000c -size -32000c -print

When more than one qualifier is given, both must be true.

— BB

Searching for Files by Permission

find can look for files with specific permissions. It uses an octal number for these permissions. If you
aren't comfortable with octal numbers and the way Unix uses them in file permissions, Section 1.17 is
good background reading.

The string rw-rw-r-- indicates that you and members of your group have read and write permission,
while the world has read-only privilege. The same permissions are expressed as an octal number as
664. To find all *.o files with these permissions, use the following:
% find . -name *.o -perm 664 -print

To see if you have any directories with write permission for everyone, use this:
% find . -type d -perm 777 -print

The previous examples only match an exact combination of permissions. If you wanted to find all
directories with group write permission, you want to match the pattern ----w----. There are several
combinations that can match. You could list each combination, but find allows you to specify a
pattern that can be bitwise ANDed with the permissions of the file. Simply put a minus sign (-) before
the octal value. The group write permission bit is octal 20, so the following negative value:
% find . -perm -20 -print

will match the following common permissions:

Permission Octal value

rwxrwxrwx 777

rwxrwxr-x 775

rw-rw-rw- 666

rw-rw-r-- 664

rw-rw---- 660

If you wanted to look for files that the owner can execute (i.e., shell scripts or programs), you want to
match the pattern --x------ by typing:
% find . -perm -100 -print

When the -perm argument has a minus sign, all of the permission bits are examined, including the set
user ID, set group ID, and sticky bits.

— BB

Searching by Owner and Group

Often you need to look for a file belonging to a certain user or group. This is done with the -user and
-group search operators. You often need to combine this with a search for particular permissions. To
find all files that are set user ID (setuid) root, use this:
% find . -user root -perm -4000 -print

To find all files that are set group ID (setgid) staff, use this:
% find . -group staff -perm -2000 -print

Instead of using a name or group from /etc/passwd or /etc/group, you can use the UID or GID
number:
% find . -user 0 -perm -4000 -print
% find . -group 10 -perm -2000 -print

Often, when a user leaves a site, his account is deleted, but his files are still on the computer. Some
versions of find have -nouser or -nogroup operators to find files with an unknown user or group ID.

— BB

Duplicating a Directory Tree

In many versions of find, the operator {} , used with the -exec operator, only works when it's
separated from other arguments by whitespace. So, for example, the following command will not do
what you thought it would:
% find . -type d -exec mkdir /usr/project/{} \;

You might have thought this command would make a duplicate set of (empty) directories, from the
current directory and down, starting at the directory /usr/project. For instance, when the find
command finds the directory ./adir, you would have it execute mkdir /usr/project/./adir (mkdir will
ignore the dot; the result is /usr/project/adir).

That doesn't work because those versions of find don't recognize the {} in the pathname. The GNU
version does expand {} in the middle of a string. On versions that don't, though, the trick is to pass the
directory names to sed , which substitutes in the leading pathname:
% find . -type d -print | sed 's@^@/usr/project/@' | xargs mkdir
% find . -type d -print | sed 's@^@mkdir @' | (cd /usr/project; sh)

Let's start with the first example. Given a list of directory names, sed substitutes the desired path to
that directory at the beginning of the line before passing the completed filenames to xargs and mkdir.
An @ is used as a sed delimiter because slashes (/) are needed in the actual text of the substitution. If
you don't have xargs, try the second example. It uses sed to insert the mkdir command, then it changes
to the target directory in a subshell where the mkdir commands will actually be executed.

— JP

Using "Fast find" Databases

Berkeley added a handy feature to its find command — if you give it a single argument, it will search
a database for file or directory names that match. For example, if you know there's a file named
MH.eps somewhere on the computer but you don't know where, type the following:
% find MH.eps
/nutshell/graphics/cover/MH.eps

That syntax can be confusing to new users: you have to give find just one argument. With more
arguments, find searches the filesystem directly. Maybe that's one reason that GNU has a "fast find"
utility named locate — and its find utility always searches, as described in the rest of this chapter.
The GNU slocate command is a security-enhanced version of locate. In the rest of this article, I'll
describe locate — but find with a single argument (as shown previously) works about the same way.

The "fast find" database is usually rebuilt every night. So, it's not completely up-to-date, but it's
usually close enough. If your system administrator has set this up, the database usually lists all files
on the filesystem — although it may not list files in directories that don't have world-access
permission. If the database isn't set up at all, you'll get an error like /usr/lib/find/find.codes:
No such file or directory. (If that's the case, you can set up a "fast find" database yourself. Set
up your own private locate database, or see Section 9.20.)

Unless you use wildcards, locate does a simple string search, like fgrep, through a list of absolute
pathnames. Here's an extreme example:
% locate bin
/bin
/bin/ar
 ...
/home/robin
/home/robin/afile
/home/sally/bin
 ...

You can cut down this output by piping it through grep, sed, and so on. But locate and "fast find" also
can use wildcards to limit searches. Section 9.19 explains this in more detail.

locate has an advantage over the "fast find" command: you can have multiple file databases and you
can search some or all of them. locate and slocate come with a database-building program.

Because locate is so fast, it's worth trying to use whenever you can. Pipe the output to xargs and any
other Unix command, or run a shell or Perl script to test its output — almost anything will be faster
than running a standard find. For example, if you want a long listing of the files, here are two locate
commands to do it:
% ls -l `locate whatever`
% locate whatever | xargs ls -ld

There's one problem with that trick. The locate list may be built by root, which can see all the files
on the filesystem; your ls -l command may not be able to access all files in the list. But slocate can be
configured not to show you files you don't have permission to see.

Note
The locate database may need to be updated on y our machine before y ou can use locate, if it's not already in the sy stem's normal cron scripts. Use locate.updatedb to do this, and consider having it run weekly or so if y ou're going to use locate
regularly .

— JP

Wildcards with "Fast find" Database

locate and all the "fast find" commands I've used can match shell wildcards (Section 1.13) (* , ?, [
]). If you use a wildcard on one end of the pattern, the search pattern is automatically "anchored" to
the opposite end of the string (the end where the wildcard isn't). The shell matches filenames in the
same way.

The difference between the shell's wildcard matching and locate matching is that the shell treats
slashes (/) in a special manner: you have to type them as part of the expression. In locate, a wildcard
matches slashes and any other character. When you use a wildcard, be sure to put quotes around the
pattern so the shell won't touch it.

Here are some examples:

To find any pathname that ends with bin:
% locate '*bin'
/bin
/home/robin
/home/robin/bin
 ...

To find any pathname that ends with /bin (a good way to find a file or directory named exactly
bin):
% locate '*/bin'
/bin
/home/robin/bin
/usr/bin
 ...

Typing locate '*bin*' is the same as typing locate bin.
To match the files in a directory named bin, but not the directory itself, try something like this:
% locate '*/bin/*'
/bin/ar
/bin/cat
 ...
/home/robin/bin/prog

To find the files in /home whose names end with a tilde (~) (these are probably backup files
from the Emacs editor):
% locate '/home/*~'
/home/testfile~
/home/allan/.cshrc~
/home/allan/.login~
/home/dave/.profile~
 ...

Notice that the locate asterisk matches dot files, unlike shell wildcards.
The question mark (?) and square brackets ([]) operators work, too. They're not quite as useful
as they are in the shell because they match the slashes (/) in the pathnames. Here are a couple of
quick examples:
% locate '????'
/bin
/etc
/lib
/src
/sys
/usr
% locate '/[bel]??'
/bin

/etc
/lib

— JP

Finding Files (Much) Faster with a find Database

If you use find to search for files, you know that it can take a long time to work, especially when there
are lots of directories to search. Here are some ideas for speeding up your finds.

Note
By design, setups like these that build a file database won't have absolutely up-to-date information about all y our files.

If your system has " fast find" or locate, that's probably all you need. It lets you search a list of all
pathnames on the system.

Even if you have "fast find" or locate, it still might not do what you need. For example, those utilities
only search for pathnames. To find files by the owner's name, the number of links, the size, and so on,
you have to use "slow find." In that case — or, when you don't have "fast find" or locate — you may
want to set up your own version.

slocate can build and update its own database (with its -u option), as well as search the database.
The basic "fast find" has two parts. One part is a command, a shell script usually named updatedb or
locate.updatedb, that builds a database of the files on your system — if your system has it, take a
look to see a fancy way to build the database. The other part is the find or locate command itself — it
searches the database for pathnames that match the name (regular expression) you type.

To make your own "fast find":

Pick a filename for the database. We'll use $HOME/.fastfind (some systems use $LOGDIR
instead of $HOME).
Design the find command you want to use. The command to build a database of all the files in
your home directory might look like this:
% cd
% find . -print | sed "s@^./@@" > .fastfind.new
% mv -f .fastfind.new .fastfind

That doesn't update the database until the new one is finished. It also doesn't compress the
database. If you're short on disk space, use this instead:
% cd
% find . -print | sed "s@^./@@" | gzip > .fastfind.gz

The script starts from your home directory, then uses sed (Section 13.9) to strip the start of the
pathname (like ./) from every entry. (If you're building a database of the whole filesystem, don't
do that part!) To save more space, you can compress with bzip2 instead; it's slow, but it saved
about 25% of the disk space for my database.
Set up cron (Section 25.3) or at to run that find as often as you want — usually once a day, early
in the morning morning, is fine.
Finally, make a shell script (I call mine ffind) to search the database. If you use egrep (Section
13.4), you can search with flexible regular expressions:
egrep "$1" $HOME/.fastfind | sed "s@^@$HOME/@"

or, for a gzipped database:
gzcat $HOME/.fastfind.gz | egrep "$1" | sed "s@^@$HOME/@"

The sed expressions add your home directory's pathname (like /usr/freddie) to each line.

To search the database, type:
% ffind somefile
/usr/freddie/lib/somefile
% ffind '/(sep|oct)[^/]*$'
/usr/freddie/misc/project/september
/usr/freddie/misc/project/october

You can do much more: I'll get you started. If you have room to store more information than just
pathnames, you can feed your find output to a command like ls -l. For example, if you do a lot of work
with links, you might want to keep the files' i-numbers as well as their names. You'd build your
database with a command like this:
% cd
% find . -print | xargs ls -id > .fastfind.new
% mv -f .fastfind.new .fastfind

Or, if your version of find has the handy -ls operator, use the next script. Watch out for really large i-
numbers; they might shift the columns and make cut give wrong output. The exact column numbers
will depend on your system:
% cd
% find . -ls | cut -c1-7,67- > .fastfind.new
% mv -f .fastfind.new .fastfind

Then, your ffind script could search for files by i-number. For instance, if you had a file with i-
number 1234 and you wanted to find all its links:
% ffind "^1234 "

The space at the end of that regular expression prevents matches with i-numbers like 12345. You
could search by pathname in the same way. To get a bit fancier, you could make your ffind a little
perl or awk script that searches your database by field. For instance, here's how to make awk do the
previous i-number search; the output is just the matching pathnames:
awk '$1 == 1234 {print $2}' $HOME/.fastfind

With some information about Unix shell programming and utilities like awk, the techniques in this
article should let you build and search a sophisticated file database — and get information much
faster than with plain old find.

— JP

grepping a Directory Tree

Want to search every file, in some directory and all its subdirectories, to find the file that has a
particular word or string in it? That's a job for find and one of the grep commands.

For example, to search all the files for lines starting with a number and containing the words "SALE
PRICE," you could use:
% egrep '^[0-9].*SALE PRICE' `find . -type f -print`
./archive/ad.1290: 1.99 a special SALE PRICE
./archive/ad.0191: 2.49 a special SALE PRICE

Using the backquotes (``) might not work. If find finds too many files, egrep 's command-line
arguments can get too long. Using xargs can solve that; it splits long sets of arguments into smaller
chunks. There's a problem with that: if the last "chunk" has just one filename and the grep command
finds a match there, grep won't print the filename:
% find . -type f -print | xargs fgrep '$12.99'
./old_sales/ad.0489: Get it for only $12.99!
./old_sales/ad.0589: Last chance at $12.99, this month!
Get it for only $12.99 today.

The answer is to add the Unix " empty file," /dev/null. It's a filename that's guaranteed never to match
but always to leave fgrep with at least two filenames:
% find . -type f -print | xargs fgrep '$12.99' /dev/null

Then xargs will run commands like these:
fgrep '$12.99' /dev/null ./afile ./bfile ...
fgrep '$12.99' /dev/null ./archives/ad.0190 ./archives/ad.0290 ...
fgrep '$12.99' /dev/null ./old_sales/ad.1289

That trick is also good when you use a wildcard (Section 28.3) and only one file might match it. grep
won't always print the file's name unless you add /dev/null:
% grep "whatever" /dev/null /x/y/z/a*

— JP

lookfor: Which File Has That Word?

The following simple shell script, lookfor, uses find to look for all files in the specified directory
hierarchy that have been modified within a certain time, and it passes the resulting names to grep to
scan for a particular pattern. For example, the command:
% lookfor /work -7 tamale enchilada

would search through the entire /work filesystem and print the names of all files modified within the
past week that contain the words "tamale" or "enchilada." (For example, if this article is stored in
/work, lookfor should find it.)

The arguments to the script are the pathname of a directory hierarchy to search in ($1), a time ($2),
and one or more text patterns (the other arguments). This simple but slow version will search for an
(almost) unlimited number of words:
#!/bin/sh
temp=/tmp/lookfor$$
trap 'rm -f $temp; exit' 0 1 2 15
find $1 -mtime $2 -print > $temp
shift; shift
for word
do grep -i "$word" `cat $temp` /dev/null
done

That version runs grep once to search for each word. The -i option makes the search find either
upper- or lowercase letters. Using /dev/null makes sure that grep will print the filename. Watch out,
though: the list of filenames may get too long.

The next version is more limited but faster. It builds a regular expression for egrep that finds all the
words in one pass through the files. If you use too many words, egrep will say Regular expression
too long. Also, your egrep may not have a -i option; you can just omit it. This version also uses
xargs; though xargs has its problems.
#!/bin/sh
where="$1"
when="$2"
shift; shift
Build egrep expression like (word1|word2|...) in $expr
for word
do
 case "$expr" in
 "") expr="($word" ;;
 *) expr="$expr|$word" ;;
 esac
done
expr="$expr)"

find $where -mtime $when -print | xargs egrep -i "$expr" /dev/null

—JP and TOR

Using Shell Arrays to Browse Directories

Even a graphical file manager might not be enough to help you step through a complicated directory
tree with multiple layers of subdirectories. Which directories have you visited so far, and which are
left to go? This article shows a simple way, using shell arrays, to step through a tree directory-by-
directory. The technique is also good for stepping through lists of files — or almost any collection of
things, over a period of time — of which you don't want to miss any. At the end are a couple of
related tips on using arrays.

Using the Stored Lists

Let's start with a quick overview of expanding array values; then we'll look at specifics for each
shell. A dollar sign ($) before the name of a shell variable gives you its value. In the C shells and zsh,
that gives all members of an array. But, in the Korn shell and bash2, expanding an array value without
the index gives just the first member. To pick out a particular member, put its number in square
brackets after the name; in ksh and bash2, you also need to use curly braces ({}). A hash mark (#)
gives the number of members. Finally, you can use range operators to choose several members of an
array.

Here's a practical example that you might use, interactively, at a shell prompt. You're cleaning your
home directory tree. You store all the directory names in an array named d. When you've cleaned one
directory, you go to the next one. This way, you don't miss any directories. (To keep this simple, I'll
show an example with just four directories.)

Note
If y ou don't want to use shell commands to browse the directories, y ou could use a command to launch a graphical file browser on each directory in the array . For instance, make the nextdir alias launch Midnight Commander with mc $d[1].

Let's start with the C shell:
% set d=(`find $home -type d -print`)
% echo $#d directories to search: $d
4 directories to search: /u/ann /u/ann/bin /u/ann/src /u/ann/lib
% alias nextdir 'shift d; cd $d[1]; pwd; ls -l'
% cd $d[1]
 ...clean up first directory...
% nextdir
/u/ann/bin
total 1940
lrwxrwxrwx 1 ann users 14 Feb 7 2002] -> /usr/ucb/reset
-r-xr-xr-x 1 ann users 1134 Aug 23 2001 addup
 ...clean up bin directory...
% nextdir
/u/ann/src
 ...do other directories, one by one...
% nextdir
d: Subscript out of range.

You store the array, list the number of directories, and show their names. You then create a nextdir
alias that changes to the next directory to clean. First, use the C shell's shift command; it "throws
away" the first member of an array so that the second member becomes the first member, and so on.
Next, nextdir changes the current directory to the next member of the array and lists it. (Note that
members of a C shell array are indexed starting at 1 — unlike the C language, which the C shell
emulates, where indexes start at 0. So the alias uses cd $d[1].) At the end of our example, when
there's not another array member to shift away, the command cd $d[1] fails; the rest of the nextdir
alias isn't executed.

Bourne-type shells have a different array syntax than the C shell. They don't have a shift command for
arrays, so we'll use a variable named n to hold the array index. Instead of aliases, let's use a more
powerful shell function. We'll show ksh and bash2 arrays, which are indexed starting at 0. (By
default, the first zsh array member is number 1.) The first command that follows, to store the array, is
different in ksh and bash2 — but the rest of the example is the same on both shells.

bash2$ d=(`find $HOME -type d -print`)
ksh$ set -A d `find $HOME -type d -print`

$ echo ${#d[*]} directories to search: ${d[*]}
4 directories to search: /u/ann /u/ann/bin /u/ann/src /u/ann/lib
$ n=0
$ nextdir() {
> if [$((n += 1)) -lt ${#d[*]}]
> then cd ${d[$n]}; pwd; ls -l
> else echo no more directories
> fi
> }
$ cd ${d[0]}
 ...clean up first directory...
$ nextdir
/u/ann/bin
total 1940
lrwxrwxrwx 1 ann users 14 Feb 7 2002] -> /usr/ucb/reset
-r-xr-xr-x 1 ann users 1134 Aug 23 2001 addup
 ...do directories, as in C shell example...
$ nextdir
no more directories

If you aren't a programmer, this may look intimidating — like something you'd never type
interactively at a shell prompt. But this sort of thing starts to happen — without planning, on the spur
of the moment — as you learn more about Unix and what the shell can do.

Expanding Ranges

We don't use quite all the array-expanding operators in the previous examples, so here's a quick
overview of the rest. To expand a range of members in ksh and bash2, give the first and last indexes
with a dash (-) between them. For instance, to expand the second, third, and fourth members of array
arrname, use ${arrname[1-3]}. In zsh , use a comma (,) instead — and remember that the first zsh
array member is number 1; so you'd use ${arrname[2-4]} in zsh. C shell wants $arrname[2-4]. If the
last number of a range is omitted (like ${arrname[2-]} or $arrname[2-]), this gives you all members
from 2 through the last.

Finally, in all shells except zsh, remember that expanded values are split into words at space
characters. So if members of an array have spaces in their values, be careful to quote them. For
instance, Unix directory names can have spaces in them — so we really should have used cd
"$d[1]" in the newdir alias and cd "${d[$n]}" in the newdir function.[2] If we hadn't done this, the
cd command could have gotten multiple argument words. But it would only pay attention to the first
argument, so it would probably fail.

To expand a range of members safely, such as ${foo[1-3]} in bash2 and ksh, you need ugly
expressions without range operators, such as "${foo[1]}" "${foo[2]}" "${foo[3]}". The C shell
has a :q string modifier that says "quote each word," so in csh you can safely use $foo[1-3]:q. It's
hard to quote array values, though, if you don't know ahead of time how many there are! So, using
${foo[*]} to give all members of the foo array suffers from word-splitting in ksh and bash2 (but not
in zsh, by default). In ksh and bash2, though, you can use "${foo[@]}", which expands into a quoted
list of the members; each member isn't split into separate words. In csh, $foo[*]:q does the trick.

— JP

[2] We didn't do so because the syntax was already messy enough for people getting started.

Finding the (Hard) Links to a File

Here is how to find hard links, as well as a brief look at the Unix filesystem from the user's
viewpoint. Suppose you are given the following:
% ls -li /usr/bin/at
8041 -r-sr-xr-x 4 root wheel 19540 Apr 21 2001 /usr/bin/at*

In other words, there are four links, and /usr/bin/at is one of four names for inode 8041. You can find
the full names of the other three links by using find. However, just knowing the inode number does not
tell you everything. In particular, inode numbers are only unique to a given filesystem. If you do a find
/ -inum 8041 -print , you may find more than four files, if inode 8041 is also on another filesystem.
So how do you tell which ones refer to the same file as /usr/bin/at?
The simplest way is to figure out the filesystem on which /usr/bin/at lives by using df:
% df /usr/bin/at
Filesystem 1K-blocks Used Avail Capacity Mounted on
/dev/ad0s1f 3360437 1644024 1447579 53% /usr

Then start your find at the top of that filesystem, and use -xdev to tell it not to search into other
filesystems:
% find /usr -xdev -inum 8041 -print
/usr/bin/at
/usr/bin/atq
/usr/bin/atrm
/usr/bin/batch

Some manpages list -x as an alternative to -xdev; -xdev is generally more portable.

—DJPH and CT

Finding Files with -prune

find has lots of operators for finding some particular kinds of files. But find won't stop at your current
directory — if there are subdirectories, it looks there too. How can you tell it "only the current
directory"? Use -prune.

Most finds also have a -maxdepth option that gives the maximum number of directory levels to
descend. For example, find . -maxdepth 0 operates only on the current directory.

-prune cuts short find's search at the current pathname. So, if the current pathname is a directory, find
won't descend into that directory for any further searches. The command line looks kind of hairy.
Here's one to find all files modified in the last 24 hours from the current directory:
% date
Tue Feb 12 19:09:35 MST 2002
% ls -l
total 0
drwxr-xr-x 1 deb deb 0 Feb 12 12:11 adir
-rw-r--r-- 1 deb deb 0 Feb 12 19:08 afile
-rw-r--r-- 1 deb deb 0 Jan 10 10:37 bfile
-rw-r--r-- 1 deb deb 0 Feb 11 22:43 cfile
% find . \(-type d ! -name . -prune \) -o \(-mtime -1 -print \)
./afile
./cfile

Let's try to understand this command: once you see the pattern, you'll understand some important
things about find that many people don't. Let's follow find as it looks at a few pathnames.

find looks at each entry, one by one, in the current directory (.). For each entry, find tries to match the
expression from left to right. As soon as some parenthesized part matches, it ignores the rest (if any)
of the expression.[3]

When find is looking at the file named ./afile, the first part of the expression, (-type d ! -name . -
prune), doesn't match (./afile isn't a directory). So find doesn't prune. It tries the other part, after the -
o (or):

Has ./afile been modified in the last day? In this (imaginary) case, it has — so the -print (which is
always true) prints the pathname.

Next, ./bfile: like the previous step, the first part of the expression won't match. In the second part, (-
mtime -1 -print), the file's modification time is more than one day ago. So the -mtime -1 part of the
expression is false; find doesn't bother with the -print operator.

Finally, let's look at ./adir, a directory: the first part of the expression, (-type d ! -name . -prune),
matches. That's because ./adir is a directory (-type d), its name is not . (! -name .). So -prune, which
is always true, makes this part of the expression true. find skips ./adir (because -prune prunes the
search tree at the current pathname). Note that if we didn't use ! -name ., then the current directory
would match immediately and not be searched, and we wouldn't find anything at all.

Section 9.27 shows handy aliases that use -prune.

— JP

[3] That's because if one part of an OR expression is true, you don't need to check the rest. This so-
called "short-circuit" logical evaluation by find is important to understanding its expressions.

Quick finds in the Current Directory

find -prune prunes find's search tree at the current pathname. Here are a couple of aliases that use -
prune to search for files in the current directory. The first one, named find. (with a dot on the end of
its name, to remind you of ., the relative pathname for the current directory), simply prints names with
-print. The second alias gives a listing like ls -gilds. You can add other find operators to the
command lines to narrow your selection of files. The aliases work like this:
% find. -mtime -1
./afile
./cfile
% find.ls -mtime -1
43073 0 -r-------- 1 jerry ora 0 Mar 27 18:16 ./afile
43139 2 -r--r--r-- 1 jerry ora 1025 Mar 24 02:33 ./cfile

The find. alias is handy inside backquotes, feeding a pipe, and other places you need a list of
filenames. The second one, find.ls, uses -ls instead of -print:
alias find. 'find . \(-type d ! -name . -prune \) -o \(\!* -print \)'
alias find.ls 'find . \(-type d ! -name . -prune \) -o \(\!* -ls \)'

If you don't want the ./ at the start of each name, add a pipe through cut -c3- or cut -d'/' -f2- to the
end of the alias definition.

— JP

Skipping Parts of a Tree in find

Q: I want to run find across a directory tree, skipping standard directories like /usr/spool and
/usr/local/bin. A -name dirname -prune clause won't do it because -name doesn't match the whole
pathname — just each part of it, such as spool or local. How can I make find match the whole
pathname, like /usr/local/bin/, instead of all directories named bin?

A: It cannot be done directly. You can do this:
% find /path -exec test {} = /foo/bar -o {} = /foo/baz \; -prune -o pred

This will not perform pred on /foo/bar and /foo/baz; if you want them done, but not any files within
them, try:
% find /path \(-exec test test-exprs \; ! -prune \) -o pred

The second version is worth close study, keeping the manual for find at hand for reference. It shows a
great deal about how find works.

The -prune operator simply says "do not search the current path any deeper" and then succeeds a la -
print.

Q: I only want a list of pathnames; the pred I use in your earlier answer will be just -print. I think
I could solve my particular problem by piping the find output through a sed or egrep -v filter that
deletes the pathnames I don't want to see.

A: That would probably be fastest. Using test runs the test program for each file name, which is quite
slow. Take a peek at locate, described in Section 9.18.

There's more about complex find expressions in other articles, especially Section 9.6 and Section
9.12.

—CT and JP

Keeping find from Searching Networked Filesystem

The most painful aspect of a large NFS environment is avoiding the access of files on NFS servers
that are down. find is particularly sensitive to this because it is very easy to access dozens of
machines with a single command. If find tries to explore a file server that happens to be down, it will
time out. It is important to understand how to prevent find from going too far.

To do this, use -xdev or -prune with -fstype, though, unfortunately, not all finds have all of these. -
fstype tests for filesystem types and expects an argument like nfs, ufs, cd9660, or ext2fs. To limit
find to files only on a local disk or disks, use the clause -fstype nfs -prune, or, if your find supports
it, -fstype local.
To limit the search to one particular disk partition, use -xdev. For example, if you need to clear out a
congested disk partition, you could look for all files bigger than 10 MB (10*1024*1024) on the disk
partition containing /usr, using this command:
% find /usr -size +10485760c -xdev -print

— BB

Chapter 10. Linking, Renaming, and Copying Files

What's So Complicated About Copying Files

At first glance, there doesn't seem to be enough material to fill an entire chapter with information
about linking, moving, and copying files. However, there are several things that make the topic more
complex (and more interesting) than you might expect:

In addition to moving and copying files, Unix systems also allow you to link them — to have two
filenames, perhaps in different directories or even on different filesystems, that point to the same
file. Section 10.3 explores the reasons why you want to do that; Section 10.4 discusses the
difference between "hard" and "soft" links; Section 10.5 demonstrates how to create links; and
other articles discuss various issues that can come up when using links.
It's nontrivial to rename a group of files all at once, but Unix provides many ways to circumvent
the tedium of renaming files individually. In the chapter you'll see many different ways to do this,
exploring the variety in the Unix toolbox along the way.
In a hierarchical filesystem, you're sometimes faced with the problem of moving not only files
but entire directory hierarchies from one place to another. Section 10.12 and Section 10.13
demonstrate two techniques you can use to perform this task.

— TOR

What's Really in a Directory?

Before you can understand moving and copying files, you need to know a bit more about how files are
represented in directories. What does it mean to say that a file is really "in" a directory? It's easy to
imagine that files are actually inside of something (some special chunk of the disk that's called a
directory). But that's precisely wrong, and it's one place where the filing cabinet model of a
filesystem doesn't apply.

A directory really is just another file, and it really isn't different from any other datafile. If you want
to prove this, try the command od -c . On some Unix systems, it dumps the current directory to the
screen in raw form. The result certainly looks ugly (it's not a text file; it just has lots of binary
characters). But, if your system allows it, od - c should let you see the names of the files that are in
the current directory [and, probably, some names of files that have been deleted! Sorry, they're only
the old directory entries; you can't get the files back — JP]. If od - c . doesn't work (and it won't on
current versions of Linux, for example), use ls - if instead.

A directory is really just a list of files represented by filenames and inode numbers, as shown in the
output in Example 10-1.

Example 10-1. Directory-content visualization
The file named . is inode 34346
The file named .. is inode 987
The file named mr.ed is inode 10674
The file named joe.txt is inode 8767
The file named grok is inode 67871
The file named otherdir is inode 2345

When you give a filename like grok, the kernel looks up grok in the current directory and finds out
that this file has inode 67871; it then looks up this inode to find out who owns the file, where the data
blocks are, and so on.

What's more, some of these "files" may be directories in their own right. In particular, that's true of
the first two entries: . and ... These entries are in every directory. The current directory is
represented by ., while .. refers to the "parent" of the current directory (i.e., the directory that
"contains" the current directory). The file otherdir is yet another directory that happens to be "within"
the current directory. However, there's no way you can tell that from its directory entry — Unix
doesn't know it's different until it looks up its inode.

Now that you know what a directory is, think about some basic directory operations. What does it
mean to move, or rename, a file? If the file is staying in the same directory, the mv command just
changes the file's name in the directory; it doesn't touch the data at all.

Moving a file into another directory takes a little more work, but not much. A command like mv
dir1/foo dir2/foo means "delete foo's entry in dir1 and create a new entry for foo in dir2." Again,
Unix doesn't have to touch the data blocks or the inode at all.

The only time you actually need to copy data is if you're moving a file into another filesystem. In that
case, you have to copy the file to the new filesystem; delete its old directory entry; return the file's
data blocks to the "free list," which means that they can be reused; and so on. It's a fairly complicated
operation, but (still) relatively rare. (On some old versions of Unix, mv wouldn't let you move files
between filesystems. You had to copy it and remove the old file by hand.)

How does Unix find out the name of the current directory? In Example 10-1 there's an entry for .,
which tells you that the current directory has inode 34346. Is the directory's name part of the inode?
Sorry — it isn't. The directory's name is included in the parent directory. The parent directory is ..,
which is inode 987. So Unix looks up inode 987, finds out where the data is, and starts reading every
entry in the parent directory. Sooner or later, it will find one that corresponds to inode 34346. When
it does that, it knows that it has found the directory entry for the current directory and can read its
name.

Complicated? Yes, but if you understand this, you have a pretty good idea of how Unix directories
work.

— ML

Files with Two or More Names

We've talked about hard links (Section 10.1) and symbolic links in a number of places, but we've not
discussed why you'd want a file with several names. It was easy to understand what a link would do,
but why would you want one?

There are many situations that links (and only links) are able to handle. Once you've seen a few of the
problems that a link can solve, you'll start seeing even more situations in which they are appropriate.

Consider a company phone list on a system that is shared by several users. Every user might want a
copy of the phone list in his home directory. However, you wouldn't want to give each user a different
phone list. In addition to wasting disk space, it would be a pain to modify all of the individual lists
whenever you made a change. Giving each user a "link" to a master phone list is one way to solve the
problem.

Similarly, assume that you use several different systems that share files via NFS. Eventually, you get
tired of editing five or six different .login and .cshrc files whenever you decide to add a new alias or
change some element in your startup file; you'd like to have the exact same file appear in each of your
home directories. You might also want to give several systems access to the same master database
files.

How about this: you have a program or script that performs several related functions. Why not
perform them all with the same executable? The script or program just needs to check the name by
which it's called and act accordingly.

As another example, assume that you have two versions of a file: a current version, which changes
from time to time, and one or more older versions. One good convention would be to name the files
data. date, where date shows when the file was created. For example, you might have the files
data.jul1, data.jul2, data.jul5, and so on. However, when you access these files, you don't
necessarily want to figure out the date — not unless you have a better chronological sense than I do.
To make it easier on yourself, create a link (either symbolic or hard) named data.cur that always
refers to your most recent file. The following script runs the program output, puts the data into a
dated file, and resets data.cur:
#!/bin/sh
curfile=data.`date +%h%d`
linkname=data.cur
output > $curfile
rm -f $linkname
ln -s $curfile $linkname

Here's an analogous situation. When writing technical manuals at one company, I had two classes of
readers: some insisted on referring to the manuals by name, and the others by part number. Rather than
looking up part numbers all the time, I created a set of links so that I could look up a manual online
via either its name or its part number. For example, if the manual was named "Programming" and had
the part number 046-56-3343, I would create the file /manuals/byname/programming. I would then
create the link /manuals/bynumber/046-56-3343:

.. Section 1.16
% cd /manuals/bynumber
% ln -s ../byname/programming 046-56-3343

Sometimes you simply want to collect an assortment of files in one directory. These files may really

belong in other places, but you want to collect them for some temporary purpose: for example, to
make a tape. Let's say that you want to make a tape that includes manual pages from
/development/doc/man/man1, a manual from /development/doc/product, source files from
/src/ccode, and a set of executables from /release/68000/execs. The following shell script creates
links for all of these directories within the /tmp/tape directory and then creates a tar tape that can be
sent to a customer or friend. Note that the tar h option tells tar to follow symbolic links and archive
whatever is at the end of the link; otherwise, tar makes a copy of just the symbolic link:
#!/bin/sh
dir=/tmp/tape.mike
test -d $dir || mkdir $dir
cd $dir
rm -f man1 product ccode execs
ln -s /development/doc/man/man1
ln -s /development/doc/product
ln -s /src/ccode
ln -s /release/68000/execs
tar ch ./man1 ./product ./ccode ./execs

These examples only begin to demonstrate the use of linking in solving day-to-day tasks. Links
provide neat solutions to many problems, including source control, filesystem layout, and so forth.

— ML

More About Links

Unix provides two different kinds of links:
Hard links

With a hard link, two filenames (i.e., two directory entries) point to the same inode and the same
set of data blocks. All Unix versions support hard links. They have two important limitations: a
hard link can't cross a filesystem (i.e., both filenames must be in the same filesystem), and you
can't create a hard link to a directory (i.e., a directory can only have one name).[1] They have
two important advantages: the link and the original file are absolutely and always identical, and
the extra link takes no disk space (except an occasional extra disk block in the directory file).

Symbolic links (also called soft links or symlinks)
With a symbolic link, there really are two different files. One file contains the actual data; the
other file just contains the name of the first file and serves as a "pointer." We call the pointer the
link. The system knows that whenever it opens a symlink, it should read the contents of the link
and then access the file that really holds the data you want. Nearly all Unix systems support
symbolic links these days. Symbolic links are infinitely more flexible than hard links. They can
cross filesystems or even computer systems (if you are using NFS or RFS (Section 44.9)). You
can make a symbolic link to a directory. A symbolic link has its own inode and takes a small
amount of disk space to store.

You obviously can't do without copies of files: copies are important whenever users need their own
"private version" of some master file. However, links are equally useful. With links, there's only one
set of data and many different names that can access it. Section 10.5 shows how to make links.

Differences Between Hard and Symbolic Links

With a hard link, the two filenames are identical in every way. You can delete one without harming
the other. The system deletes the directory entry for one filename and leaves the data blocks (which
are shared) untouched. The only thing rm does to the inode is decrement its "link count," which (as the
name implies) counts the number of hard links to the file. The data blocks are only deleted when the
link count goes to zero — meaning that there are no more directory entries that point to this inode.
Section 9.24 shows how to find the hard links to a file.

With a symbolic link, the two filenames are really not the same. Deleting the link with rm leaves the
original file untouched, which is what you'd expect. But deleting or renaming the original file
removes both the filename and the data. You are left with a link that doesn't point anywhere.
Remember that the link itself doesn't have any data associated with it. Despite this disadvantage, you
rarely see hard links on Unix versions that support symbolic links. Symbolic links are so much more
versatile that they have become omnipresent.

Let's finish by taking a look at the ls listing for a directory. This directory has a file named file with
another hard link to it named hardlink. There's also a symlink to file named (are you ready?) symlink:
$ ls -lai
total 8
 140330 drwxr-xr-x 2 jerry ora 1024 Aug 18 10:11 .
 85523 drwxr-xr-x 4 jerry ora 1024 Aug 18 10:47 ..
 140331 -rw-r--r-- 2 jerry ora 2764 Aug 18 10:11 file
 140331 -rw-r--r-- 2 jerry ora 2764 Aug 18 10:11 hardlink
 140332 lrwxrwxrwx 1 jerry ora 4 Aug 18 10:12 symlink -> file

You've seen ls's -l option Section 50.2) and, probably, the -a option Section 8.9) for listing "dot
files." The -i option lists the i-number Section 14.2) for each entry in the directory; see the first
column. The third column has the link count: this is the number of hard links to the file.

When you compare the entries for file and hardlink, you'll see that they have a link count of 2. In this
case, both links are in the same directory. Every other entry (i-number, size, owner, etc.) for file and
hardlink is the same; that's because they both refer to exactly the same file, with two links (names).

A symbolic link has an l at the start of the permissions field. Its i-number isn't the same as the file to
which it points because a symbolic link takes a separate inode; so, it also takes disk space (which an
extra hard link doesn't). The name has two parts: the name of the link (here, symlink) followed by an
arrow and the name to which the link points (in this case, file). The symlink takes just four characters,
which is exactly enough to store the pathname (file) to which the link points.

Links to a Directory

While we're at it, here's a section that isn't about linking to files or making symbolic links. Let's look
at the first two entries in the previous sample directory in terms of links and link counts. This should
help to tie the filesystem together (both literally and in your mind!).

You've seen . and .. in pathnames Section 1.16); you might also have read an explanation of
what's in a directory Section 10.2). The . entry is a link to the current directory; notice that its link
count is 2. Where's the other link? It's in the parent directory:
$ ls -li ..
total 2
 140330 drwxr-xr-x 2 jerry ora 1024 Aug 18 10:11 sub
 85524 drwxr-xr-x 2 jerry ora 1024 Aug 18 10:47 sub2

Look at the i-numbers for the entries in the parent directory. Which entry is for our current directory?
The entry for sub has the i-number 140330, and so does the . listing in the current directory. So the
current directory is named sub. Now you should be able see why every directory has at least two
links. One link, named ., is to the directory itself. The other link, in its parent, gives the directory its
name.

Every directory has a .. entry, which is a link to its parent directory. If you look back at the listing of
our current directory, you can see that the parent directory has four links. Where are they?

When a directory has subdirectories, it will also have a hard link named .. in each subdirectory. You
can see earlier, in the output from ls -li .., that the parent directory has two subdirectories: sub and
sub2. That's two of the four links. The other two links are the . entry in the parent directory and the
entry for the parent directory (which is named test in its parent directory):

-d Section 8.5
% ls -dli ../. ../../test
 85523 drwxr-xr-x 4 jerry ora 1024 Aug 18 10:47 ../.
 85523 drwxr-xr-x 4 jerry ora 1024 Aug 18 10:47 ../../test

As they should, all the links have the same i-number: 85523. Make sense? This concept can be a little
abstract and hard to follow at first. Understanding it will help you, though — especially if you're a
system administrator who has to understand fsck's output because it can't fix something automatically
or use strong medicine like clri. For more practice, make a subdirectory and experiment in it the way
shown in this article.

By the way, directories and their hard links . and .. are added by the mkdir (2) system call. That's
the only way that normal users can create a directory (and the links to it).

—JP and ML

[1] Actually, every directory has at least two names. See the last section of this article.

Creating and Removing Links

The ln command creates both hard and soft (symbolic) links Section 10.4). If by some strange
chance you're using Minix or some other Unix that doesn't have symlinks, then ln won't have the -s
option.
% ln
 filename linkname

 . . . To create a hard link
% ln -s
 filename linkname

 . . . To create a symbolic link

If creating a hard link, filename must already exist, or you will get an error message. On many
versions of ln, linkname must not exist — if it does, you will also get an error. On other versions,
linkname may already exist; if you are allowed to write the file, ln destroys its old contents and
creates your link. If you don't have write access for linkname, ln asks whether it is okay to override
the file's protection. For example:
% ln foo bar
ln: override protection 444 for bar? y

Typing y gives ln permission to destroy the file bar and create the link. Note that this will still fail if
you don't have write access to the directory.

You are allowed to omit the linkname argument from the ln command. In this case, ln takes the last
component of filename (i.e., everything after the last slash) and uses it for linkname. Of course, this
assumes that filename doesn't refer to the current directory. If it does, the command fails because the
link already exists. For example, the following commands are the same:

.. Section 1.16
% ln -s ../archive/file.c file.c
% ln -s ../archive/file.c

Both create a link from file.c in the current directory to ../archive/file.c. ln also lets you create a
group of links with one command, provided that all of the links are in the same directory. Here's how:
% ln file1 file2 file3 ... filen directory

This command uses the filename from each pathname (after the last slash) as each link's name. It then
creates all the links within the given directory. For example, the first of the following commands is
equivalent to the next two:

. Section 1.16
% ln ../s/f1 ../s/f2 current
% ln ../s/f1 current/f1
% ln ../s/f2 current/f2

You can replace this list of files with a wildcard expression Section 33.2), as in:
% ln -s ../newversion/*.[ch]

Note that symbolic links can get out-of-date Section 10.6). Hard links can also be "broken" in some
situations. For example, a text editor might rename the link textfile to textfile.bak then create a new
textfile during editing. Previous links to textfile will now give you textfile.bak. To track down this
problem, find the links Section 9.24) to each file.

To remove a link, either hard or symbolic, use the rm command.

— ML

Stale Symbolic Links

Symbolic links (Section 10.5) have one problem. Like good bread, they become "stale" fairly easily.
What does that mean?

Consider the following commands:
% ln -s foo bar
% rm foo

What happens if you run these two commands? Remember that the link bar is a pointer: it doesn't
have any real data of its own. Its data is the name of the file foo. After deleting foo, the link bar still
exists, but it points to a nonexistent file. Commands that refer to bar will get a confusing error
message:
% cat bar
cat: bar: No such file or directory

This will drive you crazy if you're not careful. The ls command will show you that bar still exists.
You won't understand what's going on until you realize that bar is only a pointer to a file that no
longer exists.

The commands ls -Ll or ls -LF will show an unconnected symbolic link. The -L option means "list the
file that this link points to instead of the link itself." If the link points nowhere, ls -L will still list the
link.

There are many innocuous ways of creating invalid symbolic links. For example, you could simply
mv the data file foo. Or you could move foo, bar, or both to some other part of the filesystem where
the pointer wouldn't be valid anymore.

One way to avoid problems with invalid links is to use relative pathnames Section 1.16) when
appropriate. For instance, using relative pathnames will let you move entire directory trees around
without invalidating links (provided that both the file and the link are in the same tree). Here's an
example: assume that you have the file /home/mars/john/project/datastash/input123.txt. Assume that
you want to link this file to /home/mars/john/test/input.txt. You create a link by giving the command:
% cd /home/mars/john/test
% ln -s ../project/datastash/input123.txt input.txt

At some later date, you hand the project over to mary, who copies Section 10.13) the entire project
and test data trees into her home directory. The link between input.txt and the real file, input123.txt,
will still be valid. Although both files' names have changed, the relationship between the two (i.e.,
the relative path from one directory to the other) is still the same. Alternatively, assume that you are
assigned to a different computer named jupiter and that you copy your entire home directory when
you move. Again, the link remains valid: the relative path from your test directory to your datastash
directory hasn't changed, even though the absolute paths of both directories are different.

On the other hand, there is certainly room for absolute pathnames Section 31.2). They're useful if
you're more likely to move the link than the original file. Assume that you are creating a link from
your working directory to a file in a master directory (let's say /corp/masterdata/input345.txt). It is
much more likely that you will rearrange your working directory than that someone will move the
master set of files. In this case, you would link as follows:
% ln -s /corp/masterdata/input345.txt input.txt

Now you can move the link input.txt anywhere in the filesystem: it will still be valid, provided that
input345.txt never moves.

Note that hard links never have this problem. With a hard link, there is no difference at all between
the link and the original — in fact, it's unfair to call one file the link and the other the original, since
both are just links to the same inode. You can't even tell which one came first.

— ML

Linking Directories

One feature of symbolic links (Section 10.5) (a.k.a. symlinks) is that unlike hard links, you can use
symbolic links to link directories as well as files. Since symbolic links can span between filesystems,
this can become enormously useful.

For example, sometimes administrators want to install a package in a directory tree that's not where
users and other programs expect it to be. On our site, we like to keep /usr/bin pure — that is, we like
to be sure that all the programs in /usr/bin came with the operating system. That way, when we install
a new OS, we know for sure that we can overwrite the entirety of /usr/bin and not lose any "local"
programs. We install all local programs in /usr/local.
The X11 package poses a problem, though. Our X windows package (discussed in Chapter 5) expects
X11 programs to be installed in /usr/bin/X11. But X isn't distributed as part of our OS, so we'd
prefer not to put it there. Instead, we install X programs in /usr/local/X11/bin and create a symbolic
link named /usr/bin/X11. We do the same for /usr/include/X11 and /usr/lib/X11:
ln -s /usr/local/X11/bin /usr/bin/X11
ln -s /usr/local/X11/lib /usr/lib/X11
ln -s /usr/local/X11/include /usr/include/X11

By using symlinks, we installed the package where we wanted, but we kept it invisible to any users or
programs that expected the X programs, libraries, or include files to be in the standard directories.

Directory links can result in some unexpected behavior, however. For example, let's suppose I want
to look at files in /usr/bin/X11. I can just cd to /usr/bin/X11, even though the files are really in
/usr/local/X11/bin:
% cd /usr/bin/X11
% ls -F
 mkfontdir* xcalc* xinit* xset*
 ...

But when I do a pwd,[2] I see that I'm really in /usr/local/X11/bin. If I didn't know about the symlink,
this might be confusing for me:
% pwd
/usr/local/X11/bin

Now suppose I want to look at files in /usr/bin. Since I did a cd to /usr/bin/X11, I might think I can
just go up a level. But that doesn't work:

-F Section 8.3
% cd ..
% ls -F
bin/ include/ lib/
% pwd
/usr/local/X11

What happened? Remember that a symbolic link is just a pointer to another file or directory. So when
I went to the /usr/bin/X11 "directory," my current working directory became the directory to which
/usr/bin/X11 points, which is /usr/local/X11/bin.

As a solution to this problem and others, the X distribution provides a program called lndir . lndir
makes symlinks between directories by creating links for each individual file. It's cheesy, but it
works. If you have it, you can use lndir instead of ln -s:

 Go to http://examples.oreilly.com/upt3 for more information on: lndir
lndir /usr/local/X11/bin /usr/bin/X11
ls -F /usr/bin/X11
X@ mkfontdir@ xcalc@ xinit@ xset@
 ...

— LM

[2] I mean the standard Unix pwd command, an external command that isn't built into your shell. Most
shells have an internal version of pwd that "keeps track" of you as you change your current directory;
it may not give the same answer I show here. You can run the external version by typing /bin/pwd.

http://examples.oreilly.com/upt3

Showing the Actual Filenames for Symbolic Links

 Go to http://examples.oreilly.com/upt3 for more information on: sl

The sl program is a perl script (see coverage of Perl in Chapter 41) that traverses the pathnames
supplied on the command line, and for each one, it tells you if it had to follow any symbolic links to
find the actual filename. Symbolic links to absolute pathnames start over at the left margin. Symbolic
links to relative pathnames are aligned vertically with the path element they replace. For example:
$ sl /usr/lib/libXw.a

/usr/lib/libXw.a:
/usr/lib/libXw.a -> /usr/lib/X11/libXw.a
/usr/lib/X11 -> /X11/lib
/X11 -> /usr/local/X11R4
/usr/local/X11R4/lib/libXw.a

$ sl /bin/rnews

/bin -> /usr/bin
/usr/bin/rnews -> /usr/lib/news/rnews
/usr/lib/news -> ../local/lib/news
 local/lib/news/rnews -> inews
 inews

http://examples.oreilly.com/upt3

Renaming, Copying, or Comparing a Set of Files

If you have a group of files whose names end with .new and you want to rename them to end with
.old, you might try something like the following:
% mv *.new *.old
 Wrong!

However, this won't work because the shell can't match *.old and because the mv command just
doesn't work that way. Here's one way to do it that will work with most shells:

-d Section 8.5, \(..\)..\1 Section 34.11
$ ls -d *.new | sed "s/\(.*\)\.new$/mv '&' '\1.old'/" | sh
% ls -d *.new | sed 's/\(.*\)\.new$/mv "&" "\1.old"/' | sh

That outputs a series of mv commands, one per file, and pipes them to a shell (Section 3.4). The
quotes help make sure that special characters Section 27.17) aren't touched by the shell — this isn't
always needed, but it's a good idea if you aren't sure what files you'll be renaming. Single quotes
around the filenames are "strongest"; we use them in the Bourne-type shell version. Unfortunately, csh
and tcsh don't allow $ inside double quotes unless it's the start of a shell variable name. So the C
shell version puts double quotes around the filenames — but the Bourne shell version can use the
"stronger" single quotes, like this:
mv 'afile.new' 'afile.old'
mv 'bfile.new' 'bfile.old'
 ...

To copy, change mv to cp. For safety, use mv -i or cp -i if your versions have the -i options Section
14.15). Using sh -v Section 27.15) will show the commands as the shell executes them.

This method works for any Unix command that takes a pair of filenames. For instance, to compare a
set of files in the current directory with the original files in the /usr/local/src directory, use diff :
% ls -d *.c *.h | sed 's@.*@diff -c & /usr/local/src/&@' | sh

Note that diff -r does let you compare entire directories, but you need a trick like this to only compare
some of the files.

—JP and DJPH

Renaming a List of Files Interactively

Section 10.9 shows how to rename a set of files, e.g., changing *.new to *.old. Here's a different
way, done from inside vi. This gives you a chance to review and edit the commands before you run
them. Here are the steps:

&& Section 34.10, $ Section 32.5
% vi
 Start vi without a filename
 :r !ls *.new
 Read in the list of files, one filename per line
 :%s/.*/mv -i &&/
 Make mv command lines
 :%s/new$/old/
 Change second filenames; ready to review
 :w !sh
 Run commands by writing them to a shell
 :q!
 Quit vi without saving

If you've made your own version of ls that changes its output format, that can cause trouble here. If
your version gives more than a plain list of filenames in a column, use!/bin/ls instead of just !ls.

— JP

One More Way to Do It

I couldn't resist throwing my hat into this ring. I can imagine an unsophisticated user who might not
trust himself to replace one pattern with another, but doesn't want to repeat a long list of mv -i
commands. (The -i option will prompt if a new name would overwrite an existing file.) Here's a
simple script (Section 1.8) that takes a list of filenames (perhaps provided by wildcards) as input and
prompts the user for a new name for each file:
#!/bin/sh
Usage: newname files
for x
do
 echo -n "old name is $x, new name is: "
 read newname
 mv -i "$x" "$newname"
done

For example:
% touch junk1 junk2 junk3
% newname junk*
old name is junk1, new name is: test1
mv: overwrite test1 with junk1? y
old name is junk2, new name is: test2
old name is junk3, new name is: test3

In the first case, test1 already existed, so mv -i prompted.

This script is very simple; I just thought I'd use it to demonstrate that there's more than one way to do
it, even if you aren't using Perl.

— TOR

Copying Directory Trees with cp -r

cp has a -r (recursive) flag, which copies all the files in a directory tree — that is, all the files in a
directory and its subdirectories.

Note
One of our Unix sy stems has a cp without a -r option. But it also has an rcp (Section 1.21) command that does have -r. rcp can copy to any machine, not just remote machines. When I need cp -r on that host, I use rcp -r.

cp -r can be used in two ways. The first is much like normal copies; provide a list of files to copy
and an existing directory into which to copy them. The -r option just means that source directories
will be copied as well as normal files. The second allows you to copy a single directory to another
location.

Here's how to do the copy shown in Figure 10-1. This copies the directory /home/jane, with all
its files and subdirectories, and creates a subdirectory named jane in the current directory (.)
(Section 1.16):
% cd /work/bkup
% cp -r /home/jane .

How can you copy the contents of the subdirectory called data and all its files (but not the
subdirectory itself) into a duplicate directory named data.bak? First make sure that the
destination directory doesn't exist. That's because if the last argument to cp is a directory that
already exists, the source directory will be copied to a subdirectory of the destination directory
(i.e., it will become data.bak/data rather than just data.bak):
% cd /home/jane
% cp -r data data.bak

Use this to copy the subdirectories Aug and Sep and their files from the directory
/home/jim/calendar into the current directory (.):
[..]* Section 33.2
% cp -r /home/jim/calendar/[AS]* .

In many shells, if you wanted the Oct directory too, but not the file named Output, you can copy
just the directories by using the handy curly brace operators (Section 28.4):
% cp -r /home/jim/calendar/{Aug,Sep,Oct} .

Some gotchas:

Symbolic and hard links (Section 10.4) are copied as files. That can be a good thing; if a
symbolic link were not turned into a file along the way, the new symbolic link would point to the
wrong place. It can be bad if the link pointed to a really big file; the copy can take up a lot of
disk space that you didn't expect. (In Figure 10-1, notice that the symbolic link in jane's home
directory was converted to a file named .setup with a copy of the contents of generic.) This can
be prevented by using the -d option, if your cp supports it.
On many Unixes, the copy will be dated at the time you made the copy and may have its
permissions set by your umask. If you want the copy to have the original modification time and
permissions, add the -p option.

cp -r may go into an endless loop if you try to copy a directory into itself. For example, let's say
you're copying everything from the current directory into an existing subdirectory named backup,
like this:
% cp -r * backup

Unless your cp -r is smart enough to scan for files before it starts copying, it will create
backup/backup, and backup/backup/backup, and so on. To avoid that, replace the * wildcard
with other less-"wild" wildcards.
cp -r doesn't deal well with special files. Most platforms support a -R option instead, which
correctly handles device files and the like. GNU cp has -a as a recommended option for normal
recursive copying; it combines -R with -d and -p, as described earlier.

Note that directories can be copied to another machine using the same basic syntax with rcp and scp.
The only difference is that remote files have hostname: in front of them; note that remote files can be
used either as source or destination. Relative pathnames for remote files are always relative to your
home directory on the remote machine.
% scp -r mydata bigserver:backups
% scp -r bass:/export/src/gold-20020131 .

scp and rcp use the same syntax; scp uses SSH (Section 46.6) to do its copying, while rcp uses
unencrypted connections.

—DJPH and JP

Copying Directory Trees with tar and Pipes

The tar (Section 39.2) command isn't just for tape archives. It can copy files from disk to disk, too.
And even if your computer has cp -r (Section 10.12), there are advantages to using tar.

The obvious way to copy directories with tar is to write them onto a tape archive with relative
pathnames — then read back the tape and write it somewhere else on the disk. But tar can also write
to a Unix pipe — and read from a pipe. This looks like:
% reading-tar
 |
 writing-tar

with one trick: the writing-tar process has a different current directory (Section 24.3, Section
24.4) (the place where you want the copy made) than the reading-tar . To do that, run the writing-
tar in a subshell (Section 43.7), or if your tar supports it, use the -C option.

The argument(s) to the reading-tar can be directories or files. Just be sure to use relative
pathnames (Section 31.2) that don't start with a slash — otherwise, the writing-tar may write the
copies in the same place from where the originals came!

"How about an example," you ask? Figure 10-1 has one. It copies from the directory /home/jane, with
all its files and subdirectories. The copy is made in the directory /work/bkup/jane:
% mkdir /work/bkup/jane
% cd /home/jane
% tar cf - . | (cd /work/bkup/jane && tar xvf -)

Or, if you want to use -C:
% tar cf - . | tar xvf - -C /work/bkup/jane

In the subshell version, the && operator (Section 35.14) tells the shell to start tar xvf - only if the
previous command (the cd) succeeded. That prevents tar writing files into the same directory from
which it's reading — if the destination directory isn't accessible or you flub its pathname. Also, don't
use the v (verbose) option in both tars unless you want to see doubled output; one or the other is
plenty. I usually put it in the writing-tar to see write progress, as that's more interesting to me than
how far ahead the system has cached the read for me.

Figure 10-1. Copying /home/jane to /work/bkup with tar

Warning
At least one tar version has a v (verbose) option that writes the verbose text to standard output instead of standard error! If y our tar does that, definitely don't use v on the reading-tar (the tar that feeds the pipe) — use v on the writing-
tar only .

You can use other options that your tar might have — such as excluding files or directories — on the
reading-tar, too. Some gotchas:

Be aware that symbolic links (Section 10.4) will be copied exactly. If they point to relative
pathnames, the copied links might point to locations that don't exist (Section 10.6). You can
search for these symbolic links with find -type l.
If your system has rsh (Section 1.21) or ssh, you can run either the reading-tar or the
writing-tar on a remote system. For example, to copy a directory to the computer named
kumquat:
% ssh kumquat mkdir /work/bkup/jane
% tar cf - . | ssh kumquat 'cd /work/bkup/jane && tar xvf -'

—JP and DJPH

Chapter 11. Comparing Files

Checking Differences with diff

 Go to http://examples.oreilly.com/upt3 for more information on: diff

The diff command displays different versions of lines that are found when comparing two files. It
prints a message that uses ed-like notation (a for append, c for change, and d for delete) to describe
how a set of lines has changed. The lines themselves follow this output. The < character precedes
lines from the first file and > precedes lines from the second file.

Let's create an example to explain the output produced by diff. Look at the contents of three sample
files:

test1 test2 test3

apples apples oranges

oranges oranges walnuts

walnuts grapes chestnuts

When you run diff on test1 and test2, the following output is produced:
$ diff test1 test2
3c3
< walnuts
--
> grapes

The diff command displays the only line that differs between the two files. To understand the report,
remember that diff is prescriptive, describing what changes need to be made to the first file to make it
the same as the second file. This report specifies that only the third line is affected, exchanging
walnuts for grapes. This is more apparent if you use the -e option, which produces an editing script
that can be submitted to ed , the Unix line editor. (You must redirect standard output (Section 43.1)
to capture this script in a file.)
$ diff -e test1 test2
3c
grapes
.

This script, if run on test1, will bring test1 into agreement with test2. (To do this, feed the script to
the standard input of ed (Section 20.6) or ex; add a w command (Section 20.4) at the end of the script
to write the changes, if you want to.)

If you compare the first and third files, you find more differences:
$ diff test1 test3
1dO
< apples
3a3
> chestnuts

To make test1 the same as test3, you'd have to delete the first line (apples) and append the third line
from test3 after the third line in test1. Again, this can be seen more clearly in the editing script
produced by the -e option. Notice that the script specifies editing lines in reverse order; otherwise,
changing the first line would alter all subsequent line numbers.
$ diff -e test1 test3

http://examples.oreilly.com/upt3

3a
chestnuts
.
1d

So what's this good for? Here's one example.

When working on a document, it is common practice to make a copy of a file and edit the copy rather
than the original. This might be done, for example, if someone other than the writer is inputing edits
from a written copy. The diff command can be used to compare the two versions of a document. A
writer could use it to proof an edited copy against the original.
$ diff brochure brochure.edits
49c43,44
< environment for program development and communications,
--
> environment for multiprocessing, program development
> and communications, programmers
56c51
< offering even more power and productivity for commericial
--
> offering even more power and productivity for commercial
76c69
< Languages such as FORTRAN, COBOL, Pascal, and C can be
--
> Additional languages such as FORTRAN, COBOL, Pascal, and

Using diff in this manner is a simple way for a writer to examine changes without reading the entire
document. By redirecting diff output to a file, you can keep a record of changes made to any
document. In fact, just that technique is used by both RCS and CVS (Section 39.4) to manage multiple
revisions of source code and documents.

—DD, from Unix Text Processing (Hayden Books, 1987)

Comparing Three Different Versions with diff3

You can use the diff3 command to look at differences between three files. Here are three sample files,
repeated from Section 11.1:

test1 test2 test3

apples apples oranges

oranges oranges walnuts

walnuts grapes chestnuts

For each set of differences, diff3 displays a row of equal signs (====) followed by 1, 2, or 3,
indicating which file is different; if no number is specified, then all three files differ. Then, using ed-
like notation (Section 11.1), the differences are described for each file:
$ diff3 test1 test2 test3
====3
1:1c
2:1c
 apples
3:0a
====
1:3c
 walnuts
2:3c
 grapes
3:2,3c
 walnuts
 chestnuts

With the output of diff3, it is easy to keep track of which file is which; however, the prescription
given is a little harder to decipher. To bring these files into agreement, the first range of text (after
====3) shows that you would have to add apples at the beginning of the third file (3:0a). The
second range tells you to change line 3 of the second file to line 3 of the first file — change lines 2
and 3 of the third file, effectively dropping the last line.

The diff3 command also has a -e option for creating an editing script for ed. It doesn't work quite the
way you might think. Basically, it creates a script for building the first file from the second and third
files.
$ diff3 -e test1 test2 test3
3c
walnuts
chestnuts
.
1d
.
w
q

If you reverse the second and third files, a different script is produced:
$ diff3 -e test1 test3 test2
3c
grapes
.
w
q

As you might guess, this is basically the same output as doing a diff on the first and third files.

— DD

Context diffs

The diff examples in Section 11.1 and Section 11.2 show compact formats with just the differences
between the two files. But, in many cases, context diff listings are more useful. Context diffs show the
changed lines and the lines around them. (This can be a headache if you're trying to read the listing on
a terminal and there are many changed lines fairly close to one another: the context will make a huge
"before" section, with the "after" section several screenfuls ahead. In that case, the more compact diff
formats can be useful.) A related format, unified diff, shows context but doesn't take as much space.

 Go to http://examples.oreilly.com/upt3 for more information on: rcs

The rcsdiff command shows differences between revisions in an RCS (Section 39.5) file (and will
only be available if you have RCS installed). We'll use it here instead of diff — but the concepts are
the same. Incidentally, these examples would also work with cvs diff (Section 39.7), if you have
CVS installed.

The -c option shows before-and-after versions of each changed section of a file. By itself, -c shows
three lines above and below each change. Here's an example of a C file before and after some edits;
the -c2 option shows two lines of context. The -u option shows changed lines next to each other, not
in separate before-and-after sections. Again, an option like -u2 shows two lines of context around a
change instead of the default three lines.
Start of a listing

A diff -c listing starts with the two filenames and their last-modified dates ("timestamps"). The
first filename (here, atcat.c revision 1.1) has three asterisks (***) before it; the second name
(atcat.c revision 1.2) has three dashes (---). These markers identify the two files in the
difference listings below:
*** atcat.c 1987/09/19 12:00:44 1.1
--- atcat.c 1987/09/19 12:08:41 1.2

A diff -u listing also starts with the two filenames and their last-modified dates ("timestamps").
The first filename (here, atcat.c revision 1.1) has three minus signs (---) before it, meaning
"from" or "before." The second name (atcat.c revision 1.2) has three plus signs (+++). Again,
these markers identify the two files in the difference listings that follow:
--- atcat.c 1987/09/19 12:00:44 1.1
+++ atcat.c 1987/09/19 12:08:41 1.2

Start of a section
Each difference section in a diff -c listing starts with a row of asterisks:

In a diff -u listing, each difference section starts with a line that has a pair of line numbers and
line counts. This one means that the first version of the file (with a - before it) starts at line 14
and contains 5 lines; the second version of the file (with a +) also starts at line 14 and has 5
lines:
@@ -14,5 +14,5 @@

Changes
In a diff -c listing, changed lines that exist in both files are marked with an ! (exclamation point)
character in the left margin. So, one of the lines between lines 15-19 was changed. Other lines in
the section weren't changed:
*** 15, 19 ****
 #ifndef lint
 static char rcsid[] =

http://examples.oreilly.com/upt3

! "$Id: ch11.xml,v 1.33 2002/10/13 03:51:58 troutman Exp troutman $";
 #endif not lint
--- 15,19 ----
 #ifndef lint
 static char rcsid[] =
! "$Id: ch11.xml,v 1.33 2002/10/13 03:51:58 troutman Exp troutman $";
 #endif not lint
 /* end of Identification */

A diff -u listing always shows lines that are marked with a minus (-) only in the first version and
lines marked with a plus (+) in the second version. Here, one line was changed:
@@ -15,5 +15,5 @@
 #ifndef lint
 static char rcsid[] =
- "$Id: ch11.xml,v 1.33 2002/10/13 03:51:58 troutman Exp troutman $";
 static char rcsid[] =
+ "$Id: ch11.xml,v 1.33 2002/10/13 03:51:58 troutman Exp troutman $";
 #endif not lint
 /* end of Identification */

Deletions
In a diff -c listing, a line that exists in the first version but not the second version is marked with
a minus sign (-). None of the lines from the second version are shown. So, line 62 in the first
version (lines 64-68) was deleted, leaving lines 64-67 in the second version:
*** 64,68 ****
 {
 int i; /* for loop index */
- int userid; /* uid of owner of file */
 int isuname; /* is a command line argv a user name? */
 int numjobs; /* # of jobs in spooling area */
--- 64,67 ----

A diff -u listing simply shows the deleted line with a minus (-) sign before it. The section
started at line 64 and had 5 lines; after the change, it starts at line 64 and has 4 lines:
@@ -64,5 +64,4 @@
 {
 int i; /* for loop index */
- int userid; /* uid of owner of file */
 int isuname; /* is a command line argv a user name? */
 int numjobs; /* # of jobs in spooling area */

Additions
In a diff -c listing, lines that are added are marked with an exclamation point (!) and only appear
in the second version. So, one of the lines between lines 111-116 was changed, and two other
lines were added, leaving lines 111-118 in the second version:
*** 111,116 ****
 * are given, print usage info and exit.
 */
! if (allflag && argc)
 usage();

 /*
--- 111,118 ----
 * are given, print usage info and exit.
 */
! if (allflag && argc) {
 usage();
+ exit(1);
+ }

 /*

In a diff -u listing, lines that are only in the second version are always marked with a +. Here,
one line was changed, and two lines were added. The original version started at line 111 and
had 6 lines; the changed version started at line 111 and has 8 lines:
@@ -111,6 +111,8 @@

 * are given, print usage info and exit.
 */
- if (allflag && argc)
+ if (allflag && argc) {
 usage();
+ exit(1);
+ }

 /*

Context diffs aren't just nice for reading. The patch (Section 20.9) program reads context diff listings
and uses them to update files automatically. For example, if I had the first version of atcat.c, someone
could send me either of the previous diff listings (called a "patch"). From the original and the patch,
patch could create the second version of atcat.c. The advantage of a context diff over the formats in
Section 11.1 and Section 11.2 is that context diffs let patch locate the changed sections even if they've
been moved somewhat. In this case, it's probably not a good idea to save space by reducing the
number of context lines (with -c2 or -u2, as I did here); giving all three lines of context can help
patch locate the changed sections.

Side-by-Side diffs: sdiff

After you've used diff for a while, the output is easy to read. Sometimes, though, it's just easier to see
two files side-by-side. The sdiff command does that. Between the files, it prints < to point to lines
that are only in the first file, > for lines only in the second file, and | for lines that are in both, but
different. By default, sdiff shows all the lines in both files. Here's a fairly bogus example that
compares two files that contain the output of who (Section 2.8) at different times:
$ sdiff -w75 who1 who2
jake vt01 Sep 10 10:37 jake vt01 Sep 10 10:37
uunmv ttyi1i Sep 16 11:43 <
jerry ttyi1j Sep 15 22:38 jerry ttyi1j Sep 15 22:38
jake ttyp1 Sep 9 14:55 jake ttyp1 Sep 9 14:55
jake ttyp2 Sep 9 15:19 | ellen ttyp2 Sep 16 12:07
 > carolo ttyp5 Sep 16 13:03
alison ttyp8 Sep 9 12:49 alison ttyp8 Sep 9 12:49

To see only lines that are different, use -s (silent):
$ sdiff -s -w75 who1 who2
2d1
uunmv ttyi1i Sep 16 11:43 <
5c4,5
jake ttyp2 Sep 9 15:19 | ellen ttyp2 Sep 16 12:07
 > carolo ttyp5 Sep 16 13:03

The output lines are usually 130 characters long. That's too long for 80-column-wide screens; if you
can put your terminal in 132-column mode or stretch your window, fine. If you can't, use the -w option
to set a narrower width, like -w80 for 80-column lines; sdiff will show the first 37 characters from
each line (it doesn't write quite all 80 columns). If you can set your printer to compressed type or
have a very wide window, use an option like -w170 to get all of each line.

Section 11.5 explains a very useful feature of sdiff: building one file interactively from two files you
compare.

— JP

Choosing Sides with sdiff

One problem you might be tempted to tackle with diff3 (Section 11.2) is sorting out the mess resulting
if two people make copies of the same file, and then make changes to their copies. You often find that
one version has some things right and another version has other things right. What if you wanted to
compile a single version of this document that reflects the changes made to each copy? You want to
select which version is correct for each set of differences. An effective way to do this would be to
use sdiff (Section 11.4). (Of course, the best thing to do is to prevent the problem in the first place, by
using RCS or CVS (Section 39.4).)

One of the most powerful uses of sdiff is to build an output file by choosing between different
versions of two files interactively. To do this, specify the -o option and the name of an output file to
be created. The sdiff command then displays a % prompt after each set of differences.

You can compare the different versions and select the one that will be sent to the output file. Some of
the possible responses are l to choose the left column, r to choose the right column, and q to exit the
program.

—TOR and JP

Problems with diff and Tabstops

The diff (Section 11.1) utility adds extra characters (>, <, +, and so on) to the beginning of lines. That
can cause you real grief with tabstops because the extra characters added by diff can shift lines
enough to make the indentation look wrong. The diff -t option expands TABs to 8-character tabstops
and solves the problem.

If you use nonstandard tabstops, though, piping diff's output through expand or pr -e doesn't help
because diff has already added the extra characters.

The best answers I've seen are the <() process-substitution operator and the ! (exclamation point)
script. You can expand TABs before diff sees them. For example, to show the differences between
two files with 4-column tabstops:
$ diff <(expand -4 afile) <(expand -4 bfile)
 process substitution
% diff `! expand -4 afile` `! expand -4 bfile`
 other shells

Of course, nonstandard tabstops cause lots more problems than just with diff. If you can, you're better
off using 8-space TABs and using spaces instead of tabs for indentation.

— JP

cmp and diff

cmp is another program for comparing files. It's a lot simpler than diff (Section 11.1); it tells you
whether the files are equivalent and the byte offset at which the first difference occurs. You don't get a
detailed analysis of where the two files differ. For this reason, cmp is often faster, particularly when
you're comparing ASCII files: it doesn't have to generate a long report summarizing the differences. If
all you want to know is whether two files are different, it's the right tool for the job.

It's worth noting, though, that cmp isn't always faster. Some versions of diff make some simple checks
first, such as comparing file length. If two binary files have different lengths, they are obviously
different; some diff implementations will tell you so without doing any further processing.

Both diff and cmp return an exit status (Section 35.12) that shows what they found:

Exit status Meaning

0 The files were the same.

1 The files differed.

2 An error occurred.

Within a shell script, the exit status from diff and cmp is often more important than their actual output.

— ML

Comparing Two Files with comm

The comm command can tell you what information is common to two lists and what information
appears uniquely in one list or the other. For example, let's say you're compiling information on the
favorite movies of critics Ebert and Roeper. The movies are listed in separate files (and must be
sorted (Section 22.1)). For the sake of illustration, assume each list is short:
% cat roeper
Citizen Kane
Halloween VI
Ninja III
Rambo II
Star Trek V
Zelig
% cat ebert
Cat People
Citizen Kane
My Life as a Dog
Q
Z
Zelig

To compare the favorite movies of your favorite critics, type:
% comm roeper ebert
 Cat People
 Citizen Kane
Halloween VI
 My Life as a Dog
Ninja III
 Q
Rambo II
Star Trek V
 Z
 Zelig

Column 1 shows the movies that only Roeper likes; column 2 shows those that only Ebert likes; and
column 3 shows the movies that they both like. You can suppress one or more columns of output by
specifying that column as a command-line option. For example, to suppress columns 1 and 2
(displaying only the movies both critics like), you would type:
% comm -12 roeper ebert
Citizen Kane
Zelig

As another example, say you've just received a new software release (Release 4), and it's your job to
figure out which library functions have been added so that they can be documented along with the old
ones. Let's assume you already have a list of the Release 3 functions (r3_list) and a list of the Release
4 functions (r4_list). (If you didn't, you could create them by changing to the directory that has the
function manual pages, listing the files with ls, and saving each list to a file.) In the following lists,
we've used letters of the alphabet to represent the functions:
% cat r3_list
b
c
d
f
g
h

% cat r4_list
a
b
c

d
e
f

You can now use the comm command to answer several questions you might have:

Which functions are new to Release 4? Answer:
% comm -13 r3_list r4_list
 Show 2nd column, which is "Release 4 only"
a
e

Which Release 3 functions have been dropped in Release 4? Answer:
% comm -23 r3_list r4_list
 Show 1st column, which is "Release 3 only"
g
h

Which Release 3 functions have been retained in Release 4? Answer:
% comm -12 r3_list r4_list
 Show 3rd column, which is "common functions"
b
c
d
f

You can create partial lists by saving the previous output to three separate files.

comm can only compare sorted files. In the GNU version, the option -l (lowercase L) means the
input files are sorted using the LC_COLLATE collating sequence. If you have non-ASCII characters
to sort, check your manual page for details.

— DG

More Friendly comm Output

Section 11.8 didn't show one of my least-favorite comm features. The default output (with text in
"columns") confuses me if the lines of output have much text (especially text with spaces). For
example, if I'm looking at two who (Section 2.8) listings to compare who was logged on at particular
times, the columns in the who output are jumbled:
$ comm who1 who2
 root tty1 Oct 31 03:13
 jpeek tty2 Oct 31 03:15
jpeek pts/0 Oct 31 03:19
 jpeek pts/1 Oct 31 03:19
 jpeek pts/2 Oct 31 03:19
ally pts/4 Oct 31 03:19
 jpeek pts/3 Oct 31 03:19
 xena pts/5 Nov 3 08:41

The commer script (see later) filters the comm output through sed. It converts comm's indentation
characters (one TAB for lines in "column 2" and two TABs for lines in "column 3") into labels at the
start of each output line. The default output looks like this:
$ commer who1 who2
BOTH>root tty1 Oct 31 03:13
BOTH>jpeek tty2 Oct 31 03:15
 TWO>jpeek pts/0 Oct 31 03:19
BOTH>jpeek pts/1 Oct 31 03:19
BOTH>jpeek pts/2 Oct 31 03:19
 TWO>ally pts/4 Oct 31 03:19
BOTH>jpeek pts/3 Oct 31 03:19
 ONE>xena pts/5 Nov 3 08:41

With the -i option, the script uses both labels and columns:
$ commer -i who1 who2
BOTH> root tty1 Oct 31 03:13
BOTH> jpeek tty2 Oct 31 03:15
 TWO>jpeek pts/0 Oct 31 03:19
BOTH> jpeek pts/1 Oct 31 03:19
BOTH> jpeek pts/2 Oct 31 03:19
 TWO>ally pts/4 Oct 31 03:19
BOTH> jpeek pts/3 Oct 31 03:19
 ONE> xena pts/5 Nov 3 08:41

 Go to http://examples.oreilly.com/upt3 for more information on: commer

Here's the script. The sed substitute (s) commands have one or two TABs between the first pair of
slashes. Note that the sed script is inside double quotes ("), so the shell can substitute the value of
$indent with an ampersand (&) into the sed script if the -i option was used:
#!/bin/sh
commer - label columns in "comm" output
Usage: commer [-i] file1 file2
-i option indents output lines into columns as "comm" does
#
Note that script WILL FAIL if any input lines start with a TAB.

case "$1" in
-i) indent='&'; shift ;;
-*|"") echo "Usage: `basename $0` [-i] file1 file2" 1>&2; exit 1 ;;
esac

In "comm" output, column 1 (lines in file 1) has no leading TAB.
Column 2 (lines in file 2) has one leading TAB.
Column 3 (lines in both files) has two leading TABs.
Search for these tabs and use them to label lines.

http://examples.oreilly.com/upt3

(You could replace ONE and TWO with the filenames $1 and $2)
comm "$1" "$2" |
sed "{
/^ / {s//BOTH>$indent/; b}
/^ / {s// ONE>$indent/; b}
s/^/ TWO>/
}"

Note
The commer script will be fooled by lines that already have TAB characters at the start. If this might be a problem, y ou can modify the script to search the files (grep "^TAB" >/dev/null) before starting comm.

— JP

make Isn't Just for Programmers!

The make program is a Unix facility for describing dependencies among a group of related files,
usually ones that are part of the same project. This facility has enjoyed widespread use in software-
development projects. Programmers use make to describe how to "make" a program — which source
files need to be compiled, which libraries must be included, and which object files need to be linked.
By keeping track of these relationships in a single place, individual members of a software-
development team can make changes to a single module, run make, and be assured that the program
reflects the latest changes made by others on the team.

Only by a leap of the imagination do we group make with the other commands for keeping track of
differences between files. However, although it does not compare two versions of the same source
file, it can be used to compare versions of a source file and to the formatted output.

Part of what makes Unix a productive environment for text processing is discovering other uses for
standard programs. The make utility has many possible applications for a documentation project. One
such use is to maintain up-to-date copies of formatted files — which make up a single manual and
provide users with a way of obtaining a printed copy of the entire manual without having to know
which preprocessors or formatting options (Section 45.13) need to be used.

The basic operation that make performs is to compare two sets of files — for example, formatted and
unformatted files — and determine if any members of one set, the unformatted files, are more recent
than their counterpart in the other set, the formatted files. This is accomplished by simply comparing
the last-modification date (Section 8.2) ("timestamp") of pairs of files. If the unformatted source file
has been modified since the formatted file was made, make executes the specified command to
"remake" the formatted file.

To use make, you have to write a description file, usually named Makefile (or makefile), that resides
in the working directory for the project. The Makefile specifies a hierarchy of dependencies among
individual files, called components. At the top of this hierarchy is a target. For our example, you can
think of the target as a printed copy of a book; the components are formatted files generated by
processing an unformatted file with nroff Section 45.12).

Here's the Makefile that reflects these dependencies:

lp Section 45.2
manual: ch01.fmt ch02.fmt ch03.fmt
 lp ch0[1-3].fmt
ch01.fmt: ch01
 nroff -mm ch01 > ch01.fmt
ch02.fmt: ch02
 tbl ch02 | nroff -mm > ch02.fmt
ch03.fmt: ch03a ch03b ch03c
 nroff -mm ch03[abc] > ch03.fmt

This hierarchy is represented in Figure 10-1.

Figure 11-1. What Makefile describes: Files and commands to make manual

The target is manual, which is made up of three formatted files whose names appear after the colon.
Each of these components has its own dependency line. For instance, ch01.fmt is dependent upon a
coded file named ch01. Underneath the dependency line is the command that generates ch01.fmt. Each
command line must begin with a TAB.

When you enter the command make, the end result is that the three formatted files are spooled to the
printer. However, a sequence of operations is performed before this final action. The dependency
line for each component is evaluated, determining if the coded file has been modified since the last
time the formatted file was made. The formatting command will be executed only if the coded file is
more recent. After all the components are made, the lp (Section 45.2) command is executed.

As an example of this process, we'll assume that all the formatted files are up-to-date. Then by editing
the source file ch03a, we change the modification time. When you execute the make command, any
output files dependent on ch03a are reformatted:
$ make
nroff -mm ch03[abc] > ch03.fmt
lp ch0[1-3].fmt

Only ch03.fmt needs to be remade. As soon as that formatting command finishes, the command
underneath the target manual is executed, spooling the files to the printer.

Although this example has actually made only limited use of make's facilities, we hope it suggests
more ways to use make in a documention project. You can keep your Makefiles just this simple, or
you can go on to learn additional notation, such as internal macros and suffixes, in an effort to
generalize the description file for increased usefulness.

—TOR, from Unix Text Processing (Hayden Books, 1987)

Even More Uses for make

Thinking about make will pay off in many ways. One way to get ideas about how to use it is to look at
other Makefiles.

One of my favorites is the Makefile for NIS (Section 1.21) (formerly called YP, or "Yellow
Pages"). I like this Makefile because it does something that you'd never think of doing (even though it
suits make perfectly): updating a distributed database.

The Makefile is fairly complicated, so I don't want to get into a line-by-line explication; but I will
give you a sketch of how it works. Here's the problem: a system administrator updates one or more
files (we'll say the passwd file) and wants to get her changes into the NIS database. So you need to
check whether the new password file is more recent than the database. Unfortunately, the database
isn't represented by a single file, so there's nothing to "check" against. The NIS Makefile handles this
situation by creating empty files that serve as timestamps. There's a separate timestamp file for every
database that NIS serves. When you type make, make checks every master file against the
corresponding timestamp. If a master file is newer than the timestamp, make knows that it has to
rebuild part of the database. After rebuilding the database, the Makefile "touches" the timestamp, so
that it reflects the time at which the database was built.

The Makefile looks something like this:
passwd: passwd.time
passwd.time: /etc/master/passwd
 @ lots of commands that rebuild the database
 @ touch passwd.time
 @ more commands to distribute the new database

hosts: hosts.time
hosts.time: similar stuff

You may never need to write a Makefile this complicated, but you should look for situations in which
you can use make profitably. It isn't just for programming.

— ML

Chapter 12. Showing What's in a File

Cracking the Nut

Summary Box
This chapter talks about the many way s of dumping a file to the screen. Most users know the brute force approach provided by cat (Section 12.2), but there's more to it than that:

Pagers such as more and less (Section 12.3) that give y ou more control when looking through long files.
Finding out what ty pe of data a file contains before opening it (Section 12.6).
Looking at just the beginning or end of a file (Section 12.8 through Section 12.12).
Numbering lines (Section 12.13).

— TOR

What Good Is a cat?

The cat command may well be the first command new users hear about, if only because of its odd
name. cat stands for concatenate or, as some would say, catenate. Both words mean the same thing: to
connect in a series. The cat command takes its filename arguments and strings their contents together.
Essentially, cat takes its input and spits it out again.

cat has many uses, but the four most basic applications are described in the following list. In many
ways, they don't illustrate cat so much as they illustrate the shell's output redirection (Section 43.1)
mechanism.

1. First form:
% cat
 file
% cat
 file1 file2 file
 ...

Use this form to display one or more files on the screen. The output doesn't pause when the
screen is full. As a result, if your files are more than one screenful long, the output will whiz by
without giving you a chance to read it. To read output by screenfuls, use a pager such as less
(Section 12.3).[1]

2. Second form:
% cat
 file(s) > new_file

Use this form when you want to combine several smaller files into one large file. Be sure the
destination file does not already exist; otherwise, it will be replaced by the new contents
(effectively destroying the original). For example, the command:
% cat chap1 chap2 chap3 > book

creates a new file, book, composed of three files, one after the other. The three component files
still exist as chap1, chap2, and chap3.

3. Third form:
% cat
 file >> existing_file
% cat
 files >> existing_file

Use this form to add one or more files to the end of an existing file. For example:
% cat note1 note2 > note_list
% cat note3 >> note_list

4. Fourth form:
% cat >
 newfile

Use this form as a quick-and-dirty way to create a new file. This is useful when you aren't yet
familiar with any of the standard text editors. With this command, everything you type at the
keyboard goes into the new file. (You won't be able to back up to a previous line.) To finish
your input, enter CTRL-d on a line by itself.

Well, that was just in case there are some beginners on board. Section 12.4, Section 12.7, and Section
12.13 give some more useful tips about cat options.

— DG

[1] You may think this command form is pointless. In truth, this form is rarely used in such a basic
way. More often, you'll use this form along with some of cat's display options or connect this
command to other Unix commands via a pipe Section 1.5).

"less" is More

The most popular pager for Unix systems was once the more command, so named because it gave you
"one more screen." more is ubiquitous, but also somewhat limited in its capability. The less command
(so named because, of course, "less is more!") is more commonly used. less is a full-featured text
pager that emulates more but offers an extended set of capabilities.

One particularly important feature of less is that it does not read all of its input before starting, which
makes it faster than an editor for large input. less also offers many useful features and is available for
almost every operating environment. As an extra bonus, it is installed by default on most free Unixes.

less begins execution by first examining the environment in which it is running. It needs to know some
things about the terminal (or window) in which its output will be displayed. Once that's known, less
formats the text and displays the first screen's output. The last line of the screen is reserved for user
interaction with the program. less will display a colon (:) on the first column of the last line and leave
the cursor there. This colon is a command prompt, awaiting command input from the user. Most
commands to less are single-character entries, and less will act upon them immediately and without a
subsequent carriage return (this is known as cbreak mode). The most basic command to less (and
more) is a single space, which instructs the pager to move ahead in the text by one screen. Table 12-1
lists commonly used less commands.

Table 12-1. Commonly used less commands

Command Description

Space Scroll forward one screen.

d Scroll forward one-half screen.

RETURN Scroll forward one line.

b
Scroll backward one screen. Unlike more, while less is reading from pipes Section 1.5),
it can redraw the screen and read previous pages.

u Scroll backward one-half screen.

y Scroll backward one line.

g Go to the beginning of the text (could be slow with large amounts of text).

G Go to the end of the text (could be slow with large amounts of text).

/
pattern Search forward for pattern, which can be a regular expression.

?
pattern Search backward for pattern, which can be a regular expression.

n
Search for the next occurance of the last search, in the same direction: forward in the file
if the previous search was using / and backwards in the file if the previous search was

using ?.
N Search for the previous occurance of the last search. See earlier.
h Display a help screen.

:n Display next file from command line (two-character command).

:p Display previous file from command line (two-character command).

less has a rich command set, and its behavior can be modified as needed for your use. The lesskey
program lets you make custom key definitions, and you can store your favorite setup options in the
LESS environment variable (Section 35.3). See the less manpage for further details.

One of the big advantages of less is that it doesn't require any relearning; less does the right thing
when you use more, vi (Section 17.2), or emacs (Section 19.1) file-browsing commands.
Incidentally, it also protects you from terminal control sequences and other obnoxious things that
happen when you try to view a binary file, because it escapes nonprinting characters (Section
12.4).

— JD

Show Nonprinting Characters with cat -v or od -c

Especially if you use an ASCII-based terminal, files can have characters that your terminal can't
display. Some characters will lock up your communications software or hardware, make your screen
look strange, or cause other weird problems. So if you'd like to look at a file and you aren't sure
what's in there, it's not a good idea to just cat the file!

Instead, try cat -v. It shows an ASCII ("printable") representation of unprintable and non-ASCII
characters. In fact, although most manual pages don't explain how, you can read the output and see
what's in the file. Another utility for displaying nonprintable files is od . I usually use its -c option
when I need to look at a file character by character.

Let's look at a file that's almost guaranteed to be unprintable: a directory file. This example is on a
standard V7 (Unix Version 7) filesystem. (Unfortunately, some Unix systems won't let you read a
directory. If you want to follow along on one of those systems, try a compressed file (Section 15.6)
or an executable program from /bin.) A directory usually has some long lines, so it's a good idea to
pipe cat's output through fold:
% ls -fa
.
..
comp
% cat -v . | fold -62
M-^?^N.^@^@^@^@^@^@^@^@^@^@^@^@^@>^G..^@^@^@^@^@^@^@^@^@^@^@^@
M-a
comp^@^@^@^@^@^@^@^@^@^@^@^@MassAveFood^@^@^@^@^@hist^@^@^
@^@^@^@^@^@^@^@
% od -c .
0000000 377 016 . \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0
0000020 > 007 . . \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0
0000040 341 \n c o m p \0 \0 \0 \0 \0 \0 \0 \0 \0 \0
0000060 \0 \0 M a s s A v e F o o d \0 \0 \0
0000100 \0 \0 h i s t \0 \0 \0 \0 \0 \0 \0 \0 \0 \0
0000120

Each entry in a V7-type directory is 16 bytes long (that's also 16 characters, in the ASCII system).
The od -c command starts each line with the number of bytes, in octal, shown since the start of the
file. The first line starts at byte 0. The second line starts at byte 20 octal (that's byte 16 in decimal, the
way most people count). And so on. Enough about od for now, though. We'll come back to it in a
minute. Time to dissect the cat -v output:

You've probably seen sequences like ^N and ^G. Those are control characters.
Another character like this is ^@, the character NUL (ASCII 0). There are a lot of NULs in the
directory; more about that later. A DEL character (ASCII 177 octal) is shown as ^?. Check an
ASCII chart.
cat -v has its own symbol for characters outside the ASCII range with their high bits set, also
called metacharacters. cat -v prints those as M- followed by another character. There are two of
them in the cat -v output: M-^? and M-a.
To get a metacharacter, you add 200 octal. For an example, let's look at M-a. The octal value of
the letter a is 141. When cat -v prints M-a, it means the character you get by adding 141+200, or
341 octal.
You can decode that the character cat prints as M-^? in the same way. The ^? stands for the DEL
character, which is octal 177. Add 200+177 to get 377 octal.

If a character isn't M- something or ^ something, it's a regular printable character. The entries
in the directory (., .., comp, MassAveFood, and hist) are all made of regular ASCII characters.
If you're wondering where the entries MassAveFood and hist are in the ls listing, the answer is
that they aren't. Those entries have been deleted from the directory. Unix puts two NUL (ASCII
0, or ^@) bytes in front of the names of deleted V7 directory entries.

cat has two options, -t and -e, for displaying whitespace in a line. The -v option doesn't convert
TAB and trailing-space characters to a visible form without those options. See Section 12.5.

Next, od -c. It's easier to explain than cat -v:

od -c shows some characters starting with a backslash (\). It uses the standard Unix and C
abbreviations for control characters where it can. For instance, \n stands for a newline
character, \t for a tab, etc. There's a newline at the start of the comp entry — see it in the od -c
output? That explains why the cat -v output was broken onto a new line at that place: cat -v
doesn't translate newlines when it finds them.
The \0 is a NUL character (ASCII 0). It's used to pad the ends of entries in V7 directories when
a name isn't the full 14 characters long.
od -c shows the octal value of other characters as three digits. For instance, the 007 means "the
character 7 octal." cat -v shows this as ^G (CTRL-g).
Metacharacters, the ones with octal values 200 and higher, are shown as M- something by cat -
v. In od -c, you'll see their octal values — such as 341.
Each directory entry on a Unix Version 7 filesystem starts with a two-byte "pointer" to its
location in the disk's inode table. When you type a filename, Unix uses this pointer to find the
actual file information on the disk. The entry for this directory (named .) is 377 016. Its parent
(named ..) is at > 007. And comp's entry is 341 \n. Find those in the cat -v output, if you want;
and compare the two outputs.
Like cat -v, regular printable characters are shown as is by od -c.

The strings (Section 13.15) program finds printable strings of characters (such as filenames) inside
mostly nonprintable files (such as executable binaries).

— JP

What's in That Whitespace?

The cat -v option (Section 12.4) shows an ASCII representation of unprintable and non-ASCII
characters. cat has two options for displaying whitespace in a line. If you use the -t option with -v,
TAB characters are shown as ^I. The -e option combined with -v marks the end of each line with a
$ character. Some versions of cat don't require the -v with those options. Let's compare a one-line
file without and with the -t -e (which may have to be typed separately, by the way; -te won't work on
some versions):
% cat afile
This is a one-line file - boring, eh?
% cat -v -t -e afile
ThiS^Hs is^Ia one-line file^I- boring, eh? $

Although you can't tell it from plain cat, there's a backspace (CTRL-h) before the first s, two TABs
that take up only one column of whitespace each, and seven spaces at the end of the line. Knowing
this can help you debug problems in printing and displaying files. It's also a help for shell
programmers who need to parse or sort the output of other programs.

— JP

Finding File Types

Many different kinds of files live on the typical Unix system: database files, executable files, regular
text files, files for applications like StarOffice, tar files, mail messages, directories, font files, and so
on.

You often want to check to make sure you have the right "kind" of file before doing something. For
example, you'd like to read the file tar. But before typing more tar, you'd like to know whether this
file is your set of notes on carbon-based sludge or the tar executable. If you're wrong, the
consequences might be unpleasant. Sending the tar executable to your screen might screw up your
terminal settings, log you off, or do any number of unpleasant things.

 Go to http://examples.oreilly.com/upt3 for more information on: file

The file utility tells you what sort of file something is. It's fairly self-explanatory:
% file /bin/sh
/bin/sh: sparc demand paged executable
% file 2650
2650: [nt]roff, tbl, or eqn input text
% file 0001,v
0001,v: ascii text
% file foo.sh
foo.sh: shell commands

file is actually quite clever though it isn't always correct — some versions are better than others. It
doesn't just tell you if something's binary or text; it looks at the beginning of the file and tries to figure
out what it's doing. So, for example, you see that file 2650 is an nroff (Section 45.12) file and foo.sh
is a shell script. It isn't quite clever enough to figure out that 0001,v is an RCS (Section 39.5) archive,
but it does know that it's a plain ASCII text file.

Many versions of file can be customized to recognize additional file types. The file /etc/magic tells
file how to recognize different kinds of files. [My Linux system has the file command from
ftp://ftp.astron.com/pub/file/, which uses a multiple-database format. It's updated fairly often to
understand new file formats. — JP] It's capable of a lot (and should be capable of even more), but
we'll satisfy ourselves with an introductory explanation. Our goal will be to teach file to recognize
RCS archives.

/etc/magic has four fields:
offset data-type value file-type

These are as follows:
offset

The offset into the file at which magic will try to find something. If you're looking for something
right at the beginning of the file, the offset should be 0. (This is usually what you want.)

data-type
The type of test to make. Use string for text comparisons, byte for byte comparisons, short
for two-byte comparisons, and long for four-byte comparisons.

value
The value you want to find. For string comparisons, any text string will do; you can use the
standard Unix escape sequences (such as \n for newline). For numeric comparisons (byte, short,
long), this field should be a number, expressed as a C constant (e.g., 0x77 for the hexadecimal

http://examples.oreilly.com/upt3

byte 77).
file-type

The string that file will print if this test succeeds.

So, we know that RCS archives begin with the word head. This word is right at the beginning of the
file (offset 0). Since we obviously want a string comparison, we make the the following addition to
/etc/magic:
0 string head RCS archive

This says, "The file is an RCS archive if you find the string head at an offset of 0 bytes from the
beginning of the file." Does it work?
% file RCS/0001,v
RCS/0001,v: RCS archive

As I said, the tests can be much more complicated, particularly if you're working with binary files. To
recognize simple text files, this is all you need to know.

— ML

Squash Extra Blank Lines

Reading output with lots of empty lines can be a waste of screen space. For instance, some versions
of man (Section 2.1) show all the blank lines between manual pages. To stop that, read your file or
pipe it through cat -s. (Many versions of less (Section 12.3) and more have a similar -s option.) The
-s option replaces multiple blank lines with a single blank line. (If your cat doesn't have -s, see the
sed alternative at the end.)

cat -s might not always seem to work. The problem is usually that the "empty" lines have SPACE,
TAB, or CTRL-m characters on them. The fix is to let sed "erase" lines with those invisible
characters on them:
% sed 's/^[SPACE TAB CTRL-v CTRL-m]*$//' file
 | cat -s

In vi (Section 18.6) and many terminal drivers, the CTRL-v character quotes the CTRL-m (RETURN)
so that character doesn't end the current line.

If you don't have cat -s, then sed can do both jobs:
% sed -e 's/^[SPACE TAB CTRL-v CTRL-m]*$//' -e '/./,/^$/!d' file

— JP

How to Look at the End of a File: tail

Let's say that you want to look at the end of some large file. For example, you've just sent some mail
and want to find out whether it was handled correctly. But when you look at your mail logs, you find
out that the log file is 30 or 40 KB long, and you don't care about the whole thing — you certainly
don't want to page through it until you get to the end. How do you handle this?

The tail command is just what you need in this situation. tail reads its input and discards everything
except for the last ten lines (by default). Therefore, if you're pretty sure that the information you want
is at the end of the file, you can use tail to get rid of the junk that you don't want. To see just the end of
that mail log (in this case, qmail's log):
% tail /var/log/maillog
Feb 19 10:58:45 yyy qmail: 1014141525.474209 delivery 6039: success: did_0+0+1/
Feb 19 10:58:45 yyy qmail: 1014141525.491370 status: local 0/10 remote 0/20
Feb 19 10:58:45 yyy qmail: 1014141525.492211 end msg 111214
Feb 19 11:11:15 yyy qmail: 1014142275.469000 new msg 111214
Feb 19 11:11:15 yyy qmail: 1014142275.469631 info msg 111214: bytes 281 from
<xxx@yyy.zyzzy.com> qp 51342 uid 1000
Feb 19 11:11:15 yyy qmail: 1014142275.562074 starting delivery 6040: msg 111214
to remote xyz@frob.com
Feb 19 11:11:15 yyy qmail: 1014142275.562630 status: local 0/10 remote 1/20
Feb 19 11:11:30 yyy qmail: 1014142290.110546 delivery 6040: success:
64.71.166.115_accepted_message./Remote_host_said:_250_Ok:_queued_as_C0EC73E84D/
Feb 19 11:11:30 yyy qmail: 1014142290.127763 status: local 0/10 remote 0/20
Feb 19 11:11:30 yyy qmail: 1014142290.128381 end msg 111214

For another common example, to see the latest entries from the BSD or Linux kernel ring buffer:
% dmesg | tail
lpt0: <Printer> on ppbus0
lpt0: Interrupt-driven port
ppi0: <Parallel I/O> on ppbus0
IPsec: Initialized Security Association Processing.
ad0: 19569MB <ST320430A> [39761/16/63] at ata0-master UDMA66
afd0: 239MB <IOMEGA ZIP 250 ATAPI> [239/64/32] at ata0-slave using PIO3
acd0: CDROM <ATAPI CDROM> at ata1-master using PIO4
Mounting root from ufs:/dev/ad0s1a
pid 50882 (fetch), uid 0: exited on signal 10 (core dumped)
pid 88041 (smbd), uid 1000 on /usr: file system full

This will give you the last ten lines from the dmesg command. If you need more or less than ten lines,
look at Section 12.9.

Althought the GNU version is better behaved, some older versions of tail accept one (and only one!)
filename:
% tail
 somefile

There are many other situations in which tail is useful: I've used it to make sure that a job that
produces a big output file has finished correctly, to remind me what the last piece of mail in my
mailbox was about, and so on. You'll find tail important whenever you're interested only in the end of
something.

— ML

Finer Control on tail

What if you need to look at the last 11 lines of the file? The command tail - n shows the final n
lines. The command tail + n discards the first n-1 lines, giving you line n and everything that
follows it.

You can also tell tail to count the number of characters or the number of 512-byte blocks. To do so,
use the -c option (count characters) or the -b option (count blocks). If you want to state explicitly that
you're interested in lines, give the -l option.

Your tail probably has a -r option that shows the file in reverse order, starting from the last line.

Many versions of Unix limit the maximum number of lines that tail, especially tail -r, can display.

— ML

How to Look at Files as They Grow

One of the best things that you can do with tail is to look at a file as it is growing. For example, I once
was debugging a program named totroff that converted a manual from a plain text format to troff. It
was rather slow, so that you didn't want to wait until the program finished before looking at the
output. But you didn't want to be typing more every 20 seconds either, to find out whether the part of
the file that you were debugging had made it through yet. (more quits when you "run out" of file, so it
can't really help you look for a part of a file that hasn't been written yet.) The tail -f command solves
this problem. For example:

& Section 23.3
% totroff < file.txt > file.ms &
[1] 12345
% tail -f file.ms
.LP
Tail produces output as
the file grows.
 ...
CTRL-c

Now suppose you want to monitor several files at once. Administrators, for example, might want to
keep track of several log files, such as /usr/adm/messages, /usr/adm/lpd-errs, UUCP error files, etc.
The GNU tail program comes in useful for keeping an eye on several administrative log files at once.
But it also comes in useful for nonadministrators.

For example, suppose you want to perform several greps through many files, saving the output in
different files. You can then monitor the files using tail -f. For example:
% grep Berkeley ch?? > Berkeley.grep &
% grep BSD ch?? > BSD.grep &
% grep "System V" ch?? > SystemV.grep &
% grep SysV ch?? > SysV.grep &
% tail -f Berkeley.grep BSD.grep SystemV.grep SysV.grep

When new text appears in the files called with tail -f, it also appears on the screen:
==> SysV.grep <==
ch01:using a SysV-based UNIX system, you must

==> Berkeley.grep <==
ch01:at the University of California at Berkeley, where

==> BSD.grep <==
ch03:prefer BSD UNIX systems because they are less likely to
ch04:who use a BSD-based UNIX systems must run the

==> SysV.grep <==
ch04:is a SysV derivative sold by Acme Products Inc.

(When text is written to a new file, the filename is printed surrounded by ==> and <==.)

What's actually happening here?

When you invoke tail -f, tail behaves just like it normally does: it reads the file and dumps the last ten
(or however many) lines to the screen. But, unlike most applications, tail doesn't quit at this point.
Instead, tail goes into an infinite loop. It sleeps for a second, then wakes up and looks to see if the file
is any longer, then sleeps again, and so on. Because this is an infinite loop, you have to enter CTRL-c
(or whatever your interrupt key (Section 24.11) is) when you've seen the data you're interested in, or
when the file you're watching has been completed. tail has no way of knowing when the file has

stopped growing.

tail ignores the -f option when it is reading from a pipe. For example, totroff < file.txt | tail -f
wouldn't work.

Section 12.11 shows a useful feature of GNU tail: following files by name or file descriptor.

—ML and LM

GNU tail File Following

I like to keep an xterm window open on my Linux system so I can watch various log files. Although
there are fancier log-file-monitoring programs (such as swatch), tail -f (Section 12.10) is perfect for
me.

I also run a weekly cron (Section 25.2) job to rotate log files (rename the files, compress and
archive them). When this job runs, the log files suddenly have new names — messages becomes
messages.1, for instance — so the system logger starts writing to a different messages file. Then
plain tail -f suddenly stops showing the log because it doesn't realize that the same physical file on
the disk suddenly has a new name. When this happened, I had to remember to kill and restart tail each
Sunday morning . . . until I found the new version of GNU tail, that is.

The GNU tail - -follow option lets you choose how the files you're watching should be followed.
By default, GNU tail acts like the standard tail: it opens a file for reading and gets a file descriptor
(Section 36.15) number, which it constantly watches for changes. But if that file is renamed and a new
file with the old name (and a new inode) takes its place, the file descriptor may point to a file that's
not in use anymore.

 Go to http://examples.oreilly.com/upt3 for more information on: tail

The GNU tail options, - -follow=name and - -retry, tell it to watch the actual file name, not the
open file descriptor. Here's what happens Sunday mornings when I'm using this:

{ } Section 28.4
kludge# tail --follow=name --retry ~jerry/tmp/startx.log \
 /var/log/{messages,maillog,secure}
 ...lots of log messages...
tail: `/var/log/secure' has been replaced; following end of new file
tail: `/var/log/maillog' has been replaced; following end of new file
tail: `/var/log/messages' has been replaced; following end of new file
Dec 31 04:02:01 kludge syslogd 1.3-3: restart.
Dec 31 04:02:01 kludge syslogd 1.3-3: restart.
Dec 31 04:02:05 kludge anacron[8397]: Updated timestamp for job
`cron.weekly' to 2000-12-31

It's just what I've always needed.

http://examples.oreilly.com/upt3

Printing the Top of a File

head can be used to print the first few lines of one or more files (the "head" of the file or files). When
more than one file is specified, a header is printed at the beginning of each file, and each is listed in
succession.

Like tail (Section 12.9), head supports the - n option to control the number of lines displayed and the
-c option to print characters/bytes instead of lines. GNU head also supports an extention to -c: -c
nk prints the first n kilobytes of the file, and -c nm prints the first n megabytes of the file.

— DJPH

Numbering Lines

There are times when you want to print out a file with the lines numbered — perhaps because you are
showing a script or program in documentation and want to refer to individual lines in the course of
your discussion.

This is one of the handy things cat can do for you with the -n option.

cat -n precedes each line with some leading spaces, the line number, and a TAB. How many leading
spaces? It depends on how high the line numbers go. The line numbers are right-justified at column 6,
which means that a 6-digit number will go all the way back to the margin. I only belabor this point in
case you're tempted to trim the leading spaces with something like cut (Section 21.14).

 Go to http://examples.oreilly.com/upt3 for more information on: nl

If you have a version of cat that doesn't support -n, try nl, the line-numbering program. nl -ba acts
like cat -n. By itself, nl numbers only lines with text. The GNU version is on the web site.

You can achieve a similar effect with pr -t -n . (The -t keeps pr from inserting the header and
footer (Section 45.6) it normally uses to break its output into pages.) And as long as we're giving you
choices, here are five more:
less -N filename
grep -n \^ filename
awk '{print NR,$0}' filename
sed = < filename | sed 'N;s/\n/ /'
ex - '+%#\|q' filename

http://examples.oreilly.com/upt3

Chapter 13. Searching Through Files

Different Versions of grep

Summary Box
grep is one of Unix's most useful tools. As a result, all users seem to want their own, slightly different version that solves a different piece of the problem. (May be this is a problem in itself; there really should be only one grep, as the manpage
say s.) Three versions of grep come with every Unix sy stem; in addition, there are six or seven freely available versions that we'll mention here, as well as probably dozens of others that y ou can find kicking around the Net.

Here are the different versions of grep and what they offer. We'll start with the standard versions:
Plain old grep

Great for searching with regular expressions (Section 13.2).
Extended grep (or egrep)

Handles extended regular expressions. It is also, arguably , the fastest of the standard greps (Section 13.4).
Fixed grep (or fgrep)

So named because it matches fixed strings. It is sometimes inaccurately called "fast grep"; often it is really the slowest of them all. It is useful to search for patterns with literal backslashes, asterisks, and so on that y ou'd otherwise have to
escape somehow. fgrep has the interesting ability to search for multiple strings (Section 13.5).

Of course, on many modern Unixes all three are the same executable, just with slightly different behaviors, and so y ou may not see dramatic speed differences between them. Now for the freeware versions:
agrep, or "approximate grep"

A tool that finds lines that "more or less" match y our search string. A very interesting and useful tool, it's part of the glimpse package, which is an indexing and query sy stem for fast searching of huge amounts of text. agrep is introduced in
Section 13.6.

Very fast versions of grep, such as GNU grep/egrep/fgrep
Most free Unixes use GNU grep as their main grep.

rcsgrep
Searches through RCS files (Section 39.5) (Section 13.7).

In addition, y ou can simulate the action of grep with sed, awk, and perl. These utilities allow y ou to write such variations as a grep that searches for a pattern that can be split across several lines (Section 13.9) and other context grep programs
(Section 41.12), which show y ou a few lines before and after the text y ou find. (Normal greps just show the lines that match.)

— ML

Searching for Text with grep

There are many well-known benefits provided by grep to the user who doesn't remember what his
files contain. Even users of non-Unix systems wish they had a utility with its power to search through
a set of files for an arbitrary text pattern (known as a regular expression).

The main function of grep is to look for strings matching a regular expression and print only the lines
found. Use grep when you want to look at how a particular word is used in one or more files. For
example, here's how to list the lines in the file ch04 that contain either run-time or run time:

".." Section 27.12
$ grep "run[-]time" ch04
This procedure avoids run-time errors for not-assigned
and a run-time error message is produced.
run-time error message is produced.
program aborts and a run-time error message is produced.
DIMENSION statement in BASIC is executable at run time.
This means that arrays can be redimensioned at run time.
accessible or not open, the program aborts and a run-time

Another use might be to look for a specific HTML tag in a file. The following command will list top-
level (<H1> or <h1>) and second-level (<H2> or <h2>) headings that have the starting tag at the
beginning (^) of the line:
$ grep "^<[Hh][12]>" ch0[12].html
ch01.html:<h1>Introduction</h1>
ch01.html:<h1>Windows, Screens, and Images</h1>
ch01.html:<h2>The Standard Screen-stdscr</h2>
ch01.html:<h2>Adding Characters</h2>
ch02.html:<H1>Introduction</H1>
ch02.html:<H1>What Is Terminal Independence?</H1>
ch02.html:<H2>Termcap</H2>
ch02.html:<H2>Terminfo</H2>

In effect, it produces a quick outline of the contents of these files.

grep is also often used as a filter (Section 1.5), to select from the output of some other program. For
example, you might want to find the process id of your inetd, if you just changed the configuration file
and need to HUP inetd to make it reread the configuration file. Using ps (Section 24.5) and grep
together allows you to do this without wading through a bunch of lines of output:
% ps -aux | grep inetd
root 321 0.0 0.2 1088 548 ?? Is 12Nov01 0:08.93 inetd -wW
deb 40033 0.0 0.2 1056 556 p5 S+ 12:55PM 0:00.00 grep inetd
% kill -HUP 321

There are several options commonly used with grep. The -i option specifies that the search ignore
the distinction between upper- and lowercase. The -c option tells grep to return only a count of the
number of lines matched. The -w option searches for the pattern "as a word." For example, grep if
would match words like cliff or knife, but grep -w if wouldn't. The -l option returns only the name
of the file when grep finds a match. This can be used to prepare a list of files for another command.
The -v option (Section 13.3) reverses the normal action, and only prints out lines that don't match the
search pattern. In the previous example, you can use the -v option to get rid of the extra line of output:
% ps -aux | grep inetd | grep -v grep
root 321 0.0 0.2 1088 548 ?? Is 12Nov01 0:08.93 inetd -wW
% kill -HUP 321

— DD

Finding Text That Doesn't Match

The grep programs have one very handy feature: they can select lines that don't match a pattern just as
they can select the lines that do. Simply use the -v option.

I used this most recently when working on this book. We have thousands of separate files under RCS
(Section 39.5), and I sometimes forget which ones I've got checked out. Since there's a lot of clutter in
the directory and several people working there, a simple ls won't do. There are a series of temporary
files created by some of our printing scripts that I don't want to see. All of their filenames consist of
one or more x characters: nothing else. So I use a findpt alias to list only the files belonging to me. It's
a version of the find. alias described in Section 9.26, with -user tim added to select only my own
files and a grep pattern to exclude the temporary files. My findpt alias executes the following
command line:
find. | grep -v '^\./xx*$'

The leading ./ matches the start of each line of find. output, and xx* matches one x followed by zero
or more xs. I couldn't use the find operators ! -name in that case because -name uses shell-like
wildcard patterns, and there's no way to say "one or more of the preceding character" (in this case,
the character x) with shell wildcards.

Obviously, that's as specific and nonreproducible an example as you're likely to find anywhere! But
it's precisely these kinds of special cases that call for a rich vocabulary of tips and tricks. You'll
never have to use grep -v for this particular purpose, but you'll find a use for it someday.

[Note that you could use a slightly simpler regular expression by using egrep (Section 13.4), which
supports the plus (+) operator to mean "one or more," instead of having to use the basic regular
expression character character zero-or-more (xx*). The previous regular expression would then
become:
find. | egrep -v '^\./x+$'

The richer regular expression language is the primary advantage of egrep. — DJPH]

— TOR

Extended Searching for Text with egrep

The egrep command is yet another version of grep (Section 13.2), one that extends the syntax of
regular expressions. (Versions where grep and egrep are the same allow you to get egrep-like
behavior from grep by using the -E option.) A plus sign (+) following a regular expression matches
one or more occurrences of the regular expression; a question mark (?) matches zero or one
occurrences. In addition, regular expressions can be nested within parentheses:
% egrep "Lab(oratorie)?s" name.list
AT&T Bell Laboratories
AT&T Bell Labs
Symtel Labs of Chicago

Parentheses surround a second regular expression and ? modifies this expression. The nesting helps
to eliminate unwanted matches; for instance, the word Labors or oratories would not be matched.

Another special feature of egrep is the vertical bar (|), which serves as an or operator between two
expressions. Lines matching either expression are printed, as in the next example:
% egrep "stdscr|curscr" ch03
into the stdscr, a character array.
When stdscr is refreshed, the
stdscr is refreshed.
curscr.
initscr() creates two windows: stdscr
and curscr.

Remember to put the expression inside quotation marks to protect the vertical bar from being
interpreted by the shell as a pipe symbol. Look at the next example:
% egrep "Alcuin (User|Programmer)('s)? Guide" docguide
Alcuin Programmer's Guide is a thorough
refer to the Alcuin User Guide
Alcuin User's Guide introduces new users to

You can see the flexibility that egrep's syntax can give you, matching either User or Programmer and
matching them regardless of whether they had an 's.

Both egrep and fgrep can read search patterns from a file using the -f option (Section 13.5).

— DJPD

grepping for a List of Patterns

egrep (Section 13.4) lets you look for multiple patterns using its grouping and alternation operators
(big words for parentheses and a vertical bar). But sometimes, even that isn't enough.

Both egrep and fgrep support a -f option, which allows you to save a list of patterns (fixed strings in
the case of fgrep) in a file, one pattern per line, and search for all the items in the list with a single
invocation of the program. For example, in writing this book, we've used this feature to check for
consistent usage in a list of terms across all articles:
% egrep -f terms *

(To be more accurate, we used rcsegrep (Section 13.7), since the articles are all kept under RCS
(Section 39.5), but you get the idea.)

— TOR

Approximate grep: agrep

agrep is one of the nicer additions to the grep family. It's not only one of the faster greps around; it
also has the unique feature of looking for approximate matches. It's also record oriented rather than
line oriented. The three most significant features of agrep that are not supported by the grep family
are as follows:

1. The ability to search for approximate patterns, with a user-definable level of accuracy. For
example:
% agrep -2 homogenos foo

will find "homogeneous," as well as any other word that can be obtained from "homogenos" with
at most two substitutions, insertions, or deletions.
% agrep -B homogenos foo

will generate a message of the form:
best match has 2 errors, there are 5 matches, output them? (y/n)

2. agrep is record oriented rather than just line oriented; a record is by default a line, but it can be
user-defined with the -d option specifying a pattern that will be used as a record delimiter. For
example:
% agrep -d '^From ' 'pizza' mbox

outputs all mail messages (Section 1.21) (delimited by a line beginning with From and a space)
in the file mbox that contain the keyword pizza. Another example:
% agrep -d '$$'
 pattern
 foo

will output all paragraphs (separated by an empty line) that contain pattern.
3. agrep allows multiple patterns with AND (or OR) logic queries. For example:

% agrep -d '^From ' 'burger,pizza' mbox

outputs all mail messages containing at least one of the two keywords (, stands for OR).
% agrep -d '^From ' 'good;pizza' mbox

outputs all mail messages containing both keywords.

Putting these options together, one can write queries such as the following:
% agrep -d '$$' -2 '<CACM>;
 TheAuthor
 ;Curriculum;<198[5-9]>' bib

which outputs all paragraphs referencing articles in CACM between 1985 and 1989 by TheAuthor
dealing with Curriculum. Two errors are allowed, but they cannot be in either CACM or the year.
(The < > brackets forbid errors in the pattern between them.)

Other agrep features include searching for regular expressions (with or without errors), using
unlimited wildcards, limiting the errors to only insertions or only substitutions or any combination,
allowing each deletion, for example, to be counted as two substitutions or three insertions, restricting

parts of the query to be exact and parts to be approximate, and many more.

—JP, SW, and UM

Search RCS Files with rcsgrep

Storing multiple versions of a file in RCS (Section 39.5) saves space. How can you search a lot of
those files at once? You could check out all the files, then run grep — but you'll have to remove the
files after you're done searching. Or, you could search the RCS files themselves with a command like
grep foo RCS/*,v — but that can show you garbage lines from previous revisions, log messages,
and other text that isn't in the latest revision of your file. This article has two ways to solve that
problem.

rcsgrep, rcsegrep, rcsfgrep

The rcsgrep script — and two links to it named rcsegrep and rcsfgrep — run grep , egrep (Section
13.4), and fgrep on all files in the RCS directory. (You can also choose the files to search.)

The script tests its name to decide whether to act like grep, egrep, or fgrep. Then it checks out each
file and pipes it to the version of grep you chose. The output looks just like grep's — although, by
default, you'll also see the messages from the co command (the -s option silences those messages).

By default, rcsgrep searches the latest revision of every file. With the -a option, rcsgrep will search
all revisions of every file, from first to last. This is very handy when you're trying to see what was
changed in a particular place and to find which revision(s) have some text that was deleted some time
ago. (rcsgrep uses rcsrevs (Section 39.6) to implement -a.)

Some grep options need special handling to work right in the script: -e, -f, and -l. (For instance, -e
and -f have an argument after them. The script has to pass both the option and its argument.) The
script passes any other options you type to the grep command. Your grep versions may have some
other options that need special handling, too. Just edit the script to handle them.

rcsegrep.fast

To search an RCS file, rcsgrep and its cousins run several Unix processes: co, grep, sed, and others.
Each process takes time to start and run. If your directory has hundreds of RCS files (like our
directory for this book does), searching the whole thing can take a lot of time. I could have cut the
number of processes by rewriting rcsgrep in Perl; Perl has the functionality of grep, sed, and others
built in, so all it would need to do is run hundreds of co processes . . . which would still make it too
slow.

 Go to http://examples.oreilly.com/upt3 for more information on: rcsegrep.fast

The solution I came up with was to do everything in (basically) one process: a gawk (Section 20.11)
script. Instead of using the RCS co command to extract each file's latest revision, the rcsegrep.fast
script reads each RCS file directly (The rcsfile(5) manpage explains the format of an RCS file.) An
RCS file contains the latest revision of its working file as plain text, with one difference: each @
character is changed to @@. rcsegrep.fast searches the RCS file until it finds the beginning of the latest
revision. Then it applies an egrep-like regular expression to each line. Matching lines are written to
standard output with the filename first; the -n option gives a line number after the filename.

rcsegrep.fast is sort of a kludge because it's accessing RCS files without using RCS tools. There's a
chance that it won't work on some versions of RCS or that I've made some other programming goof.
But it's worked very well for us. It's much faster than rcsgrep and friends. I'd recommend using
rcsegrep.fast when you need to search the latest revisions of a lot of RCS files; otherwise, stick to
the rcsgreps.

— JP

http://examples.oreilly.com/upt3

GNU Context greps

By default, standard grep utilities show only the lines of text that match the search pattern.
Sometimes, though, you need to see the matching line's context: the lines before or after the matching
line. The GNU greps (grep, fgrep, and egrep) can do this. There are three context grep options:

The -C option shows two lines of context around each match; you can also give a numeric
argument, such as -C 4, to choose how many lines of context (here, four).
The -B option shows context before each match. A numeric argument, such as -B 2 for two lines
of context, is required.
The -A option shows context after each match. A numeric argument, such as -A 3 for three lines
of context, is required.

Each set of contiguous matching lines is separated by a line of two dashes (--).

Let's look at an example: I'd like to search my system mail log for all messages sent to anyone at
oreilly.com. But sendmail doesn't put all information about a message on the to= log line; some info
is in the from= line, which is usually the previous line. So I'll search for all "to" lines and add one
line of context before each match. I'll also use the -n, which numbers the output lines, to make the
context easier to see. This option also puts marker characters after the line number: a line number
ends with a colon (:) if this line contains a match, and a dash (-) marks lines before or after a match.
Here goes:
grep -n -B 1 'to=<[^@]*@oreilly\.com>' maillog
7-Nov 12 18:57:42 jpeek sendmail[30148]: SAA30148: from=<jpeek@jpeek.com>...
8:Nov 12 18:57:43 jpeek sendmail[30150]: SAA30148: to=<al@oreilly.com>...
9-Nov 12 22:49:51 jpeek sendmail[1901]: WAA01901: from=<jpeek@jpeek.com>...
10:Nov 12 22:49:51 jpeek sendmail[1901]: WAA01901: to=<wfurby@oreilly.com>...
11:Nov 12 22:50:23 jpeek sendmail[2000]: WAA01901: to=<wfurby@oreilly.com>...
--
25-Nov 13 07:42:38 jpeek sendmail[9408]: HAA09408: from=<jpeek@jpeek.com>...
26:Nov 13 07:42:44 jpeek sendmail[9410]: HAA09408: to=<al@oreilly.com>...
27-Nov 13 08:08:36 jpeek sendmail[10004]: IAA10004: from=<jpeek@jpeek.com>...
28:Nov 13 08:08:37 jpeek sendmail[10006]: IAA10004: to=<wfurby@oreilly.com>...
--
32-Nov 13 11:59:46 jpeek sendmail[14473]: LAA14473: from=<jpeek@jpeek.com>...
33:Nov 13 11:59:47 jpeek sendmail[14475]: LAA14473: to=<al@oreilly.com>...
34-Nov 13 15:34:17 jpeek sendmail[18272]: PAA18272: from=<jpeek@jpeek.com>...
35:Nov 13 15:34:19 jpeek sendmail[18274]: PAA18272: to=<al@oreilly.com>...

I've truncated each line for printing, but you still can see the matches. A few notes about what's
happening here:

Line 8 matches (so it has a colon after its line number), and line 7 is the line of context before
(so it starts with a dash).
Note that a line is never shown more than once, as you can see in lines 9 through 11: lines 10
and 11 both match, so they both have colons. But because line 10 has already been shown once,
it's not repeated as the line "before" line 11.
There are no matches on line 12, so a line of two dashes is printed as a separator. The next
match is on line 26.

— JP

A Multiline Context grep Using sed

[One weakness of the grep family of programs is that they are line oriented. They read only one line
at a time, so they can't find patterns (such as phrases) that are split across two lines. agrep (Section
13.6) can do multiline searches. One advantage of the cgrep script is that it shows how to handle
multiple-line patterns in sed and can be adapted for work other than searches. — JP]

 Go to http://examples.oreilly.com/upt3 for more information on: cgrep

It may surprise you to learn that a fairly decent context grep (Section 13.8) program can be built
using sed. As an example, the following command line:
$ cgrep -10 system main.c

will find all lines containing the word system in the file main.c and show ten additional lines of
context above and below each match. (The -context option must be at least one, and it defaults to
two lines.) If several matches occur within the same context, the lines are printed as one large "hunk"
rather than repeated smaller hunks. Each new block of context is preceded by the line number of the
first occurrence in that hunk. This script, which can also search for patterns that span lines:
$ cgrep -3 "awk.*perl"

will find all occurrences of the word "awk" where it is followed by the word "perl" somewhere
within the next three lines. The pattern can be any simple regular expression, with one notable
exception: because you can match across lines, you should use \n in place of the ^ and $
metacharacters.

[While this is a wonderful example of some neat sed techniques, if this is all you're trying to do, use
perl. It has features designed to do exactly this sort of thing very efficiently, and it will be much
faster. — DH]

— GU

http://examples.oreilly.com/upt3

Compound Searches

You may recall that you can search for lines containing "this" or "that" using the egrep (Section 13.4)
| metacharacter:
egrep 'this|that' files

But how do you grep for "this" and "that"? Conventional regular expressions don't support an and
operator because it breaks the rule of patterns matching one consecutive string of text. Well, agrep
(Section 13.6) is one version of grep that breaks all the rules. If you're lucky enough to have it
installed, just use this:
agrep 'cat;dog;bird' files

If you don't have agrep, a common technique is to filter the text through several greps so that only
lines containing all the keywords make it through the pipeline intact:
grep cat files | grep dog | grep bird

But can it be done in one command? The closest you can come with grep is this idea:
grep 'cat.*dog.*bird' files

which has two limitations — the words must appear in the given order, and they cannot overlap. (The
first limitation can be overcome using egrep 'cat.*dog|dog.*cat', but this trick is not really
scalable to more than two terms.)

As usual, the problem can also be solved by moving beyond the grep family to the more powerful
tools. Here is how to do a line-by-line and search using sed, awk, or perl:[1]

sed '/cat/!d; /dog/!d; /bird/!d' files
awk '/cat/ && /dog/ && /bird/' files
perl -ne 'print if /cat/ && /dog/ && /bird/' files

Okay, but what if you want to find where all the words occur in the same paragraph? Just turn on
paragraph mode by setting RS="" in awk or by giving the -00 option to perl:
awk '/cat/ && /dog/ && /bird/ {print $0 ORS}' RS= files
perl -n00e 'print "$_\n" if /cat/ && /dog/ && /bird/' files

And if you just want a list of the files that contain all the words anywhere in them? Well, perl can
easily slurp in entire files if you have the memory and you use the -0 option to set the record
separator to something that won't occur in the file (like NUL):
perl -ln0e 'print $ARGV if /cat/ && /dog/ && /bird/' files

(Notice that as the problem gets harder, the less powerful commands drop out.)

The grep filter technique shown earlier also works on this problem. Just add a -l option and the
xargs command (Section 27.17) to make it pass filenames, rather than text lines, through the
pipeline:
grep -l cat files | xargs grep -l dog | xargs grep -l bird

(xargs is basically the glue used when one program produces output needed by another program as
command-line arguments.)

— GU

[1] Some versions of nawk require an explicit $0~ in front of each pattern.

Narrowing a Search Quickly

If you're searching a long file to find a particular word or name, or you're running a program like ls -l
and you want to filter some lines, here's a quick way to narrow down the search. As an example, say
your phone file has 20,000 lines like these:
Smith, Nancy:MFG:50 Park Place:Huntsville:(205)234-5678

and you want to find someone named Nancy. When you see more information, you know you can find
which of the Nancys she is:
% grep Nancy phones
 ...150 lines of names...

Use the C shell's history mechanism (Section 30.2) and sed to cut out lines you don't want. For
example, about a third of the Nancys are in Huntsville, and you know she doesn't work there:
% !! | sed -e /Huntsville/d
grep Nancy phones | sed -e /Huntsville/d
...100 lines of names...

The shell shows the command it's executing: the previous command (!!) piped to sed, which deletes
lines in the grep output that have the word Huntsville.

Okay. You know Nancy doesn't work in the MFG or SLS groups, so delete those lines, too:
% !! -e /MFG/d -e /SLS/d
grep Nancy phones | sed -e /Huntsville/d -e /MFG/d -e /SLS/d
...20 lines of names...

Keep using !! to repeat the previous command line, and keep adding more sed expressions until the
list gets short enough. The same thing works for other commands. When you're hunting for errors in a
BSDish system log, for example, and you want to skip lines from named and sudo, use the following:
% cat /var/log/messages | sed -e /named/d -e /sudo/d
...

If the matching pattern has anything but letters and numbers in it, you'll have to understand shell
quoting (Section 27.12) and sed regular expressions. Most times, though, this quick-and-dirty method
works just fine.

[Yes, you can do the exact same thing with multiple grep -v (Section 13.3) commands, but using sed
like this allows multiple matches with only one execution of sed. grep -v requires a new grep process
for each condition. — DH]

— JP

Faking Case-Insensitive Searches

This may be the simplest tip in the book, but it's something that doesn't occur to lots of users.

Some versions of egrep don't support the -i option, which requests case-insensitive searches. I find
that case-insensitive searches are absolutely essential, particularly to writers. You never know
whether any particular word will be capitalized.

To fake a case-insensitive search with egrep, just eliminate any letters that might be uppercase.
Instead of searching for Example, just search for xample. If the letter that might be capitalized occurs
in the middle of a phrase, you can replace the missing letter with a "dot" (single character) wildcard,
rather than omitting it.

Sure, you could do this the "right way" with a command like:
% egrep '[eE]xample' *

but our shortcut is easier.

This tip obviously isn't limited to egrep; it applies to any utility that only implements case-sensitive
searches, like more .

— ML

Finding a Character in a Column

Here's an idea for finding lines that have a given character in a column. Use the following simple awk
(Section 20.10) command:
% awk 'substr($0,
 n
 ,1) == "
 c
 "'
 filename

where c is the character you're searching for, and n is the column you care about.

Where would you do this? If you're processing a file with strict formatting, this might be useful; for
example, you might have a telephone list with a # in column 2 for "audio" telephone numbers, $ for
dialup modems, and % for fax machines. A script for looking up phone numbers might use an awk
command like this to prevent you from mistakenly talking to a fax machine.

If your data has any TAB characters, the columns might not be where you expect. In that case, use
expand on the file, then pipe it to awk.

—JP and ML

Fast Searches and Spelling Checks with "look"

Every so often, someone has designed a new, faster grep-type program. Public- domain software
archives have more than a few of them. One of the fastest search programs has been around for years:
look. It uses a binary search method that's very fast. But look won't solve all your problems: it works
only on files that have been sorted (Section 22.1). If you have a big file or database that can be
sorted, searching it with look will save a lot of time. For example, to search for all lines that start
with Alpha:
% look Alpha
 filename
Alpha particle
Alphanumeric

 Go to http://examples.oreilly.com/upt3 for more information on: look

The look program can also be used to check the spelling of a word or find a related word; see Section
16.3. If you don't have look installed on your system, you can get it from the Unix Power Tools web
site.

— JP

http://examples.oreilly.com/upt3

Finding Words Inside Binary Files

If you try to read binaries on your screen with cat -v (Section 12.4), you'll see a lot of nonprintable
characters. Buried in there somewhere, though, are words and strings of characters that might make
some sense. For example, if the code is copyrighted, you can usually find that information in the
binary. The pathnames of special files read by the program will probably show up. If you're trying to
figure out which program printed an error message, use strings on the binaries and look for the error.
Some versions of strings do a better job of getting just the useful information; others may write a lot
of junk, too. But what the heck? — pipe the output to a pager (Section 12.3) or grep (Section 13.2),
redirect it to a file, and ignore the stuff you don't want.

Here's a (shortened) example on FreeBSD:
% strings /usr/bin/write
/usr/libexec/ld-elf.so.1
FreeBSD
libc.so.4
strcpy
...
@(#) Copyright (c) 1989, 1993
 The Regents of the University of California. All rights reserved.
$FreeBSD: src/usr.bin/write/write.c,v 1.12 1999/08/28 01:07:48 peter Exp $
can't find your tty
can't find your tty's name
you have write permission turned off
/dev/
%s is not logged in on %s
%s has messages disabled on %s
usage: write user [tty]
/var/run/utmp
utmp
%s is not logged in
%s has messages disabled
%s is logged in more than once; writing to %s
%s%s
Message from %s@%s on %s at %s ...

The eighth line ($FreeBSD: ... $) comes from RCS (Section 39.5) — you can see the version number,
the date the code was last modified or released, and so on. The %s is a special pattern that the
printf(3) function will replace with values like the username, hostname, and time.

By default, strings doesn't search all of a binary file: it only reads the initialized and loaded sections.
The - (dash) option tells strings to search all of the file. Another useful option is - n, where n is the
minimum-length string to print. Setting a higher limit will cut the "noise," but you might also lose what
you're looking for.

The od command with its option -s n command does a similar thing: finds all null-terminated strings
that are at least n characters long.

— JP

A Highlighting grep

Do you ever grep for a word, and when lines scroll down your screen, it's hard to find the word on
each line? For example, suppose I'm looking for any mail messages I've saved that say anything about
the perl programming language. But when I grep the file, most of it seems useless:
% grep perl ~/Mail/save
> and some of it wouldn't compile properly. I wonder if
Subject: install script, for perl scripts
 perl itself is installed?
> run but dies with a read error because it isn't properly
> if I can get it installed properly on another machine I
> run but dies with a read error because it isn't properly
> if I can get it installed properly on another machine I

Well, as described on its own manual page, here's a program that's "trivial, but cute." hgrep runs a
grep and highlights the string being searched for, to make it easier for us to find what we're looking
for.
% hgrep perl ~/Mail/save
> and some of it wouldn't compile properly. I wonder if
Subject: install script, for perl scripts
 perl itself is installed?
> run but dies with a read error because it isn't properly
> if I can get it installed properly on another machine I
> run but dies with a read error because it isn't properly
> if I can get it installed properly on another machine I

And now we know why the output looked useless: because most of it is! Luckily, hgrep is just a
frontend; it simply passes all its arguments to grep. So hgrep necessarily accepts all of grep's
options, and I can just use the -w option to pare the output down to what I want:
% hgrep -w perl ~/Mail/save
Subject: install script, for perl scripts
 perl itself is installed?

The less (Section 12.3) pager also automatically highlights matched patterns as you search.

— LM

Chapter 14. Removing Files

The Cycle of Creation and Destruction

As a computer user, you spend lots of time creating files. Just as the necessary counterpart of life is
death, the other side of file creation is deletion. If you never delete any files, you soon have a
computer's equivalent of a population explosion: your disks get full, and you must either spend money
(buy and install more disk drives) or figure out which files you don't really need.

In this chapter, we'll talk about ways to get rid of files: how to do it safely, how to get rid of files that
don't want to die, and how to find "stale" files — or unused files that have been around for a long
time. "Safe" deletion is a particularly interesting topic, because Unix's rm command is extreme: once
you delete a file, it's gone permanently. There are several solutions for working around this problem,
letting you (possibly) reclaim files from the dead.

— ML

How Unix Keeps Track of Files: Inodes

The ability to mumble about inodes is the key to social success at a Unix gurus' cocktail party. This
may not seem attractive to you, but sooner or later you will need to know what an inode is.

Seriously, inodes are an important part of the Unix filesystem. You don't need to worry about them
most of the time, but it does help to know what they are.

An inode is a data structure on the disk that describes a file. It holds most of the important information
about the file, including the on-disk address of the file's data blocks (the part of the file that you care
about). Each inode has its own identifying number, called an i-number.

You really don't care about where a file is physically located on a disk. You usually don't care about
the i-number — unless you're trying to find the links (Section 9.24, Section 10.3) to a file. But you
do care about the following information, all of which is stored in a file's inode:
The file's ownership

The user and the group that own the file
The file's access mode (Section 1.17, Section 50.2)

Whether various users and groups are allowed to read, write, or execute the file
The file's timestamps (Section 8.2)

When the file itself was last modified, when the file was last accessed, and when the inode was
last modified

The file's type
Whether the file is a regular file, a special file, or some other kind of abstraction masquerading
(Section 1.19) as a file

Each filesystem has a set number of inodes that are created when the filesystem is first created
(usually when the disk is first initialized). This number is therefore the maximum number of files that
the filesystem can hold. It cannot be changed without reinitializing the filesystem, which destroys all
the data that the filesystem holds. It is possible, though rare, for a filesystem to run out of inodes, just
as it is possible to run out of storage space — this can happen on filesystems with many, many small
files.

The ls -l (Section 50.2) command shows much of this information. The ls -i option (Section 10.4)
shows a file's i-number. The stat command lists almost everything in an inode.

— ML

rm and Its Dangers

Under Unix, you use the rm command to delete files. The command is simple enough; you just type rm
followed by a list of files. If anything, rm is too simple. It's easy to delete more than you want, and
once something is gone, it's permanently gone. There are a few hacks that make rm somewhat safer,
and we'll get to those momentarily. But first, here's a quick look at some of the dangers.

To understand why it's impossible to reclaim deleted files, you need to know a bit about how the Unix
filesystem works. The system contains a "free list," which is a list of disk blocks that aren't used.
When you delete a file, its directory entry (which gives it its name) is removed. If there are no more
links (Section 10.3) to the file (i.e., if the file only had one name), its inode (Section 14.2) is added to
the list of free inodes, and its datablocks are added to the free list.

Well, why can't you get the file back from the free list? After all, there are DOS utilities that can
reclaim deleted files by doing something similar. Remember, though, Unix is a multitasking operating
system. Even if you think your system is a single-user system, there are a lot of things going on
"behind your back": daemons are writing to log files, handling network connections, processing
electronic mail, and so on. You could theoretically reclaim a file if you could "freeze" the filesystem
the instant your file was deleted — but that's not possible. With Unix, everything is always active. By
the time you realize you made a mistake, your file's data blocks may well have been reused for
something else.

When you're deleting files, it's important to use wildcards carefully. Simple typing errors can have
disastrous consequences. Let's say you want to delete all your object (.o) files. You want to type:
% rm *.o

But because of a nervous twitch, you add an extra space and type:
% rm * .o

It looks right, and you might not even notice the error. But before you know it, all the files in the
current directory will be gone, irretrievably.

If you don't think this can happen to you, here's something that actually did happen to me. At one point,
when I was a relatively new Unix user, I was working on my company's business plan. The
executives thought, so as to be "secure," that they'd set a business plan's permissions so you had to be
root (Section 1.18) to modify it. (A mistake in its own right, but that's another story.) I was using a
terminal I wasn't familiar with and accidentally created a bunch of files with four control characters
at the beginning of their name. To get rid of these, I typed (as root):
rm ????*

This command took a long time to execute. When about two-thirds of the directory was gone, I
realized (with horror) what was happening: I was deleting all files with four or more characters in
the filename.

The story got worse. They hadn't made a backup in about five months. (By the way, this article should
give you plenty of reasons for making regular backups (Section 38.3).) By the time I had restored the
files I had deleted (a several-hour process in itself; this was on an ancient version of Unix with a
horrible backup utility) and checked (by hand) all the files against our printed copy of the business
plan, I had resolved to be very careful with my rm commands.

[Some shells have safeguards that work against Mike's first disastrous example — but not the second
one. Automatic safeguards like these can become a crutch, though . . . when you use another shell
temporarily and don't have them, or when you type an expression like Mike's very destructive second
example. I agree with his simple advice: check your rm commands carefully! — JP]

— ML

Tricks for Making rm Safer

Summary Box
Here's a summary of way s to protect y ourself from accidentally deleting files:

Use rm -i, possibly as an alias (Section 14.8).
Make rm -i less painful (Section 14.7).
Write a "delete" script that moves "deleted" files to a temporary directory (Section 14.9).
tcsh has an rmstar variable that makes the shell ask for confirmation when y ou ty pe something like rm *. In zsh, this protection is automatic unless y ou set the RM_STAR_SILENT shell option to stop it.
Use revision control (Section 39.4).
Make y our own backups, as explained in Section 38.3.
Prevent deletion (or renaming or creating) of files by making the directory (not necessarily the files in it!) unwritable (Section 50.2).

If y ou want to delete with wild abandon, use rm -f (Section 14.10).

— ML

Answer "Yes" or "No" Forever with yes

Some commands — like rm -i, find -ok, and so on — ask users to answer a "do it or not?" question
from the keyboard. For example, you might have a file-deleting program or alias named del that asks
before deleting each file:
% del *
Remove file1? y
Remove file2? y
 ...

If you answer y, then the file will be deleted.

What if you want to run a command that will ask you 200 questions and you want to answer y to all of
them, but you don't want to type all those ys from the keyboard? Pipe the output of yes to the
command; it will answer y for you:
% yes | del *
Remove file1?
Remove file2?
 ...

If you want to answer n to all the questions, you can do:
% yes n | del *

Note
Not all Unix commands read their standard input for answers to prompts. If a command opens y our terminal (/dev/tty (Section 36.15)) directly to read y our answer, yes won't work. Try expect (Section 28.18) instead.

— JP

Remove Some, Leave Some

Most people use rm -i for safety: so they're always asked for confirmation before removing a
particular file. Mike Loukides told me about another way he uses rm -i. When he has several files to
remove, but the wildcards (Section 1.13) would be too painful to type with a plain rm, Mike gives rm
-i a bigger list of filenames and answers "n" to filenames he doesn't want deleted. For instance:
% ls
aberrant abhorred abnormal abominate acerbic
aberrate abhorrent abominable absurd acrimonious
 ...
% rm -i ab*
rm: remove aberrant (y/n)? y
rm: remove aberrate (y/n)? n
rm: remove abhorred (y/n)? y
rm: remove abhorrent (y/n)? n
 ...

— JP

A Faster Way to Remove Files Interactively

The rm -i command asks you about each file, separately. The method in this article can give you the
safety without the hassle of typing y as much.

Another approach, which I recommend, is that you create a new script or alias, and use that alias
whenever you delete files. Call the alias del or Rm, for instance. This way, if you ever execute your
special delete command when it doesn't exist, no harm is done — you just get an error. If you get into
this habit, you can start making your delete script smarter. Here is one that asks you about each file if
there are three or fewer files specified. For more than three files, it displays them all and asks you
once if you wish to delete them all:
#!/bin/sh
case $# in
0) echo "`basename $0`: you didn't say which file(s) to delete"; exit 1;;
[123]) /bin/rm -i "$@" ;;
) echo "$"
 echo do you want to delete these files\?
 read a
 case "$a" in
 [yY]*) /bin/rm "$@" ;;
 esac
 ;;
esac

— BB

Safer File Deletion in Some Directories

Using noclobber (Section 43.6) and read-only files only protects you from a few occasional mistakes.
A potentially catastrophic error is typing:
% rm * .o

instead of:
% rm *.o

In the blink of an eye, all of your files would be gone. A simple, yet effective, preventive measure is
to create a file called -i in the particular directory in which you want extra protection:

./- Section 14.13
% touch ./-i

In this case, the * is expanded to match all of the filenames in the directory. Because the file -i is
alphabetically listed before any file except those that start with one of the characters !, #, $, %, &, ', (
,), *, +, or ,, the rm command sees the -i file as a command-line argument. When rm is executed with
its -i option, files will not be deleted unless you verify the action. This still isn't perfect, though. If
you have a file that starts with a comma (,) in the directory, it will come before the file starting with a
dash, and rm will not get the -i argument first.

The -i file also won't save you from errors like this:
% rm [a-z]* .o

If lots of users each make a -i file in each of their zillions of subdirectories, that could waste a lot of
disk inodes (Section 14.2). It might be better to make one -i file in your home directory and hard link
(Section 15.4) the rest to it, like this:

~ Section 30.11
% cd
% touch ./-i
% cd
 somedir
% ln ~/-i .
 ...

Second, to save disk blocks, make sure the -i file is zero-length — use the touch command, not vi or
some other command that puts characters in the file.

— BB

Safe Delete: Pros and Cons

To protect themselves from accidentally deleting files, some users create a " trash" directory
somewhere and then write a "safe delete" program that, instead of rming a file, moves it into the trash
directory. The implementation can be quite complex, but a simple alias or shell function will do most
of what you want:
alias del "mv \!* ~/trash/."

Or, for Bourne-type shells:
del () { mv "$@" $HOME/trash/.; }

Of course, now your deleted files collect in your trash directory, so you have to clean that out from
time to time. You can do this either by hand or automatically, via a cron (Section 25.2) entry like
this:

&& Section 35.14, -r Section 14.16
23 2 * * * cd $HOME/trash && rm -rf *

This deletes everything in the trash directory at 2:23 a.m. daily. To restore a file that you deleted, you
have to look through your trash directory by hand and put the file back in the right place. That may not
be much more pleasant than poking through your garbage to find the tax return you threw out by
mistake, but (hopefully) you don't make lots of mistakes.

There are plenty of problems with this approach. Obviously, if you delete two files with the same
name in the same day, you're going to lose one of them. A shell script could (presumably) handle this
problem, though you'd have to generate a new name for the deleted file. There are also lots of nasty
side effects and "gotchas," particularly if you want an rm -r equivalent, if you want this approach to
work on a network of workstations, or if you use it to delete files that are shared by a team of users.

Unfortunately, this is precisely the problem. A "safe delete" that isn't really safe may not be worth the
effort. Giving people a safety net with holes in it is only good if you can guarantee in advance that
they won't land in one of the holes, believing themselves protected. You can patch some of the holes
by replacing this simple alias with a shell script; but you can't fix all of them.

— ML

Deletion with Prejudice: rm -f

The -f option to rm is the extreme opposite of -i. It says, "Just delete the file; don't ask me any
questions." The "f" stands (allegedly) for "force," but this isn't quite right. rm -f won't force the
deletion of something that you aren't allowed to delete. (To understand what you're allowed to delete,
you need to understand directory access permissions (Section 50.2).)

What, then, does rm -f do, and why would you want to use it?

Normally, rm asks you for confirmation if you tell it to delete files to which you don't have write
access — you'll get a message like Override protection 444 for foo? (The Unix filesystem
allows you to delete read-only files, provided you have write access to the directory.) With -f,
these files will be deleted silently.
Normally, rm's exit status (Section 35.12) is 0 if it succeeded and 1 if it failed to delete the
file. With -f, rm's return status is always 0.

I find that I rarely use rm -f on the Unix command line, but I almost always use it within shell scripts.
In a shell script, you (probably) don't want to be interrupted by lots of prompts should rm find a
bunch of read-only files.

You probably also don't want to be interrupted if rm -f tries to delete files that don't exist because the
script never created them. Generally, rm -f keeps quiet about files that don't exist; if the desired end
result is for the file to be gone, it not existing in the first place is just as good.

— ML

Deleting Files with Odd Names

Summary Box
A perennial problem is deleting files that have strange characters (or other oddities) in their names. The next few articles contain some hints for the following:

Deleting files with random control characters in their names (Section 14.12).
Deleting files whose names start with a dash (Section 14.13).
Deleting files with "unprintable" filenames (Section 14.14).
Deleting files by using the inode number (Section 14.15).
Deleting directories and problems that can arise as a result (Section 14.16).

We'll also give hints for these:

Deleting unused (or rarely used) files (Section 14.17).
Deleting all the files in a directory , except for one or two (Section 14.18).

Most tips for deleting files also work for renaming the files (if y ou want to keep them): just replace the rm command with mv.

— ML

Using Wildcards to Delete Files with Strange Names

Filenames can be hard to handle if their names include control characters or characters that are
special to the shell. Here's a directory with three oddball filenames:
% ls
What now
a$file
prog|.c
program.c

When you type those filenames on the command line, the shell interprets the special characters
(space, dollar sign, and vertical bar) instead of including them as part of the filename. There are
several ways (Section 14.11) to handle this problem. One is with wildcards (Section 33.2). Type a
part of the filename without the weird characters, and use a wildcard to match the rest. The shell
doesn't scan the filenames for other special characters after it interprets the wildcards, so you're
(usually) safe if you can get a wildcard to match. For example, here's how to rename What now to
Whatnow, remove a$file, and rename prog|.c to prog.c:
% mv What* Whatnow
% rm -i a*
rm: remove a$file? y
% mv prog?.c prog.c

Filenames with control characters are just another version of the same problem. Use a wildcard to
match the part of the name that's troubling you. The real problem with control characters in filenames
is that some control characters do weird things to your screen. Once I accidentally got a file with a
CTRL-L in its name. Whenever I ran ls, it erased the screen before I could see what the filename was!
Section 8.12 explains how, depending on your version of ls, you can use the -q or -b options to spot
the offensive file and construct a wildcard expression to rename or delete it. (ls -q is the default on
most Unix implementations these days, so you will probably never see this particular problem.)

— JP

Handling a Filename Starting with a Dash (-)

Sometimes you can slip and create a file whose name starts with a dash (-), like -output or -f. That's
a perfectly legal filename. The problem is that Unix command options usually start with a dash. If you
try to type that filename on a command line, the command might think you're trying to type a command
option.

In almost every case, all you need to do is "hide" the dash from the command. Start the filename with
./ (dot slash). This doesn't change anything as far as the command is concerned; ./ just means "look
in the current directory" (Section 1.16). So here's how to remove the file -f:
% rm ./-f

(Most rm commands have a special option for dealing with filenames that start with a dash, but this
trick should work on all Unix commands.)

— JP

Using unlink to Remove a File with a Strange Name

Some versions of Unix have a lot of trouble with eight-bit filenames — that is, filenames that contain
non-ASCII characters. The ls -q (Section 8.12) command shows the nonASCII characters as question
marks (?), but usual tricks like rm -i * (Section 14.12) skip right over the file. You can see exactly
what the filename is by using ls -b (Section 8.12):
% ls -q
 ????
afile
bfile
% rm -i *
afile: ? n
bfile: ? n
% ls -b
\t\360\207\005\254
afile
bfile

On older Unixes, the -b option to ls might not be supported, in which case you can use od -c (Section
12.4) to dump the current directory, using its relative pathname . (dot) (Section 1.16), character by
character. It's messier, and isn't supported on all Unix platforms, but it's worth a try:
% od -c .
 ...
00..... \t 360 207 005 254 \0 \0 \0 \0 ...

If you can move all the other files out of the directory, then you'll probably be able to remove the
leftover file and directory with rm -rf (Section 14.16, Section 14.10). Moving files and removing the
directory is a bad idea, though, if this is an important system directory like /bin. Otherwise, if you use
the escaped name ls -b gave you, you might be able to remove it directly by using the system call
unlink (2) in Perl. Use the same escape characters in Perl that ls -b displayed. (Or, if you needed to
use od -c, find the filename in the od listing of the directory — it will probably end with a series of
NUL characters, like \0 \0 \0.)
perl -e 'unlink("\t\360\207\005\254");'

— JP

Removing a Strange File by its i-number

If wildcards don't work (Section 14.12) to remove a file with a strange name, try getting the file's i-
number (Section 13.2). Then use find's -inum operator (Section 9.9) to remove the file.

Here's a directory with a weird filename. ls (with its default -q option (Section 8.12) on most
versions) shows that the name has three unusual characters. Running ls -i shows each file's i-number.
The strange file has i-number 6239. Give the i-number to find, and the file is gone:
% ls
adir afile b???file bfile cfile dfile
% ls -i
 6253 adir 6239 b???file 6249 cfile
 9291 afile 6248 bfile 9245 dfile
% find . -inum 6239 -exec rm {} \;
% ls
adir afile bfile cfile dfile

Instead of deleting the file, I also could have renamed it to newname with the command:
% find . -inum 6239 -exec mv {} newname \;

If the current directory has large subdirectories, you'll probably want to keep find from recursing
down into them by using the -maxdepth 1 operator. (finds that don't support -maxdepth can use -
prune (Section 9.25) for speed.)

— JP

Problems Deleting Directories

What if you want to get rid of a directory? The standard — and safest — way to do this is to use the
Unix rmdir "remove directory" utility:
% rmdir files

The rmdir command often confuses new users. It will only remove a directory if it is completely
empty; otherwise, you'll get an error message:
% rmdir files
rmdir: files: Directory not empty
% ls files
%

As in the example, ls will often show that the directory is empty. What's going on?

It's common for editors and other programs to create " invisible" files (files with names beginning
with a dot). The ls command normally doesn't list them; if you want to see them, you have to use ls -A
(Section 8.9):[1]

% rmdir files
rmdir: files: Directory not empty
% ls -A files
.BAK.textfile2

Here, we see that the directory wasn't empty after all: there's a backup file that was left behind by
some editor. You may have used rm * to clean the directory out, but that won't work: rm also ignores
files beginning with dots, unless you explicitly tell it to delete them. We really need a wildcard
pattern like .??* or .[a-zA-Z0-9]* to catch normal dotfiles without catching the directories . and
..:
% rmdir files
rmdir: files: Directory not empty
% ls -A files
.BAK.textfile2
% rm files/.??*
% rmdir files
%

Other pitfalls might be files whose names consist of nonprinting characters or blank spaces —
sometimes these get created by accident or by malice (yes, some people think this is funny). Such files
will usually give you "suspicious" ls output (Section 8.11) (like a blank line).

If you don't want to worry about all these special cases, just use rm -r :
% rm -r files

This command removes the directory and everything that's in it, including other directories. A lot of
people warn you about it; it's dangerous because it's easy to delete more than you realize. Personally,
I use it all the time, and I've never made a mistake. I never bother with rmdir.

— ML

[1] If your version of ls doesn't have the -A option, use -a instead. You'll see the two special
directory entries . and .. (Section 8.9), which you can ignore.

Deleting Stale Files

Sooner or later, a lot of junk collects in your directories: files that you don't really care about and
never use. It's possible to write find (Section 9.1) commands that will automatically clean these up. If
you want to clean up regularly, you can add some find commands to your crontab file (Section 25.2).

Basically, all you need to do is write a find command that locates files based on their last access time
(-atime (Section 9.5)) and use -ok or -exec (Section 9.9) to delete them. Such a command might look
like this:
% find . -atime +60 -ok rm -f {} \;

This locates files that haven't been accessed in the last 60 days, asks if you want to delete the file, and
then deletes the file. (If you run it from cron, make sure you use -exec instead of -ok, and make
absolutely sure that the find won't delete files that you think are important.)

Of course, you can modify this find command to exclude (or select) files with particular names; for
example, the following command deletes old core dumps and GNU Emacs backup files (whose names
end in ~), but leaves all others alone:
% find . \(-name core -o -name "*~" \) -atime +60 -ok rm -f {} \;

If you take an automated approach to deleting stale files, watch out for these things:

There are plenty of files (for example, Unix utilities and log files) that should never be removed.
Never run any "automatic deletion" script on /usr or / or any other "system" directory.
On some systems, executing a binary executable doesn't update the last access time. Since there's
no reason to read these files, you can expect them to get pretty stale, even if they're used often.
But you don't want to delete them. If you cook up a complicated enough find command, you
should be able to handle this automatically. Something like this should (at least partially) do the
trick:
! Section 9.6, -perm Section 9.15
% find . -atime +30 ! -perm -111 ... -exec rm {} \;

Along the same lines, you'd probably never want to delete C source code, so you might modify
your find command to look like this:
% find . -atime +30 ! -perm -111 ! -name "*.c" ... -exec rm {} \;

I personally find that automatically deleting files is an extreme and bizarre solution. I can't
imagine deleting files without knowing exactly what I've deleted or without (somehow) saving
the "trash" somewhere just in case I accidentally removed something important. To archive the
deleted files on tape, you can use the find -cpio operator if your system has it. Otherwise, try a
little shell script with GNU tar; the following script writes the list of files to a temporary file
and then, if that succeeds, reads the list of files, writes them to tape, and removes the files if the
tape write succeeds:
umask 077
files=/tmp/CLEANUP$$

if Section 35.13, && Section 35.14
if find ... -print > $files
then tar -c -T $files --remove && rm $files
else echo "cleanup aborted because find returned nonzero status"
fi

Okay, I've said that I don't really think that automated deletion scripts are a good idea. However, I
don't have a good comprehensive solution. I spend a reasonable amount of time (maybe an hour a
month) going through directories and deleting stale files by hand. I also have a clean alias that I type
whenever I think about it. It looks like this:
alias clean "rm *~ junk *.BAK core #*"

That is, this alias deletes all of my Emacs (Section 19.1) backup files, Emacs autosave files (risky, I
know), files named junk, some other backup files, and core dumps. I'll admit that since I never want
to save these files, I could probably live with something like this:
% find ~ \(-name "*~" -o -name core \) -atime +1 -exec rm {} \;

But still, automated deletion commands make me really nervous, and I'd prefer to live without them.

— ML

Removing Every File but One

One problem with Unix: it's not terribly good at "excluding" things. There's no option to rm that says,
"Do what you will with everything else, but please don't delete these files." You can sometimes
create a wildcard expression (Section 33.2) that does what you want — but sometimes that's a lot of
work, or maybe even impossible.

Here's one place where Unix's command substitution (Section 28.14) operators (backquotes) come
to the rescue. You can use ls to list all the files, pipe the output into a grep -v or egrep -v (Section
13.3) command, and then use backquotes to give the resulting list to rm. Here's what this command
would look like:
% rm -i `ls -d *.txt | grep -v '^john\.txt$'`

This command deletes all files whose names end in .txt, except for john.txt. I've probably been more
careful than necessary about making sure there aren't any extraneous matches; in most cases, grep -v
john would probably suffice. Using ls -d (Section 8.5) makes sure that ls doesn't look into any
subdirectories and give you those filenames. The rm -i asks you before removing each file; if you're
sure of yourself, omit the -i.

Of course, if you want to exclude two files, you can do that with egrep:
% rm `ls -d *.txt | egrep -v 'john|mary'`

(Don't forget to quote the vertical bar (|), as shown earlier, to prevent the shell from piping egrep's
output to mary.)

Another solution is the nom (Section 33.8) script.

— ML

Using find to Clear Out Unneeded Files

Do you run find on your machine every night? Do you know what it has to go through just to find out if
a file is three days old and smaller than ten blocks or owned by "fred" or setuid root? This is why I
tried to combine all the things we need done for removal of files into one big find script:

 Go to http://examples.oreilly.com/upt3 for more information on: cleanup

2>&1 Section 36.16
#! /bin/sh
#
cleanup - find files that should be removed and clean them
out of the file system.

find / \(\(-name '#*' -atime +1 \) \
 -o \(-name ',*' -atime +1 \) \
 -o \(-name rogue.sav -atime +7 \) \
 -o \(\(-name '*.bak' \
 -o -name '*.dvi' \
 -o -name '*.CKP' \
 -o -name '.*.bak' \
 -o -name '.*.CKP' \) -atime +3 \) \
 -o \(-name '.emacs_[0-9]*' -atime +7 \) \
 -o \(-name core \) \
 -o \(-user guest -atime +9 \) \
\) -print -exec rm -f {} \; > /tmp/.cleanup 2>&1

This is an example of using a single find command to search for files with different names and last-
access times (see Section 9.5). Doing it all with one find is much faster — and less work for the disk
— than running a lot of separate finds. The parentheses group each part of the expression. The neat
indentation makes this big thing easier to read. The -print -exec at the end removes each file and
also writes the filenames to standard output, where they're collected into a file named /tmp/.cleanup
— people can read it to see what files were removed. You should probably be aware that printing the
names to /tmp/.cleanup lets everyone see pathnames, such as /home/joe/personal/resume.bak, which
some people might consider sensitive. Another thing to be aware of is that this find command starts at
the root directory; you can do the same thing for your own directories.

—CT and JP

http://examples.oreilly.com/upt3

Chapter 15. Optimizing Disk Space

Disk Space Is Cheap

Many of the techniques in this chapter aren't nearly as applicable as they once were. At the time of
this writing, EIDE disks are about a dollar a gigabyte; even fast-wide SCSI isn't that expensive. Often
the solution to running low on disk space is just to buy more.

That said, many of these techniques illustrate useful things to know about Unix. It's common these
days to run Unix on an old, spare machine where it's not worth the trouble of upgrading the disks. You
may also be dealing with a Unix box at work or school that uses expensive, highly reliable disks with
expensive backup procedures in place, where more disk space just isn't an option. It never hurts to
know how to eke the last few bytes out of a partition.

This chapter also has a lot of information about compressing and decompressing files, which is fairly
common. (These days, you may well compress files to save network bandwidth rather than disk
space, but the same principles apply.) So enjoy exploring!

— DH

Instead of Removing a File, Empty It

Sometimes you don't want to remove a file completely — you just want to empty it:

If an active process has the file open (not uncommon for log files), removing the file and creating
a new one will not affect the logging program; those messages will just keep going to the file
that's no longer linked. Emptying the file doesn't break the association, and so it clears the file
without affecting the logging program.
When you remove a file and create a new one with the same name, the new file will have your
default permissions and ownership (Section 50.3). It's better to empty the file now, then add new
text later; this won't change the permissions and ownership.
Completely empty files (ones that ls -l says have zero characters) don't take any disk space to
store (except the few bytes that the directory entry (Section 10.2) uses).
You can use the empty files as "place markers" to remind you that something was there or
belongs there. Some Unix logging programs won't write errors to their log files unless the log
files already exist. Empty files work fine for that.
Empty files hold a "timestamp" (just as files with text do) that shows when the file was last
modified. I use empty files in some directories to remind me when I've last done something
(backups, printouts, etc.). The find -newer (Section 9.8) command can compare other files to a
timestamp file.

Well, you get the idea by now.

How can you empty a file? Watch out: when some editors say that a file has "no lines," they may still
append a newline character when writing the file. Just one character still takes a block of disk space
to store. Here are some better ways to get a properly empty file:

In Bourne-type shells like sh and bash, the most efficient way is to redirect the output of a null
command:
$ > afile

If the file already exists, that command will truncate the file without needing a subprocess.
Copy the Unix empty file, /dev/null (Section 43.12), on top of the file:
% cp /dev/null afile

Or just cat it there:
% cat /dev/null > afile

You can also "almost" empty the file, leaving just a few lines, this way:

tail Section 12.8
% tail afile > tmpfile
% cat tmpfile > afile
% rm tmpfile

That's especially good for log files that you never want to delete completely. Use cat and rm, not mv -
- mv will break any other links to the original file (afile) and replace it with the temporary file.

— JP

Save Space with "Bit Bucket" Log Files and Mailboxes

Some Unix programs — usually background or daemon programs — insist on writing a log file. You
might not want the log file itself as much as you want the disk space that the log file takes. Here are a
few tips:

Some programs will write to a log file only if the log file exists. If the program isn't running, try
removing the log file.
If you remove a log file and the program recreates it, look for command-line options or a
configuration-file setup that tells the program not to make the log file.
If you can't get the program to stop writing the log file, try replacing the log file with a symbolic
link to /dev/null (Section 43.12):
rm logfile
ln -s /dev/null logfile

The program won't complain, because it will happily write its log file to /dev/null, which
discards everything written to it. (Writing to /dev/null is also known as "throwing it in the bit
bucket," since all the bits just go away.) Watch out for programs that run at reboot or those that
run from the system crontab (Section 25.2) to truncate and replace the log file. These programs
might replace the symbolic link with a small regular file that will start growing again.
Does a system mailbox for a user like bin keep getting mail (Section 1.21) that you want to
throw away? You may be able to add a .forward file to the account's home directory with this
single line:
/dev/null

Or add an alias in the system mail alias file that does the same thing:
bin: /dev/null

If your system has a command like newaliases to rebuild the alias database, don't forget to use it
after you make the change.

— JP

Save Space with a Link

You might have copies of the same file in several directories for the following reasons:

Several different users need to read it (a data file, a program setup file, a telephone list, etc.).
It's a program that more than one person wants to use. For some reason, you don't want to keep
one central copy and put its directory in your search path (Section 27.6).
The file has a strange name or it's in a directory you don't usually use. You want a name that's
easier to type, but you can't use mv.

Instead of running cp, think about ln. There are lots of advantages to links (Section 10.3). One big
advantage of hard links is that they don't use any disk space.[1] The bigger the file, the more space you
save with a link. A symbolic link always takes some disk space, so a hard link might be better for
ekeing the most space out of your disk. Of course, you have to use a symbolic link if you want to link
across filesystems, and symbolic links are much more obvious to other people, so a symlink is less
likely to confuse people. Generally the clarity is worth the little bit of extra disk space.

— JP

[1] The link entry takes a few characters in the directory where you make the link. Unless this makes
the directory occupy another disk block, the space available on the disk doesn't change.

Limiting File Sizes

Here are techniques to keep you from creating large files (which can happen by accident, such as with
runaway programs). Your shell may be able to set process limits. If you're writing a program in C or
another language that has access to kernel system calls, you can set these limits yourself. And there's
one more trick you can use.

These limits are passed to child processes. So, if your shell sets a limit, all programs you start from
that shell will inherit the limit from their parent process.

limit and ulimit

Many shells have a built-in command that uses system calls to set resource limits. This is usually
done from a shell setup file (Section 3.3), but can also be done from the command line at a shell
prompt. To set a maximum file size in C-type shells and zsh , use the command limit filesize
max-size. In the Korn shell and bash, use ulimit -f max-size. For example, the following csh and
ksh commands keep you from creating any files larger than 2 MB:
% limit filesize 2m
$ ulimit -f 2000

Similarly, on many systems, you can use limit and ulimit to restrict the size of core dump files. Core
dumps are generally large files, and if you are not actively developing or debugging, they are often
not interesting or useful. To set a maximum size for core dumps, execute one of these commands:
% limit coredumpsize
 max-size
$ ulimit -c
 max-size

To eliminate core dumps entirely, use 0 (zero) for max-size. Because core dumps are essential for
effective debugging, any users who actively debug programs should know the commands unlimit
coredumpsize (which removes this restriction in csh) and ulimit -c unlimited for bash and
ksh.

Other Ideas

File size limits only apply to processes that are invoked from a shell where the limit is set. For
instance, at and cron jobs might not read the shell setup file (Section 3.3) that sets your limit. One
way to fix this is to set the limit explicitly before you start the job. For instance, to keep your cron job
named cruncher from core-dumping, make the crontab entry similar to one of these:

; Section 28.16
47 2 * * * ulimit -c 0; cruncher
47 2 * * * bash -c 'ulimit -c 0; exec cruncher'

If you've written a daemon (Section 1.10) in C that starts as your workstation boots up (so no shell is
involved), have your program invoke a system call like ulimit(3) or setrlimit(2).

If the unwanted files are created in a directory where you can deny write permission to the directory
itself — and the files are not created by a process running as root (filesystem permissions don't apply
to root) — simply make the directory unwritable. (If the process needs to write temporary files, have
it use /tmp. An environment variable such as TMP or TMPDIR may control this.)

You can prevent the files from being created by putting a zero-size unwritable file in the directory
where the files are being created. Because the file is zero-length, it doesn't take any disk space to
store:

chmod Section 50.5
% touch core
% chmod 000 core

If all else fails, try making a symbolic link to /dev/null (Section 43.12).

—ML and JP

Compressing Files to Save Space

gzip is a fast and efficient compression program distributed by the GNU project. The basic function
of gzip is to take a file filename, compress it, save the compressed version as filename.gz, and
remove the original, uncompressed file. The original file is removed only if gzip is successful; it is
very difficult to delete a file accidentally in this manner. Of course, being GNU software, gzip has
more options than you want to think about, and many aspects of its behavior can be modified using
command-line options.

First, let's say that we have a large file named garbage.txt:
rutabaga% ls -l garbage.txt*
-rw-r--r-- 1 mdw hack 312996 Nov 17 21:44 garbage.txt

If we compress this file using gzip, it replaces garbage.txt with the compressed file garbage.txt.gz.
We end up with the following:
rutabaga% gzip garbage.txt
rutabaga% ls -l garbage.txt*
-rw-r--r-- 1 mdw hack 103441 Nov 17 21:48 garbage.txt.gz

Note that garbage.txt is removed when gzip completes.

You can give gzip a list of filenames; it compresses each file in the list, storing each with a .gz
extension. (Unlike the zip program for Unix and MS-DOS systems, gzip will not, by default, compress
several files into a single .gz archive. That's what tar is for; see Section 15.7.)

 Go to http://examples.oreilly.com/upt3 for more information on: gzip

How efficiently a file is compressed depends upon its format and contents. For example, many audio
and graphics file formats (such as MP3 and JPEG) are already well compressed, and gzip will have
little or no effect upon such files. Files that compress well usually include plain-text files and binary
files such as executables and libraries. You can get information on a gzip ped file using gzip -l. For
example:
rutabaga% gzip -l garbage.txt.gz
compressed uncompr. ratio uncompressed_name
 103115 312996 67.0% garbage.txt

To get our original file back from the compressed version, we use gunzip, as in:
rutabaga% gunzip garbage.txt.gz
rutabaga% ls -l garbage.txt
-rw-r--r-- 1 mdw hack 312996 Nov 17 21:44 garbage.txt

which is identical to the original file. Note that when you gunzip a file, the compressed version is
removed once the uncompression is complete.

gzip stores the name of the original, uncompressed file in the compressed version. This allows the
name of the compressed file to be irrelevant; when the file is uncompressed it can be restored to its
original splendor. To uncompress a file to its original filename, use the -N option with gunzip. To see
the value of this option, consider the following sequence of commands:
rutabaga% gzip garbage.txt
rutabaga% mv garbage.txt.gz rubbish.txt.gz

If we were to gunzip rubbish.txt.gz at this point, the uncompressed file would be named rubbish.txt,
after the new (compressed) filename. However, with the -N option, we get the following:
rutabaga% gunzip -N rubbish.txt.gz

http://examples.oreilly.com/upt3

rutabaga% ls -l garbage.txt
-rw-r--r-- 1 mdw hack 312996 Nov 17 21:44 garbage.txt

gzip and gunzip can also compress or uncompress data from standard input and output. If gzip is
given no filenames to compress, it attempts to compress data read from standard input. Likewise, if
you use the -c option with gunzip, it writes uncompressed data to standard output. For example, you
could pipe the output of a command to gzip to compress the output stream and save it to a file in one
step, as in:
rutabaga% ls -laR $HOME | gzip > filelist.gz

This will produce a recursive directory listing of your home directory and save it in the compressed
file filelist.gz. You can display the contents of this file with the command:
rutabaga% gunzip -c filelist.gz | less

This will uncompress filelist.gz and pipe the output to the less (Section 12.3) command. When you
use gunzip -c, the file on disk remains compressed.

The gzcat command is identical to gunzip -c. You can think of this as a version of cat for compressed
files. Some systems, including Linux, even have a version of the pager less for compressed files:
zless.

When compressing files, you can use one of the options -1, -2, through -9 to specify the speed and
quality of the compression used. -1 (also - -fast) specifies the fastest method, which compresses
the files less compactly, while -9 (also - -best) uses the slowest, but best compression method. If
you don't specify one of these options, the default is -6. None of these options has any bearing on how
you use gunzip; gunzip can uncompress the file no matter what speed option you use.

 Go to http://examples.oreilly.com/upt3 for more information on: bzip2

Another compression/decompression program has emerged to take the lead from gzip. bzip2 is the
new kid on the block and sports even better compression (on the average about 10 to 20% better than
gzip), at the expense of longer compression times. You cannot use bunzip2 to uncompress files
compressed with gzip and vice versa. Since you cannot expect everybody to have bunzip2 installed
on their machine, you might want to confine yourself to gzip for the time being if you want to send the
compressed file to somebody else (or, as many archives do, provide both gzip- and bzip2-
compressed versions of the file). However, it pays to have bzip2 installed, because more and more
FTP servers now provide bzip2-compressed packages to conserve disk space and, more importantly
these days, bandwidth. You can recognize bzip2-compressed files from their typical .bz2 file name
extension.

While the command-line options of bzip2 are not exactly the same as those of gzip, those that have
been described in this section are, except for - -best and - -fast, which bzip2 doesn't have. For
more information, see the bzip2 manual page.

The bottom line is that you should use gzip/gunzip or bzip2/bunzip2 for your compression needs. If
you encounter a file with the extension .Z , it was probably produced by compress , and gunzip can
uncompress it for you.

[These days, the only real use for compress — if you have gzip and bzip2 — is for creating
compressed images needed by some embedded hardware, such as older Cisco IOS images. — DJPH]

— MW, MKD, and LK

http://examples.oreilly.com/upt3

Save Space: tar and compress a Directory Tree

In the Unix filesystem, files are stored in blocks. Each nonempty file, no matter how small, takes up at
least one block.[2] A directory tree full of little files can fill up a lot of partly empty blocks. A big file
is more efficient because it fills all (except possibly the last) of its blocks completely.

The tar (Section 39.2) command can read lots of little files and put them into one big file. Later,
when you need one of the little files, you can extract it from the tar archive. Seems like a good space-
saving idea, doesn't it? But tar, which was really designed for magnetic tape archives, adds
"garbage" characters at the end of each file to make it an even size. So, a big tar archive uses about as
many blocks as the separate little files do.

Okay, then why am I writing this article? Because the gzip (Section 15.6) utility can solve the
problems. It squeezes files down — compressing them to get rid of repeated characters. Compressing
a tar archive typically saves 50% or more. The bzip2 (Section 15.6) utility can save even more.

Warning
If y our compressed archive is corrupted somehow — say , a disk block goes bad — y ou could lose access to all of the files. That's because neither tar nor compression utilities recover well from missing data blocks. If y ou're archiving an
important directory , be sure y ou have good backup copies of the archive.

Making a compressed archive of a directory and all of its subdirectories is easy: tar copies the whole
tree when you give it the top directory name. Just be sure to save the archive in some directory that
won't be copied — so tar won't try to archive its own archive! I usually put the archive in the parent
directory. For example, to archive my directory named project, I'd use the following commands. The
.tar.gz extension isn't required, but is just a convention; another common convention is .tgz. I've
added the gzip - -best option for more compression — but it can be a lot slower, so use it only if you
need to squeeze out every last byte. bzip2 is another way to save bytes, so I'll show versions with
both gzip and bzip2. No matter what command you use, watch carefully for errors:

.. Section 1.16, -r Section 14.16
% cd project
% tar clf - . | gzip --best > ../project.tar.gz
% gzcat ../project.tar.gz | tar tvf -
 Quick verification
% tar clf - . | bzip2 --best > ../project.tar.bz2
% bzcat ../project.tar.bz2 | tar tvf -
 Quick verification
% cd ..
% rm -r project

 Go to http://examples.oreilly.com/upt3 for more information on: tar

If you have GNU tar or another version with the z option, it will run gzip for you. This method
doesn't use the gzip - -best option, though — so you may want to use the previous method to squeeze
out all you can. Newer GNU tar s have an I option to run bzip2. Watch out for other tar versions that
use -I as an "include file" operator — check your manpage or tar — help. If you want to be sure that
you don't have a problem like this, use the long options (-- gzip and -- bzip2) because they're
guaranteed not to conflict with something else; if your tar doesn't support the particular compression
you've asked for, it will fail cleanly rather than do something you don't expect.

http://examples.oreilly.com/upt3

Using the short flags to get compression from GNU tar, you'd write the previous tar command lines
as follows:
tar czlf ../project.tar.gz .
tar cIlf ../project.tar.bz2 .

In any case, the tar l (lowercase letter L) option will print messages if any of the files you're
archiving have other hard links (Section 10.4). If a lot of your files have other links, archiving the
directory may not save much disk space — the other links will keep those files on the disk, even after
your rm -r command.

Any time you want a list of the files in the archive, use tar t or tar tv:

less Section 12.3
% gzcat project.tar.gz | tar tvf - | less
rw-r--r--239/100 485 Oct 5 19:03 1991 ./Imakefile
rw-rw-r--239/100 4703 Oct 5 21:17 1991 ./scalefonts.c
rw-rw-r--239/100 3358 Oct 5 21:55 1991 ./xcms.c
rw-rw-r--239/100 12385 Oct 5 22:07 1991 ./io/input.c
rw-rw-r--239/100 7048 Oct 5 21:59 1991 ./io/output.c
 ...
% bzcat project.tar.bz2 | tar tvf - | less
 ...
% tar tzvf project.tar.gz | less
 ...
% tar tIvf project.tar.bz2 | less
 ...

To extract all the files from the archive, type one of these tar command lines:
% mkdir project
% cd project
% gzcat ../project.tar.gz | tar xf -

% mkdir project
% cd project
% bzcat ../project.tar.bz2 | tar xf -

% mkdir project
% cd project
% tar xzf ../project.tar.gz

% mkdir project
% cd project
% tar xIf ../project.tar.bz2

Of course, you don't have to extract the files into a directory named project. You can read the archive
file from other directories, move it to other computers, and so on.

You can also extract just a few files or directories from the archive. Be sure to use the exact name
shown by the previous tar t command. For instance, to restore the old subdirectory named project/io
(and everything that was in it), you'd use one of the previous tar command lines with the filename at
the end. For instance:
% mkdir project
% cd project
% gzcat ../project.tar.gz | tar xf - ./io

— JP

[2] Completely empty files (zero characters) don't take a block.

How Much Disk Space?

Two tools, df and du, report how much disk space is free and how much is used by any given
directory. For each filesystem, df tells you the capacity, how much space is in use, and how much is
free. By default, it lists both local and remote (i.e., NFS (Section 1.21)) filesystems. Under Linux or
BSD Unix, the output from df looks like this:
% df
Filesystem 1K-blocks Used Avail Capacity Mounted on
/dev/ad0s1a 99183 37480 53769 41% /
/dev/ad2s1e 3943876 1873453 1754913 52% /home
/dev/ad0s1f 3360437 1763460 1328143 57% /usr
/dev/ad0s1e 508143 16925 450567 4% /var
procfs 4 4 0 100% /proc
toy:/usr 17383462 15470733 522053 97% /toy
 ...

This report shows information about four local filesystems, the local procfs filesystem, and one
remote filesystem (from the system toy). Note that a normal filesystem that is 100% full really has 5
to 10% free space — but only the superuser (Section 1.18) can use this reserved space, and that
usually isn't a good idea. The reserved space is primarily for recovering from the disk filling up for
some reason; the superuser can still successfully copy files and the like to free up space. Special
filesystems often don't do this sort of block reservation; procfs and ISO-9660 (CD-ROM and CD-R)
filesystems don't care.

df can be invoked in several other ways:

If you already know that you're interested in a particular filesystem, you can use a command such
as df /home or df . (. means "the current directory" (Section 1.16)).
If your system uses NFS and you are interested only in local (non-NFS) filesystems, use the
command df -t ufs (most BSDs) or df -t ext2fs (most Linuxes). You should always use this
command if remote file servers are down. If you have mounted remote disks that are unavailable,
df will be extremely slow or hang completely.
If you are interested in inode usage rather than filesystem data capacity, use the command df -i.
This produces a similar report showing inode statistics.

If you are using the older System V filesystem (for example, on Solaris), the report from df will look
different. The information it presents, however, is substantially the same. Here is a typical report:
% df
/ (/dev/root): 1758 blocks 3165 i-nodes
/u (/dev/u): 108 blocks 13475 i-nodes
/usr (/dev/usr): 15694 blocks 8810 i-nodes

[If you get this sort of output from df, you may be able to get the BSDish display by using df -P or df -
k. You may also want to try the GNU df. — DH]

There are 1,758 physical blocks (always measured as 512-byte blocks for this sort of df, regardless
of the filesystem's logical block size) and 3,165 inodes available on the root filesystem. To find out
the filesystem's total capacity, use df -t. The command df -l only reports on your system's local
filesystems, omitting filesystems mounted by NFS or RFS.

It is often useful to know how much storage a specific directory requires. This can help you to
determine if any users are occupying more than their share of storage. The du utility provides such a

report. Generally you want to use the -k to du; by default its reports are in disk blocks and thus
somewhat harder to read. -k asks df to report its numbers in kilobytes. Here's a simple report from
du:
% du -k
107 ./reports
888 ./stuff
32 ./howard/private
33 ./howard/work
868 ./howard
258 ./project/code
769 ./project
2634 .

du shows that the current directory and all of its subdirectories occupy about 2.5 MB (2,634 KB).
The biggest directories in this group are stuff and howard, which have a total of 888 KB and 868 KB,
respectively. The total for each directory includes the totals for any subdirectories, as well as files in
the directory itself. For instance, the two subdirectories private and work contribute 65 KB to
howard; the rest of the 868 KB is from files in howard itself. (So, to get the grand total of 2,634, du
adds 107, 888, 868, and 769, plus files in the top-level directory.) du does not show individual files
as separate items unless you use its -a option.

The -s option tells du to report the total amount of storage occupied by a directory; it suppresses
individual reports for all subdirectories. For example:
% du -s
2634 .

This is essentially the last line of the previous report. du -s is particularly useful for showing only the
files in the current directory, rather than showing every directory down the tree:
% cd /home
% du -sk *
69264 boots
18236 chaos
1337820 deb
...

—ML, from System Performance Tuning (O'Reilly, 2002)

Compressing a Directory Tree: Fine-Tuning

Here's a quick little command that will compress (Section 15.6) files in the current directory and
below. It uses find (Section 9.2) to find the files recursively and pick the files it should compress:

-size Section 9.14, xargs Section 28.17
% find . ! -perm -0100 -size +1 -type f -print | xargs gzip -v

This command finds all files that are the following:

Not executable (! -perm -0100), so we don't compress shell scripts and other program files.
Bigger than one block, since it won't save any disk space to compress a file that takes one disk
block or less. But, depending on your filesystem, the -size +1 may not really match files that
are one block long. You may need to use -size +2, -size +1024c, or something else.
Regular files (-type f) and not directories, named pipes, etc.

The -v switch to gzip tells you the names of the files and how much they're being compressed. If your
system doesn't have xargs, use the following:
% find . ! -perm -0100 -size +1 -type f -exec gzip -v {} \;

Tune the find expressions to do what you want. Here are some ideas — for more, read your system's
find manual page:
! -name *.gz

Skip any file that's already gzipped (filename ends with .gz).
-links 1

Only compress files that have no other (hard) links.
-user yourname

Only compress files that belong to you.
-atime +60

Only compress files that haven't been accessed (read, edited, etc.) for more than 60 days.

You might want to put this in a job that's run every month or so by at (Section 25.5) or cron (Section
25.2).

— JP

Save Space in Executable Files with strip

After you compile and debug a program, there's a part of the executable binary that you can delete to
save disk space. The strip command does the job. Note that once you strip a file, you can't use a
symbolic debugger like dbx or gdb on it!

Here's an example. I'll compile a C program and list it. Then I'll strip it and list it again. How much
space you save depends on several factors, but you'll almost always save something.

-s Section 9.14
% cc -o echoerr echoerr.c
% ls -ls echoerr
 52 -rwxr-xr-x 1 jerry 24706 Nov 18 15:49 echoerr
% strip echoerr
% ls -ls echoerr
 36 -rwxr-xr-x 1 jerry 16656 Nov 18 15:49 echoerr

The GNU strip has a number of options to control what symbols and sections are stripped from the
binary file. Check the strip manpage for specific details of the version you have.

If you know that you want a file stripped when you compile it, your compiler probably has a -s
option (which is passed to ld after compilation is complete). If you use ld directly — say, in a
makefile (Section 11.10) — use the -s option there.

Here's a shell script named stripper that finds all the unstripped executable files in your bin
directory (Section 7.4) and strips them. It's a quick way to save space on your account. (The same
script, searching the whole filesystem, will save even more space for system administrators — but
watch out for unusual filenames):

xargs Section 28.17
#! /bin/sh
skipug="! -perm -4000 ! -perm -2000" # SKIP SETUID, SETGID FILES
find $HOME/bin -type f \(-perm -0100 $skipug \) -print |
xargs file |
sed -n '/executable .*not stripped/s/: TAB .*//p' |
xargs -rpl strip

The find (Section 9.2) finds all executable files that aren't setuid or setgid and runs file (Section 12.6)
to get a description of each. The sed command skips shell scripts and other files that can't be stripped.
sed searches for lines from file like the following:
/usr/local/bin/xemacs: TAB xxx... executable
xxx... not stripped

with the word "executable" followed by "not stripped." sed removes the colon, tab, and description,
then passes the filename to strip.

The final xargs command uses the options -r (to not run strip if sed outputs no names to strip), -p (to
be interactive, asking before each strip), and -l (to process one filename at a time). None of those
options are required; if you don't want them, you might at least use -t so the script will list the files
it's stripping.

— JP

Disk Quotas

No matter how much disk space you have, you will eventually run out. One way the system
administrator can force users to clean up after themselves is to impose quotas on disk usage. Many
Unixes have quota systems available: check your manual pages with a command like apropos
quota.

If you're a user, how do quotas affect you? Sooner or later, you may find that you're over your quota.
Quotas are maintained on a per-filesystem basis. They may be placed on disk storage (the number of
blocks) and on inodes (the number of files). The quota system maintains the concept of hard and soft
limits. When you exceed a soft limit, you'll get a warning (WARNING: disk quota exceeded), but
you can continue to accumulate more storage. The warning will be repeated whenever you log in. At
some point (i.e., after some number of sessions in which the storage stays above the soft limit), the
system loses patience and refuses to allocate any more storage. You'll get a message like OVER DISK
QUOTA: NO MORE DISK SPACE. At this point, you must delete files until you're again within the soft
limit. Users are never allowed to exceed their hard limit. This design allows you to have large
temporary files without penalty, provided that they do not occupy too much disk space long-term.

There may also be a quota on the number of files (i.e., inodes) that you can own per filesystem. It
works exactly the same way; you'll get a warning when you exceed the soft limit; if you don't delete
some files, the system will eventually refuse to create new files.

The quota command shows a user's quota on each filesystem where quotas have been set. With no
option, it displays a line for each system where you're over quota. The -v option shows a line for
each system where you have a quota. The output can be a bit confusing on systems with the
automounter running, since it mounts things dynamically and uses symlinks to make things appear
where you expect them, so the filesystem names may not match the directory names you're accustomed
to:
$ quota
Over disk quota on /home/jpeek, remove 228K within 4.0 days
Over file quota on /home/jpeek, remove 13 files within 4.5 days
$ quota -v
Filesystem usage quota limit timeleft files quota limit timeleft
/export/users 0 8000 9000 0 600 750
/export/home9 8228 8000 9000 4.0 days 613 600 750 4.5 days

In this case, the automounter has clearly mounted my home directory on /export/home9, since that
shows the same information that quota showed me in the first command.

— ML and JP

Part IV. Basic Editing

Part IV contains the following chapters:

Chapter 16

Chapter 17

Chapter 18

Chapter 19

Chapter 20

Chapter 21

Chapter 22

Chapter 16. Spell Checking, Word Counting, and Textual Analysis

The Unix spell Command

On some Unix systems, the spell command reads one or more files and prints a list of words that may
be misspelled. You can redirect the output to a file, use grep (Section 13.1) to locate each of the
words, and then use vi or ex to make the edits. It's also possible to hack up a shell and sed script that
interactively displays the misspellings and fixes them on command, but realistically, this is too
tedious for most users. (The ispell (Section 16.2) program solves many — though not all — of these
problems.)

When you run spell on a file, the list of words it produces usually includes a number of legitimate
words or terms that the program does not recognize. spell is case sensitive; it's happy with Aaron but
complains about aaron. You must cull out the proper nouns and other words spell doesn't know about
to arrive at a list of true misspellings. For instance, look at the results on this sample sentence:
$ cat sample
Alcuin uses TranScript to convert ditroff into
PostScript output for the LaserWriter printerr.
$ spell sample
Alcuin
ditroff
printerr
LaserWriter
PostScript
TranScript

Only one word in this list is actually misspelled.

On many Unix systems, you can supply a local dictionary file so that spell recognizes special words
and terms specific to your site or application. After you have run spell and looked through the word
list, you can create a file containing the words that were not actual misspellings. The spell command
will check this list after it has gone through its own dictionary. On certain systems, your word-list file
must be sorted (Section 22.1).

If you added the special terms in a file named dict, you could specify that file on the command line
using the + option:
$ spell +dict sample
printerr

The output is reduced to the single misspelling.

The spell command will make some errors based on incorrect derivation of spellings from the root
words contained in its dictionary. If you understand how spell works (Section 15.4), you may be less
surprised by some of these errors.

As stated at the beginning, spell isn't on all Unix systems, e.g., Darwin and FreeBSD. In these other
environments, check for the existence of alternative spell checking, such as ispell (Section 16.2). Or
you can download and install the GNU version of spell at http://www.gnu.org/directory/spell.html.

—DD and SP

http://www.gnu.org/directory/spell.html

Check Spelling Interactively with ispell

The original Unix spell-checking program, spell (Section 15.1), is fine for quick checks of spelling in
a short document, but it makes you cry out for a real spellchecker, which not only shows you the
misspelled words in context, but offers to change them for you.

 Go to http://examples.oreilly.com/upt3 for more information on: ispell

ispell, a very useful program that's been ported to Unix and enhanced over the years, does all this and
more. Either it will be preinstalled or you'll need to install it for your Unix version.

Here's the basic usage: just as with spell, you spell check a document by giving ispell a filename. But
there the similarities cease. ispell takes over your screen or window, printing two lines of context at
the bottom of the screen. If your terminal can do reverse video, the offending word is highlighted.
Several alternate possibilities are presented in the upper-left corner of the screen — any word in
ispell's dictionary that differs by only one letter, has a missing or extra letter, or transposed letters.

Faced with a highlighted word, you have eight choices:
SPACE

Press the spacebar to accept the current spelling.
A

Type A to accept the current spelling, now and for the rest of this input file.
I

Type I to accept the current spelling now and for the rest of this input file and also to instruct
ispell to add the word to your private dictionary. By default, the private dictionary is the file
.ispell_words in your home directory, but it can be changed with the -p option or by setting the
environment variable (Section 35.3) WORDLIST to the name of some other file. If you work
with computers, this option will come in handy since we use so much jargon in this business! It
makes a lot more sense to "teach" all those words to ispell than to keep being offered them for
possible correction. (One gotcha: when specifying an alternate file, you must use an absolute
pathname (Section 1.14), or ispell will look for the file in your home directory.)

0-9
Type the digit corresponding to one of ispell's alternative suggestions to use that spelling
instead. For example, if you've typed "hnadle," as I did when writing this article, ispell will
offer 0: handle in the upper-left corner of your screen. Typing 0 makes the change and moves
on to the next misspelling, if any.

R
Type R if none of ispell's offerings do the trick and you want to be prompted for a replacement.
Type in the new word, and the replacement is made.

L
Type L if ispell didn't make any helpful suggestions and you're at a loss as to how to spell the
word correctly. ispell will prompt you for a lookup string. You can use * as a wildcard
character (it appears to substitute for zero or one characters); ispell will print a list of matching
words from its dictionary.

Q
Type Q to quit, writing any changes made so far, but ignoring any misspellings later in the input

http://examples.oreilly.com/upt3

file.
X

Type X to quit without writing any changes.

But that's not all! ispell also saves a copy of your original file with a .bak extension, just in case you
regret any of your changes. If you don't want ispell making .bak files, invoke it with the -x option.

How about this: ispell knows about capitalization. It already knows about proper names and a lot of
common acronyms — it can even handle words like "TEX" that have oddball capitalization. Speaking
of TEX, ispell has special modes in which it recognizes TEX constructions.

If ispell isn't on your system by default, you should be able to find an installation of it packaged in
your system's own unique software-installation packaging, discussed in Chapter 40.

In addition, you can also look for a newer spell-checking utility, aspell , based on ispell but with
improved processing. Though aspell is being considered a replacement for ispell, the latter is still the
most commonly found and used of the two.

— TOR

How Do I Spell That Word?

Are you writing a document and want to check the spelling of a word before you finish (if you aren't
using a word processor with automatic spelling correction, that is)? A Unix system gives you several
ways to do this.

Note
Because this is Unix, y ou can use any of these approaches when y ou write a script of y our own.

1. If you aren't sure which of two possible spellings is right, you can use the spell command with
no arguments to find out. Type the name of the command, followed by a RETURN, then type the
alternative spellings you are considering. Press CTRL-d (on a line by itself) to end the list. The
spell command will echo back the word(s) in the list that it considers to be in error:
$ spell
misspelling
mispelling
CTRL-d
mispelling

2. If you're using ispell (Section 16.2) or the newer aspell, you need to add the -a option. The
purpose of this option is to let the speller interact with other programs; there are details in the
programs' documentation. But, like most Unix filters, you can also let these programs read a
word from standard input and write their response on standard output; it will either tell you that
the spelling is right or give you a list of suggestions. aspell and ispell will use their local
dictionaries and improved spelling rules.
As an example, let's check the spelling of outragous and whut with both ispell and aspell:
$ ispell -a
@(#) International Ispell Version 3.1.20 10/10/95
outragous whut
& outragous 1 0: outrageous
& whut 5 10: hut, shut, what, whet, whit

CTRL-d
$ aspell -a
@(#) International Ispell Version 3.1.20 (but really Aspell .32.6 alpha)
outragous whut
& outragous 3 0: outrageous, outrages, outrage's
& whut 5 10: what, whet, whit, hut, shut

CTRL-d
$

When these spellers start, they print a version message and wait for input. I type the words I
want to check and press RETURN. The speller returns one result line for each word:

A result of * means the word is spelled correctly.
A line starting with & means the speller has suggestions. Then it repeats the word, the
number of suggestions it has for that word, the character position that the word had on the
input line, and finally the suggestions.
So ispell suggested that outragous might be outrageous. aspell also came up with outrages
and outrage's. (I'd say that outrage's is barely a word. Be careful with aspell's

suggestions.) Both spellers had five suggestions for whut; the differences are interesting . . .
A result of # means there were no suggestions.

After processing a line, the spellers both print an empty line. Press CTRL-d to end input.
3. Another way to do the same thing is with look (Section 13.14). With just one argument, look

searches the system word file, /usr/dict/words, for words starting with the characters in that one
argument. That's a good way to check spelling or find a related word:
% look help
help
helpful
helpmate

look uses its -df options automatically when it searches the word list. -d ignores any character
that isn't a letter, number, space or tab; -f treats upper- and lowercase letters the same.

—JP and DD

Inside spell

[If you have ispell (Section 16.2), there's not a whole lot of reason for using spell any more. Not only
is ispell more powerful, it's a heck of a lot easier to update its spelling dictionaries. Nonetheless, we
decided to include this article, because it clarifies the kinds of rules that spellcheckers go through to
expand on the words in their dictionaries. — TOR]

On many Unix systems, the directory /usr/lib/spell contains the main program invoked by the spell
command along with auxiliary programs and data files.

On some systems, the spell command is a shell script that pipes its input through deroff -w and sort -
u (Section 22.6) to remove formatting codes and prepare a sorted word list, one word per line. On
other systems, it is a standalone program that does these steps internally. Two separate spelling lists
are maintained, one for American usage and one for British usage (invoked with the -b option to
spell). These lists, hlista and hlistb, cannot be read or updated directly. They are compressed files,
compiled from a list of words represented as nine-digit hash codes. (Hash coding is a special
technique used to search for information quickly.)

The main program invoked by spell is spellprog. It loads the list of hash codes from either hlista or
hlistb into a table, and it looks for the hash code corresponding to each word on the sorted word list.
This eliminates all words (or hash codes) actually found in the spelling list. For the remaining words,
spellprog tries to derive a recognizable word by performing various operations on the word stem
based on suffix and prefix rules. A few of these manipulations follow:
-y+iness +ness -y+i+less +less -y+ies -t+ce -t+cy

The new words created as a result of these manipulations will be checked once more against the spell
table. However, before the stem-derivative rules are applied, the remaining words are checked
against a table of hash codes built from the file hstop. The stop list contains typical misspellings that
stem-derivative operations might allow to pass. For instance, the misspelled word thier would be
converted into thy using the suffix rule -y+ier. The hstop file accounts for as many cases of this type
of error as possible.

The final output consists of words not found in the spell list — even after the program tried to search
for their stems — and words that were found in the stop list.

You can get a better sense of these rules in action by using the -v or -x option. The -v option
eliminates the last look-up in the table and produces a list of words that are not actually in the
spelling list, along with possible derivatives. It allows you to see which words were found as a result
of stem-derivative operations and prints the rule used. (Refer to the sample file in Section 16.1.)
% spell -v sample
Alcuin
ditroff
LaserWriter
PostScript
printerr
TranScript
+out output
+s uses

The -x option makes spell begin at the stem-derivative stage and prints the various attempts it makes
to find the stem of each word.
% spell -x sample

...
=into
=LaserWriter
=LaserWrite
=LaserWrit
=laserWriter
=laserWrite
=laserWrit
=output
=put
...
LaserWriter
...

The stem is preceded by an equals sign (=). At the end of the output are the words whose stem does
not appear in the spell list.

One other file you should know about is spellhist. On some systems, each time you run spell, the
output is appended through tee (Section 43.8) into spellhist, in effect creating a list of all the
misspelled or unrecognized words for your site. The spellhist file is something of a "garbage" file
that keeps on growing: you will want to reduce it or remove it periodically. To extract useful
information from this spellhist, you might use the sort and uniq -c (Section 21.20) commands to
compile a list of misspelled words or special terms that occur most frequently. It is possible to add
these words back into the basic spelling dictionary, but this is too complex a process to describe
here. It's probably easier just to use a local spelling dictionary (Section 16.1). Even better, use
ispell; not only is it a more powerful spelling program, it is much easier to update the word lists it
uses (Section 16.5).

— DD

Adding Words to ispell's Dictionary

ispell (Section 16.2) uses two lists for spelling verification: a master word list and a supplemental
personal word list.

The master word list for ispell is normally the file /usr/local/lib/ispell/ispell.hash, though the
location of the file can vary on your system. This is a "hashed" dictionary file. That is, it has been
converted to a condensed, program-readable form using the buildhash program (which comes with
ispell) to speed the spell-checking process.

The personal word list is normally a file called .ispell_english or .ispell_words in your home
directory. (You can override this default with either the -p command-line option or the WORDLIST
environment variable (Section 35.3).) This file is simply a list of words, one per line, so you can
readily edit it to add, alter, or remove entries. The personal word list is normally used in addition to
the master word list, so if a word usage is permitted by either list it is not flagged by ispell.
Custom personal word lists are particularly useful for checking documents that use jargon or special
technical words that are not in the master word list, and for personal needs such as holding the names
of your correspondents. You may choose to keep more than one custom word list to meet various
special requirements.

You can add to your personal word list any time you use ispell: simply use the I command to tell
ispell that the word it offered as a misspelling is actually correct, and should be added to the
dictionary. You can also add a list of words from a file using the ispell -a (Section 16.3) option. The
words must be one to a line, but need not be sorted. Each word to be added must be preceded with an
asterisk. (Why? Because ispell -a has other functions as well.) So, for example, we could have added
a list of Unix utility names to our personal dictionaries all at once, rather than one-by-one as they
were encountered during spell checking.

Obviously, though, in an environment where many people are working with the same set of technical
terms, it doesn't make sense for each individual to add the same word list to his own private
.ispell_words file. It would make far more sense for a group to agree on a common dictionary for
specialized terms and always to set WORDLIST to point to that common dictionary.

If the private word list gets too long, you can create a "munched" word list. The munchlist script that
comes with ispell reduces the words in a word list to a set of word roots and permitted suffixes. This
creates a more compact but still editable word list.

Another option is to provide an alternative master spelling list using the -d option. This has two
problems, though:

1. The master spelling list should include spellings that are always valid, regardless of context.
You do not want to overload your master word list with terms that might be misspellings in a
different context. For example, perl is a powerful programming language, but in other contexts,
perl might be a misspelling of pearl. You may want to place perl in a supplemental word list
when documenting Unix utilities, but you probably wouldn't want it in the master word list
unless you were documenting Unix utilities most of the time that you use ispell.

2. The -d option must point to a hashed dictionary file. What's more, you cannot edit a hashed

dictionary; you will have to edit a master word list and use (or have the system administrator
use) buildhash to hash the new dictionary to optimize spell checker performance.

To build a new hashed word list, provide buildhash with a complete list of the words you want
included, one per line. (The buildhash utility can only process a raw word list, not a munched word
list.) The standard system word list, /usr/dict/words on many systems, can provide a good starting
point. This file is writable only by the system administrator and probably shouldn't be changed in any
case. So make a copy of this file, and edit or add to the copy. After processing the file with
buildhash, you can either replace the default ispell.hash file or point to your new hashed file with the
-d option.

—TOR and LK

Counting Lines, Words, and Characters: wc

The wc (word count) command counts the number of lines, words, and characters in the files you
specify. (Like most Unix utilities, wc reads from its standard input if you don't specify a filename.)
For example, the file letter has 120 lines, 734 words, and 4,297 characters:
% wc letter
 120 734 4297 letter

You can restrict what is counted by specifying the options -l (count lines only), -w (count words
only), and -c (count characters only). For example, you can count the number of lines in a file:
% wc -l letter
 120 letter

or you can count the number of files in a directory:
% cd man_pages
% ls | wc -w
 233

The first example uses a file as input; the second example pipes the output of an ls command to the
input of wc. (Be aware that the -a option (Section 8.9) makes ls list dot files. If your ls command is
aliased (Section 29.2) to include -a or other options that add words to the normal output — such as
the line total nnn from ls -l — then you may not get the results you want.)

The following command will tell you how many more words are in new.file than in old.file:
% expr `wc -w < new.file` - `wc -w < old.file`

Many shells have built-in arithmetic commands and don't really need expr ; however, expr works in
all shells.

Note
In a programming application, y ou'll usually want wc to read the input files by using a < character, as shown earlier. If instead y ou say :

% expr `wc -w new.file` - `wc -w old.file`

the filenames will show up in the expressions and produce a sy ntax error.[1]

Taking this concept a step further, here's a simple shell script to calculate the difference in word
count between two files:
count_1=`wc -w < $1` # number of words in file 1
count_2=`wc -w < $2` # number of words in file 2

diff_12=`expr $count_1 - $count_2` # difference in word count

if $diff_12 is negative, reverse order and don't show the minus sign:
case "$diff_12" in
-*) echo "$2 has `expr $diff_12 : '-\(.*\)'` more words than $1" ;;
*) echo "$1 has $diff_12 more words than $2" ;;
esac

If this script were called count.it, then you could invoke it like this:
% count.it draft.2 draft.1
draft.1 has 23 more words than draft.2

You could modify this script to count lines or characters.

Note

Note
Unless the counts are very large, the output of wc will have leading spaces. This can cause trouble in scripts if y ou aren't careful. For instance, in the previous script, the command:

echo "$1 has $count_1 words"

might print:

draft.2 has 79 words

See the extra spaces? Understanding how the shell handles quoting (Section 27.12) will help here. If y ou can, let the shell read the wc output and remove extra spaces. For example, without quotes, the shell passes four separate words to echo --
and echo adds a single space between each word:

echo $1 has $count_1 words

that might print:

draft.2 has 79 words

That's especially important to understand when y ou use wc with test or expr commands that don't expect spaces in their arguments. If y ou can't use the shell to strip out the spaces, delete them by piping the wc output through tr -d ' ' (Section
21.11).

Finally, two notes about file size:

wc -c isn't an efficient way to count the characters in large numbers of files. wc opens and reads
each file, which takes time. The fourth or fifth column of output from ls -l (depending on your
version) gives the character count without opening the file.
Using character counts (as in the previous item) doesn't give you the total disk space used by
files. That's because, in general, each file takes at least one disk block to store. The du (Section
15.8) command gives accurate disk usage.

—JP, DG, and SP

[1] You could also type cat new.file | wc -w, but this involves two commands, so it's less
efficient (Section 43.2).

Find a a Doubled Word

One type of error that's hard to catch when proofreading is a doubled word. It's hard to miss the
double "a" in the title of this article, but you might find yourself from time to time with a "the" on the
end of one line and the beginning of another.

We've seen awk scripts to catch this, but nothing so simple as this shell function. Here are two
versions; the second is for the System V version of tr (Section 21.11):

uniq Section 21.20
ww() { cat $* | tr -cs "a-z'" "\012" | uniq -d; }

ww() { cat $* | tr -cs "[a-z]'" "[\012*]" | uniq -d; }

In the script ww.sh , the output of the file is piped to tr to break the stream into separate words, which
is then passed to the uniq command for testing of duplicate terms.

—TOR and JP

Looking for Closure

A common problem in text processing is making sure that items that need to occur in pairs actually do
so.

Most Unix text editors include support for making sure that elements of C syntax such as parentheses
and braces are closed properly. Some editors, such as Emacs (Section 19.1) and vim Section 17.1),
also support syntax coloring and checking for text documents -- HTML and SGML, for instance.
There's much less support in command-line utilities for making sure that textual documents have the
proper structure. For example, HTML documents that start a list with need a closing .

Unix provides a number of tools that might help you to tackle this problem. Here's a gawk script
written by Dale Dougherty that makes sure and tags macros come in pairs:

gawk Section 20.11
#! /usr/local/bin/gawk -f
BEGIN {
 IGNORECASE = 1
 inList = 0
 LSlineno = 0
 LElineno = 0
 prevFile = ""
}
if more than one file, check for unclosed list in first file
FILENAME != prevFile {
 if (inList)
 printf ("%s: found at line %d without before end of file\n",
 prevFile, LSlineno)
 inList = 0
 prevFile = FILENAME
}
match and see if we are in list
/^/ {
 if (inList) {
 printf("%s: nested list starts: line %d and %d\n",
 FILENAME, LSlineno, FNR)
 }
 inList = 1
 LSlineno = FNR
}
/^<\/UL>/ {
 if (! inList)
 printf("%s: too many list ends: line %d and %d\n",
 FILENAME, LElineno, FNR)
 else
 inList = 0
 LElineno = FNR
}
this catches end of input
END {
 if (inList)
 printf ("%s: found at line %d without before end of file\n",
 FILENAME, LSlineno)
}

You can adapt this type of script for any place you need to check for a start and finish to an item.
Note, though, that not all systems have gawk preinstalled. You'll want to look for an installation of the
utility for your system to use this script.

A more complete syntax-checking program could be written with the help of a lexical analyzer like
lex. lex is normally used by experienced C programmers, but it can be used profitably by someone

who has mastered awk and is just beginning with C, since it combines an awk-like pattern-matching
process using regular-expression syntax with actions written in the more powerful and flexible C
language. (See O'Reilly & Associates' lex & yacc.)

Of course, this kind of problem could be very easily tackled with the information in Chapter 41.

—TOR and SP

Just the Words, Please

In various textual-analysis scripts, you sometimes need just the words (Section 16.7).

I know two ways to do this. The deroff command was designed to strip out troff Section 45.11)
constructs and punctuation from files. The command deroff -w will give you a list of just the words in
a document; pipe to sort -u (Section 22.6) if you want only one of each.

deroff has one major failing, though. It considers a word as just a string of characters beginning with
a letter of the alphabet. A single character won't do, which leaves out one-letter words like the
indefinite article "A."

A substitute is tr (Section 21.11), which can perform various kinds of character-by-character
conversions.

To produce a list of all the individual words in a file, type the following:

< Section 43.1
% tr -cs A-Za-z '\012' <
 file

The -c option "complements" the first string passed to tr; -s squeezes out repeated characters. This
has the effect of saying: "Take any nonalphabetic characters you find (one or more) and convert them
to newlines (\012)."

(Wouldn't it be nice if tr just recognized standard Unix regular expression syntax (Section 32.4)?
Then, instead of -c A-Za-z, you'd say '[^A-Za-z]'. It's no less obscure, but at least it's used by
other programs, so there's one less thing to learn.)

The System V version of tr (Section 21.11) has slightly different syntax. You'd get the same effect
with this:
% tr -cs '[A-Z][a-z]' '[\012*]' <
 file

— TOR

Chapter 17. vi Tips and Tricks

The vi Editor: Why So Much Material?

We're giving a lot of pages to the vi editor. People who use another editor, like Emacs, might wonder
why. Here's why.

I've watched people (including myself) learn and use vi for 20 years. It's the standard editor that
comes with almost every Unix system these days, but most people have no idea that vi can do so
much. People are surprised, over and over, when I show them features that their editor has. Even with
its imperfections, vi is a power tool. If you work with files, you probably use it constantly. Knowing
how to use it well will save you lots of time and work.

But why not give the same coverage to another editor that lots of people use: GNU Emacs (Section
19.1)? That's because GNU Emacs comes with source code and can be extended by writing LISP
code. Its commands have descriptive names that you can understand by reading through a list. vi's
commands are usually no more than a few characters long; many of the option names are short and not
too descriptive either. Lots of Unix systems don't even have vi source code these days.

I hope that you vi users will learn a lot in this section and that people who don't use vi will at least
browse through to see some of vi's less obvious features.

If you're looking for additional text-editing power, you can use vim instead of the plain vanilla vi
installed on most systems. All vi commands work with vim, but with added functionality, power, and
more standardized behavior accross flavors of Unix. There should be an installation of vim for your
Unix.

—JP and SP

What We Cover

Summary Box
Travel between files, save text into buffers, and move it around without leaving vi: Section 17.3, Section 17.4, and Section 17.6.
Recover deletions from up to nine numbered buffers: Section 17.7.
Do global search and replacement with pattern matching: Section 17.8, Section 17.13, Section 17.14, Section 17.16, and Section 17.22.
Save a lot of ty ping with word abbreviations: Section 17.23, Section 17.24, and Section 17.25.
"Prettify " lines of text that don't fit on the screen as y ou would like: Section 17.28.
Run other Unix commands without leaving vi (called a filter-through): Section 17.18 and Section 17.21.
Keep track of functions and included files with ctags and tags.
Change y our vi and ex options in y our .exrc file for all files or just for files in a local directory : Section 17.5.

When you ty pe a : (colon) command in vi, y ou're beginning an ex command. There's more information about ex in a later chapter: Section 20.3, Section 20.4, and Section 20.5.

— EK

Editing Multiple Files with vi

ex commands enable you to switch between multiple files. The advantage is speed. When you are
sharing the system with other users, it takes time to exit and re-enter vi for each file you want to edit.
Staying in the same editing session and traveling between files is not only faster for access, but you
also save abbreviations and command sequences that you have defined, and you keep yank buffers
(Section 17.4) so that you can copy text from one file to another.

When you first invoke vi, you can name more than one file to edit and then use ex commands to travel
between the files:
% vi file1 file2

This edits file1 first. After you have finished editing the first file, the ex command :w writes (saves)
file1, and :n calls in the next file (file2). On many versions of vi, you can type :wn both to save the
current file changes and to go to the next file. Typing :q! discards changes and closes the current file.
Type vi * to edit all the files in a directory, though this will give you an error in some Unix systems.
Type CTRL-g or :f to get the name of your current file; :args lists all filenames from the command
line and puts brackets around the [current] file.

You can also switch at any time to another file not specified on the command line with the ex
command :e. If you want to edit another file within vi, you first need to save your current file (:w),
then you can type the following command:
 :e
 filename

vi "remembers" two filenames at a time as the current and alternate filenames. These can be referred
to by the symbols % (current filename) and # (alternate filename).

is particularly useful with :e, since it allows you to switch back and forth between two files easily.
The command :e# is always "switch to the other one." With different flavors of Unix, the vi command
CTRL-^ (control-caret) is a synonym for :e#. This usually seems to work even without pressing the
SHIFT key. For instance, if I get a caret by pressing SHIFT-6, I don't need to press CTRL-SHIFT-6 to
make vi change files: just CTRL-6 is enough.

If you have not first saved the current file, vi will not allow you to switch files with :e or :n unless
you tell it imperatively to do so by adding an exclamation point after the command.

The command:
 :e!

is also useful. It discards your edits and returns to the last saved version of the current file.

In contrast to the # symbol, % is useful mainly in shell escapes (Section 17.21) and when writing out
the contents of the current buffer to a new file. For example, you could save a second version of the
file letter with the command:
 :w %.new

instead of:
 :w letter.new

— LL and SP

Edits Between Files

When you give a yank buffer (temporary holding buffer) a one-letter name, you have a convenient way
to move text from one file to another. Named buffers are not cleared when a new file is loaded into
the vi buffer with the :e command (Section 17.3). Thus, by yanking (copying) or deleting text from
one file (into multiple named buffers if necessary), calling in a new file with :e and putting the named
buffer into the new file, you can transfer material between files.

The following table illustrates how to transfer text from one file to another. Type the keystrokes
exactly as shown to achieve the stated result.

Keystrokes Action Results

"f4yy Yank four lines into buffer f.

With a screen editor you
can scroll
the page, move the cursor,
delete lines,
insert characters, and
more, while seeing
the results of the edits
as you make them

:w Save the file.
"practice" 6 lines 238
characters

:e letter
Enter the file letter with :e. Move cursor to where
the copied text will be placed.

Dear Mr.
Henshaw:
I thought that you would
be interested to know
that:
Yours truly,

"fp
Place yanked text from named buffer f below the
cursor.

Dear Mr.
Henshaw:
I thought that you would
be interested to know
that:
With a screen editor you
can scroll
the page, move the cursor,
delete lines,
insert characters, and
more, while seeing
the results of the edits
as you make them
Yours truly,

If you yank into a buffer and type the buffer name as an uppercase letter, your new text will be added
to the text already in the buffer. For example, you might use "f4yy to yank four lines into the buffer
named f. If you then move somewhere else and type "F6yy with an uppercase F, that will add six
more lines to the same f buffer — for a total of ten lines. You can yank into the uppercase buffer name
over and over. To output all of the yanked text, use the lowercase letter — like "fp. To clear the
buffer and start over, use its lowercase name ("fy...) again.

— LL and JP

Local Settings for vi

In addition to reading the .exrc file (the vi configuration or startup file) in your home directory, many
versions of vi will read a file called .exrc in the current directory. This allows you to set options that
are appropriate to a particular project.

For example, you might want to have one set of options in a directory used mainly for programming:
set number lisp autoindent sw=4 terse
set tags=/usr/lib/tags

and another set of options in a directory used for text editing:
set wrapmargin=15 ignorecase

Note that you can set certain options in the .exrc file in your home directory (Section 1.15) and unset
them (for example, set wrapmargin=0 noignorecase) in a local directory.

Note
Many versions of vi don't read .exrc files in the current directory unless y ou first set the exrc option in y our home directory 's .exrc file:

set exrc

This mechanism makes it harder for other people to place, in y our working directory , an .exrc file whose commands might jeopardize the security of y our sy stem.

You can also define alternate vi environments by saving option settings in a file other than .exrc and
reading in that file with the :so command. For example:
:so .progoptions

Local .exrc files are also useful for defining abbreviations (Section 17.23) and key mappings
(Section 18.2). When we write a book or manual, we save all abbreviations to be used in that book in
an .exrc file in the directory in which the book is being created.

You can also store settings and startup commands for vi and ex in an environment variable called
EXINIT (Section 17.27). If there is a conflict between settings in EXINIT and an .exrc file, EXINIT
settings take precedence.

Note
You can keep a group of standard .exrc files in a central directory and link (Section 10.5) to them from various local directories. For instance, from this book's source-file directory , which is full of SGML files, I made a sy mlink:

% ln -s ~/lib/vi/exrc.sgml .exrc

I prefer sy mbolic links to hard links in a case like this because they make it easy to see to which central file the local .exrc link points.

— TOR

Using Buffers to Move or Copy Text

In a vi editing session, your last deletion (d or x) or yank (y) is saved in a buffer. You can access the
contents of that buffer and put the saved text back in your file with the put command (p or P). This is a
frequent sequence of commands:
5dd delete 5 lines
 . . . move somewhere else

p put the 5 deleted lines back in a new
 location, below the current line

Fewer new users are aware that vi stores the last nine (Section 17.7) deletions in numbered buffers.
You can access any of these numbered buffers to restore any (or all) of the last nine deletions. (Small
deletions, of only parts of lines, are not saved in numbered buffers, however.) Small deletions can be
recovered only by using the p or P command immediately after you've made the deletion.

vi also allows you to yank (copy) text to "named" buffers identified by letters. You can fill up to 26
(a-z) buffers with yanked text and restore that text with a put command at any time in your editing
session. This is especially important if you want to transfer data between two files, because all
buffers except those that are named are lost when you change files. See Section 17.4.

— TOR

Get Back What You Deleted with Numbered Buffers

Being able to delete large blocks of text in a single bound is all very well and good, but what if you
mistakenly delete 53 lines that you need? There's a way to recover any of your past nine deletions,
because they're saved in numbered buffers. The last delete is saved in buffer 1, the second-to-last in
buffer 2, and so on.

To recover a deletion, type <"> (the double quote character), identify the buffered text by number,
then give the put command. To recover your second-to-last deletion from buffer 2, type the following:
"2p

The deletion in buffer 2 is placed on the line below the cursor.

If you're not sure which buffer contains the deletion you want to restore, you don't have to keep typing
<"> n p over and over again. If you use the repeat command (.) with p after u (undo), it automatically
increments the buffer number. As a result, you can search through the numbered buffers as follows:
"1pu.u.u etc.

to put the contents of each succeeding buffer in the file one after the other. Each time you type u, the
restored text is removed; when you type a dot (.), the contents of the next buffer is restored to your
file. Keep typing u and . until you've recovered the text you're looking for.

— TOR

Using Search Patterns and Global Commands

Besides using line numbers and address symbols (., $, %), ex (including the ex mode of vi, of course)
can address lines (Section 20.3) using search patterns (Section 32.1). For example:
:/ pattern /d

Deletes the next line containing pattern.
:/ pattern /+d

Deletes the line below the next line containing pattern. (You could also use +1 instead of +
alone.)

:/ pattern1 /,/ pattern2 /d
Deletes from the next line (after the current line) that contains pattern1 through the next
following line that contains pattern2.

:.,/ pattern /m23
Takes text from current line (.) through the next line containing pattern and puts it after line 23.

Note that patterns are delimited by a slash both before and after.

If you make deletions by pattern with vi and ex, there is a difference in the way the two editors
operate. Suppose you have in your file named practice the following lines:
With a screen editor you can scroll the
page, move the cursor, delete lines, insert
characters and more, while seeing results
of your edits as you make them.

Key-strokes Action Results

d/while
The vi delete-to-pattern command deletes from the cursor up to
the word while but leaves the remainder of both lines.

With a screen
editor you can
scroll the
page, move the
cursor, while
seeing results
of your edits as
you make them.

:.,/while/d

The ex command deletes the entire range of addressed lines; in
this case both the current line and the line containing the pattern.
All lines are deleted in their entirety.

With a screen
editor you can
scroll the
of your edits as
you make them.

Global Searches

In vi you use a / (slash) to search for patterns of characters in your files. By contrast, ex has a global
command, g, that lets you search for a pattern and display all lines containing the pattern when it finds
them. The command :g! does the opposite of :g. Use :g! (or its synonym :v) to search for all lines
that do not contain pattern.

You can use the global command on all lines in the file, or you can use line addresses to limit a
global search to specified lines or to a range of lines.
:g/ pattern /

Finds (moves to) the last occurrence of pattern in the file.
:g/ pattern /p

Finds and displays all lines in the file containing pattern.
:g!/ pattern /nu

Finds and displays all lines in the file that don't contain pattern; also displays line number for
each line found.

:60,124g/ pattern /p
Finds and displays any lines between 60 and 124 containing pattern.

g can also be used for global replacements. For example, to search for all lines that begin with
WARNING: and change the first word not on those lines to NOT:
:g/^WARNING:/s/\<not\>/NOT/

— LL, from Learning the vi Editor (O'Reilly, 1998)

Confirming Substitutions in vi

It makes sense to be overly careful when using a search-and-replace command. It sometimes happens
that what you get is not what you expected. You can undo any search-and-replace command by
entering u, provided that the command was intended for the most recent edit you made. But you don't
always catch undesired changes until it is too late to undo them. Another way to protect your edited
file is to save the file with :w before performing a global replacement. Then at least you can quit the
file without saving your edits and go back to where you were before the change was made. You can
also read back in the previous version of the buffer with :e! (Section 17.3).

It's wise to be cautious and know exactly what is going to be changed in your file. If you'd like to see
what the search turns up and confirm each replacement before it is made, add the c option (for
confirm) at the end of the substitute command:
 :1,30s/his/the/gc

The item to be substituted is highlighted so that placement of the cursor on the first character is
marked by a series of carets (^^^^).
copyists at his school
 ^^^_

If you want to make the replacement, you must enter y (for yes) and press RETURN. If you don't want
to make a change, simply press RETURN.

The combination of the vi commands, n (repeat last search) and dot (.) (repeat last command), is also
an extraordinarily useful and quick way to page through a file and make repetitive changes that you
may not want to make globally. So, for example, if your editor has told you that you're using which
when you should be using that, you can spot-check every occurrence of which, changing only those
that are incorrect.

This often turns out to be faster than using a global substitution with confirmation. It also lets you see
other lines near the text you're checking, which is hard to do with :s///c in original vi. vi clones
have improved the situation. For instance, in vim, :s///c runs in fullscreen mode; it also lets you
type CTRL-y and CTRL-e to scroll the screen up or down to see context before you approve or deny
each substitution.

—DD, TOR, from Learning the vi Editor (O'Reilly, 1998)

Keep Your Original File, Write to a New File

You can use :w to save an entire buffer (the copy of the file you are editing) under a new filename.

Suppose you have a file practice, containing 600 lines. You open the file and make extensive edits.
You want to quit but save both the old version of practice and your new edits for comparison. To
save the edited buffer in a file called check_me, give the command:
 :w check_me

Your old version, in the file practice, remains unchanged (provided that you didn't previously use
:w). You can now quit the old version by typing :q.

— LL, from Learning the vi Editor (O'Reilly, 1998)

Saving Part of a File

While editing, you will sometimes want to save just part of your file as a separate, new file. For
example, you might have entered formatting codes and text that you want to use as a header for
several files.

You can combine ex line addressing (Section 20.3) with the write command, w, to save part of a file.
For example, if you are in the file practice and want to save part of practice as the file newfile, you
could enter:
:230,$w newfile

Saves from line 230 to end-of-file in newfile.
:.,600w newfile

Saves from the current line to line 600 in newfile.

After newfile has been created, you'll need w! instead of w.

— LL, from Learning the vi Editor (O'Reilly, 1998)

Appending to an Existing File

You can use the Unix redirect and append operator (>>) with w to append all or part of the buffer's
contents to an existing file. For example, if you entered:
 :1,10w
 newfile

and then:

$ Section 20.3
 :340,$w >>
 newfile

newfile would contain lines 1-10 and line 340 to the end of the buffer.

—TOR, from Learning the vi Editor (O'Reilly, 1998)

Moving Blocks of Text by Patterns

You can move blocks of text delimited by patterns (Section 17.8). For example, assume you have a
150-page reference manual. All reference pages are organized into three paragraphs with the same
three headings: SYNTAX, DESCRIPTION, and PARAMETERS. A sample of one reference page
follows:
 .Rh 0 "Get status of named file" "STAT"
 .Rh "SYNTAX"
 .nf
 integer*4 stat, retval
 integer*4 status(11)
 character*123 filename
 ...
 retval = stat (filename, status)
 .fi
 .Rh "DESCRIPTION"
 Writes the fields of a system data structure into the
 status array.
 These fields contain (among other
 things) information about the file's location, access
 privileges, owner, and time of last modification.
 .Rh "PARAMETERS"
 .IP "\fBfilename\fR" 15n
 A character string variable or constant containing
 the Unix pathname for the file whose status you want
 to retrieve.
 You can give the ...

Suppose that it is decided to move the SYNTAX paragraph below the DESCRIPTION paragraph.
Using pattern matching, you can move blocks of text on all 150 pages with one command!
 :g/SYNTAX/,/DESCRIPTION/-1 mo /PARAMETERS/-1

This command operates on the block of text between the line containing the word SYNTAX and the
line just before the word DESCRIPTION (/DESCRIPTION/-1). The block is moved (using mo) to the
line just before PARAMETERS (/PARAMETERS/-1). Note that ex can only place text below the line
specified. To tell ex to place text above a line, you first have to move up a line with -1 and then place
your text below. In a case like this, one command literally saves hours of work. (This is a real-life
example — we once used a pattern match like this to rearrange a reference manual containing
hundreds of pages.)

Block definition by patterns can be used equally well with other ex commands. For example, if you
wanted to delete all DESCRIPTION paragraphs in the reference chapter, you could enter:
 :g/DESCRIPTION/,/PARAMETERS/-1d

This very powerful kind of change is implicit in ex's line addressing syntax (Section 20.3), but it is
not readily apparent even to experienced users. For this reason, whenever you are faced with a
complex, repetitive editing task, take the time to analyze the problem and find out if you can apply
pattern-matching tools to do the job.

—TOR, from Learning the vi Editor (O'Reilly, 1998)

Useful Global Commands (with Pattern Matches)

The best way to learn pattern matching is by example, so here's a short list of pattern-matching
examples with explanations. (Section 32.21 has a list of these patterns.) Study the syntax carefully so
you understand the principles at work. You should then be able to adapt these examples to your own
situation.

1. Change all occurrences of the word help (or Help) to HELP:
% Section 20.3
 :%s/[Hh]elp/HELP/g

or:
 :%s/[Hh]elp/\U&/g

The \U changes the pattern that follows to all uppercase. The pattern that follows is the repeated
search pattern, which is either help or Help.

2. Replace one or more spaces following a colon (:) or a period (.) with two spaces (here a space
is marked by a ·):
 :%s/\([:.]\)··*/\1··/g

Either of the two characters within brackets can be matched. This character is saved into a hold
buffer, using \(and \) (Section 34.11) and restored on the right-hand side by the \1. Note that
most metacharacters lose their special meanings inside brackets — so the dot does not need to
be escaped with a backslash (\).

3. Delete all blank lines:
g Section 20.4
 :g/^$/d

What you are actually matching here is the beginning of the line (^), followed by the end of the
line ($), with nothing in between.

4. Delete all blank lines, plus any lines that contain only whitespace:
 :g/^[·tab
]*$/d

(In the previous line, a TAB character is shown as tab.) A line may appear to be blank, but may
in fact contain spaces or tabs. The previous numbered example will not delete such a line. This
example, like the previous one, searches for the beginning and end of the line. But instead of
having nothing in between, the pattern tries to find any number of spaces or tabs. If no spaces or
tabs are matched, the line is blank. To delete lines that contain whitespace but that aren't blank,
you would have to match lines with at least one space or tab:
 :g/^[·tab
][·tab
]*$/d

5. This example and the next both refer to a line in a troff-formatted document like this A-level
(top-level) heading macro call:
.Ah "Budget Projections" "for 2001-2002"

To match the first quoted argument of all section header (.Ah) macros and replace each line with

this argument:
 :%s/^\.Ah "\([^"]*\)" .*/\1/

this example macro call would be changed to simply:
Budget Projections

The substitution assumes that the .Ah macro can have more than one argument surrounded by
quotes. You want to match everything between quotes, but only up to the first closing quote. As
Section 32.18 explains, using ".*" would be wrong because it would match all arguments on the
line. What you do is match a series of characters that aren't quotes, [^"]*. The pattern "[^"]*"
matches a quote, followed by any number of nonquote characters, followed by a quote. Enclose
the first argument in \(and \) so that it can be replayed using \1.

6. Same as previous, except preserve the original lines by copying them:
 :g/^\.Ah/t$ | s/\.Ah "\([^"]*\)" .*/\1/

In ex, the vertical bar (|) is a command separator that works like a semicolon (;) (Section
28.16) on a Unix command line. The first part, :g/^\.Ah/t$, matches all lines that begin with a
.Ah macro, uses the t command to copy these lines, and places the copies after the last line ($)
of the file. The second part is the same as in the previous example, except that the substitutions
are performed on copies at the end of the file. The original lines are unchanged.

Counting Occurrences; Stopping Search Wraps

Want to see how many times you used the word very in a file? There are a couple of easy ways.

First, tell vi to stop searching when you get to the end of the file. Type the command :set
nowrapscan or put it in your .exrc file (Section 17.30).

1. Move to the top of the file with the 1G command. Search for the first very with the command
/very (HINT: using the word-limiting regular expression /\<very\> (Section 32.12) instead
will keep you from matching words like every). To find the next very, type the n (next)
command.
When vi says Address search hit BOTTOM without matching pattern, you've found all of
the words.

2. Use the command:
 :g/very/p

The matching lines will scroll down your screen.

To find the line numbers, too, type :set number before your searches.

— JP

Capitalizing Every Word on a Line

Are you typing the title of an article or something else that needs an uppercase letter at the start of
every word? Do you need to capitalize some text that isn't? It can be tedious to press the SHIFT key
as you enter the text or to use ~ (tilde) and w commands to change the text. The following command
capitalizes the first character of every word.
:s/\<./\u&/g

(You might be wondering why we didn't use :s/\<[a-z]/\u&/g to match lowercase letters. The <.
actually matches the first character of every word, but the \u will only affect letters. So, unless you
only want to capitalize certain letters, <. is enough.)

The previous example does only the current line. You can add a range of lines after the colon. For
example, to edit all lines in the file, type the following:
 :%s/\<./\u&/g

To do the current line and the next five, use this:
 :.,+5s/\<./\u&/g

To make the first character of each word uppercase (with \u) and the rest lowercase (with \L), try:

\(...\)...\1 Section 32.21
 :s/\<\(.\)\([A-Za-z]*\)\>/\u\1\L\2/g

The previous command doesn't convert the back ends of words with hyphens (like CD-ROM) or
apostrophes (like O'Reilly) to lowercase. That's because [A-Za-z]*\> only matches words whose
second through last characters are all letters. You can add a hyphen or an apostrophe to make that
expression match more words, if you'd like.

Those commands can be a pain to type. If you use one of them a lot, try putting it in a keymap
(Section 18.2).

— JP

Per-File Setups in Separate Files

Do you need to set certain editor options for certain files — but not use the same setup for every file
you edit? Make a special setup file with the same name and an underscore (_) or an extension like
.vi, .ex, or .so at the end. For instance, a file named report could have a corresponding setup file
named report_ or report.so. (You don't have to use an underscore at the end of the filename. It's
convenient, though, because it's not a shell special character (Section 27.17).)

The setup file has the same format as a .exrc file (Section 17.5). To make the editor read it, map
(Section 18.2) a function key like F1 (or any other key sequence):

source Section 20.4, ^[Section 18.6
map #1 :source %_^[

When you start vi, tap that key to read the setup file. (The percent sign stands for the current filename
(Section 17.3).)

If you want to use the same setup file for several files in a directory, you might want to make hard
links (Section 10.4) between them. That will save disk space. It also means that if you decide to
change a setup option, you can edit one of the links to the setup file, and the others will have the same
change.

— JP

Filtering Text Through a Unix Command

When you're editing in vi, you can send a block of text as standard input to a Unix command. The
output from this command replaces the block of text in the buffer.

In vi, you can filter text through a Unix command by typing an exclamation mark (!) followed by any
of vi's movement keystrokes that indicate a block of text and then by the Unix command line to be
executed. For example:
 !)
 command

will pass the next sentence through command.

There are a couple of unusual features about how vi acts when you use this structure:

First, the exclamation mark doesn't appear on your screen right away. When you type the
keystroke(s) for the text object you want to filter, the exclamation mark appears at the bottom of
the screen, but the character you type to reference the object does not.
Second, text blocks must be more than one line, so you can use only the keystrokes that would
move more than one line (G, { }, (), [[]], +, -). To repeat the effect, a number may precede
either the exclamation mark or the text object. (For example, both !10+ and 10!+ would indicate
the next ten lines.) Objects such as w do not work unless enough of them are specified so as to
exceed a single line. You can also use a slash (/) followed by a pattern and a carriage return to
specify the object. This takes the text up to the pattern as input to the command.
Third, there is a special text object that can be used only with this command syntax; you can
specify the current line by entering a second exclamation mark:
 !!
 command

Remember that either the entire sequence or the text object can be preceded by a number to
repeat the effect. For instance, to change lines 96 through 99 as in the previous example, you
could position the cursor on line 96 and enter either:
 4!!sort

or:
 !4!sort

As another example, assume you have a portion of text in a message that you'd like to convert to all
uppercase letters. ex has operators to convert case (Section 17.16), but it's also easy to convert
case with the tr (Section 21.11) command. In this example, the second sentence is the block of text
that will be filtered to the command:
One sentence before.
With a screen editor you can scroll the page
move the cursor, delete lines, insert characters,
and more, while seeing the results of your edits
as you make them.
One sentence after.

Keystrokes Action Results
One sentence after.

!) An exclamation mark appears on the last line to
prompt you for the Unix command.

~
~
~
!_

tr '[a-z]'
'[A-Z]'

Enter the Unix command, and press RETURN.
The input is replaced by the output.

One sentence before.
WITH A SCREEN EDITOR YOU CAN
SCROLL THE PAGE
MOVE THE CURSOR, DELETE
LINES, INSERT CHARACTERS,
AND MORE, WHILE seeING THE
RESULTS OF YOUR EDITS
AS YOU MAKE THEM.
One sentence after.

To repeat the previous command, the syntax is as follows:
! object !

It is sometimes useful to send sections of a coded document to nroff to be replaced by formatted
output. Remember that the "original" input is replaced by the output. Fortunately, if there is a mistake,
such as an error message being sent instead of the expected output, you can undo the command and
restore the lines.

Warning
Sometimes a filter-through on old, buggy versions of vi can completely scramble and trash y our text. Things can be so bad that the u (undo) command won't work. If y ou've been burned this way before, y ou'll want to write y our buffer (with
:w) before filter-throughs. This doesn't seem to be a problem with modern versions, but be aware of it.

— TOR

vi File Recovery Versus Networked Filesystems

Have you ever used the vi -r command to recover a file? It lets you get a file back that you were
editing when the system crashed or something else killed your editor before you could save. The
system may send you an email message something like this:
Date: Thu, 19 Nov 1999 09:59:00 EST
To: jerry

A copy of an editor buffer of your file "afile"
was saved when the system went down.
This buffer can be retrieved using the "recover" command of the editor.
An easy way to do this is to give the command "vi -r afile".
This works for "edit" and "ex" also.

 Section 17.20

Your files are saved under a directory named something like /usr/preserve. Follow the instructions
and you'll get back your file, more or less the way it was when you lost it.

If your computers have networked filesystems, such as NFS, there's a wrinkle in the way that vi -r
works. It may only work right on the specific computer where you were editing a file. For example, if
you're editing the file foo on the host named artemis and it crashes, you may not be able to log on to
another host and do vi -r foo to recover that file. That's because, on many hosts, temporary files (like
editor buffers) are stored on a local filesystem instead of on the networked (shared) filesystems. On
this kind of system, you may need to log on to artemis to recover your lost editor buffer.

If you don't remember which computer you were using when the file was lost, check the "Received:"
lines in the email message header;[1] they'll often show from which machine the message originally
came. Also, if you don't remember what files are saved on a machine, you can usually get a list of
your saved files by typing vi -r without a filename:
% vi -r
/var/preserve/jerry:
On Wed Jul 17 at 08:02 saved 15 lines of file "/u/jerry/Mail/drafts/1"
On Sun Aug 25 at 18:42 saved 157 lines of file "doit"
/tmp:
No files saved.

Don't wait too long. Many Unix systems remove these saved editor buffers every month, week, or
sooner.

— JP

[1] Many email programs hide these header lines from you. You might need to set a "show all header
fields" option first.

Be Careful with vi -r Recovered Buffers

Usually, when you're editing a file with vi, if you type the command ZZ, it saves your file. But if you
recover a file with vi -r (Section 17.19), typing ZZ may not save your edits!

That might be a good thing. When you recover a buffer, you need to decide whether the recovered
buffer is really what you want. Maybe you've made other changes to the file since then. Maybe
something went wrong as the buffer was being saved (say, the system crashed). You shouldn't just
save without checking first.

You can use the :w! command to write the recovered version after you're sure that you want it. Use
the :q! command if you don't want the recovered version.

Another good choice is to write the recovered buffer using a different filename, then compare the
recovered buffer to the original file. For example, here I recover a draft MH email message and
immediately write it to a file named recovered-9 in my tmp directory. Then I use a shell escape
(Section 17.21) to run diff (Section 11.1) and compare the draft file on disk
(/home/jerry/Mail/drafts/9) with the copy of the recovered buffer that I just wrote
(/home/jerry/tmp/recovered-9); the vi current filename % and alternate filename # shortcuts
(Section 17.3) are handy here. Oops: diff shows that the recovered version has replaced the last three
lines of the message on disk, in the recovered version, with more than 2,000 lines of junk!

less Section 12.3
% vi -r /home/jerry/Mail/drafts/9
 ...recovered file appears...
 :w ~/tmp/recovered-9
/home/jerry/tmp/recovered-9: 55 lines, 168767 characters.
:!diff % # | less
!diff /home/jerry/Mail/drafts/9 /home/jerry/tmp/recovered-9 | less
5c5
< Subject: Re: Two more Unix Power Tools questions

> Subject: Next UPT (was: Re: Two more Unix Power Tools questions)
146,148c146,2182
< Yes, you mentioned it once. Thanks for pointing that out, Greg.
< I think the next job is to review all the articles in that chapter
< to be sure which items should be included -- just the articles, or

> Yes, you^@
> ^@
> ^@
 ...zillions of lines of junk...

At this point, the best thing to do is to quit vi immediately (with :q!). Then fix up the original file by
copying and pasting the good text from the copy of the recovered buffer that I just wrote. (You might
want to rerun diff, outside of vi, to remind yourself which parts of the recovered file you want to
transfer to the original file.) Starting a new vi session with the filenames of both the original file and
the (mostly trashed) recovered buffer, as Section 17.4 explains, can make the recovery job easier.

— JP

Shell Escapes: Running One UnixCommand While Using Another

Some Unix commands (usually interactive commands like vi) let you run another Unix command
temporarily. To do that, you type a special command character — usually an exclamation point (!) —
then type the Unix command line you want to run. In this article, I'll show examples for the vi editor.
To see if this works on another utility, check its documentation or just try typing ! Unixcommand
when the utility is waiting for you to type a command.

You can run any Unix command without quitting vi. That's handy, for example, if you want to read
your mail or look at some other file . . . , then go back to the file you were editing without losing your
place. It's called a "shell escape." (By the way, there's a another way to do this, job control (Section
23.3), that works on most Unix systems. Job control is often more convenient and flexible than shell
escapes.)

Let's say you're editing the file named foo and you need to run grep to get someone's phone number
from your phone file. The steps are as follows:

1. Be sure you're in command mode (press the ESC key if you aren't sure).
2. If you want to run a command that needs the file you're editing, remember to write out your vi

buffer with the :w command. (So you probably wouldn't need to write anything before the
following grep command.) Type :! followed by the Unix command, then press RETURN. For
example:
 :!grep tim ~/phone

3. The grep program will run. When it finishes, vi will say:
[Hit return to continue]

4. After you press RETURN, you'll be right back where you were.

Other examples:
:!less afile

Page through afile on your screen.
:!rcsdiff %

Give this file to the rcsdiff (Section 11.3) program to see what you've changed since the file was
checked out of the archive. vi replaces % with the name of the file you're editing now (Section
17.3).

:!mail
Read your mail. Be careful about this if you were already running the mail program and you used
the command ~v to edit a message with vi from inside the mail program. This shell escape starts
a subshell (Section 24.4); it will not take you back to the same mail session before you started
editing!

:sh
Start a completely new shell. (If you are using a shell with job control, you'll almost always
want to use job control to suspend vi temporarily instead (Section 23.6). Press CTRL-z, or use
the ex command :suspend.)

Basically, anything you can do at a shell prompt, you can do with a shell escape. You'll be in a
subshell though, not your original login shell. So commands like cd won't affect the program where
you started the subshell or any other shell. On the bright side, changing directories or resetting
anything in your environment won't affect vi or the shell where you started vi. Terminating the

program you're running in the subshell will bring you right back where you were.

— JP

vi Compound Searches

You probably know that you can search for a word or phrase with the vi / (slash) command:
 /treasure

If you have a file that uses the same word over and over again, you might want to find one particular
place that the word is used. You can repeat the search with the n command until you find the place
you want. That can take time and effort, though.

For example, suppose you want to find the word "treasure" in the sentence that has words like "Los
Alamos residents . . . treasure," but you can't remember exactly how the sentence is written. You
could use wildcards in your regular expression:
 /Los Alamos.*treasure

but then the phrases "Los Alamos" and "treasure" have to be on the same line of the file you're
searching — and they won't always be. Also, you want your cursor on the word treasure, but that
search would put the cursor on Los instead.

"Hmmm," you say, "How about two separate searches, like this?"
/Los Alamos
/treasure

The problem there is that the file might have the phrase "Los Alamos" all throughout it; you might
have to type n over and over until you get to the sentence with treasure.

Here's the easy way: a compound search. Say your cursor is on line 1 of the following file:
Before the second World War, there was a treasured boys' school in
what was to become the city of Los Alamos, New Mexico. The school at
Los Alamos changed the lives and made a lifelong impression on most boys
who attended. One of the boys who attended the Los Alamos school went on
to propose that remote set of mesas as a site for the U.S. Government's
 ...
Since the war ended, most of the boys' school ranch buildings have been torn
down or replaced. But there's one building that Los Alamos residents still
use and treasure. It's The Lodge, a log building on the edge of what's now
 ...

Type the command:
 /Los Alamos/;/treasure/

That means "find the first occurrence of treasure just after Los Alamos." Starting at the top of the
previous example, that search will skip past all the treasure and Los Alamos words until it finds the
word treasure on the last line shown. (It's probably smarter to type just /Alamos/;/treasure/ in
case Los Alamos is split across two lines of the file.)

Another example: a C programmer wants to find the printf function call just after the line where i is
incremented by two (i += 2). She could type:
 /i += 2/;/printf/

Note
You can't repeat a compound search by ty ping n. The easiest way is to define the search as a key map Section 18.2):

^M Section 18.6

 :map #3 /Los Alamos/;/treasure/^M

and repeat the search with (in this case) y our F3 function key .

— JP

vi Word Abbreviation

You can define abbreviations that vi will automatically expand into the full text whenever it's typed
during text-input mode. To define an abbreviation, use the ex command:
 :ab
 abbr phrase

abbr is an abbreviation for the specified phrase. The sequence of characters that make up the
abbreviation will be expanded during text-input mode only if you type it as a full word; abbr will not
be expanded within a word. [I abbreviate Covnex to Convex, my company's name, because I have
dyslexic fingers. -- TC]

Suppose you want to enter text that contains a frequently occuring phrase, such as a difficult product
or company name. The command:
 :ab ns the Nutshell Handbook

abbreviates the Nutshell Handbook to the initials ns. Now whenever you type ns as a separate word
during text-input mode, ns expands to the full text.

Abbreviations expand as soon as you press a nonalphanumeric character (e.g., punctuation), a
carriage return, or ESC (returning to command mode).[2] When you are choosing abbreviations,
choose combinations of characters that don't ordinarily occur while you are typing text. If you create
an abbreviation that ends up expanding in places where you don't want it to, you can disable the
abbreviation by typing:
 :unab
 abbr

To list your currently defined abbreviations, type:
 :ab

The characters that compose your abbreviation cannot appear at the end of your phrase. For example,
if you issue the command:
 :ab PG This movie is rated PG

you'll get the message No tail recursion, and the abbreviation won't be set. The message means
that you have tried to define something that will expand itself repeatedly, creating an infinite loop. If
you issue the command:
 :ab PG the PG rating system

you may or may not produce an infinite loop, but in either case you won't get a warning message. For
example, when the previous command was tested on a System V version of Unix, the expansion
worked. On a Berkeley version, though, the abbreviation expanded repeatedly, like this:
the the the the the ...

until a memory error occurred and vi quit. We recommend that you avoid repeating your abbreviation
as part of the defined phrase.

—DD and DG, from Learning the vi Editor (O'Reilly, 1998)

[2] An abbreviation won't expand when you type an underscore (_); it's treated as part of the
abbreviation.

Using vi Abbreviations as Commands (Cut and Paste Between vi's)

The vi command ab (Section 17.23) is for abbreviating words. But it's also good for abbreviating ex-
mode commands that you type over and over. In fact, for ex-mode commands (commands that start
with a colon (:)), abbreviations can be better than keymaps (Section 18.2). That's because you can
choose almost any command name; you don't have to worry about conflicts with existing vi
commands.

Here's an example. If you have a windowing terminal or more than one terminal, you might have vi
sessions running in more than one place. Your system might have a way to transfer text between
windows, but it can be easier to use files in /tmp — especially for handling lots of text. (If your text
is confidential and your umask (Section 49.4) isn't set to make new files unreadable by other users,
try using a more private directory.) Here are some abbreviations from my .exrc (Section 17.30) file:

 Go to http://examples.oreilly.com/upt3 for more information on: exrc
ab aW w! /tmp/jerry.temp.a
ab aR r /tmp/jerry.temp.a
ab bW w! /tmp/jerry.temp.b
ab bR r /tmp/jerry.temp.b
 ...

I use those abbreviations this way. To write the current and next 45 lines to temporary file a, I type
this command in one vi session:
 :.,+45 aW

To read those saved lines into another vi session, I use:
 :aR

You can do the same thing in a single vi session by using named buffers (Section 17.4), but
temporary files are the only method that works between two separate vi sessions.

— JP

http://examples.oreilly.com/upt3

Fixing Typos with vi Abbreviations

Abbreviations (Section 17.23) are a handy way to fix common typos. Try a few abbreviations like
this:
ab teh the
ab taht that

in your .exrc (Section 17.5) file.

Any time you find yourself transposing letters or saying, "Darn, I always misspell that word," add an
abbreviation to .exrc. (Of course, you do have to worry about performance if the file gets too big.)

You may be able to enforce conventions this way. For example, command names should be
surrounded by <command> tags, so creating a list of abbreviations like this:
ab vi <command>vi</command>

saves us from having to type lots of SGML codes.

(Depending on your version of vi, this abbreviation may be recursive (Section 17.23) because the vi
is sandwiched between other nonalphanumeric characters. nvi repeated the <command>) quite a few
times and quit, but vim did what we wanted.)

—TOR and JP

vi Line Commands Versus Character Commands

[Quite a few vi users understand how to build vi commands with the (number)(command)(text object)
model. But not too many people understand the difference between line commands and character
commands. This article explains that and gives some examples. — JP]

The _ (underscore) command is very similar to the ^ (caret) command in that it moves to the first
nonblank character of the current line. The key difference is that _ is a line command while ^ is a
character command. This is important for all functions that read an "address" — for example, d, y,
and c.

In fact, delete, yank, and so on all call a common internal routine in vi to get an "address." If the
address is of a particular character, vi does a character-mode delete or yank or whatever. If it is a
line address, vi does a line-mode operation. The "address" command may be any of the regular
positioning commands (e.g., W, b, $, or /pattern/) or the original character repeated (as in dd or
yy).

Some examples are found in Table 17-1.

Table 17-1. Examples of vi character and line commands

Keystrokes Results

dd Deletes the current line.

d'a Deletes all lines between the current line and the line containing mark a, inclusive.

d'a
Deletes all characters between the current character and the character at mark a. This
works much like an Emacs W in that the two endpoints are considered to be between
two characters. Note that a character-oriented delete may delete newlines.

c/accord/
Changes all characters (not lines!) between the current character up to but not including
the a in accord. (However, see the following Note.)

c?accord?
Changes all characters between the current character and the accord, including the
word accord.

yj Yanks two lines: the current line and the one below.

yH Yanks all the lines from the top of the screen to the current line, inclusive.

<G
Unindents or "dedents" the lines between the current line and the last line, inclusive.
(The variable shiftwidth determines the amount of dedenting.) Note that this command
turns character addresses into line addresses (so does >).

!}fmt
Runs the lines between the current line and the end of the paragraph through the
program fmt (Section 17.28).

Note

If y ou have wrapscan set, a search like c?accord? may wrap from the beginning of the file to the end. This can cause unexpected results and is one reason why I have set nows in my .exrc. Unfortunately , turning off wrapscan breaks
tags in many versions of vi.

vi combines the repeat count on the command character with the repeat count on the motion command,
so that 2y2j yanks five lines. Interestingly, 2y2_ yanks 4 lines (so does 2y2y) since the _ command
moves down (repeat count minus 1) lines. Beware, however, of using repeat counts on all of the
motion commands; they're not all implemented in the same way. 4$ moves to the end of the third line
below the current; 4 merely moves to the first nonblank character of the current line. | (vertical bar)
is a synonym for 0 (zero); given a repeat count, it goes that many characters to the right of the
beginning of the line (as if you had typed | (rept-1) l). (Exercise for the reader: why can't you give a
repeat count to 0?)

Uppercase letters do different things depending on the command. The exact actions may not always
seem sensible, but typically they affect the "current line": D acts like d$; C acts like c$; Y acts like yy.
The list must merely be memorized, or you can use a good vi reference guide.

— CT

Out of Temporary Space? Use Another Directory

vi keeps its temporary copy of the file you're editing in a temporary-file directory — usually /tmp,
/usr/tmp, or /var/tmp. If you're editing a big file or if the temporary filesystem runs out of space, vi
may not be able to make your temporary file. When that happens, you can use vi's set directory
command to set the pathname of a different temporary directory. (If this happens a lot though, you
should talk to the system administrator and see if the standard area can be cleaned up or made
bigger.)

First, you'll need the absolute pathname (Section 3.7) of a directory on a filesystem with enough
room. Use an existing directory, or make a new one.

The vi command is set directory. For example:
set directory=/usr1/jim/vitemp

You have to type that command before giving vi a filename to edit — after that, vi has made the
temporary file, and you'll be too late. But if you type that command while using vi and then use the :e
command (Section 17.3), all files from then on will use the new temporary directory (in the versions
I tried, at least).

To set the directory temporarily, it's probably easiest to add that command to the EXINIT environment
variable:
setenv EXINIT 'set directory=/usr1/jim/vitemp'

If you already have a .exrc file (Section 17.5), setting EXINIT will make vi ignore your .exrc file. To
make the temporary set directory work, too, use a command with a vertical bar (|), like this:
setenv EXINIT 'source /usr1/jim/.exrc|set directory=/usr1/jim/vitemp'

— JP

Neatening Lines

Have you made edits that left some of your lines too short or long? The fmt (Section 21.2) utility can
clean that up. Here's an example. Let's say you're editing a file (email message, whatever) in vi and
the lines aren't even. They look like this:
This file is a mess
with some short lines
and some lines that are too long — like this one, which goes on and on for quite
a while and etc.

Let's see what 'fmt' does with it.

You put your cursor on the first line and type (in command mode):

5!! Section 17.18
 5!!fmt

which means "filter (Section 17.18) 5 lines through fmt." Then the lines will look like this:
This file is a mess with some short lines and some lines that are too
long — like this one, which goes on and on for quite a while and etc.

Let's see what 'fmt' does with it.

This is handiest for formatting paragraphs. Put your cursor on the first line of the paragraph and type
(in command mode):
 !}fmt

If you don't have any text in your file that needs to be kept as is, you can neaten the whole file at once
by typing:

% Section 20.3
 :%!fmt

There are a few different versions of fmt, some fancier than others. Most of the articles in Chapter 21
about editing-related tools can be handy too. For example, recomment reformats program comment
blocks. cut (Section 21.14) can remove columns, fields, or shorten lines; tr (Section 21.11) can do
other transformations. To neaten columns, try filtering through with the setup in Section 21.17. In
general, if the utility will read its standard input and write converted text to its standard output, you
can use the utility as a vi filter.

— JP

Finding Your Place with Undo

Often, you're editing one part of a file and need to go to another point to look at something. How do
you get back?

You can mark your place with the m command. In command mode, type m followed by any letter.
(We'll use x in the example.) Here are the commands to do the job:
m x

Marks current position with x (x can be any letter).
' x

Moves cursor to first character of line marked by x.
` x

Moves cursor to character marked by x.
``

Returns to exact position of previous mark or context after a move.
''

Returns to the beginning of the line of the previous mark or context.

I often find it just as easy to type u to undo my last edit. That pops me right back to the place where I
was editing. Then I type u again to restore the edit. Watch out for the new multilevel undo feature in
vi clones: typing u twice will undo two edits! (I still use m if I want to mark more than one place.)

— TOR

Setting Up vi with the .exrc File

You can store commands and settings to be executed any time you start the vi or ex editors (Section
17.2) in .exrc in your home directory. You can modify the .exrc file with the vi editor, just as you can
any other text file.

If you don't yet have an .exrc file, simply use vi to create one. Enter into this file the set, ab (Section
17.23), and map (Section 18.2) commands that you want to have in effect whenever you use vi or ex.
A sample .exrc file looks like this:
set nowrapscan wrapmargin=7
set sections=SeAhBhChDh nomesg
map q :w^M:n^M
" To swap two words, put cursor at start of first word and type v:
map v dwElp
ab ORA O'Reilly & Associates, Inc.

The ^M characters are RETURNs. Make them by pressing CTRL-v, then RETURN (Section 18.6).
Lines that start with a double quote (") are comments. Since the file is actually read by ex before it
enters vi, commands in .exrc should not have a preceding colon (:).

In addition to reading the .exrc file in your home directory, vi will read the .exrc file in the current
directory. This allows you to set options that are appropriate to a particular project (Section
17.5).

If your .exrc file doesn't seem to be working, watch carefully for error messages just as vi starts,
before it clears your screen. If you can't read them quickly enough, start ex instead of vi. The q!
command quits ex:
% ex
No tail recursion
:q!

Chapter 18. Creating Custom Commands in vi

Why Type More Than You Have To?

Summary Box
Key mapping — storing complex command sequences so that they can be executed with a single key stroke — is one of my favorite timesavers. There's nothing like ty ping one key and watching a whole string of work take place. For repetitive
edits (e.g., font changes) it's a real wrist-saver, too. In this chapter we show y ou how to:

Save time by mapping key s: Section 18.2, Section 18.4, Section 18.7, and Section 18.8.
Know when to map a key and when not to: Section 18.3.
Map key s like ESC and RETURN: Section 18.6.
Move around the file without leaving text-input mode: Section 18.11
Protect the text y ou're pasting in from another window: Section 18.5.
Put custom commands in y our .exrc file: Section 18.9 and Section 18.12.
Break long lines of text: Section 18.13.

— EK

Save Time and Typing with the vi map Commands

While you're editing, you may find that you are using a command sequence frequently, or you may
occasionally use a very complex command sequence. To save yourself keystrokes — or the time it
takes to remember the sequence — assign the sequence to an unused key by using the map and map!
commands.

Command Mode Maps

The map command acts a lot like ab (Section 17.23) except that you define a macro for command
mode instead of text-input mode. The map! command works during text-input mode; see the following
list.
map x sequence

Define x as a sequence of editing commands.
unmap x

Disable the x definition.
map

List the characters that are currently mapped.

As with other ex-mode commands, these map commands can be saved in your .exrc file (Section
17.30) or typed in after a colon (:). If you want a keymap to use just during this editing session, you
might find that vi @-functions (Section 18.4) are easier to create and use. The map commands are
best for keymaps that you save in your .exrc file and use during many editing sessions.

Before you can start creating your own maps, you need to know the keys not used in command mode
that are available for user-defined commands. Here's a list of the unused keys in original vi:
Letters

g K q V v
Control keys

^A ^K ^O ^T ^W ^X
Symbols

_ * \ =

Note
The = is used by vi if Lisp mode is set. In addition, other letters such as v may already be used in other sy stems.

With maps you can create simple or complex command sequences. As a simple example, you could
define a command to reverse the order of words. In vi, with the cursor as shown:
you can the scroll page

the sequence to put the after scroll would be dwwP: (delete word), dw; (move to the next word), w;
(put the deleted word before that word), P. (You can also use W instead of w.) Saving this sequence:
map v dwwP

enables you to reverse the order of two words at any time in the editing session with the single
keystroke v.

You can also map certain multiple-character sequences. Start the map with one of the symbols in the
previous list. For example, to map the keystrokes *s to put single quotes around a word (' word ')
and *d to use double quotes (" word "):

^[Section 18.6
map *s Ea'^[Bi'^[
map *d Ea"^[Bi"^[

Now you'll be able to make hundreds of keymaps (though your version of vi probably has a limit).

You may also be able to associate map sequences with your terminal's function keys if your termcap
or terminfo entry (Section 5.2) defines those keys. For example, to make function key F1 transpose
words:
map #1 dwelp

Note
Map assignments are not really limited to unused key s. You can map key s that are defined as other vi commands, but then the key 's original meaning is inaccessible. This is probably okay if the key is tied to a command that y ou rarely use.
There's more information in Section 18.12 about the noremap option.

Text-Input Mode Maps

The map! command works like map, but map! works during text-input mode. You actually set the
map! during command mode, in the same way as a plain map: at a colon (:) prompt. Type map!
followed by a space and the key(s) that activate the map; then type a space and the text for which the
text-input mode map stands. These text-input mode maps are a lot like abbreviations (Section 17.23);
the difference is that map! lets your keymap switch from text-input mode to command mode, execute
commands, then go back to text-input mode. To go to command mode during a map!, put an ESC key
in the value of the map by typing CTRL-v and then ESC (Section 18.6). After your map! does
whatever it does in command mode, it can re-enter text-input mode with the usual commands: a, i,
and so on.

Let's say you normally never type the caret (^) key during input mode. When you're typing along, as
you realize that what you're typing is important, you want to press the caret key. Then, vi should open
a line above and insert the phrase "THIS IS IMPORTANT:". Finally, vi should return you to text-
input mode at the end of the line where you pressed the caret key. To do that, go to command mode
and enter the following map! command. The first ^ comes from pressing the caret key. Then you'll see
two places with ^[; that are made by pressing CTRL-v followed by the ESC key. Finish the map by
pressing RETURN:
:map! ^ ^[OTHIS IS IMPORTANT:^[jA

What does that do? It executes the same vi commands you'd use to add those three words yourself,
manually. During text-input mode, typing a caret (^) will:

1. Do ESC to go to command mode.
2. Use O to open a new line above (in text-input mode).
3. Enter the text THIS IS IMPORTANT:.
4. Do another ESC to go back to command mode.
5. Do j to go down a line (to the line where you started).
6. Do A to put you at the end of the line, in text-input mode.

The trick is to use map! only to redefine keys you'll never use for anything else during text-input
mode. To disable a text-input mode map temporarily, press CTRL-v before the key. For example, to
put a real caret into your file, type CTRL-v .̂ To disable an input-mode map for the rest of your vi
session, type :unmap! followed by the character(s) that activate the map.

A more common example is mapping your keyboard's arrow or function keys to do something during
text-input mode. These keys send a special series of characters. Normally, without a map! defined for
these keys, the characters they send will be put into your editor buffer — just as if you'd typed the
characters they make yourself, one by one. For instance, my left-arrow key sends the characters ESC,
then [(left bracket), then D. Without a text-input mode map! defined for that three-character sequence,
vi will be hopelessly confused if I press that arrow key.[1] Many Unix developers have added text-
input mode maps for arrow keys. You can see them when you list all your text-input mode maps by
typing :map! by itself, with nothing after:
up ^[[A ^[ka
down ^[[B ^[ja
left ^[[D ^[hi
right ^[[C ^[la
^ ^ ^[OTHIS IS IMPORTANT:^[jA

Section 18.3 lists some problems with map!.

—JP, DG, and LL

[1] Actually, the ESC will switch vi back to command mode. The first [will make vi think you're about
to type the section-motion command [[, so the following D will make vi beep. Ugly, eh?

What You Lose When You Use map!

Back in the old days, a terminal's arrow keys didn't work during vi text-input mode. To move around
in the file, you pressed ESC and used command-mode commands like 5k and 4w. Since then, lots of
vendors and users have modified vi so that you can use arrow keys during text-input mode. These
days, most people think the new-fangled way that vi works is the right way. Here are some reasons to
leave the arrow keys alone and do it the old way instead:

In most cases, the u (undo) command will be useless after text-input mode because the arrow
keymap does several hidden commands — and u can only undo the single previous command.
The only "undo" command that will do much good is U — it undoes all changes on the current
line, and it probably won't work if you've moved off the line since you made the change you
want to undo.
Beginners can get confused by this. They need to learn that vi is a moded editor — that you enter
text in text-input mode and make changes in command mode. Movement through the file is with
commands.
When people start using vi and they find that some motion commands (the cursor keys) work in
text-input mode, vi seems inconsistent.
If your map! runs commands that start with an ESC (and it almost always will), your ESC key
may work more slowly. That's because every time you press the ESC key, vi will wait one
second (or so) to be sure that the ESC is just an ESC alone and not the beginning of a map!
sequence. Some versions have changed this, though.
The fast alternative is to press ESC twice. That rings the terminal bell, though.

— JP

vi @-Functions

The vi map command (Section 18.2) lets you define keymaps: short names for a series of one or
more commands. You can enter :map to define a keymap while you're editing a file with vi. But if you
make a mistake, you usually have to re-enter the whole :map command to correct the problem.

@-functions (pronounced "at-functions") give you another way to define complex commands. You can
define 26 @-functions named @a through @z. They're stored in named buffers (Section 17.4). So if
you're also using named buffers for copying and pasting text, you'll need to share them with your @-
functions.

Defining and Using Simple @-Functions

To define an @-function:

1. Enter the command(s) you want to execute onto one or more lines of the file you're editing.
2. Yank or delete the line(s) into a named buffer with a command like "ay$ or "bD.
3. To use the function, type a command like @a or @b. You can repeat the function by typing @@ or a

dot (.). Use u or U to undo the effects of the @-function.

Here's an example. You're editing a long HTML file with lines like these:
Some heading here
Another heading here

When you see one of those lines, you need to change the STRONGs to either H3 or H4. A global
substitution with :%s won't do the job because some lines need H3 and others need H4; you have to
decide line-by-line as you work through the file. So you define the function @a to change a line to H3,
and @b to change to H4.

To design an @-function, start by thinking how you'd make the changes by hand. You'd probably move
to the start of the line with 0, move to the right one character with l, type cw to change the word
STRONG, and type in H3 (or H4). Then you'd press ESC to return to command mode. After going to the
end of the line with $, you'd move to the character after the slash with T/, then change the second
STRONG the way you fixed the first one.

To define the function, open a new empty line of your file (first go into text-input mode). Then type
the keystrokes that will make the H3 changes; type CTRL-v before each ESC or RETURN (Section
18.6). When you're done, press ESC again to go to command mode. Because the commands for the H4
change are similar, the easiest way to make them is by copying and pasting the line for H3 (by typing
yy and p) and then editing the copy. The pair of command lines should look like this (where ^[stands
for the CTRL-v ESC keys):
0lcwH3^[$T/cwH3^[
0lcwH4^[$T/cwH4^[

Move to the start of the first line, and delete it into the a buffer by typing "aD. Go to the next line, and
type "bD. (This will leave two empty lines; delete them with dd if you'd like.) Now, when you type
@a, it will execute the commands to change a line to H3; typing @b on a line will change it to have H4.
Move through your file (maybe with a search: /STRONG ... n ...), typing @a or @b as you go. Or use @@
to make the same change you made on a previous line.

Combining @-Functions

An @ -function can execute other @-functions. For example, here are four lines ready for storing as @a
through @d:
0l@c$T/@c ...becomes @a
0l@d$T/@d ...becomes @b
cwH3^[...becomes @c
cwH4^[...becomes @d

See that the definition of @a has @c in it twice? When you execute @a, it will do 0l to move to the
second character on the line, then do @c to change the word to H3, move to the end of the line, and use
@c again. Calling one @-function from another can save you from retyping repetitive commands.

A disadvantage is that @@ won't always work as you might expect. If you type @a to make a change in
one place, then move somewhere else and type @@, the @@ will do what @c does (instead of what you
might have wanted, @a). That's because the @a function finishes by doing @c.

Reusing a Definition

You don't have to delete the definition line into a buffer with dd. If you think you might need to fine-
tune the command, you can yank (copy) it into a buffer with a command like "ay$. Then, if you need
to revise the command, re-edit the line and type "ay$ to put the revised version into the buffer. Or use
"by$ to copy the revised line into another buffer.

Newlines in an @-Function

Stored @-functions can span multiple lines. For example, if you delete the following four lines with
"z4dd, typing @z will open a newline below (o) and insert four newlines of text:
oThis is the newline one.
This is the newline two.
This is the third line.
This is the fourth.^[

After you execute the function with @z, your cursor will move to the line below the new fourth line.
Why? Because you included the newlines (RETURNs) in the buffer; each RETURN moves down a
line — including the RETURN after the last ESC.

If you don't want that, there are two ways to fix it:

Delete the first three lines, including the newlines, into the buffer by typing "z3dd. Delete the
fourth line, without its newline, and append it to the buffer by typing "ZD. (An uppercase letter
like Z appends to a named buffer. D deletes all of a line except the newline.)
Some versions of vi will delete four lines, without the last newline, when you use "z4D.
Type all of the text onto a single line; embed the newlines in that line by typing CTRL-v
RETURN between each finished line. It'll look like this:
oThis is the new line one.^MThis is the new line two.^MThis is the new...

Delete that long line into your buffer with "zD. Because D doesn't delete the final newline, your
cursor will stay at the end of the fourth newline after you execute the @z.

— JP

Keymaps for Pasting into a Window Running vi

I usually run vi inside windows on a system like X or the Macintosh. The window systems can copy
and paste text between windows. Pasting into a vi window may be tricky if you use vi options like
wrapmargin or autoindent because the text you paste can be rearranged or indented in weird ways.

I've fixed that with the upcoming keymaps. If I'm pasting in text that should be copied exactly with no
changes, I go into text-input mode and type CTRL-x. That shuts off autoindent (noai) and the
wrapmargin (wm=0). When I'm done pasting, I type CTRL-n while I'm still in text-input mode.

A different kind of "pasted" input is with CTRL-r. It starts the fmt (Section 21.2) utility to reformat
and clean up lines while I'm pasting them. To use it, go to text-input mode and type CTRL-r. Then
paste the text -- fmt will read it but not display it. Press RETURN, then CTRL-d to end the standard
input to fmt. The reformatted text will be read into your vi buffer.

^[Section 18.6

 Go to http://examples.oreilly.com/upt3 for more information on: exrc
" Set 'exact' input mode for pasting exactly what is entered:
map! ^X ^[:se noai wm=0^Ma
" Set 'normal' input mode with usual autoindent and wrapmargin:
map! ^N ^[:se ai wm=8^Ma
" Read pasted text, clean up lines with fmt. Type CTRL-d when done:
map! ^R ^[:r!fmt^M

Note that some window systems convert TAB characters to spaces when you copy and paste. If you
want the TABs back, try a filter-through (Section 17.18) with unexpand.

— JP

http://examples.oreilly.com/upt3

Protecting Keys from Interpretation by ex

Note that when defining a map, you cannot simply type certain keys — such as RETURN, ESC,
BACKSPACE, and DELETE — as part of the command to be mapped, because these keys already
have meaning within ex. If you want to include one of these keys as part of the command sequence,
you must escape the normal meaning by preceding the key with ^V (CTRL-v). After CTRL-v, a
carriage return appears as ^M, escape as ^[, backspace as ^H, and so on.

On the other hand, if you want to map a control character, in most cases you can just hold down the
CTRL key and press the letter key at the same time. For example, to map ^A (CTRL-a), simply type:
:map CTRL-a sequence

There are, however, a few other control characters that must be escaped with a ^V. One is ^T. The
others are as follows:

The characters that your account uses for erasing parts of the input you type at a command line:
^W for erasing words and ^U for erasing lines.
The characters for interrupting jobs (Section 24.11) and stopping jobs (Section 23.1).

So, if you want to map ^T, you must type:
:map CTRL-v CTRL-t sequence

The use of CTRL-v applies to any ex command, not just a map command. This means that you can
type a carriage return in an abbreviation (Section 17.23) or a substitution command. For example, the
abbreviation:
 :ab 123 one^Mtwo^Mthree

expands to this:
one
two
three

(The sequence CTRL-v RETURN is shown as it appears on your screen, ^M.)

You can also add lines globally at certain locations. The command:
 :g/^Section/s//As you recall, in^M&/

inserts a phrase on a separate line before any line beginning with the word Section. The & restores the
search pattern.

The vertical bar (|) is used to separate multiple ex commands; it's especially difficult to quote.
Because a map is interpreted when it's stored and again when it's used, you need enough CTRL-v
characters to protect the vertical bar from each interpretation. You also need to protect stored CTRL-
v characters by adding a CTRL-v before each one! The worst case is a text-input mode map (map!
(Section 18.2)) — it needs three CTRL-v characters, which means you need to type six CTRL-v
characters before you type the vertical bar. For example, the following map will make your function
key F1 (Section 18.2) insert the string {x|y}:
 map! #1 {x^V^V^V|y}

If you ask for a list of text-input mode maps, you should see a single stored CTRL-v:
 :map!
f1 ^[OP {x^V|y}

—LL, DG, and JP, from Learning the vi Editor (O'Reilly, 1998)

Maps for Repeated Edits

Another way to do this is with @-functions (Section 18.4).

Not every keymap is something you want to save in your .exrc file. Some maps are handy just because
you have to do a repetitive series of edits. Developing a complex map to repeat your edits can save
more time than it takes. For example, assume that you have a glossary with entries like this, separated
by blank lines:
map - an ex command which allows you to associate
a complex command sequence with a single key.

You want to convert this glossary list to HTML format, so that it looks like:
<DT>map</DT>
<DD>
An ex command which allows you to associate
a complex command sequence with a single key.
</DD>

The best way to define a complex map is to do the edit once manually, writing down each keystroke
that you must type. Then recreate these keystrokes as a map.

1. Use I to insert the tag for an data list term (<DT>) at the beginning of the line.
2. Press ESC to terminate text-input mode. Move just before the dash (t-). Use 3s to replace the

dash and space after it with the closing term tag (</DT>).
3. Still in text-input mode, press RETURN to insert a new line. (This moves the definition to a

newline underneath the <DT> tags.) Enter the opening data list definition (<DD>) tag, and press
RETURN again. (The definition moves to yet another newline underneath the <DD> tag.)

4. Press ESC to terminate text-input mode. Your cursor is at the start of the definition. Capitalize
the first word of the definition (~).

5. Go to the blank line after the definition (}), open a newline above (O), and insert the closing data
list definition (</DD>) tag. Press ESC to end text-input mode.

6. Press RETURN to end the keymap definiton.

That's quite an editing chore if you have to repeat it more than a few times. With map you can save the
entire sequence so that it can be re-executed with a single keystroke:
map g I<DT>^[t-3s</DT>^M<DD>^M^[~}O</DD>^[

(To store a map during a vi session, type a colon (:) first.) Note that you have to "quote" both the ESC
and RETURN characters with CTRL-v (Section 18.6). ^[is the sequence that appears when you type
CTRL-v followed by ESC. ^M is the sequence shown when you type CTRL-v RETURN.

Now, simply typing g will perform the entire series of edits. At a slow data rate you can actually see
the edits happening individually. At a fast data rate it will seem to happen by magic.

Don't be discouraged if your first attempt at keymapping fails. A small error in defining the map can
give very different results from the ones you expect. You can probably type u to undo the edit and try
again. It's safer to write the file (:w) before you use the keymap — in case your version of vi can't
undo complex keymaps.

If the keymap is complex, or if you're defining several maps at once, you can make a temporary
keymap file and edit the maps there until you've worked out the bugs. For instance, write your buffer

and type :e temp to open a temporary file temp. Make the keymaps, one per line — without a colon
(:) first. Write this map file (:w), then read it in to the editor (:so %). If there's no error, switch to the
original file (:e # or CTRL-)̂, and try the map. (Section 17.3 explains % and #.) Then, if there are
problems, go back to the map file (:e! #, where the ! tells vi not to write the mistakes out to the
file), fix the keymap, and repeat the process until you get what you wanted.

In this case, for instance, maybe the next glossary definition starts with an uppercase letter, but the ~
in the keymap is changing that letter to lowercase. You need to change the ~ to an ex substitution
command that converts a lowercase letter to uppercase (Section 17.16). If you've saved the keymap
in a temporary file, just type :e# and change it:
map g I<DT>^[t-3s</DT>^M<DD>^M^[:s/^./\u&/^M}O</DD>^[

We've changed ~ to :s/^./\u&/^M. As you can see, complex keymaps can be tough to decipher after
you've written them, which makes the notes you've written even more useful.

—TOR and JP, from Learning the vi Editor (O'Reilly, 1998)

More Examples of Mapping Keys in vi

The examples that follow will give you an idea of the clever shortcuts possible when defining
keyboard maps:

1. Add text whenever you move to the end of a word:
map e ea

Most of the time, the only reason you want to move to the end of a word is to add text. This map
sequence puts you in text-input mode automatically. Note that the mapped key, e, has meaning in
vi. You're allowed to map a key that is already used by vi, but the key's normal function will be
unavailable as long as the map is in effect. This isn't so bad in this case, since the E command is
often identical to e.
In the remaining examples, we assume that e has been mapped to ea.

2. Save a file and edit the next one in a series (Section 17.3):
map q :w^M:n^M

Notice that you can map keys to ex commands, but be sure to finish each ex command with a
RETURN. This sequence makes it easy to move from one file to the next, and it's useful when
you've opened many short files with one vi command. Mapping the letter q helps you remember
that the sequence is similar to a "quit."

3. Put HTML emboldening codes (and) around a word:
map v i^[e^[

This sequence assumes that the cursor is at the beginning of the word. First, you enter text-input
mode, then you type the code for bold font. Next, you return to command mode by typing a
"quoted" (Section 18.6) ESC. Finally, you append the closing HTML tag at the end of the word,
and you return to command mode. Of course, the map is not limited to HTML font tags. You can
use it to enclose a word in parentheses or C comment characters, to name just a few
applications.
This example shows you that map sequences are allowed to contain other map commands (the e
is already mapped to ea). The ability to use nested map sequences is controlled by vi's remap
option (Section 18.12), which is normally enabled.

4. Put HTML emboldening tags around a word, even when the cursor is not at the beginning of the
word:
map V lbi^[e^[

This sequence is the same as the previous one, except that it uses lb to handle the additional task
of positioning the cursor at the beginning of the word. The cursor might be in the middle of the
word, so you'll want to move to the beginning with the b command.
But if the cursor were already at the beginning of the word, the b command would move the
cursor to the previous word instead. To guard against that case, type an l before moving back
with b so that the cursor never starts on the first letter of the word. You can define variations of
this sequence by replacing the b with B and the e with Ea. In all cases though, the l command
prevents this sequence from working if the cursor is at the end of a line. (To get around this, you
could add a space to the end of the word before typing the keymap.)

—DG, from Learning the vi Editor (O'Reilly, 1998)

Repeating a vi Keymap

The vi (actually, ex) command map (Section 18.2) lets you build custom vi commands. For example,
the following keymap redefines the -key to run the vi commands o (open a newline below), ESCAPE,
72a- (add 72 dashes), and ESCAPE again:
 :map - o^[72a-^[

So typing - draws a row of dashes below the current line. The problem is that on versions of vi I've
tried, you can't add a repetition number — that is, you can't type the command 10- to add 10 dashed
lines.

The workaround is to define another macro that calls the first macro ten times. For example, to make
the v key draw ten rows of dashes:
 :map v ----------

(Ugly, eh? But it works.) You might want to put the - map in your .exrc file and define "multimaps"
like v while you're running vi.
— JP

Typing in Uppercase Without CAPS LOCK

You may want to input text in all uppercase letters. Using CAPS LOCK in vi can be a pain because
you have to release CAPS LOCK almost every time you want to type a vi command. Here's a nice
way to type lowercase letters during input and ex modes; they'll be mapped to uppercase
automatically.

Try putting this in your .exrc (Section 17.5) file:
map! a A
map! b B
map! c C
 ...
map! z Z

Anytime you type (during text-input mode) an a, the editor will map it into A. What's that you say . . .
you don't want this all the time? Just put it in a file called .f (for FORTRAN), and type:
 :source .f

when you want FORTRAN mode. Of course, you can define a function key (Section 18.2) to
:source this.

[After that, anywhere you want a lowercase letter, type CTRL-v first to cancel the map temporarily.
For example, to type the command :w, type : CTRL-v w.

You can also go into the ex command mode by typing the vi command Q. That takes you to the ex
colon (:) prompt — where the map! macros won't affect what you type. To return to vi mode from ex
command mode, type :vi. -- JP]

—BB, in net.unix on Usenet, 9 October 1986

Text-Input Mode Cursor Motion with No Arrow Keys

Some people don't like to press ESC first to move the cursor while they're using vi. These keymaps
change CTRL-h, CTRL-j, CTRL-k, and CTRL-l to do the same things during input mode as the
commands h, j, k, and l do in command mode.

Note
Is y our erase character set to CTRL-h (Section 5.8) outside vi? If it is, mapping CTRL-h (usually labeled BACKSPACE on y our key board) will change the way CTRL-h works during text-input mode: instead of erasing the characters y ou've
ty ped since y ou entered text-input mode, now CTRL-h will move backwards over what y ou ty pe without erasing it. One workaround is to change y our Unix erase character to the DELETE or RUBOUT key by ty ping the command stty
erase '^?' before y ou start vi. Then y our DELETE key will erase what y ou ty pe, and the BACKSPACE key will jump back over it without deleting.

The lines for your .exrc file (Section 17.30) are as follows:

 Go to http://examples.oreilly.com/upt3 for more information on: exrc
map! ^H ^[i
map! ^K ^[ka
map! ^L ^[la
map! ^V
 ^[ja
" Note: the two lines above map ^J (LINEFEED)

That last map takes two lines; it's tricky and may not work right on all versions of vi. No, it isn't a
map for CTRL-v, though that's what it looks like. It maps ^J, the LINEFEED key. The ^V comes at the
very end of its line. When you're entering that keymap, type CTRL-v and then press LINEFEED or
CTRL-j. The cursor will move to the start of the next line; type a SPACE and the rest of the macro.
It's a good idea to add the reminder comment (starting with the comment character, a double quote
(")), on the line below the map.

Note
This map for CTRL-j is obviously something for which the people who wrote my version of vi didn't plan. For example, look at the mess it makes when I ask for a list of my text-input key maps:

:map!^H ^H ^[i
^K ^K ^[ka
^L ^L ^[la

 ^[ja

Before y ou use this map on important files, y ou probably should test it carefully .

— JP

http://examples.oreilly.com/upt3

Don't Lose Important Functions with vi Maps: Use noremap

For years, I assumed that I could map (Section 18.2) only a few keys in vi — the characters like v and
^A that aren't used. For instance, if I mapped ^F to do something else, I thought I'd lose that handy
"forward one screen" command. You thought the same thing? Then we're both wrong!

Just use the noremap option. Here's a simple example. You can make ^F the "show file information"
(normally ^G) command. Then, make ^A take over the "forward (ahead) one screen" function. Put
these lines in your .exrc file (Section 17.5):
set noremap
map ^F ^G
map ^A ^F

— JP

vi Macro for Splitting Long Lines

When you add text to the start of a line and make the line longer than your screen's width, vi won't
break ("wrap") the line unless your cursor crosses the wrapmargin point near the righthand edge of
the screen. You can get lines that are too long.

Here are two macros that cut (Kut) the current line:

 Go to http://examples.oreilly.com/upt3 for more information on: exrc
map K 78^V|lBhr^M
map K 078lF r^M

The first macro doesn't seem to work on some versions of vi. It's the better one though, because it uses
the | (vertical bar) command to move to column 78, even if there are TABs in the line. Then it moves
one more character to the right (if it can), moves back to the start of the word, moves back one more
character onto the blank or TAB before the word, and replaces that character with a RETURN.

The second macro counts TABs as single characters, but it works on every version of vi I've tried. It
moves to the left edge, then to the 79th character, then back to the previous space. Finally, it replaces
that space with a carriage return.

You might try adding a J to the start of either macro. That'll join the next line to the current one before
cutting; it might make a nicer "wrap." Another way to do this is with a filter-through (Section 17.18)
and the fmt (Section 17.28) command:
 !!fmt

That will break the current line neatly, though it also might change the spacing after periods (.) or
replace leading TABs with spaces.

— JP

http://examples.oreilly.com/upt3

File-Backup Macros

Emacs automatically keeps backup copies of the file you're editing. If you have editing problems (or
just change your mind), you can get the previous file version by recovering from a backup file. I like
this idea, but I don't like the way that backups are done automatically. Instead, I want to choose when
vi makes a backup "snapshot." This macro, CTRL-w, lets me do that: it writes a copy of the current
filename as filename~. (The trailing tilde (~) is an Emacs convention. Section 14.17 shows ways to
remove these backup files.) Whenever I want to save a snapshot of the editing buffer, I just type
CTRL-w.

^M Section 18.6
map ^W :w! %~^M

The w! writes without questions, overwriting any previous backup with that name. vi replaces %
(percent sign) with the filename (or pathname) you're currently editing.

If you want an Emacs-style backup to be made every time you write the file (except the first time),
you could try something like this:
map ^W :!cp -pf % %~^M:w^M

The first command uses cp -p (Section 10.12) to make a backup of the previously written file; the cp
-f option forces the write. (vi may warn you File modified since last write, but the versions
I've checked will run cp anyway.) The next command writes the current editing buffer into the file.

— JP

Chapter 19. GNU Emacs

Emacs: The Other Editor

The "other" interactive editor that's commonly used is Emacs. Emacs actually refers to a family of
editors; versions of Emacs run under most operating systems available. However, the most important
(and most commonly used) version of Emacs is "GNU Emacs," developed by the Free Software
Foundation.

 Go to http://examples.oreilly.com/upt3 for more information on: emacs

GNU Emacs is popular because it's the most powerful editor in the Emacs family; it is also freely
available under the terms of the FSF's General Public License. Although there are certainly strong
differences of opinion between Emacs and vi users, most people agree that Emacs provides a much
more powerful and richer working environment.

What's so good about Emacs, aside from the fact that it's free? There are any number of individual
features that I could mention. (I'll give a list of favorite features in Section 19.2.) Emacs' best feature
is the extent to which it interacts with other Unix features. For example, it has a built-in email system
so you can send and receive mail without leaving the editor. It has tools for "editing" (deleting,
copying, renaming) files, for running a Unix shell within Emacs, and so on. The C shell has a rather
awkward command-history mechanism; the Korn shell has something more elaborate. But imagine
being able to recall and edit your commands as easily as you edit a letter! That's far beyond the
abilities of any shell, but it's simple when you run a shell inside your editor.

In this book, we can't give anywhere near as much attention to Emacs as we can to vi (Section 17.1),
but we will point out some of its best features and a few tricks that will help you get the most out of it.
For the impatient, here's a very brief survival guide to Emacs.
Starting Emacs

Like vi, Emacs can be started from the shell prompt by typing its name, emacs. Once started,
emacs will present you with a helpful screen of commands. A word of advice: take the tutorial
(CTRL-h t). If you want to edit an existing file, simply type emacs with the desired filename
after it. While editing your file, you may save your work to disk with CTRL-x CTRL-s.

Exiting Emacs
To exit emacs, type CTRL-x CTRL-c. If you haven't saved your work yet, you will have the
opportunity to do so before Emacs quits.

Moving around
Unlike vi, Emacs doesn't have a command mode. Like many more modern editors, Emacs allows
the user to begin typing his document immediately. Terminal emulation willing, the arrow keys
work as expected to move your cursor in and around lines of text. For long documents, you can
move by pages rather than lines. Pressing CTRL-v moves the cursor lower in the document,
while ESC-v moves the cursor towards the begining.

Deleting characters and lines
The BACKSPACE key normally erases one character to the left of the cursor, and the DELETE
key erases the charater under the cursor. Entire lines of text may be removed using CTRL-k,
which removes all text from the cursor to the end of the line. You can paste back the most recent
cut with CTRL-y.

Undo

http://examples.oreilly.com/upt3

To undo your last action, type CTRL-x u. You can cancel out of a command sequence with
CTRL-g. This is helpful when you're experiencing key lag and type a few extra CTRL-c's.

One last tip before moving on. The Emacs online help descibes key bindings using different
abbreviations than used in this book. In the Emacs documentation, C-x is our CTRL-x. Their M-x is
our ESC-x. The M stands for META key, which is mapped to the ESCAPE key and usually to the
ALT key as well. For consistency, this chapter always refers to the ESCAPE key.

—ML, BR, DC, and JJ

Emacs Features: A Laundry List

Here's the list we promised — a list of our favorite features:
Windows

Emacs is a "windowed editor." Before anyone heard of the X Window System or the Macintosh,
Emacs had the ability to divide a terminal's screen into several "windows," allowing you to do
different things in each one. You can edit a different file in each window or read mail in one
window, answer mail in another, issue shell commands in a third, and so on.
Now that we all have nice workstations with mice and other crawly things for navigating around
a bitmapped screen, why do you care? First, you may not have a bitmapped screen, and even if
you have one in the office, you may not at home. Second, I still find Emacs preferable to most
"modern" window systems because I don't have to use a mouse. If I want to create another
window, I just type CTRL-x 2 (which splits the current window, whatever it is, into two); if I
want to work in another window, I just type CTRL-x o; if I want to delete a window, I type
CTRL-x 0. Is this faster than reaching for my mouse and moving it around? You bet. Particularly
since my mouse is hidden under a pile of paper. (Of course, it's hidden because I hardly ever
need it.) Once you've created a window, it's just as easy to start editing a new file, initiate a
shell session, and so on. Third, even though you're using a windowing system, you may not have
a lot of screen real estate available. By having a split Emacs screen, all editing can be done in
one window, leaving enough room for other applications, such as the Mozilla web browser, to
be open. Whether you're developing web pages or just reading Slashdot while "working," you'll
appreciate the free space on the screen. It isn't uncommon for Emacs users to always have Emacs
open on their desktops.

Shells
You can start an interactive shell within any Emacs window; just type ESC-x shell, and you'll
see your familiar shell prompt. It's easy to see why this is so useful. It's trivial to return to earlier
comands, copy them, and edit them. Even more important, you can easily take the output of a
command and copy it into a text file that you're editing — obviously an extremely useful feature
when you're writing a book like this. Emacs also lets you issue commands that operate on the
contents of a window or a selected region within a window. Another benefit to doing shell work
directly in Emacs is that every word that appears in that shell buffer is available for command
completions (Section 19.6). So if you're creating a small shell script that has to reference a long
directory name, being able to autocomplete that name is an invaluable feature.
In fact, there are many filesystem maintenance tasks with which Emacs can help you. You can
view and manipulate directories and files with Dired mode, which can be activated by typing
ESC-x dired. You'll be asked which directory you want to view (the current directory is the
default). Do you want to remove a file that starts with a hyphen, but rm complains that your file
is not a valid option? Start Emacs in Dired mode, select the file, and type D. Emacs will ask you
for confirmation about the proposed deletion. Want to delete a bunch of files that can't be easily
described with wildcards? In dired mode, select each file with d, then remove them all with
ESC-x dired-do-flagged-delete.

Keyboard macros and advanced editing features
Emacs lets you define "keyboard macros" — and sequences of commands that can be executed
automatically. This is similar to vi's map (Section 18.2) facility, with one extra twist: Emacs

actually executes the commands while you're defining the macro; vi expects you to figure out
what you need to do, type it in without any feedback, and hope that the macro doesn't do anything
hostile when you edit it. With Emacs, it's much easier to get the macro right. You can see what
it's going to do as you're defining it, and if you make a mistake, you can correct it immediately.
To create a macro, you first need to tell Emacs that it needs to remember the next sequence of
keystrokes by typing CTRL-x (. Now perform the desired actions. To end the macro recording,
type CTRL-x). To execute the most recently defined macro, type CTRL-x e. If you make a
mistake when recording the marco, type CTRL-g to cancel out of the entire operation, and begin
recording the macro again.
Even if you don't create your own macros, Emacs provides a rich set of text- editing features that
often do what you mean. For instance, Emacs allows users to make rectangluar text cuts. This is
very useful for removing leading whitespace from a series of lines. To make the cut, you must
first define the starting point of the rectangle to be cut. Position the cursor in Emacs to the upper-
left corner of the area to be excised. Then mark the area with CTRL-SPACE. Move the cursor
down to the last line of the area to be removed and then over to right as far as is desired. This is
the lowest and rightmost corner of the rectangle. Now remove the area with the key sequence
CTRL-x r k.

Editing modes
Emacs has a large number of special editing modes that provide context-sensitive help while
you're writing. For example, if you're writing a C program, the C mode will help you to observe
conventions for indentation and commenting. It automatically lines up braces for you and tells
you when parentheses are unbalanced. In X Windows, Emacs will even do syntax highlighting
for you. Perl programmers get two editing modes to choose from, perl-mode and cperl-mode.
Based on the file extension, Emacs will figure out which mode you want. (The default and
simplest mode is called Fundamental.) You can enter a new mode by typing ESC- x and then the
name of the mode. Emacs also integrates well with the perl debugger (ESC-x perldb) so that
you can step through your running code in the editor. Emacs also supports many version-control
systems including RCS and CVS. Checking out a file from RCS is as simple as typing CTRL-x v
v. After you have made your edits, check in the file with CTRL-x v v. That's not a typo; Emacs
can figure out the right thing to do with your file because it remembers the last version-control
state. Pretty cool. There are special modes for virtually every programming language I've ever
heard of. There are also special modes for HTML, troff, TEX, outlines, stick figures, etc. For
any kind of programming, Emacs is the Integrated Development Environment of choice for many
users.

Mail, news, FTP, and HTTP
Although I often use Emacs' mail facility as an example, I'm not personally fond of it. However,
if you really like working within the Emacs environment, you should try it. Sending mail from
Emacs (ESC-x mail) is convenient if you are already editing the file you wish to send. You can
simply copy and paste your work into the mail buffer and send it along with CTRL-c CTRL-c.
You can even add Cc: and Reply-to: fields to the message just by adding them to the mail buffer
directly under the To: field.
Emacs also has a Usenet client called GNUS (ESC-x gnus) that has quite a following. What
editor would be complete without an integrated FTP client? Certainly not Emacs. There are two
ways to access FTP in Emacs. The first is to type ESC-x ftp. This gives you a shell-like ftp
client. While this is nice, Emacs provides an even slicker way to FTP files. Ange-ftp mode

allows Emacs users to open remote files almost as if they were local. To open a remote file or
directory, simple type CTRL-x CTRL-f. However, you must specify the filename with a leading
slash and your remote username followed by @ and followed again by the ftp hostname, a colon,
and the full path you wish to retrieve. For example, if I wished to edit the file index.html as user
edit on my web server, I would use the filename
/edit@www.nowhere.com:/home/html/htdocs/index.html.
To extend the last example a bit, Emacs even has a web-browser mode so that you could look at
the web page you just edited! In truth, lynx is still king of the ASCII web browsers, but the
Emacs W3 mode is coming along. It doesn't normally come with Emacs, so you're going to have
to look on the Web for it. It has very good integration with XEmacs (neè Lucent Emacs) and can
even display images. Speaking of the Web, there's a nice Emacs feature called webjump (ESC-x
webjumb) that will make a currently opened Web browser such as Netscape go to a new URL.
Webjump comes with a list a predefined URLs, which can be expanded, of course. One of those
URLs is Yahoo. When that site is selected, webjump will ask you for a query term to submit.
After hitting return, the Yahoo search results will appear in a browser window. Again, it's a nice
shortcut.

Customization
Emacs is the most customizable tool I've ever seen. Customization is based on the LISP
programming language, so you need to learn some LISP before you can work with it much.
However, once you know LISP, you can do virtually anything. For example, you could write a
complete spreadsheet program within Emacs — which means that you could use your normal
Emacs commands to edit the spreadsheet and incorporate it (in whole or in part) into your
documents. In fact, several Emacs spreadsheet modes exist, but their quality and functionality
vary wildly. And, because of the FSF's General Public License, virtually all special-purpose
packages are available for free.

—ML and JJ

Customizations and How to Avoid Them

Emacs customizations are usually stored in a file called .emacs in your home directory. In Section
19.7, we've given a few customizations that I personally find convenient; if you're like most people,
you'll add customizations over time. You'll end up doing this even if you're not a LISP programmer; if
you know any other Emacs users, you'll soon be borrowing their shortcuts. The best way to customize
Emacs to your taste is to find out what works for others . . . and then steal it. For that matter, many —
if not most — of the customizations in my file were stolen from other users over the years. I hope I've
gotten this process off to a good start.

However, you should also be aware of the "dark side" of customization. What happens if you sit
down at someone else's system, start Emacs, and find out that he's customized it so extensively that it's
unrecognizable? Or that a "helpful" administrator has installed some system-wide hacks that are
getting in your way? Here's what will help. First, start emacs with the option -q; that tells Emacs not
to load any .emacs initialization file. (If you want to load your initialization file instead of someone
else's, try the option -u username).

That still doesn't solve the problem of system-wide customizations. To keep those from getting in the
way, put the following line at the beginning of your .emacs file:
(setq inhibit-default-init t)

This turns off all "global" initializations. (If you're sharing someone else's system, you may still need
the -u option to force Emacs to read your initialization file.)

—ML, DC, and BR

Backup and Auto-Save Files

If you're like most people, you often spend a few hours editing a file, only to decide that you liked
your original version better. Or you press some strange sequence of keys that makes Emacs do
something extremely weird and that you can't "undo." Emacs provides several ways to get out of these
tight spots.

First, try the command ESC-x revert-buffer. Emacs will ask one of two questions: either "Buffer
has been auto-saved recently. Revert from auto-save file? (y or n)" or "Revert buffer from file your-
filename? (yes or no)".

Before deciding what to do, it's important to understand the difference between these two questions.
Emacs creates an auto-save[1] file every 300 keystrokes you type. So, if you're reverting to the auto-
save file, you'll at most lose your last 300 keystrokes. Maybe this is what you want — but maybe you
made the mistake a long time ago. In that case, you don't want to use the auto-save file; type n, and
you'll see the second question, asking if you want to revert to the last copy of the file that you saved.
Type yes to go back to your most recent saved version.

It's possible that you'll only see the second question ("Revert buffer from file . . . "). This means that
you have saved the file sometime within the last 300 keystrokes. As soon as you save a file, Emacs
deletes the auto-save file. It will create a new one every 300 keystrokes.

It's worth noting that Emacs is very picky about what you type. If it asks for a y or an n, you've got to
type y or n. If it asks for yes or no, you've got to type yes or no. In situations like this, where the two
styles are mixed up, you've got to get it right.

If you're in real trouble and you want to go back to your original file — the way it was when you
started editing — you need to recover Emacs' backup file. If you're editing a file that already exists,
Emacs will create a backup file as soon as it starts. If you're editing a new file, Emacs will create a
backup the second time you save the file. Once it's created, the backup file is never touched; it stays
there until the next time you start Emacs, at which point you'll get a new backup, reflecting the file's
contents at the start of your editing session.

Now that we're over the preliminaries, how do you recover the backup file? Emacs doesn't have any
special command for doing this; you have to do it by hand. The backup file's name is the same as your
original filename, with a tilde (~) added to it. So quit Emacs (or start a shell), and type:
% mv
 your-filename
 ~
 your-filename

Note that Emacs has the ability to save "numbered" backup files, like the VAX/VMS operating
system. We've never played with this feature and don't think it's a particularly good idea. But it's there
if you want it.

—ML and DC

[1] For reference, the name of the auto-save file is # your-filename #; that is, it sticks a hash mark
(#) before and after the file's "regular" name.

Putting Emacs in Overwrite Mode

Many users are used to editors that are normally in overwrite mode: when you backspace and start
typing, you type over the character that is underneath the cursor.[2] By default, Emacs works in
insertion mode, where new characters are inserted just before the cursor's position.

If you prefer overwrite mode, just give the command ESC-x overwrite-mode. You can use
command abbreviation (Section 19.6) to shorten this to ESC-x ov. On many keyboards, pressing
INSERT also turns on overwrite mode. If you get tired of overwrite mode, use the same command to
turn it off.

If you always want to use overwrite mode, create a file named .emacs in your home directory, and put
the following line in it:
(setq-default overwrite-mode t)

This is a simple Emacs customization; for a lot more about customization, see O'Reilly & Associates'
Learning GNU Emacs, by Bill Rosenblatt, Eric Raymond, and Debra Cameron.

—ML and DC

[2] This includes some mainframe editors, like XEDIT, and (in my memory) a lot of older tools for
word processing and general editing.

Command Completion

Emacs has a great feature called command completion. Basically, command completion means that
Emacs will let you type the absolute minimum and it will fill in the rest. You can use command
completion whenever you're typing a filename, buffer name, command name, or variable name.
Simply type enough of the name to be "unique" (usually the first few letters), followed by a TAB.
Emacs will fill in the rest of the name for you. If the name isn't unique — that is, if there are other
filenames that start with the same letters — Emacs will show you the alternatives. Type a few more
letters to select the file you want, then press TAB again.

For example, if I'm trying to load the file outline.txt, I can simply give the command CTRL-x CTRL-f
out TAB. Providing that there are no other filenames beginning with the letters out, Emacs will fill in
the rest of the filename. When I see that it's correct, I press RETURN, and I'm done.

When you use command completion, always make sure that Emacs has successfully found the file you
want. If you don't, the results may be strange: you may end up with a partial filename or the wrong
file.

Along the same lines as command completion is a feature called dynamic expansion . After typing the
first few letters of a word, you can have Emacs search all open buffers for completions of that word.
Simply type ESC-/, and emacs will complete the partial word with one you've already typed. You can
cycle through all the choices by repeating the keystroke. Warning: this feature is addictive.

—ML and BR

Mike's Favorite Timesavers

I'm a very fast typist — which means that I hate using special function keys, arrow keys, and
especially mice. I deeply resent anything that moves me away from the basic alphanumeric keyboard.
Even BACKSPACE and DELETE are obnoxious, since they force me to shift my hand position.

With this in mind, I've customized Emacs so that I can do virtually anything with the basic alphabetic
keys, plus the CONTROL key. Here are some extracts from my .emacs file:

 Go to http://examples.oreilly.com/upt3 for more information on: .emacs_ml
;; Make CTRL-h delete the previous character. Normally, this gets
;; you into the "help" system.
 (define-key global-map "\C-h" 'backward-delete-char)
;; make sure CTRL-h works in searches, too
 (setq search-delete-char (string-to-char "\C-h"))
;; bind the "help" facility somewhere else (CTRL-underscore).
;; NOTE: CTRL-underscore is not defined on some terminals.
 (define-key global-map "\C-_" 'help-command) ;; replacement
 (setq help-char (string-to-char "\C-_"))
;; Make ESC-h delete the previous word.
 (define-key global-map "\M-h" 'backward-kill-word)
;; Make CTRL-x CTRL-u the "undo" command; this is better than "CTRL-x u"
;; because you don't have to release the CTRL key.
 (define-key global-map "\C-x\C-u" 'undo)
;; scroll the screen "up" or "down" one line with CTRL-z and ESC z
 (defun scroll-up-one () "Scroll up 1 line." (interactive)
 (scroll-up (prefix-numeric-value current-prefix-arg)))
 (defun scroll-down-one () "Scroll down 1 line." (interactive)
 (scroll-down (prefix-numeric-value current-prefix-arg)))
 (define-key global-map "\C-z" 'scroll-up-one)
 (define-key global-map "\M-z" 'scroll-down-one)
;; Use CTRL-x CTRL-v to "visit" a new file, keeping the current file
;; on the screen
 (define-key global-map "\C-x\C-v" 'find-file-other-window)

The comments (lines beginning with two semicolons) should adequately explain what these
commands do. Figure out which you need, and add them to your .emacs file. The most important
commands are at the top of the file.

— ML

http://examples.oreilly.com/upt3

Rational Searches

Emacs has, oh, a hundred or so different search commands. (Well, the number's probably more like
32, but who's counting?) There are searches of absolutely every flavor you could ever imagine:
incremental searches, word searches,[3] regular-expression searches, and so on.

However, when it comes to your plain old garden-variety search, Emacs is strangely deficient. There
is a simple search that just looks for some arbitrary sequence of characters, but it's rather well
hidden. In addition, it lacks one very important feature: you can't search for the same string
repeatedly. That is, you can't say "Okay, you found the right sequence of letters; give me the next
occurrence"; you have to retype your search string every time.

 Go to http://examples.oreilly.com/upt3 for more information on: search.el

I thought this was an incredible pain until a friend of mine wrote a special search command. It's in the
file search.el. Just stick this into your directory for Emacs hacks (Section 19.12), and add
something like the following to your .emacs file:
;; real searches, courtesy of Chris Genly
;; substitute your own Emacs hack directory for /home/los/mikel/emacs
 (load-file "/home/los/mikel/emacs/search.el")

Now you can type CTRL-s to search forward and CTRL-r to search back. Emacs will prompt you for
a search string and start searching when you press RETURN. Typing another CTRL-s or CTRL-r
repeats your previous search. When you try this, you'll see one other useful feature: unlike the other
Emacs searches, this kind of search displays the "default" (i.e., most recent) search string in the
minibuffer. It's exactly the kind of search I want.

It's conceivable that you'll occasionally want incremental searches. You'll have to "rebind" them,
though, to use them conveniently. Here are the key bindings that I use:
;; rebind incremental search as ESC-s and ESC-r
 (define-key global-map "\M-s" 'isearch-forward)
 (define-key global-map "\M-r" 'isearch-backward)
 ;; have to rebind ESC s separately for text-mode. It's normally
 ;; bound to 'center-line'.
 (define-key text-mode-map "\M-s" 'isearch-forward)

That is, ESC-s and ESC-r now give you forward and reverse incremental searches. And once you've
started an incremental search, CTRL-s and CTRL-r still repeat the previous incremental search, just
as they're supposed to.

Of course, now you'll have to rebind the "center-line" command if you're fond of it. In my opinion, it's
not worth the trouble. The game of "musical key-bindings" stops here.

— ML

[3] These are especially nice because they can search for phrases that cross line breaks; most searches
assume that all the text you want will all be on the same line. However, you can only search for
whole words, and if you use troff or TEX, Emacs may be confused by your "markup."

http://examples.oreilly.com/upt3

Unset PWD Before Using Emacs

I've seen a number of strange situations in which Emacs can't find files unless you type a complete
("absolute") pathname (Section 1.16), starting from the root (/). When you try to visit a file, you'll
get the message File not found and directory doesn't exist.

In my experience, this usually means that the C shell's PWD environment variable (Section 35.5)
has been incorrectly set. There are a few (relatively pathological) ways of tricking the C shell into
making a mistake. More commonly, though, I've seen a few systems on which the C shell sticks an
extra slash into PWD: that is, its value will be something like /home/mike//Mail rather than
/home/mike/Mail. Unix doesn't care; it lets you stack up extra slashes without any trouble. But Emacs
interprets // as the root directory — that is, it discards everything to the left of the double slash. So if
you're trying to edit the file /home/mike//Mail/output.txt, Emacs will look for /Mail/output.txt. Even
if this file exists, it's not what you want. [This also happens when Emacs is called from a (Bourne)
shell script that has changed its current directory without changing PWD. — JP]

This problem is particularly annoying because the shell will automatically reset PWD every time you
change directories. The obvious solution, sticking unsetenv PWD in your .cshrc file, doesn't do any
good.

What will work is defining an alias (Section 29.1):

(..) Section 43.7
alias gmacs "(unsetenv PWD; emacs \!*)"

A better solution might be to switch to another shell that doesn't have this problem. The Bourne shell
(sh) obviously doesn't, since it doesn't keep track of your current directory.

— ML

Inserting Binary Characters into Files

I remember being driven absolutely crazy by a guy (who hopefully won't be reading this) who called
me every other week and asked me how to stick a page break into some text file he was writing. He
was only printing on a garden-variety printer, for which inserting a page break is a simple matter: just
add a formfeed character, CTRL-l. But CTRL-l already means something to Emacs ("redraw the
screen"). How do you get the character into your file, without Emacs thinking that you're typing a
command?

Simple. Precede CTRL-l with the "quoting" command, CTRL-q. CTRL-q tells Emacs that the next
character you type is text, not a part of some command. So the sequence CTRL-q CTRL-l inserts the
character CTRL-l into your file; you'll see ^L on your screen. (Note that this represents a single
character, instead of two characters.) In turn, when you print the file on many printers, the CTRL-l
will cause a page eject at the appropriate point.

You can use this technique to get any "control character" into an Emacs file. In fact, under pressure
I've done some pretty bizarre binary editing — not a task I'd recommend, but certainly one that's
possible.

— ML

Using Word-Abbreviation Mode

Like vi, Emacs provides an "abbreviation" facility. Its traditional usage lets you define abbreviations
for long words or phrases so you don't have to type them in their entirety. For example, let's say you
are writing a contract that repeatedly references the National Institute of Standards and Technology.
Rather than typing the full name, you can define the abbreviation nist. Emacs inserts the full name
whenever you type nist, followed by a space or punctuation mark. Emacs watches for you to type an
abbreviation, then expands it automatically as soon as you press the spacebar or type a punctuation
mark (such as ., ,, !, ?, ;, or :).

One use for word-abbreviation mode is to correct misspellings as you type. Almost everyone has a
dozen or so words that he habitually types incorrectly, due to some worn neural pathways. You can
simply tell Emacs that these misspellings are "abbreviations" for the correct versions, and Emacs
fixes the misspellings every time you type them. If you take time to define your common typos as
abbreviations, you'll never be bothered with teh, adn, and recieve when you run the spellchecker.
Emacs sweeps up after your typos and corrects them. For example, let's say that you define teh as an
abbreviation for the. When you press the spacebar after you type teh, Emacs fixes it immediately,
and you continue happily typing. You may not even notice that you typed the word wrong before
Emacs fixes it.

Trying Word Abbreviations for One Session

Usually, if you go to the trouble of defining a word abbreviation, you will use it in more than one
Emacs session. But if you'd like to try out abbreviation mode to see if you want to make it part of your
startup, use the following procedure to define word abbreviations for this session:

1. Enter word-abbreviation mode by typing ESC-x abbrev-mode. abbrev appears on the mode
line.

2. Type the abbreviation you want to use, and press CTRL-x a. Emacs then asks you for the
expansion.

3. Type the definition for the abbreviation, and press RETURN. Emacs then expands the
abbreviation; it will do so each time you type it followed by a space or punctuation mark. The
abbreviations you've defined will work only during this Emacs session.

If you find that you like using word-abbreviation mode, you may want to make it part of your startup,
as described in the following section.

Making Word Abbreviations Part of Your Startup

Once you become hooked on abbreviation mode, make it part of your .emacs file so that you enter
abbreviation mode and load your word-abbreviations file automatically. To define word
abbreviations and make them part of your startup:

1. Add these lines to your .emacs file:
(setq-default abbrev-mode t)
(read-abbrev-file "~/.abbrev_defs")
(setq save-abbrevs t)

2. Save the .emacs file, and re-enter Emacs. Abbrev appears on the mode line. (You'll get an error
at this point; ignore it — it won't happen again.)

3. Type an abbreviation you want to use, and then type CTRL-x a following the abbreviation.
Emacs asks you for the expansion.

4. Type the definition for the abbreviation, and press RETURN. Emacs expands the abbreviation
and will do so each time you type it followed by a space or punctuation mark. You can define as
many abbreviations as you wish by repeating Steps 3 and 4.

5. Type ESC-x write-abbrev-file to save your abbreviations file. Emacs asks for the filename.
6. Type ~/.abbrev_defs. Emacs then writes the file. You need only take this step the first time

you define abbreviations using this procedure. After this file exists, the lines in your .emacs file
load the abbreviations file automatically.

After you've followed this procedure the first time, you only need to use Steps 3 and 4 to define more
abbreviations. When you add word abbreviations in subsequent sessions, Emacs asks whether you
want to save the abbreviations file. Respond with a y to save the new abbreviations you've defined
and have them take effect automatically. If you define an abbreviation and later regret it, use ESC-x
edit-word-abbrevs to delete it.

— DC

Directories for Emacs Hacks

If you use any Emacs editor (GNU Emacs or any of the commercial alternatives), you may have
written lots of handy LISP programs to use while you're editing. It's convenient to create a separate
directory for these; a good name for this directory is (obviously) emacs; it's usually located in your
home directory.

If you use GNU Emacs, you should put the following line in the .emacs file:
(setq load-path (append load-path '("your-emacs-directory")))

This tells Emacs that it should look in your personal Emacs directory to find your programs. (It's
similar to the PATH (Section 35.6) environment variable.)

— ML

An Absurd Amusement

If you have time to waste (and I mean really waste), Emacs has things to keep you occupied. There
are lots of interesting special effects, such as "disassociated text." My favorite is a command called
"psychoanalyze-pinhead." It's based on "doctor," which is a variation of the classic artificial-
intelligence demonstration called "Eliza": the computer plays psychotherapist and asks you questions;
you reply, and your answers are the basis for new questions. Nothing new, really; I remember it from
my high school days, in the early 1970s. If you think you might be in need of a psychotherapist, save
your money and try ESC-x doctor RETURN.

If you want to see something really interesting, try ESC-x psychoanalyze-pinhead. This takes the
built-in "doctor" program and feeds it with quotations from the cult comic strip Zippy the Pinhead.
The result is indeed bizarre. Here's some typical output:
I am the psychotherapist. Please, describe your problems. Each time
you are finished talking, type RET twice.

YOU PICKED KARL MALDEN'S NOSE!!

Why do you say I picked karl malden's nose?

Am I SHOPLIFTING?

Is it because of your plans that you say are you shoplifting?

Are you selling NYLON OIL WELLS?? If so, we can use TWO DOZEN!!

Press CTRL-c when you've had enough.

— ML

Chapter 20. Batch Editing

Why Line Editors Aren't Dinosaurs

In the "old days," when programmers worked on printing terminals, editing was done one line at a
time. Editors that let you move a cursor around the screen to select text to edit hadn't yet been
invented, because there weren't any screens to look at text on!

With ever more advanced WYSIWYG (What You See Is What You Get) word processors and editing
programs, it's easy for novices to think of line editors as a bizarre relic. Perhaps they are — but if so,
they are a relic of extraordinary power.

You see, line editors lend themselves to scripting — the ability to write what in effect are editing
programs that can be applied over and over to different files.

When we talk about "batch editing" or scripts, here are some of the programs you might use:

ed is the original Unix line editor.
ex supports a superset of ed commands; it is widely used from within vi, which is the ex "visual"
or "screen" mode.
sed (Section 34.1) is an editor that can only be run with scripts or by entering a few short
commands as command-line arguments; while it has many similar commands, it has some
important differences (Section 34.2) from ed and ex.
awk (Section 20.10) is a great way to pull apart a line of text into a sequence of elements. Used
frequently with sed.
patch (Section 20.9) is a specialized editor designed to apply editing scripts created with diff
(Section 11.1). You can do this with ed or ex as well, but patch is especially clever at it.

Of course, editing is a continuum, and beyond sed and awk (Section 20.10) lie more complete
programming languages like perl (Section 41.1) and python (Section 42.1) that are very adept at
manipulating text.

— TOR

Writing Editing Scripts

When you write a script that contains a series of editing actions and then run the script on an input
file, you take what would be a hands-on procedure in an editor such as vi and transform it into a look-
no-hands procedure.

When performing edits manually, you get to trust the cause-and-effect relationship of entering an
editing command and seeing the immediate result. There is usually an "undo" command that allows
you to reverse the effect of a command and return the text file to its previous state. Once you learn an
interactive text editor, you have the feeling of making changes in a safe and controlled manner, one
step at a time.

Most people new to "power editing" will feel there is greater risk in writing a script to perform a
series of edits than in making those changes manually. The fear is that by automating the task,
something will happen that cannot be reversed. The object of learning scripting with ex or sed is to
understand the commands well enough to see that your results are predictable. In other words, you
come to understand the cause-and-effect relationship between your editing script and the output you
get.

This requires using the editor in a controlled, methodical way. Gradually, you will develop methods
for creating and testing editing scripts. You will come to rely upon these methods and gain confidence
that you know what your script is doing and why.

Here are a few tips:

1. Carefully examine your input file, using grep, before designing your script.
2. Start with a small sample of occurrences in a test file. Run your script on the sample and make

sure the script is working. Remember, it's just as important to make sure the script doesn't work
where you don't want it to. Then increase the size of the sample. Try to increase the complexity
of the input.

3. Work carefully, testing each command that you add to a script. Compare the output against the
input file to see what has changed. Prove to yourself that your script is complete. Your script
may work perfectly based on your assumptions of what is in the input file, but your assumptions
may be wrong.

4. Be pragmatic! Try to accomplish what you can with your script, but understand that it doesn't
have to do 100 percent of the job. If you encounter difficult situations, check to see how
frequently they occur. Sometimes it's better to do a few remaining edits manually.

If you can add to these tips with your experience, tack them on.

One additional suggestion is to use a revision control system (Section 39.4) to preserve previous
versions. That makes it easy to undo your edits.

— DD

Line Addressing

The key to making line editors work for you is understanding how to select (or "address") the lines
that will be affected by the commands in your script.

In ed and ex, a command affects only the "current" line — the first line of the file to begin with, and
later the site of the last edit or movement command — unless you precede the command with an
address to indicate some other line or lines. In sed, most commands apply to every line unless you
give an address.

Most line editors address lines in three ways:

with line numbers
with regular expression patterns
with special symbols

It's possible to address single lines or a range of lines.

Table 20-1 describes the addresses you can use with ex.

Table 20-1. Line addressing in the ex editor

Address Description

1,$ All lines in the file.

% All lines; same as 1,$.

x,y Lines x through y.

x ; y Lines x through y, with current line reset to x.

1 Top of file.

0 "Before the top" of file. Used to add text above top line: 0r, x m0, etc.

. Current line.

n Absolute line number n.

$ Last line.

x - n n lines before x.

x + n n lines after x.

- n n lines previous.

- Previous line.

+ n n lines ahead.

If the address specifies a range of lines, the format is:
 x,y

where x and y are the first and last addressed lines. x must precede y in the file.

—TOR, DG, and JP

Useful ex Commands

Many line editor commands are not particularly useful in scripts. The two commands that you will use
far and away the most often are s (substitute), to replace one pattern with another, and d (delete), to
delete one or more lines. On occasion, though, you'll want to insert text from a script. (Editing scripts
built by diff (Section 18.6) make heavy use of insert, append, delete, and change commands.) And of
course, you need commands to write the file and quit the editor.

Here's the syntax of most of the commands you may encounter in ex editing scripts. (The ed editor
understands the abbreviated versions of some, but not all, of these commands.) Elements in [brackets]
are optional; don't type the [or]. The leading colon (:) shown in examples is the ex command
character used to issue an ex command from vi; in a script, the colon would be omitted. The
autoindent feature referred to below aids anyone writing structured text. Your editor can ease the
burden of creating outlines and source code by positioning the cursor beneath the first character of the
previous line.
append

[address] a[!] text .
Append text at specified address, or at present address if none is specified. Add a ! to switch
the autoindent setting that will be used during input. For example, if autoindent was
enabled, ! disables it.

change
[address] c[!] text .
Replace the specified lines with text. Add a ! to switch the autoindent setting during input of
text.

copy
[address] co destination [address] t destination
Copy[1] the lines included in address to the specified destination address.
:1,10 co 50
:1,10t50

delete
[address] d [buffer]
Delete the lines included in address. If buffer is specified, save or append the text to the
named buffer.
:/Part I/,/Part II/-1d Delete to line above "Part II"
:/main/+d Delete line below "main"
:.,$d Delete from this line to last line

global
[address] g[!]/pattern/[commands]
Execute commands on all lines that contain pattern, or if address is specified, on all lines
within that range. If commands are not specified, print all such lines. (Exception: doesn't print
when you use it from vi by typing : first. You'll need to add a p, as in the second example
below). If ! is used, execute commands on all lines that don't contain pattern.
:g/Unix/
:g/Unix/p
:g/Name:/s/tom/Tom/

insert
[address] i[!] text .
Insert text at line before the specified address, or at present address if none is specified. Add
a ! to switch the autoindent setting during input of text.

move
[address] m destination
Move the lines specified by address to the destination address.
:.,/Note/m /END/ Move block after line containing "END"

print
[address] p [count]
Print the lines specified by address. count specifies the number of lines to print, starting with
address.
:100;+5p Show line 100 and the next five lines

quit
q[!]
Terminate current editing session. Use ! to discard changes made since the last save. If the
editing session includes additional files in the argument list that were never accessed, quit by
typing q! or by typing q twice.

read
[address] r file
Copy in the text from file on the line below the specified address . If file is not specified,
the current filename is used.
:0r $HOME/data Read file in at top of current file

read
[address] r ! command
Read the output of Unix command into the text after the line specified by address.
:$r !cal Place a calendar at end of file

source
so file
Read and execute ex commands from file.
:so $HOME/.exrc

substitute
[address] s [/pattern/replacement/] [options] [count]
Replace first instance of pattern on each of the specified lines with replacement . If pattern
and replacement are omitted, repeat last substitution. count specifies the number of lines on
which to substitute, starting with address. The following can be used as options:

c
Prompt for confirmation before each change.

g
Substitute all instances of pattern on each line.

p
Print the last line on which a substitution was made.
c Section 17.9, \U Section 17.14
:1,10s/yes/no/g Substitute on first 10 lines
:%s/[Hh]ello/Hi/gc Confirm global substitutions
:s/Fortran/\U&/ 3 Uppercase "Fortran" on next 3 lines

write
[address] w[!] [>>] file]
Write lines specified by address to file, or write full contents of buffer if address is not
specified. If file is also omitted, save the contents of the buffer to the current filename. If >>
file is used, write contents to the end of an existing file. The ! flag forces the editor to write
over any current contents of file.
:1,10w name_list Copy first 10 lines to name_list
:50w >> name_list Now append line 50

write

[address] w ! command
Write lines specified by address, or write full contents of buffer if address is not specified, to
the standard input (Section 43.1) of command.
:1,10w !spell Send first 10 lines to the spell command
:w !lpr Print entire buffer with lpr command

— TOR and DG

[1] Note that "t" is short for "to." The ed editor only has one-letter commands and since "c" was
already taken for "change," they used "t" for "copy TO."

Running Editing Scripts Within vi

Because vi is built on top of the ex line editor, you get all the power of a line editor as well. Any
experienced vi user issues ex commands all the time — but usually one by one, at the colon (:)
prompt.

The one exception is the .exrc file (Section 17.5), which is, at bottom, a list of commands for ex to
run on startup — in short, an editor script.

What many beginners don't know is that you can save a sequence of ex commands in any file and
execute it with the :so command (Section 20.4). For example, Bruce Barnett uses this trick to set
himself up specially for editing FORTRAN programs (Section 18.10).

In general, sed (Section 34.1) is better for general-purpose batch editing — such as making a set of
global substitutions over and over again on multiple files — therefore, :so is most often used for
reading in setup commands. Keep in mind, though, any time you find yourself issuing the same
commands over and over again, think script!
— TOR

Change Many Files by Editing Just One

 Go to http://examples.oreilly.com/upt3 for more information on: diff

The diff command can make an editing script that you give to the ex or ed editors or the patch
(Section 20.9) program. They'll apply your same edits to other copies of the same file. This is handy
if you have a lot of copies of a big file, spread around a network or on a lot of disks, and you want to
make the same changes to all the

 Section 20.8

files. In fact, this is how the Concurrent Version Control (CVS) system works. Instead of sending new
copies of the whole file, just have diff make a script — and use that little script to update all the big
files.

Here's a demo. I'm going to modify a program called pqs.c. Then I'll use diff and ed to apply the same
changes to a copy of the file named remote-pqs.c (which might be at a remote computer):

>> Section 43.1
1% cp pqs.c remote-pqs.c
2% cp pqs.c pqs.c.new
3% vi pqs.c.new
4% diff pqs.c pqs.c.new
106,107c106
< fprintf(stderr,
< "%s: quitting: not able to %s your .pq_profile file.\n",
--
> fprintf(stderr, "%s: quitting: can't %s your .pq_profile file.\n",
390a390
> "WARNING:",
5% diff -e pqs.c pqs.c.new > edscr
6% cat edscr
390a
 "WARNING:",
.
106,107c
 fprintf(stderr, "%s: quitting: can't %s your .pq_profile file.\n",
.
7% echo w >> edscr
8% ed remote-pqs.c < edscr
19176
19184
9% diff pqs.c.new remote-pqs.c
10%

At prompt 1%, I make the simulated "remote" copy of the pqs.c file. At prompt 2%, I make another
copy of it; at prompt 3%, I edit the copy. Prompt 4% has a diff that shows the changes I made. Then, at
prompt 5%, I run diff -e (Section 11.1); I save the result in edscr, which I show at prompt 6%.

Prompt 7% is important because diff -e doesn't add a w command to the script file. That tells ed to
write its changes to the file. I use echo w (Section 27.5) to add the command.

In prompt 8%, I give ed the name of the "remote" file to edit as a command-line argument and give it
the script file on its standard input. At prompt 9%, I do a diff that shows the changes have been made
and the two versions are the same.

If you find yourself needing to keep multiple copies of the same set of files in sync with each other,

http://examples.oreilly.com/upt3

you might want to consider using CVS. Not only is it a client/server system ready for network use, it
is also designed for multiple users. Every check-in is logged, and updating a whole set of files
(called "projects") can be done with the command cvs update. This can be a great timesaver for
webmasters maintaining multiple web servers with static (or even dynamic) content.

Another great tool for synchronizing many filesystems is rsync. This program can be used to update a
remote filesystem, say a web directory, with more current version of existing files or add new ones.
The synchronization can go both ways. rsync even has built-in support for SSH. Here's an example of
using rsync to publish new web documents to a live server:
$ rsync -urz -e /path/to/ssh local_dir hostname:/path/to/web/docs

The -u flag tells rsync to update the remote filesystem with newer files on the local system. The -r
flag tells rsync to recurse into subdirectories. The -z allows the files to be gzipped during transfer
(good for slow modem links). While it can be a client/server system, rsync can work just fine as a
peer-to-peer system where it will need to run some commands on the remote machine. The -e flag
provides the path to the rsh or ssh program that you to have rsync use. The next argument is the
directory on the local machine rsync is to copy, and the last argument is the hostname and target
directory to be updated. rsync is a very handy tool, and the manpage illustrates its flexibility.

— JP

ed/ex Batch Edits: A Typical Example

What ed and ex lack in intutitive interface design, they make up for when used in batch editing shell
scripts. For example, you might be maintaining a web site with a lot of static content all stored in
traditional HTML files. One such file might look like this:
<html>
<body>
<h1>Hello, world!</h1>
<p>Glad you could make it
.
<p>Here's a picture of my house:

</body>
</html>

One day, you get an email that all the images will now be served out of the directory /img instead of
/graphics. Also, all existing gif files have been replaced with png files. Although these changes don't
sound like much, making these modifications to a large number of files quickly becomes tedious. By
writing a shell script that calls either ed or ex, you will not only solve today's problem, but you'll also
be ready to make new changes to the files whenever that becomes necessary. A Bourne shell script
that makes these changes looks like the following:
#!/bin/sh
Convert some of the hard coded values in HTML
into the new site schema

Patterns to be replaced
old_graphics_dir="graphics"
old_graphics_ext="gif"

new values
new_graphics_dir="img"
new_graphics_ext="png"

Make the changes
for file in *html;
do
 ed $file <<EOF
1,\$s/$old_graphics_dir/$new_graphics_dir/g
1,\$s/$old_graphics_ext/$new_graphics_ext/g
w
EOF
done

The script is fairly simple. It defines a few variables to hold the patterns to be found and replaced.
The replacement values are defined next. This script is meant to be run in the directory containing all
the HTML files. The list of all files ending in "html" is iterated over in a for loop in which ed is fed
commands from a here document. Recall that $ is a special character for Bourne shell and must be
escaped in the line-addressing part of the ed command. After the search and replace operations finish,
the ed buffers need to be written back to disk with the w command. This script works with both ed and
ex.

In older versions of ed, you may find that if the first pattern doesn't match, ed doesn't even try the
second pattern. If your version does this, one workaround suggested by Chris Torek is to use the
global command g like this:
ed - $i << end
g/$old_graphics_dir/s//$new_graphics_dir/g
g/$old_graphics_ext/s//$new_graphics_ext/g
w

end

The addition of the - suppresses the two numbers that ed normally prints.

— CT and JJ

Batch Editing Gotcha: Editors Fail on Big Files

People use the ed editor with script files to make global edits. But many versions of ed can't edit
large files. The ex editor is usually better, but it has limits, too. How large is "large"? That depends
on your version. Most eds I've seen can't handle more than about 100,000 characters.

There are no limits on sed (Section 34.1), although you'll need to save its output somehow (Section
34.4), and your editing script may have to be changed to work with sed.[2] Here's what you'll see
when ed fails:
% cat edscr
s/Unix/UNIX/g
w
% ed - words < edscr
?
%

The ? is ed's "verbose" way of telling you that something's wrong. This obscure message is especially
bad if you write a shell script that edits multiple files in a loop; you may not notice the error or be
able to tell which file had the problem. Be sure your script checks for errors!

Unfortunately for programmers, ed may not return an error status that you can test. There are
workarounds, though. When the ed - command succeeds, it doesn't display anything. The simplest
way to find errors is to check for any output on stdout or stderr. This chunk of a Bourne shell script
shows how (your filename is in the shell variable $filename (Section 35.9)):

2>&1 Section 36.16, [] Section 35.26, $? Section 35.12
edout="`ed - $filename < edscr 2>&1`"
if [-n "$edout" -o $? -ne 0]
then
 echo "$edout" 1>&2
 echo "QUITTING: 'ed - $filename < edscr' failed?!?" 1>&2
 exit 1
fi

— JP

[2] By default, ed commands apply to the current line. sed commands are global. Also, relative line
addresses like -5 don't work in sed.

patch: Generalized Updating of Files That Differ

 Go to http://examples.oreilly.com/upt3 for more information on: patch

Like all of Larry Wall's widely used programs (including perl (Section 41.1), a software
configuration script called Configure, and the rn news reader), patch betrays a whimsical
intelligence of its own. Feed it any kind of diff listing (Section 11.1) (not just an editing script
produced with the -e option — the typical way before patch came around). patch figures out what it
needs to do to apply the diff, and updates the file, supplying all the while a breezy commentary on
what it's doing:
% patch < testfile.diff
Hmm... Looks like a normal diff to me...
File to patch: testfile
Patching file testfile using Plan A...
Hunk #1 succeeded at 2.
done

As Larry once noted, patch has done an awful lot to "change the culture of computing." Almost all
free software is now updated by means of patches rather than complete new releases. patch is smart
enough to discard any leading or trailing garbage (such as mail headers or signatures), so a program
source file can be updated by piping a mail message containing a diff listing between old and new
versions directly to patch.

Here are a few of the other things patch is smart enough to do:

Figure out the name of the file to be updated and do it without asking (usually only if the diff file
is a context diff (Section 11.3) produced with the -c option).
Look for a suitable RCS or CVS (Section 39.4) file and check it out, if the filename itself can't
be found.
Handle diff listings that don't quite match. This makes it possible for patch to update a file that
the recipient has already changed from the one that the diff was based on.
Save any pieces of the diff file that don't end up being used, in a file named by adding the suffix
.rej (reject) to the name of the file being patched.
Back up the file that is being patched, appending the suffix .orig to the name of the file being
patched.
Recognize that its input may actually apply to several files, and patch each of them separately.
For example, a whole directory might be updated by a "patch" file that contained diff listings for
each of the files in the directory. (By the way, the -d option to patch tells it to cd to a specified
directory before starting work.)
Recognize (or at least speculate) that a patch might have been created incorrectly, with the old
and new files swapped. Larry says, "Yes, I'm afraid that does happen occasionally, human nature
being what it is." patch's -R option will force patch to reverse the sense of the patch; what's
really amusing is to see patch suggest that this might be the thing to do, when things seem out of
sync.

If you are a programmer, patch is worth studying just to see how much a program can do to anticipate
errors, deal with fuzzy input, and in general "make the computer do the dirty work." But if you're a
programmer, you doubtless already know about patch.

http://examples.oreilly.com/upt3

One last note: patch is so useful that it's been added to many Unix systems. Check to see if your
system has it before installing the program. Some versions of patch we've seen are limted versions or
buggy when they come from software vendors, though. The one on the book's website is worth
comparing to yours.

— TOR

Quick Reference: awk

Up to this point, we've shown you tools to do basic batch editing of text files. These tools, although
powerful, have limitations. Although you can script ex commands, the range of text manipulation is
quite limited. If you need more powerful and flexible batch editing tools, you need to look at
programming languages that are designed for text manipulation. One of the earliest Unix languages to
do this is awk, created by Al Aho, Peter Weinberger, and Brian Kernighan. Even if you've never
programmed before, there are some simple but powerful ways that you can use awk. Whenever you
have a text file that's arranged in columns from which you need to extract data, awk should come to
mind.

For example, every Red Hat Linux system stores its version number in /etc/redhat-release. On my
system, it looks like this:
Red Hat Linux release 7.1 (Seawolf)

When applying new RPM files to your system, it is often helpful to know which Red Hat version
you're using. On the command line, you can retrieve just that number with:
awk '{print $5}' /etc/redhat-release

What's going on here? By default, awk splits each line read from standard input on whitespace, as is
explained below. In effect, it's like you are looking at one row of a spreadsheet. In spreadsheets,
columns are usually named with letters. In awk, columns are numbered and you only can see one row
(that is, one line of input) at a time. The Red Hat version number is in the fifth column. Similar to the
way shells use $ for variable interpolation, the values of columns in awk are retrieved using
variables that start with $ and are followed by an integer.

As you can guess, this is a fairly simple demonstration of awk, which includes support for regular
expressions, branching and looping, and subroutines. For a more complete reference on using awk,
see Effective awk Programming or sed & awk Pocket Reference, both published by O'Reilly.

Since there are many flavor of awk, such as nawk and gawk (Section 18.11), this article tries to
provide a usable reference for the most common elements of the language. Dialect differences, when
they occur, are noted. With the exception of array subscripts, values in [brackets] are optional; don't
type the [or].

Command-Line Syntax

awk can be invoked in one of two ways:
awk [options] 'script' [var=value] [file(s)]
awk [options] -f scriptfile [var=value] [file(s)]

You can specify a script directly on the command line, or you can store a script in a scriptfile
and specify it with -f. In most versions, the -f option can be used multiple times. The variable var
can be assigned a value on the command line. The value can be a literal, a shell variable ($ name), or
a command substitution (' cmd '), but the value is available only after a line of input is read (i.e.,
after the BEGIN statement). awk operates on one or more file(s). If none are specified (or if - is
specified), awk reads from the standard input (Section 43.1).

The other recognized options are:
-F c

Set the field separator to character c. This is the same as setting the system variable FS. nawk
allows c to be a regular expression (Section 32.4). Each record (by default, one input line) is
divided into fields by whitespace (blanks or tabs) or by some other user-definable field
separator. Fields are referred to by the variables $1, $2, . . . $ n. $0 refers to the entire record.
For example, to print the first three (colon-separated) fields on separate lines:

 % awk -F: '{print $1; print $2; print $3}' /etc/passwd

-v var = value
Assign a value to variable var. This allows assignment before the script begins execution.
(Available in nawk only.)

Patterns and Procedures

awk scripts consist of patterns and procedures:
pattern { procedure }

Both are optional. If pattern is missing, { procedure } is applied to all records. If { procedure }
is missing, the matched record is written to the standard output.

Patterns

pattern can be any of the following:
/regular expression/
relational expression
 pattern-matching expression
BEGIN
END

Expressions can be composed of quoted strings, numbers, operators, functions, defined
variables, and any of the predefined variables described later in Section 20.10.3.
Regular expressions use the extended set of metacharacters, as described in Section 32.15. In
addition, ^ and $ (Section 32.5) can be used to refer to the beginning and end of a field,
respectively, rather than the beginning and end of a record (line).
Relational expressions use the relational operators listed in Section 20.10.4 later in this article.
Comparisons can be either string or numeric. For example, $2 > $1 selects records for which the
second field is greater than the first.
Pattern-matching expressions use the operators ~ (match) and !~ (don't match). See Section
20.10.4 later in this article.
The BEGIN pattern lets you specify procedures that will take place before the first input record
is processed. (Generally, you set global variables here.)
The END pattern lets you specify procedures that will take place after the last input record is
read.

Except for BEGIN and END, patterns can be combined with the Boolean operators || (OR), &&
(AND), and ! (NOT). A range of lines can also be specified using comma-separated patterns:

pattern,pattern

Procedures

procedure can consist of one or more commands, functions, or variable assignments, separated by
newlines or semicolons (;), and contained within curly braces ({}). Commands fall into four groups:

Variable or array assignments
Printing commands
Built-in functions
Control-flow commands

Simple pattern-procedure examples

Print the first field of each line:
{ print $1 }

Print all lines that contain pattern:
/pattern/

Print first field of lines that contain pattern:
/pattern/{ print $1 }

Print records containing more than two fields:
NF > 2

Interpret input records as a group of lines up to a blank line:
BEGIN { FS = "\n"; RS = "" }
{ ...process records... }

Print fields 2 and 3 in switched order, but only on lines whose first field matches the string
URGENT:
$1 ~ /URGENT/ { print $3, $2 }

Count and print the number of pattern found:
/pattern/ { ++x }
END { print x }

Add numbers in second column and print total:
{total += $2 };
END { print "column total is", total}

Print lines that contain fewer than 20 characters:
length($0) < 20

Print each line that begins with Name: and that contains exactly seven fields:
NF == 7 && /^Name:/

awk System Variables

nawk supports all awk variables. gawk supports both nawk and awk.

Version Variable Description

awk FILENAME Current filename

 FS Field separator (default is whitespace)

 NF Number of fields in current record

 NR Number of the current record

 OFMT Output format for numbers (default is %.6g)

 OFS Output field separator (default is a blank)

 ORS Output record separator (default is a newline)

 RS Record separator (default is a newline)

 $0 Entire input record

 $n nth field in current record; fields are separated by FS

nawk ARGC Number of arguments on command line

 ARGV An array containing the command-line arguments

 ENVIRON An associative array of environment variables

 FNR Like NR, but relative to the current file

 RSTART First position in the string matched by match function

 RLENGTH Length of the string matched by match function

 SUBSEP Separator character for array subscripts (default is \034)

Operators

This table lists the operators, in increasing precedence, that are available in awk.

Symbol Meaning

= += -= *= /= %= ^= Assignment (^= only in nawk and gawk)

?: C conditional expression (nawk and gawk)

|| Logical OR

&& Logical AND

~ !~ Match regular expression and negation

< <= > >= != == Relational operators

(blank) Concatenation

+ - Addition, subtraction

* / % Multiplication, division, and modulus

+ - ! Unary plus and minus, and logical negation

^ Exponentiation (nawk and gawk)

++ -- Increment and decrement, either prefix or postfix

$ Field reference

Variables and Array Assignments

Variables can be assigned a value with an equal sign (=). For example:
FS = ","

Expressions using the operators +, -, *, /, and % (modulus) can be assigned to variables.

Arrays can be created with the split function (see below), or they can simply be named in an
assignment statement. Array elements can be subscripted with numbers (array [1], . . . ,array [n])
or with names (as associative arrays). For example, to count the number of occurrences of a pattern,
you could use the following script:
/pattern/ { array["pattern"]++ }
END { print array["pattern"] }

Group Listing of awk Commands

awk commands may be classified as follows:

Arithmetic functions String functions Control flow statements Input/Output processing

atan2 [3] gsub [3] break close [3]

cos [3] index continue delete [3]

exp length do/while [3] getline [3]

int match [3] exit next

log split for print

rand [3] sub [3] if printf

sin [3] substr return [3] sprintf

sqrt tolower [3] while system [3]

srand [3] toupper [3]

[3] Not in original awk.

Alphabetical Summary of Commands

The following alphabetical list of statements and functions includes all that are available in awk,
nawk, or gawk. Unless otherwise mentioned, the statement or function is found in all versions. New
statements and functions introduced with nawk are also found in gawk.
atan2

atan2(y,x)
Returns the arctangent of y/x in radians. (nawk)

break
Exit from a while, for, or do loop.

close
close(filename-expr) close(command-expr)
In some implementations of awk, you can have only ten files open simultaneously and one pipe;
modern versions allow more than one pipe open. Therefore, nawk provides a close statement
that allows you to close a file or a pipe. close takes as an argument the same expression that
opened the pipe or file. (nawk)

continue
Begin next iteration of while, for, or do loop immediately.

cos
cos(x)
Return cosine of x (in radians). (nawk)

delete
delete array[element]
Delete element of array. (nawk)

do
do body while (expr)
Looping statement. Execute statements in body, then evaluate expr. If expr is true, execute body
again. More than one command must be put inside braces ({}). (nawk)

exit
exit[expr]
Do not execute remaining instructions and do not read new input. END procedure, if any, will be
executed. The expr, if any, becomes awk's exit status (Section 34.12).

exp
exp(arg)
Return the natural exponent of arg.

for
for ([init-expr]; [test-expr]; [incr-expr]) command
C-language-style looping construct. Typically, init-expr assigns the initial value of a counter
variable. test-expr is a relational expression that is evaluated each time before executing the
command. When test-expr is false, the loop is exited. incr-expr is used to increment the
counter variable after each pass. A series of commands must be put within braces ({}). For
example:
for (i = 1; i <= 10; i++)
 printf "Element %d is %s.\n", i, array[i]

for

for (item in array) command
For each item in an associative array, do command. More than one command must be put inside
braces ({}). Refer to each element of the array as array [item].

getline
getline [var][< file] or command | getline [var]
Read next line of input. Original awk does not support the syntax to open multiple input streams.
The first form reads input from file, and the second form reads the standard output of a Unix
command. Both forms read one line at a time, and each time the statement is executed, it gets the
next line of input. The line of input is assigned to $0, and it is parsed into fields, setting NF, NR,
and FNR. If var is specified, the result is assigned to var and the $0 is not changed. Thus, if the
result is assigned to a variable, the current line does not change. getline is actually a function,
and it returns 1 if it reads a record successfully, 0 if end-of-file is encountered, and -1 if for
some reason it is otherwise unsuccessful. (nawk)

gsub
gsub(r,s[,t])
Globally substitute s for each match of the regular expression r in the string t. Return the
number of substitutions. If t is not supplied, defaults to $0. (nawk)

if
if (condition) command [else command]
If condition is true, do command(s), otherwise do command(s) in else clause (if any).
condition can be an expression that uses any of the relational operators <, <=, ==, != , >=, or >,
as well as the pattern-matching operators ~ or !~ (e.g., if ($1 ~ /[Aa].*[Zz]/)). A series of
commands must be put within braces ({}).

index
index(str,substr)
Return position of first substring substr in string str or 0 if not found.

int
int(arg)
Return integer value of arg.

length
length(arg)
Return the length of arg.

log
log(arg)
Return the natural logarithm of arg.

match
match(s,r)
Function that matches the pattern, specified by the regular expression r, in the string s and
returns either the position in s where the match begins or 0 if no occurrences are found. Sets the
values of RSTART and RLENGTH. (nawk)

next
Read next input line and start new cycle through pattern/procedures statements.

print
print [args] [destination]
Print args on output, followed by a newline. args is usually one or more fields, but it may also

be one or more of the predefined variables — or arbitrary expressions. If no args are given,
prints $0 (the current input record). Literal strings must be quoted. Fields are printed in the order
they are listed. If separated by commas (,) in the argument list, they are separated in the output by
the OFS character. If separated by spaces, they are concatenated in the output. destination is a
Unix redirection or pipe expression (e.g., > file) that redirects the default standard output.

printf
printf format [, expression(s)] [destination]
Formatted print statement. Fields or variables can be formatted according to instructions in the
format argument. The number of expressions must correspond to the number specified in the
format sections. format follows the conventions of the C-language printf statement. Here are a
few of the most common formats:

%s
A string.

%d
A decimal number.

% n.m f
A floating-point number, where n is the total number of digits and m is the number of digits after
the decimal point.

%[-]nc
n specifies minimum field length for format type c, while - left-justifies value in field; otherwise
value is right-justified.
format can also contain embedded escape sequences: \n (newline) or \t (tab) are the most
common. destination is a Unix redirection or pipe expression (e.g., > file) that redirects the
default standard output.
For example, using the following script:
{printf "The sum on line %s is %d.\n", NR, $1+$2}

and the following input line:
5 5

produces this output, followed by a newline:
The sum on line 1 is 10.

rand
rand()
Generate a random number between 0 and 1. This function returns the same series of numbers
each time the script is executed, unless the random number generator is seeded using the srand()
function. (nawk)

return
return [expr]
Used at end of user-defined functions to exit the function, returning value of expression expr, if
any. (nawk)

sin
sin(x)
Return sine of x (in radians). (nawk)

split
split(string,array[,sep])
Split string into elements of array array[1], . . . ,array[n]. string is split at each
occurrence of separator sep. (In nawk, the separator may be a regular expression.) If sep is not
specified, FS is used. The number of array elements created is returned.

sprintf
sprintf (format [, expression(s)])
Return the value of expression(s), using the specified format (see printf). Data is formatted
but not printed.

sqrt
sqrt(arg)
Return square root of arg.

srand
srand(expr)
Use expr to set a new seed for random number generator. Default is time of day. Returns the old
seed. (nawk)

sub
sub(r,s[,t])
Substitute s for first match of the regular expression r in the string t. Return 1 if successful; 0
otherwise. If t is not supplied, defaults to $0. (nawk)

substr
substr(string,m[,n])
Return substring of string, beginning at character position m and consisting of the next n
characters. If n is omitted, include all characters to the end of string.

system
system(command)
Function that executes the specified Unix command and returns its status (Section 34.12). The
status of the command that is executed typically indicates its success (0) or failure (nonzero).
The output of the command is not available for processing within the nawk script. Use command
| getline to read the output of the command into the script. (nawk)

tolower
tolower(str)
Translate all uppercase characters in str to lowercase and return the new string. (nawk)

toupper
toupper(str)
Translate all lowercase characters in str to uppercase and return the new string. (nawk)

while
while (condition) command
Do command while condition is true (see if for a description of allowable conditions). A
series of commands must be put within braces ({}).

— DG

Versions of awk

awk was introduced as part of Unix's seventh edition and has been part of the standard distribution
ever since.

In 1985, the authors of awk extended the language, adding many useful features. Unfortunately, this
new version remained inside AT&T for several years. It became a regular part of AT&T's System V
as of Release 3.1. It can be found under the name of nawk (for "new awk"); the older version still
exists under its original name.

 Go to http://examples.oreilly.com/upt3 for more information on: gawk

Unfortunately, nawk is not available on all systems. The good news is that the Free Software
Foundation GNU project's version of awk, called gawk, implements all the features of the new awk.

In general, you can assume that what is true for nawk is true for gawk, unless gawk is explicitly called
out. Scripts written for nawk are 100 percent compatible with gawk. If you want to use one of the
nawk scripts and don't have nawk on your system, simply change the script to invoke gawk instead.

There are a few areas where gawk has introduced gawk-specific features; however, recent versions
of nawk support many of these features, suggesting that the remaining differences are really very
minor.

This book doesn't cover any of the awks in detail. The recent awks, especially, have quite a few
features in common — so documentation for any one of them should help you learn the others.

In this book, we show scripts for awk as well as scripts that work only on nawk and gawk. But we
barely scratch the surface of all the awks' features. The completely revised second edition of O'Reilly
& Associates' sed & awk has detailed information on all of them.[19] JP and DD, TOR

[19] And thanks to Arnold Robbins, coauthor of the second edition, for his help with this section and
other awk material in this book.

http://examples.oreilly.com/upt3

Chapter 21. You Can't Quite Call This Editing

And Why Not?

Summary Box
There are many specialized forms of editing that happen frequently enough that they sometimes want to be saved into a script. Examples of this kind of thing include:

fmt (Section 21.2) and related scripts (Section 21.3) for reformatting jagged lines into neat paragraphs
recomment (Section 21.4), a script for reformatting comment blocks within programs and scripts
behead (Section 21.5), a script for removing the headers from mail and news messages
center (Section 21.8), a script for centering lines of text in a file

In addition, there are a number of programs that provide some useful way s of modify ing files but that y ou don't normally think of as editors:

split (Section 21.9) and csplit (Section 21.10) let y ou split a big file into smaller pieces.
tr (Section 21.11) lets y ou substitute one character for another — including non-printing characters that y ou specify by their octal values.
dd (Section 21.6, Section 21.13) lets y ou perform various data conversions on a file.
cut (Section 21.14) lets y ou cut columns or fields out of a file, and paste (Section 21.18) lets y ou put them back, perhaps in a different order.

This chapter covers all that and more.

— TOR

Neatening Text with fmt

One of the problems with fold is that it breaks text at an arbitrary column position — even if that
position happens to be in the middle of a word. It's a pretty primitive utility, designed to keep long
lines from printing off the edge of a line printer page, and not much more.

fmt can do a better job because it thinks in terms of language constructs like paragraphs. fmt wraps
lines continuously, rather than just folding the long ones. It assumes that paragraphs end at blank lines.

You can use fmt for things like neatening lines of a mail message or a file that you're editing with vi
(Section 17.28). (Emacs has its own built-in line-neatener.) It's also great for shell programming and
almost any place you have lines that are too long or too short for your screen.

To make this discussion more concrete, let's imagine that you have the following paragraph:
 Most people take their Emo Phillips for granted. They figure, and not
without some truth, that he is a God-given right and any government that
considers itself a democracy would naturally provide
its citizens with this
sort of access. But what too many of this Gap-wearing,
Real World-watching generation fail to realize
is that our American
forefathers, under the tutelage of Zog, the wizened master sage from
Zeta-Reticuli, had to fight not only the godless and effete British
for our system of self-determined government, but also avoid the terrors
of hynpo-death from the dark and
unclean Draco-Repitilians.

To prepare this text for printing, you'd like to have all the lines be about 60 characters wide and
remove the extra space in the lines. Although you could format this text by hand, GNU fmt can do this
for you with the following command line:
% fmt -tuw 60 my_file

The -t option, short for --tagged-paragraph mode, tells fmt to preserve the paragraph's initial
indent but align the rest of the lines with the left margin of the second line. The -u option, short for --
uniform-spacing, squashes all the inappropriate whitespace in the lines. The final option, -w, sets
the width of the output in characters. Like most UNIX commands, fmt sends its output to stdout. For
our test paragraph, fmt did this:
 Most people take their Emo Phillips for granted.
They figure, and not without some truth, that he is a
God-given right and any government that considers itself a
democracy would naturally provide its citizens with this
sort of access. But what too many of this Gap-wearing,
Real World-watching generation fail to realize is that
our American forefathers, under the tutelage of Zog,
the wizened master sage from Zeta-Reticuli, had to fight
not only the godless and effete British for our system of
self-determined government, but also avoid the terrors of
hynpo-death from the dark and unclean Draco-Repitilians.

There is one subtlety to fmt to be aware of: fmt expects sentences to end with a period, question
mark, or exclamation point followed by two spaces. If your document isn't marked up according to
this convention, fmt can't differentiate between sentences and abbreviations. This is a common
"gotcha" that appears frequently on Usenet.

Warning

On at least one version of Unix, fmt is a disk initializer (disk formatter) command. Don't run that command accidentally ! Check y our online manual page and see the fmt equivalents that follow.

There are a few different versions of fmt, some fancier than others. In general, the program assumes
the following:

Paragraphs have blank lines between them.
If a line is indented, the indentation should be preserved.
The output lines should be about 70 characters wide. Some have a command-line option to let
you set this. For example, fmt -132 (or on some versions, fmt -l 132) would reformat your
file to have lines with no more than 132 characters on each.
It reads files or standard input. Lines will be written to standard output.

 Go to http://examples.oreilly.com/upt3 for more information on: fmt

There are a couple of free versions available. Many versions of fmt have options for other structured
data. The -p option (Section 21.4) reformats program source code. (If your fmt doesn't have -p, the
recomment (Section 21.4) script uses standard fmt with sed to do the same thing.) The -s option
breaks long lines at whitespace but doesn't join short lines to form longer ones.

Alternatively, you can make your own (Section 21.3) simple (and a little slower) version with sed
and nroff. If you want to get fancy (and use some nroff and/or tbl coding), this will let you do
automatically formatted text tables, bulleted lists, and much more.

—JP, TOR, and JJ

http://examples.oreilly.com/upt3

Alternatives to fmt

fmt (Section 21.2) is hard to do without once you've learned about it. Unfortunately, it's not available
in some versions of Unix, but it's also relatively easy to emulate with sed (Section 37.4) and nroff .
Using those two utilities also let you take advantage of the more sophisticated formatting and
flexibility that sed and nroff macros can give you. (If you're doing anything really fancy, like tables
with tbl,[1] you might need col or colcrt to clean up nroff's output.)

Here's the script:

 Go to http://examples.oreilly.com/upt3 for more information on: fmt.sh
#!/bin/sh
sed '1i\
.ll 72\
.na\
.hy 0\
.pl 1' $* | nroff

The reason this is so complicated is that, by default, nroff makes some assumptions you need to
change. For example, it assumes an 11-inch page (66 lines) and will add blank lines to a short file (or
the end of a long file). The quick-and-dirty workaround to this is to manually put the nroff request .pl
1 (page length 1 line) at the top of the text you want to reformat. nroff also tends to justify lines; you
want to turn this off with the .na request. You also want to turn off hyphenation (.hy 0), and you may
want to set the line length to 72 instead of nroff's default 65, if only for consistency with the real fmt
program. All these nroff requests get inserted before the first line of input by the sed 1i command.

A fancier script would take a -nn line-length option and turn it into a .ll request for nroff, etc.

Another solution to consider is Damian Conway's Text::Autoformat Perl module. It has some very
sophisticated heuristics to try to figure out how text should be formatted, including bulleted and
numbered lists. In its simplest form, it can be used to read from stdin and write to stdout, just as a
standard Unix utility would do. You can invoke this module from the command line like this:
% perl -MText::Autoformat -e 'autoformat' < your_file_here

By default, autoformat formats only one paragraph at a time. This behavior can be changed by
altering the invocation slightly:
% perl -MText::Autoformat -e 'autoformat({all =>1})'

The manpage for this module even suggests a way into integrate this into vi:
map f !Gperl -MText::Autoformat -e'autoformat'

—TOR and JJ

[1] [The combination of tbl, nroff, and col can make ASCII tables in a few quick steps. The tables
aren't sexy, but they can be quite complex. They can be emailed or printed anywhere and, because
they're plain text, don't require sophisticated viewing software or equipment. tbl is a powerful way to
describe tables without worrying about balancing columns or wrapping text in them. And if you want
nicer-looking output, you can feed the same tbl file to groff. — JP]

http://examples.oreilly.com/upt3

Clean Up Program Comment Blocks

Lines in a program's comment block usually start with one or more special characters, like this:
line 1 of the comment
line 2 of the comment
line 3 of the comment
 ...

It can be a hassle to add more text to one of the comment lines in a block, because the line can get too
long, which requires you to fold that line onto the next line, which means you have to work around the
leading comment character(s).

The fmt (Section 21.2) program neatens lines of a text file. But the standard fmt won't help you
"neaten" blocks of comments in a program: it mixes the comment characters from the starts of lines
with the words. (If your fmt has the -p option, it handles this problem; there's an example below.)
The recomment script is fmt for comment blocks. It's for people who write shell, awk, C, or almost
any other kind of program with comment blocks several lines long.

The recomment Script

 Go to http://examples.oreilly.com/upt3 for more information on: recomment

recomment reads the lines that you feed its standard input. It looks at the first line and figures out
what characters you're using to comment the line (see the $cchars variable for a list — typically
SPACEs, TABs, #, or *). recomment then strips those comment characters off each line, feeds the
remaining block of text to the fmt utility, and uses sed (Section 34.1) to add the comment characters
again.

I usually use recomment from inside vi, with filter-through (Section 17.18) commands like:
!}recomment reformat to the next blank line
5!!recomment reformat this line and the next 4

Normally, recomment lets fmt choose the width of the comment block (72 characters, typically). To
get another width, you can do one of the following:

Give the width on the command line, like this:
recomment -50

Set an environment variable named CBLKWID . Give the maximum width, in characters, for the
comment text. For example, in the C shell, use:
% setenv CBLKWID 50

recomment isn't perfect, but it's usually much better than nothing! Here's the part of the script that
does the work. The first two commands get the comment character(s) and count their length. The next
three commands strip the comment characters, clean up the remaining comment text, and add the same
comment characters to the start of all reformatted lines:

-n Section 34.3, expr Section 36.22, cut Section 21.14
Get comment characters used on first line; store in $comment:
comment=`sed -n "1s/^\([$cchars]*\).*/\1/p" $temp`
Count number of characters in comment character string:
cwidth=`expr "$comment" : '.*'`

Re-format the comment block. If $widopt set, use it:
cut -c`expr $cwidth + 1`- < $temp | # Strip off comment leader
fmt $widopt | # Re-format the text, and
sed "s/^/$comment/" # put back comment characters

When the expr command in backquotes (Section 28.14) is expanded, it makes a command like cut -
c4-.

http://examples.oreilly.com/upt3

fmt -p

Some versions of fmt have a -p option that does the same thing. Unlike the automatic system in
recomment, you have to tell fmt -p what the prefix characters are — but then it will only reformat
lines with that prefix character For example, here's the start of a C++ program. The prefix character is
*:
% cat load.cc
/*
 * This file, load.cc, reads an input
 * data file.
 * Each input line is added to a new node
 * of type struct Node.
 */
 ...
% fmt -p '*' load.cc
/*
 * This file, load.cc, reads an input data file. Each input line is
 * added to a new node of type struct Node.
 */
 ...

— JP

Remove Mail/News Headers with behead

When you're saving or resending a Usenet article or mail message, you might want to the remove
header lines (Subject:, Received:, and so on). This little script will handle standard input, one or
many files. It writes to standard output. Here are a few examples:

With saved messages, at a shell prompt:

mail Section 1.21
% behead msg* | mail -s "Did you see these?" fredf

To save an article from a pipe without a header, from a program (here, the old readnews) that
can't cut off headers itself:
What now? [ynq] s- | behead > filename

Here's the script, adapted a little from the original by Arthur David Olson:

 Go to http://examples.oreilly.com/upt3 for more information on: behead
#! /bin/sh
case $# in
0) exec sed '1,/^$/d' ;;
*) for i
 do sed '1,/^$/d' "$i"
 done
 ;;
esac

The script relies on the fact that news articles and mail messages use a blank line to separate the
header from the body of the message. As a result, the script simply deletes the text from the beginning
up to the first blank line.

— JP

http://examples.oreilly.com/upt3

Low-Level File Butchery with dd

Want to strip off some arbitrary number of characters from the front of a file?

 Go to http://examples.oreilly.com/upt3 for more information on: dd

dd provides an unexpectedly easy answer. Let's say you wanted to delete the first 100 characters in a
file. Here's the command that will do the trick (assuming of course that you give dd a filename with
the if= option or data from a pipe):
% dd bs=100 skip=1

Or you could try:
% dd bs=1 skip=100

dd normally reads and writes data in 512-byte blocks; the input block size can be changed with the
ibs= option, and the output block size with obs=. Use bs= to set both. skip= sets the number of
blocks to skip at the start of the file.

Why would you want to do this? Section 21.9 gives an interesting example of reading text from
standard input and writing it to a series of smaller files. Section 21.13 shows even more uses for dd.

— TOR

http://examples.oreilly.com/upt3

offset: Indent Text

Do you have a printer that starts each line too close to the left margin? You might want to indent text
to make it look better on the screen or a printed page. Here's a Perl script that does that. It reads from
files or standard input and writes to standard output. The default indentation is 5 spaces. For example,
to send a copy of a file named graph to the lp printer, indented 12 spaces:
% offset -12 graph | lp

Here's the Perl script that does the job:

 Go to http://examples.oreilly.com/upt3 for more information on: offset
#!/usr/local/bin/perl

if ($ARGV[0] =~ /-[0-9]+/) {
 ($indent = $ARGV[0]) =~ s/-//;
 shift @ARGV;
} else {
 $indent = 5;
}

while (<>) {
 print " " x $indent, $_;
}

If there's an indentation amount in the first command-line argument, the dash is stripped and the value
stored, then that argument is shifted away. Then a loop steps through the remaining arguments, if any
(otherwise standard input is read) and outputs their text preceded by spaces. The script uses the Perl
operator "string" x n, which outputs the string (in this case, a single space) n times. The Perl $_
operator contains the current input line.

— JP

http://examples.oreilly.com/upt3

Centering Lines in a File

Here's an awk script, written by Greg Ubben, that centers text across an 80-character line. If your
system understands #! (Section 36.3), this script will be passed directly to awk without a shell.
Otherwise, put this into a Bourne shell wrapper (Section 35.19).

 Go to http://examples.oreilly.com/upt3 for more information on: center
#!/usr/bin/awk -f
{
 printf "%" int(40+length($0)/2) "s\n", $0
}

For each input line, the script builds a printf command with a width specification just wide enough to
center the line (which awk holds in $0). For instance, a line 60 characters wide would give a value of
int(40+60/2), which is 70. That makes the following printf command:
printf %70s\n, $0

Because %s prints a string right-justified, that command gives a 10-character indentation (70 minus
60) on an 80-character line. The right end of the line is also 10 characters (80 minus 70) from the
right edge of the screen.

In vi , you can use a filter-through (Section 17.18) command to center lines while you're editing. Or
just use center from the command line. For example:
% center afile > afile.centered
% sort party_list | center | lp

— JP

http://examples.oreilly.com/upt3

Splitting Files at Fixed Points: split

Most versions of Unix come with a program called split whose purpose is to split large files into
smaller files for tasks such as editing them in an editor that cannot handle large files, or mailing them
if they are so big that some mailers will refuse to deal with them. For example, let's say you have a
really big text file that you want to mail to someone:
% ls -l bigfile
-r--r--r-- 1 jik 139070 Oct 15 21:02 bigfile

Running split on that file will (by default, with most versions of split) break it up into pieces that are
each no more than 1000 lines long:

wc Section 16.6
% split bigfile
% ls -l
total 283
-r--r--r-- 1 jik 139070 Oct 15 21:02 bigfile
-rw-rw-r-- 1 jik 46444 Oct 15 21:04 xaa
-rw-rw-r-- 1 jik 51619 Oct 15 21:04 xab
-rw-rw-r-- 1 jik 41007 Oct 15 21:04 xac
% wc -l x*
 1000 xaa
 1000 xab
 932 xac
 2932 total

Note the default naming scheme, which is to append "aa", "ab", "ac", etc., to the letter "x" for each
subsequent filename. It is possible to modify the default behavior. For example, you can make split
create files that are 1500 lines long instead of 1000:
% rm x??
% split -1500 bigfile
% ls -l
total 288
-r--r--r-- 1 jik 139070 Oct 15 21:02 bigfile
-rw-rw-r-- 1 jik 74016 Oct 15 21:06 xaa
-rw-rw-r-- 1 jik 65054 Oct 15 21:06 xab

You can also get it to use a name prefix other than "x":
% rm x??
% split -1500 bigfile bigfile.split.
% ls -l
total 288
-r--r--r-- 1 jik 139070 Oct 15 21:02 bigfile
-rw-rw-r-- 1 jik 74016 Oct 15 21:07 bigfile.split.aa
-rw-rw-r-- 1 jik 65054 Oct 15 21:07 bigfile.split.ab

Although the simple behavior described above tends to be relatively universal, there are differences
in the functionality of split on different Unix systems. There are four basic variants of split as shipped
with various implementations of Unix:

1. A split that understands only how to deal with splitting text files into chunks of n lines or less
each.

2. A split, usually called bsplit, that understands only how to deal with splitting nontext files into
n-character chunks.

3. A split that splits text files into n-line chunks, or nontext files into n-character chunks, and tries
to figure out automatically whether it's working on a text file or a nontext file.

4. A split that does either text files or nontext files but needs to be told explicitly when it is

working on a nontext file.

The only way to tell which version you've got is to read the manual page for it on your system, which
will also tell you the exact syntax for using it.

The problem with the third variant is that although it tries to be smart and automatically do the right
thing with both text and nontext files, it sometimes guesses wrong and splits a text file as a nontext file
or vice versa, with completely unsatisfactory results. Therefore, if the variant on your system is (3),
you probably want to get your hands on one of the many split clones out there that is closer to one of
the other variants (see below).

Variants (1) and (2) listed above are OK as far as they go, but they aren't adequate if your
environment provides only one of them rather than both. If you find yourself needing to split a nontext
file when you have only a text split, or needing to split a text file when you have only bsplit, you need
to get one of the clones that will perform the function you need.

 Go to http://examples.oreilly.com/upt3 for more information on: split

Variant (4) is the most reliable and versatile of the four listed, and it is therefore what you should go
with if you find it necessary to get a clone and install it on your system. There are several such clones
in the various source archives, including the free BSD Unix version. Alternatively, if you have
installed perl (Section 41.1), it is quite easy to write a simple split clone in perl, and you don't have
to worry about compiling a C program to do it; this is an especially significant advantage if you need
to run your split on multiple architectures that would need separate binaries. The Perl code for a
binary split program follows:
#!/usr/bin/perl -w --
Split text or binary files; jjohn 2/2002
use strict;
use Getopt::Std;

my %opts;
getopts("?b:f:hp:ts:", \%opts);

if($opts{'?'} || $opts{'h'} || !-e $opts{'f'}){
 print <<USAGE;
$0 - split files in smaller ones

USAGE:
 $0 -b 1500 -f big_file -p part.

OPTIONS:

 -? print this screen
 -h print this screen
 -b <INT> split file into given byte size parts
 -f <TXT> the file to be split
 -p <TXT> each new file to begin with given text
 -s <INT> split file into given number of parts
USAGE
 exit;
}

my $infile;
open($infile, $opts{'f'}) or die "No file given to split\n";
binmode($infile);
my $infile_size = (stat $opts{'f'})[7];

my $block_size = 1;
if($block_size = $opts{'b'}){

http://examples.oreilly.com/upt3

 # chunk file into blocks

}elsif(my $total_parts = $opts{'s'}){
 # chunk file into N parts
 $block_size = int ($infile_size / $total_parts) + 1;

}else{
 die "Please indicate how to split file with -b or -s\n";
}

my $outfile_base = $opts{'p'} || 'part.';
my $outfile_ext = "aa";

my $offset = 0;
while($offset < $infile_size){
 my $buf;
 $offset += read $infile, $buf, $block_size;
 write_file($outfile_base, $outfile_ext++, \$buf);
}

#--- subs ---#
sub write_file {
 my($fname, $ext, $buf) = @_;

 my $outfile;
 open($outfile, ">$fname$ext") or die "can't open $fname$ext\n";
 binmode($outfile);
 my $wrote = syswrite $outfile, $$buf;
 my $size = length($$buf);
 warn "WARN: wrote $wrote bytes instead of $size to $fname$ext\n"
 unless $wrote == $size;
}

Although it may seem somewhat complex at first glance, this small Perl script is cross-platform and
has its own small help screen to describe its options. Briefly, it can split files into N-sized blocks
(given the -b option) or, with -s, create N new segments of the original file. For a better introduction
to Perl, see Chapter 42.Chapter 42

If you need to split a nontext file and don't feel like going to all of the trouble of finding a split clone
to handle it, one standard Unix tool you can use to do the splitting is dd (Section 21.6). For example,
if bigfile above were a nontext file and you wanted to split it into 20,000-byte pieces, you could do
something like this:

for Section 35.21, > Section 28.12
$ ls -l bigfile
-r--r--r-- 1 jik 139070 Oct 23 08:58 bigfile

$ for i in 1 2 3 4 5 6 7 #[2]

> do

> dd of=x$i bs=20000 count=1 2>/dev/null #[3]

> done < bigfile
$ ls -l
total 279
-r--r--r-- 1 jik 139070 Oct 23 08:58 bigfile
-rw-rw-r-- 1 jik 20000 Oct 23 09:00 x1
-rw-rw-r-- 1 jik 20000 Oct 23 09:00 x2
-rw-rw-r-- 1 jik 20000 Oct 23 09:00 x3
-rw-rw-r-- 1 jik 20000 Oct 23 09:00 x4
-rw-rw-r-- 1 jik 20000 Oct 23 09:00 x5
-rw-rw-r-- 1 jik 20000 Oct 23 09:00 x6
-rw-rw-r-- 1 jik 19070 Oct 23 09:00 x7

—JIK and JJ

[2] To figure out how many numbers to count up to, divide the total size of the file by the block size
you want and add one if there's a remainder. The jot program can help here.
[3] The output file size I want is denoted by the bs or "block size" parameter to dd. The 2>/dev/null
(Section 36.16, Section 43.12) gets rid of dd's diagnostic output, which isn't useful here and takes up
space.

Splitting Files by Context: csplit

 Go to http://examples.oreilly.com/upt3 for more information on: csplit

Like split (Section 21.9), csplit lets you break a file into smaller pieces, but csplit (context split) also
allows the file to be broken into different-sized pieces, according to context. With csplit, you give the
locations (line numbers or search patterns) at which to break each section. csplit comes with System
V, but there are also free versions available.

Let's look at search patterns first. Suppose you have an outline consisting of three main sections that
start on lines with the Roman numerals I., II., and III.. You could create a separate file for each
section by typing:
% csplit outline /I./ /II./ /III./
28 number of characters in each file
415 .
372 .
554 .
% ls
outline
xx00 outline title, etc.
xx01 Section I
xx02 Section II
xx03 Section III

This command creates four new files (outline remains intact). csplit displays the character counts for
each file. Note that the first file (xx00) contains any text up to but not including the first pattern, and
xx01 contains the first section, as you'd expect. This is why the naming scheme begins with 00. (If
outline had begun immediately with a I., xx01 would still contain Section I, but in this case xx00
would be empty.)

If you don't want to save the text that occurs before a specified pattern, use a percent sign as the
pattern delimiter:
% csplit outline %I.% /II./ /III./
415
372
554
% ls
outline
xx00 Section I
xx01 Section II
xx02 Section III

The preliminary text file has been suppressed, and the created files now begin where the actual
outline starts (the file numbering is off, however).

Let's make some further refinements. We'll use the -s option to suppress the display of the character
counts, and we'll use the -f option to specify a file prefix other than the conventional xx:
% csplit -s -f part. outline /I./ /II./ /III./
% ls
outline
part.00
part.01
part.02
part.03

There's still a slight problem, though. In search patterns, a period is a metacharacter (Section 32.21)

http://examples.oreilly.com/upt3

that matches any single character, so the pattern /I./ may inadvertently match words like
Introduction. We need to escape the period with a backslash; however, the backslash has meaning
both to the pattern and to the shell, so in fact, we need either to use a double backslash or to surround
the pattern in quotes (Section 27.12). A subtlety, yes, but one that can drive you crazy if you don't
remember it. Our command line becomes:
% csplit -s -f part. outline "/I\./" /II./ /III./

You can also break a file at repeated occurrences of the same pattern. Let's say you have a file that
describes 50 ways to cook a chicken, and you want each method stored in a separate file. The
sections begin with headings WAY #1, WAY #2, and so on. To divide the file, use csplit's repeat
argument:
% csplit -s -f cook. fifty_ways /^WAY/ "{49}"

This command splits the file at the first occurrence of WAY, and the number in braces tells csplit to
repeat the split 49 more times. Note that a caret (^) (Section 32.5) is used to match the beginning of
the line and the C shell requires quotes around the braces (Section 28.4). The command has created
50 files:
% ls cook.*
cook.00
cook.01
 ...
cook.48
cook.49

Quite often, when you want to split a file repeatedly, you don't know or don't care how many files
will be created; you just want to make sure that the necessary number of splits takes place. In this
case, it makes sense to specify a repeat count that is slightly higher than what you need (the maximum
is 99). Unfortunately, if you tell csplit to create more files than it's able to, this produces an "out of
range" error. Furthermore, when csplit encounters an error, it exits by removing any files it created
along the way. (A bug, if you ask me.) This is where the -k option comes in. Specify -k to keep the
files around, even when the "out of range" message occurs.

csplit allows you to break a file at some number of lines above or below a given search pattern. For
example, to break a file at the line that is five lines below the one containing Sincerely, you could
type:
% csplit -s -f letter. all_letters /Sincerely/+5

This situation might arise if you have a series of business letters strung together in one file. Each
letter begins differently, but each one begins five lines after the previous letter's Sincerely line.
Here's another example, adapted from AT&T's Unix User's Reference Manual:
% csplit -s -k -f routine. prog.c '%main(%' '/^}/+1' '{99}'

The idea is that the file prog.c contains a group of C routines, and we want to place each one in a
separate file (routine.00, routine.01, etc.). The first pattern uses % because we want to discard
anything before main. The next argument says, "Look for a closing brace at the beginning of a line (the
conventional end of a routine) and split on the following line (the assumed beginning of the next
routine)." Repeat this split up to 99 times, using -k to preserve the created files.[4]

The csplit command takes line-number arguments in addition to patterns. You can say:
% csplit stuff 50 373 955

to create files split at some arbitrary line numbers. In that example, the new file xx00 will have lines
1-49 (49 lines total), xx01 will have lines 50-372 (323 lines total), xx02 will have lines 373-954

(582 lines total), and xx03 will hold the rest of stuff.
csplit works like split if you repeat the argument. The command:
% csplit top_ten_list 10 "{18}"

breaks the list into 19 segments of 10 lines each.[5]

— DG

[4] In this case, the repeat can actually occur only 98 times, since we've already specified two
arguments and the maximum number is 100.
[5] Not really. The first file contains only nine lines (1-9); the rest contain 10. In this case, you're
better off saying split -10 top_ten_list.

Hacking on Characters with tr

The tr command is a character translation filter, reading standard input (Section 43.1) and either
deleting specific characters or substituting one character for another.

The most common use of tr is to change each character in one string to the corresponding character in
a second string. (A string of consecutive ASCII characters can be represented as a hyphen-separated
range.)

For example, the command:

< Section 43.1
$ tr 'A-Z' 'a-z' <
 file
 Berkeley version

will convert all uppercase characters in file to the equivalent lowercase characters. The result is
printed on standard output.

In fact, a frequent trick I use tr for is to convert filenames from all uppercase to all lowercase. This
comes up when you're dealing with files from MS-DOS or VMS that you are copying on to a Unix
filesystem. To change all the files in the current directory to lowercase, try this from a Bash or
Bourne shell prompt:
$ for i in `ls`; do mv $i `echo $i | tr [A-Z] [a-z]`; done

Of course, you need to be careful that there are no files that have the same name regardless of case.
The GNU mv can be passed the -i flag that will make the program prompt you before overwriting an
existing file. If you want to uppercase filenames, simply flip the arguments to tr. You can even apply
this to an entire branch of a file system by sticking this in a find command. First, create a small shell
script that can downcase a file and call it downcase:
#!/bin/sh
mv $1 `echo $1 | tr [A-Z] [a-z]`

Now you can really do some damage with find:
$ find /directory/to/be/affected -exec 'downcase' '{}' ';'

Obviously, running this programming on random directories as root is not recomended, unless you're
looking to test your backup system.

 Go to http://examples.oreilly.com/upt3 for more information on: tr

In the System V version of tr, square brackets must surround any range of characters. That is, you
have to say [a-z] instead of simply a-z. And of course, because square brackets are meaningful to
the shell, you must protect them from interpretation by putting the string in quotes. The GNU tr, on the
web site, is basically the System V version.

If you aren't sure which version you have, here's a test. Both tr examples below will convert the
lowercase letters a through z to an uppercase A, but that's not what we're testing here. The Berkeley
version also converts the input [] to A characters because [] aren't treated as range operators:
% echo '[]' | tr '[a-z]' A
AA Berkeley version
% echo '[]' | tr '[a-z]' A
[] System V version

http://examples.oreilly.com/upt3

There's one place you don't have to worry about the difference between the two versions: when you're
converting one range to another range, and both ranges have the same number of characters. For
example, this command works in both versions:
$ tr '[A-Z]' '[a-z]' < file

 both versions

The Berkeley tr will convert a [from the first string into the same character [in the second string,
and the same for the] characters. The System V version uses the [] characters as range operators.
In both versions, you get what you want: the range A-Z is converted to the corresponding range a-z.
Again, this trick works only when both ranges have the same number of characters.

The System V version also has a nice feature: the syntax [a* n], where n is some digit, means that
the string should consist of n repetitions of character "a." If n isn't specified or is 0, it is taken to be
some indefinitely large number. This is useful if you don't know how many characters might be
included in the first string.

As described in Section 17.18, this translation (and the reverse) can be useful from within vi for
translating a string. You can also delete specific characters. The -d option deletes from the input each
occurrence of one or more characters specified in a string (special characters should be placed
within quotation marks to protect them from the shell). For instance, the following command passes to
standard output the contents of file with all punctuation deleted (and is a great exercise in shell
quoting (Section 27.12)):
$ tr -d ",.\!?;:\"\'`" < file

The -s (squeeze) option of tr removes multiple consecutive occurrences of the same character in the
second argument. For example, the command:
$ tr -s " " " " < file

will print on standard output a copy of file in which multiple spaces in sequence have been replaced
with a single space.

We've also found tr useful when converting documents created on other systems for use under Unix.
For example, as described in Section 1.8, tr can be used to change the carriage returns at the end of
each line in a Macintosh text file into the newline Unix expects. tr allows you to specify characters as
octal values by preceding the value with a backslash, so the following command does the trick:
$ tr '\015' '\012' < file.mac > file.unix

The command:
$ tr -d '\015' < pc.file

will remove the carriage return from the carriage return/newline pair that a PC file uses as a line
terminator. (This command is also handy for removing the excess carriage returns from a file created
with script (Section 37.7).)

Encoding "Binary" Files into ASCII

Email transport systems were originally designed to transmit characters with a seven-bit encoding —
like ASCII. This meant they could send messages with plain English text but not "binary" text, such as
program files or graphics (or non-English text!), that used all of an eight-bit byte. Usenet (Section
1.21), the newsgroup system, was transmitted like email and had its same seven-bit limitations. The
solution — which is still used today — is to encode eight-bit text into characters that use only the
seven low bits.

The first popular solution on Unix-type systems was uuencoding . That method is mostly obsolete
now (though you'll still find it used sometimes); it's been replaced by MIME encoding. The next two
sections cover both of those — though we recommend avoiding uuencode like the plague.

uuencoding

The uuencode utility encodes eight-bit data into a seven-bit representation for sending via email or on
Usenet. The recipient can use uudecode to restore the original data. Unfortunately, there are several
different and incompatible versions of these two utilities. Also, uuencoded data doesn't travel well
through all mail gateways — partly because uuencoding is sensitive to changes in whitespace (space
and TAB) characters, and some gateways munge (change or corrupt) whitespace. So if you're
encoding text for transmission, use MIME instead of uuencode whenever you can.

To create an ASCII version of a binary file, use the uuencode utility. For instance, a compressed file
(Section 15.6) is definitely eight-bit; it needs encoding.

A uuencoded file (there's an example later in this article) starts with a begin line that gives the file's
name; this name comes from the first argument you give the uuencode utility as it encodes a file. To
make uuencode read a file directly, give the filename as the second argument. uuencode writes the
encoded file to its standard output. For example, to encode the file emacs.tar.gz from your ~/tarfiles
directory and store it in a file named emacs.tar.gz.uu:
% uuencode emacs.tar.gz ~/tarfiles/emacs.tar.gz > emacs.tar.gz.uu

You can then insert emacs.tar.gz.uu into a mail message and send it to someone. Of course, the
ASCII-only encoding takes more space than the original binary format. The encoded file will be about
one-third larger.[6]

If you'd rather, you can combine the steps above into one pipeline. Given only one command-line
argument (the name of the file for the begin line), uuencode will read its standard input. Instead of
creating the ~/tarfiles/emacs.tar.gz, making a second uuencoded file, then mailing that file, you can
give tar the "filename" so it writes to its standard output. That feeds the archive down the pipe:[7]

mail Section 1.21
% tar cf - emacs | gzip | uuencode emacs.tar.gz | \
 mail -s "uuencoded emacs file" whoever@wherever.com

What happens when you receive a uuencoded, compressed tar file? The same thing, in reverse. You'll
get a mail message that looks something like this:
From: you@whichever.ie
To: whoever@wherever.com
Subject: uuencoded emacs file

begin 644 emacs.tar.gz
M+DQ0"D%L;"!O9B!T:&5S92!P<F]B;&5M<R!C86X@8F4@<V]L=F5D(&)Y(")L
M:6YK<RPB(&$@;65C:&%N:7-M('=H:6-H"F%L;&]W<R!A(&9I;&4@=&\@:&%V
M92!T=V\@;W(@;6]R92!N86UE<RX@(%5.25@@<')O=FED97,@='=O(&1I9F9E
M<F5N= IK:6YD<R!O9B!L:6YK<SH*+DQS($(*+DQI"EQF0DAA<F0@;&EN:W-<
 ...
end

So you save the message in a file, complete with headers. Let's say you call this file mailstuff. How
do you get the original files back? Use the following sequence of commands:
% uudecode mailstuff
% gunzip emacs.tar.gz
% tar xf emacs.tar

The uudecode command searches through the file, skipping From:, etc., until it sees its special begin
line; it decodes the rest of the file (until the corresponding end line) and creates the file emacs.tar.gz.
Then gunzip recreates your original tar file, and tar xf extracts the individual files from the archive.

Again, though, you'll be better off using MIME encoding whenever you can.

MIME Encoding

When MIME (Multipurpose Internet Mail Extensions) was designed in the early 1990s, one main goal
was robust email communications. That meant coming up with a mail encoding scheme that would
work on all platforms and get through all mail transmission paths.

Some text is "mostly ASCII": for instance, it's in a language like German or French that uses many
ASCII characters plus some eight-bit characters (characters with a octal value greater than 177). The
MIME standard allows that text to be minimally encoded in a way that it can be read fairly well
without decoding: the quoted-printable encoding. Other text is full binary — either not designed for
humans to read, or so far from ASCII that an ASCII representation would be pointless. In that case,
you'll want to use the base64 encoding.

 Go to http://examples.oreilly.com/upt3 for more information on: mimencode, mailto

Most modern email programs automatically MIME-encode files. Unfortunately, some aren't too smart
about it. The Metamail utilities come with a utility called mimencode (also named mmencode) for
encoding and decoding MIME formats. Another Metamail utility, mailto, encodes and sends MIME
messages directly — but let's use mimencode, partly because of the extra control it gives you.

By default, mimencode reads text from standard input, uses a base64 encoding, and writes the
encoded text to standard output. If you add the -q option, mimencode uses quoted-printable encoding
instead.

Unlike uuencoded messages, which contain the filename in the message body, MIME-encoded
messages need information in the message header (the lines "To:", "From:", etc.). The mail utility
(except an older version) doesn't let you make a message header. So let's do it directly: create a mail
header with cat > (Section 11.2), create a mail body with mimencode, and send it using a common
system mail transfer agent, sendmail . (You could automate this with a script, of course, but we're just
demonstrating.) The MIME standard header formats are still evolving; we'll use a simple set of
header fields that should do the job. Here's the setup. Let's do it first in three steps, using temporary
files:
$ cat > header
From: jpeek@oreilly.com
To: jpeek@jpeek.com
Subject: base64-encoded smallfile
MIME-Version: 1.0
Content-Type: application/octet-stream; name="smallfile.tar.gz"
Content-Transfer-Encoding: base64

CTRL-d
$ tar cf - smallfile | gzip | mimencode > body
$ cat header body | /usr/lib/sendmail -t

The cat > command lets me create the header file by typing it in at the terminal; I could have used a
text editor instead. One important note: the header must end with a blank line. The second command
creates the body file. The third command uses cat to output the header, then the body; the message
we've built is piped to sendmail, whose -t option tells it to read the addresses from the message
header. You should get a message something like this:
Date: Wed, 22 Nov 2000 11:46:53 -0700
Message-Id: <200011221846.LAA18155@oreilly.com>
From: jpeek@oreilly.com
To: jpeek@jpeek.com

http://examples.oreilly.com/upt3

Subject: base64-encoded smallfile
MIME-Version: 1.0
Content-Type: application/octet-stream; name="smallfile.tar.gz"
Content-Transfer-Encoding: base64

H4sIACj6GzoAA+1Z21YbRxb1c39FWcvBMIMu3A0IBWxDzMTYDuBgrxU/lKSSVHF3V6erGiGv
rPn22edU3wRIecrMPLgfEGpVV53LPvtcOktcW6au3dnZ2mrZcfTkb7g6G53O7vb2k06ns7G3
06HPzt7uDn/Sra1N/L+32dnd29ve3tjD+s3Nna0novN3CHP/yqyTqRBPfk+U+rpknUnlf0Oc
 ...

Your mail client may be able to extract that file directly. You also can use mimencode -u. But
mimencode doesn't know about mail headers, so you should strip off the header first. The behead
(Section 21.5) script can do that. For instance, if you've saved the mail message in a file msg:
$ behead msg | mimencode -u > smallfile.tar.gz

Extract (Section 39.2) smallfile.tar.gz and compare it to your original smallfile (maybe with cmp).
They should be identical.

If you're planning to do this often, it's important to understand how to form an email header and body
properly. For more information, see relevant Internet RFCs (standards documents) and O'Reilly's
Programming Internet Email by David Wood.

—JP and ML

[6] If so, why bother gzipping? Why not forget about both gzip and uuencode? Well, you can't.
Remember that tar files are binary files to start with, even if every file in the archive is an ASCII text
file. You'd need to uuencode a file before mailing it, anyway, so you'd still pay the 33 percent size
penalty that uuencode incurs. Using gzip minimizes the damage.
[7] With GNU tar, you can use tar czf - emacs | uuencode That's not the point of this
example, though. We're just showing how to uuencode some arbitrary data.

Text Conversion with dd

Besides the other uses of dd (Section 21.6) we've covered, you also can use this versatile utility to
convert:

 fixed length to variable-length records (conv=unblock), and the reverse (conv=block)
uppercase to lowercase (conv=lcase), and the reverse (conv=ucase)
the byte order of every pair of bytes (conv=swab)
 ASCII to EBCDIC and the reverse (conv=ebcdic, conv=ibm). If you're converting old IBM
tapes, you'll need to know the tape's blocking factor. And if the tape has multiple files on it,
you'll have to use the tape device name that allows "no rewind on close" (Section 38.5) to read
past the first file.

The cbs= option must be used to specify a conversion buffer size when using block and unblock and
when converting between ASCII and EBCDIC. The specified number of characters are put into the
conversion buffer. For ascii and unblock conversion, trailing blanks are trimmed and a newline is
added to each buffer before it is output. For ebcdic, ibm, and block, the input is padded with blanks
up to the specified conversion buffer size.

— TOR

Cutting Columns or Fields

A nifty command called cut lets you select a list of columns or fields from one or more files.

You must specify either the -c option to cut by column or -f to cut by fields. (Fields are separated by
tabs unless you specify a different field separator with -d. Use quotes (Section 27.12) if you want a
space or other special character as the delimiter.)

In some versions of cut, the column(s) or field(s) to cut must follow the option immediately, without
any space. Use a comma between separate values and a hyphen to specify a range (e.g., 1-10,15 or
20,23 or 50-).

The order of the columns and fields is ignored; the characters in each line are always output from first
to last, in the order they're read from the input. For example, cut -f1,2,4 produces exactly the same
output as cut -f4,2,1. If this isn't what you want, try perl (Section 41.1) or awk (Section 20.10),
which let you output fields in any order.

cut is incredibly handy. Here are some examples:

Find out who is logged in, but list only login names:
who Section 2.8
% who | cut -d" " -f1

Extract usernames and real names from /etc/passwd (Section 22.3):
% cut -d: -f1,5 /etc/passwd

Cut characters in the fourth column of file, and paste them back as the first column in the same
file:
% cut -c4 file | paste - file

Section 21.18 covers the cut counterpart, paste.

As was mentioned, you can use awk or perl to extract columns of text. Given the above task to extract
the fifth and first fields fields of /etc/passwd, you can use awk:
% awk -F: '{print $5, "=>", $1}' /etc/passwd

An often forgotten command-line option for perl is -a, which puts perl in awk compatibility mode. In
other words, you can get the same field-splitting behavior right from the command line:
% perl -F: -lane 'print $F[4], "=>", "$F[0]"' /etc/passwd

In the line above, perl is told about the field separator in the same way awk is, with the -F flag. The
next four options are fairly common. The -l option removes newlines from input and adds a newline
to all print statements. This is a real space saver for "one-line wonders," like the one above. The -a
flag tells perl to split each line on the indicated field separator. If no field separator is indicated, the
line is split on a space character. Each field is stored in the global array @F. Remember that the first
index in a Perl array is zero. The -n option encloses the Perl code indicated by the -e to be wrapped
in a loop that reads one line at a time from stdin. This little Perl snippet is useful if you need to do
some additional processing with the contents of each field.

—TOR, DG, and JJ

Making Text in Columns with pr

The pr command (Section 45.6) is famous for printing a file neatly on a page — with margins at top
and bottom, filename, date, and page numbers. It can also print text in columns: one file per column or
many columns for each file.

The -t option takes away the heading and margins at the top and bottom of each page. That's useful
when "pasting" data into columns with no interruptions.

One File per Column: -m

The -m option reads all files on the command line simultaneously and prints each in its own column,
like this:
% file1 file2 file3

The lines The lines The lines
of file1 of file2 of file3
are here are here are here

pr may use TAB characters between columns. If that would be bad, you can pipe pr's output through
expand. Many versions of pr have a -s X option that sets the column separator to the single character
X.

By default, pr -m doesn't put filenames in the heading. If you want that, use the -h option to make your
own heading. Or maybe you'd like to make a more descriptive heading. Here's an example using
process substitution to compare a directory with its RCS (Section 39.5) subdirectory:
% pr -m -h "working directory compared to RCS directory" <(ls) <(ls RCS)

2000-11-22 23:57 working directory compared to RCS directory Page 1

0001.sgm 0001.sgm,v
0002.sgm 0002.sgm,v
0007.sgm 0007.sgm,v
0008.sgm 0008.sgm,v
 ...

(The heading comes from the GNU version of pr. Later examples in this article use a different version
with a different heading format.)

One File, Several Columns: -number

An option that's a number will print a file in that number of columns. For instance, the -3 option prints
a file in three columns. The file is read, line by line, until the first column is full (by default, that takes
56 lines). Next, the second column is filled. Then, the third column is filled. If there's more of the file,
the first column of page 2 is filled — and the cycle repeats:
% pr -3 file1

Nov 1 19:44 1992 file1 Page 1

Line 1 here Line 57 here Line 115 here
Line 2 here Line 58 here Line 116 here
Line 3 here Line 59 here Line 117 here

The columns aren't balanced — if the file will fit into one column, the other columns aren't used. You
can change that by adjusting -l, the page length option; see the section below.

Order Lines Across Columns: -l

Do you want to arrange your data across the columns, so that the first three lines print across the top
of each column, the next three lines are the second in each column, and so on, like this?
% pr -l1 -t -3 file1
Line 1 here Line 2 here Line 3 here
Line 4 here Line 5 here Line 6 here
Line 7 here Line 8 here Line 9 here

Use the -l1 (page length 1 line) and -t (no title) options. Each "page" will be filled by three lines (or
however many columns you set). You have to use -t; otherwise, pr will silently ignore any page
lengths that don't leave room for the header and footer. That's just what you want if you want data in
columns with no headings.

If you want headings too, pipe the output of pr through another pr:
% pr -l1 -t -3 file1 | pr -h file1

Nov 1 19:48 1992 file1 Page 1

Line 1 here Line 2 here Line 3 here
Line 4 here Line 5 here Line 6 here
Line 7 here Line 8 here Line 9 here

The -h file1 puts the filename into the heading.

Also see paste (Section 21.18). Of course, programming languages like awk (Section 20.10) and
perl (Section 41.1) can also make text into columns.

— JP

Make Columns Automatically with column

 Go to http://examples.oreilly.com/upt3 for more information on: column

Another column-making program, besides cols and pr (Section 21.15), is the creatively named utility
column. It tries to determine the terminal width, which you can override with the -c option (-c 132,
for example, gives 132 columns: handy for printing on wide line-printer paper.) The -x option fills
columns before rows — similar to pr with its - n option and cols -d.

What makes column different from the others is its -t option. This reads input data that's already in
columns and rebalances the columns into a table with variable-width columns. Say what? This is
easiest to see with an example, and the column(1) manual page has a good one.

If you'd like to add column headings to ls -l output, it can be a pain to try to make headings that each
take the same number of characters as the data below them. For instance, the first field on each line,
the permissions, takes 10 characters, but if you want to use the heading "PERM", which takes only 4
characters, you need to balance it by adding 6 spaces after. Using column -t, you can balance these
automatically. Here's an example. The first command is plain ls -l. In the second and third examples, I
use sed 1d (Section 34.1) to delete the total n line from ls, and subshells (Section 24.4) to make
both commands use the same standard output; this is important only in the third command, where I
pipe the combined stdout to column for balancing:

; Section 28.16, > Section 28.12
$ ls -lo
total 1644
-r--r--r-- 1 jpeek 1559177 Sep 19 1999 ORA_tifs.tgz
-rw-rw-r-- 1 jpeek 4106 Oct 21 1999 UPT_Russian.jpg
-rw-rw-r-- 1 jpeek 101944 Nov 19 09:30 london_dusk-livesights.xwd.gz
dr-xr-xr-x 2 jpeek 4096 Dec 12 1999 me
$ (echo "PERM LINKS OWNER SIZE MON DY TM/YR NAME"; \
> ls -lo | sed 1d)
PERM LINKS OWNER SIZE MON DY TM/YR NAME
-r--r--r-- 1 jpeek 1559177 Sep 19 1999 ORA_tifs.tgz
-rw-rw-r-- 1 jpeek 4106 Oct 21 1999 UPT_Russian.jpg
-rw-rw-r-- 1 jpeek 101944 Nov 19 09:30 london_dusk-livesights.xwd.gz
dr-xr-xr-x 2 jpeek 4096 Dec 12 1999 me

$ (echo PERM LINKS OWNER SIZE MONTH DAY HH:MM/YEAR NAME; \
> ls -lo | sed 1d) | column -t
PERM LINKS OWNER SIZE MONTH DAY HH:MM/YEAR NAME
-r--r--r-- 1 jpeek 1559177 Sep 19 1999 ORA_tifs.tgz
-rw-rw-r-- 1 jpeek 4106 Oct 21 1999 UPT_Russian.jpg
-rw-rw-r-- 1 jpeek 101944 Nov 19 09:30 london_dusk-livesights.xwd.gz
dr-xr-xr-x 2 jpeek 4096 Dec 12 1999 me

My feeble attempt in the second example took a lot of trial-and-error to get the right spacing, and I
still had to cram DY over the tiny sixth column and TM/YR over the seventh. In the third example,
column automatically adjusted the column width to compensate for the HH:MM/YEAR heading.
Unfortunately, the long filename london_dusk-livesights.xwd.gz ran off the right edge (past column
80, my window width) — but there was nothing column could do in this case because the combined
header+columns were just too wide.

— JP

http://examples.oreilly.com/upt3

Straightening Jagged Columns

As we were writing this book, I decided to make a list of all the articles and the numbers of lines and
characters in each, then combine that with the description, a status code, and the article's title. After a
few minutes with wc -l -c (Section 16.6), cut (Section 21.14), sort (Section 22.1), and join (Section
21.19), I had a file that looked like this:
% cat messfile
2850 2095 51441 ~BB A sed tutorial
3120 868 21259 +BB mail - lots of basics
6480 732 31034 + How to find sources - JIK's periodic posting
 ...900 lines...
5630 14 453 +JP Running Commands on Directory Stacks
1600 12 420 !JP With find, Don't Forget -print
0495 9 399 + Make 'xargs -i' use more than one filename

Yuck. It was tough to read: the columns needed to be straightened. The column (Section 21.16)
command could do it automatically, but I wanted more control over the alignment of each column. A
little awk (Section 20.10) script turned the mess into this:
% cat cleanfile
2850 2095 51441 ~BB A sed tutorial
3120 868 21259 +BB mail - lots of basics
6480 732 31034 + How to find sources - JIK's periodic posting
 ...900 lines...
5630 14 453 +JP Running Commands on Directory Stacks
1600 12 420 !JP With find, Don't Forget -print
0495 9 399 + Make 'xargs -i' use more than one filename

Here's the simple script I used and the command I typed to run it:
% cat neatcols
{
printf "%4s %4s %6s %-4s %s\n", \
 $1, $2, $3, $4, substr($0, index($0,$5))
}
% awk -f neatcols messfile > cleanfile

You can adapt that script for whatever kinds of columns you need to clean up. In case you don't know
awk, here's a quick summary:

The first line of the printf, between double quotes ("), specifies the field widths and alignments.
For example, the first column should be right-aligned in 4 characters (%4s). The fourth column
should be 4 characters wide left-adjusted (%-4s). The fifth column is big enough to just fit (%s). I
used string (%s) instead of decimal (%d) so awk wouldn't strip off the leading zeros in the
columns.
The second line arranges the input data fields onto the output line. Here, input and output are in
the same order, but I could have reordered them. The first four columns get the first four fields
($1, $2, $3, $4). The fifth column is a catch-all; it gets everything else. substr($0,
index($0,$5)) means "find the fifth input column; print it and everything after it."

— JP

Pasting Things in Columns

 Go to http://examples.oreilly.com/upt3 for more information on: cut+paste

Do you ever wish you could paste two (or even three) files side by side? You can, if you have the
paste program (or the public-domain implementation on the disc).

For example, to create a three-column file from files x, y, and z:
$ paste x y z > file

To make paste read standard input, use the - option, and repeat - for every column you want. For
example, to make an old ls (which lists files in a single column) list files in four columns:
$ ls | paste - - - -

The "standard input" option is also handy when used with cut (Section 21.14). You can cut data from
one position on a line and paste it back on another.

The separate data streams being merged are separated by default with a tab, but you can change this
with the -d option. Unlike the -d option to cut, you need not specify a single character; instead, you
can specify a list of characters, which will be used in a circular fashion.

The characters in the list can be any regular character or the following escape sequences:
\n

newline
\t

tab
\\

backslash
\0

empty string

Use quoting (Section 27.12), if necessary, to protect characters from the shell.

There's also a -s option that lets you merge subsequent lines from one file. For example, to merge
each pair of lines onto a single line:
$ paste -s -d"\t\n" list

Let's finish with one nice place to use process substitution, if your shell has it. You can use cut to
grab certain columns from certain files, then use process substitution to make "files" that paste will
read. Output those "files" into columns in any order you want. For example, to paste column 1 from
file1 in the first output column, and column 3 from file2 in the second output column:
paste <(cut -f1 file1) <(cut -f3 file2)

If none of the shells on your system have process substitution, you can always use a bunch of
temporary files, one file per column.

—TOR, DG, and JP

http://examples.oreilly.com/upt3

Joining Lines with join

If you've worked with databases, you'll probably know what to do with the Unix join command; see
your online manual page. If you don't have a database (as far as you know!), you still probably have a
use for join: combining or "joining" two column-format files. join searches certain columns in the
files; when it finds columns that match one another, it "glues the lines together" at that column. This is
easiest to show with an example.

I needed to summarize the information in thousands of email messages under the MH mail system. MH
made that easy: it has one command (scan) that gave me almost all the information I wanted about
each message and also let me specify the format I needed. But I also had to use wc -l (Section 16.6) to
count the number of lines in each message. I ended up with two files, one with scan output and the
other with wc output. One field in both lines was the message number; I used sort (Section 22.1) to
sort the files on that field. I used awk '{print $1 "," $2}' to massage wc output into comma-
separated fields. Then I used join to "glue" the two lines together on the message-number field. (Next
I fed the file to a PC running dBASE, but that's another story.)

Here's the file that I told scan to output. The columns (message number, email address, comment,
name, and date sent) are separated with commas (,):
0001,andrewe@isc.uci.edu,,Andy Ernbaum,19901219
0002,bc3170x@cornell.bitnet,,Zoe Doan,19910104
0003,zcode!postman@uunet.uu.net,,Head Honcho,19910105
 ...

Here's the file from wc and awk with the message number and number of lines:
0001,11
0002,5
0003,187
 ...

The following join command then joined the two files at their first columns (-t, tells join that the
fields are comma-separated):
% join -t, scanfile wcfile

The output file looked like this:
0001,andrewe@isc.uci.edu,,Andy Ernbaum,19901219,11
0002,bc3170x@cornell.bitnet,,Zoe Doan,19910104,5
0003,zcode!postman@uunet.uu.net,,Head Honcho,19910105,187
 ...

 Go to http://examples.oreilly.com/upt3 for more information on: join

join can do a lot more than this simple example shows. See your online manual page.

— JP

http://examples.oreilly.com/upt3

What Is (or Isn't) Unique?

 Go to http://examples.oreilly.com/upt3 for more information on: uniq

uniq reads a file and compares adjacent lines (which means you'll usually want to sort the file first to
be sure identical lines appear next to each other). Here's what uniq can do as it watches the input
lines stream by:

With the -u option, the output gets only the lines that occur just once (and weren't repeated).
The -d option does the opposite: the output gets a single copy of each line that was repeated (no
matter how many times it was repeated).
(The GNU version also has a -D option. It's like -d except that all duplicate lines are output.)
The default output (with no options) is the union of -u and -d: only the first occurrence of a line
is written to the output file; any adjacent copies of a line (second, third, etc.) are ignored.
The output with -c is like the default, but each line is preceded by a count of how many times it
occurred.

Warning
Be warned:

% uniq file1 file2

will not print the unique lines from both file1 and file2 to standard output. It will replace the contents of file2 with the unique lines from file1!

Three more options control how comparisons are done:

- n ignores the first n fields of a line and all whitespace before each. A field is defined as a
string of nonwhitespace characters (separated from its neighbors by whitespace).
+ n ignores the first n characters. Fields are skipped before characters.
-w n in the GNU version compares no more than n characters in each line.
GNU uniq also has -i to make comparisons case-insensitive. (Upper- and lowercase letters
compare equal.)

uniq is often used as a filter. See also comm (Section 11.8), sort (Section 22.1), and especially sort
-u (Section 22.6).

So what can you do with all of this?

To send only one copy of each line from list (which is typically sorted) to output file list.new:
uniq list list.new

To show which names appear more than once:
sort names | uniq -d

To show which lines appear exactly three times, search the output of uniq -c for lines that start with
spaces before the digit 3 and have a tab after. (This is the way GNU uniq -c makes its output lines, at
least.) In the example below, the space is marked by ·; the TAB is marked by tab:

grep Section 13.1

http://examples.oreilly.com/upt3

sort names | uniq -c | grep "^·*3tab"

The lines don't have to be sorted; they simply have to be adjacent. For example, if you have a log file
where the last few fields are repeated, you can have uniq "watch" those fields and tell you how many
times they were repeated. Here we'll skip the first four fields and get a count of how many times the
rest of each line was repeated:
$ cat log
Nov 21 17:20:19 powerd: down 2 volts
Nov 21 17:20:27 powerd: down 2 volts
Nov 21 17:21:15 powerd: down 2 volts
Nov 21 17:22:48 powerd: down 2 volts
Nov 21 18:18:02 powerd: up 3 volts
Nov 21 19:55:03 powerd: down 2 volts
Nov 21 19:58:41 powerd: down 2 volts
$ uniq -4 -c log
 4 Nov 21 17:20:19 powerd: down 2 volts
 1 Nov 21 18:18:02 powerd: up 3 volts
 2 Nov 21 19:55:03 powerd: down 2 volts

—JP and DG

Rotating Text

Every now and then you come across something and say, "Gee, that might come in handy someday, but
I have no idea for what." This might happen to you when you're browsing at a flea market or garage
sale; if you're like us, it might happen when you're browsing through public domain software.

 Go to http://examples.oreilly.com/upt3 for more information on: rot

Which brings us to the rot program. rot basically just rotates text columns and rows. For example, the
first column below shows an input file. The other three columns show the same file fed through rot
once, twice, and three times:

$ cat file $ rot file $ rot file | rot $ rot file | rot | rot
abcde 54321 5 e

1 a 4 d

2 b 3 c

3 c 2 b

4 d 1 a

5 e edcba 12345

Now let's compare combinations of rot and tail -r (Section 42.1):

$ cat file $ rot file $ rot file | tail -r $ tail -r file | rot
abcde 54321 e 12345

1 a d a

2 b c b

3 c b c

4 d a d

5 e 54321 e

rot rotates the text 90 degrees. tail -r turns the text "upside down" (last line in becomes the first line
out, and so forth).

rot can also rotate the output of banner to print down a page instead of across. By now, we hope you
have an idea of what rot can do!

—JP and LM

http://examples.oreilly.com/upt3

Chapter 22. Sorting

Putting Things in Order

Summary Box
Sorting a file under Unix is easy , right? Of course it is, if all y ou want to do is sort a list of single words, or sort lines starting with the first character in the line. But if y ou want to do more than that, there's a lot more to the sort command than
ty ping sort filename:

Section 22.2 describes how to select individual fields from a line for sort to operate on.
Section 22.3 describes how to change the field delimiter from whitespace to some other character.
Section 22.4 describes the kinds of problems that y ou can encounter if fields are delimited by whitespace.
Section 22.5 clarifies the distinctions between alphabetic and numeric sorting.
Section 22.6 gives miscellaneous hints about useful sort options.

But learning the mechanics of sort isn't the end of the story . Like most of the other things y ou'll find in the Unix toolbox, sort is even more powerful when it's used with other programs. For example, y ou can:

Sort paragraphs or other multiline entries.
Sort lines by how long they are (Section 22.7).
Sort a list of names by last name, whether or not there's a middle name as well (Section 22.8).

— TOR

Sort Fields: How sort Sorts

Unless you tell it otherwise, sort divides each line into fields at whitespace (blanks or tabs), and
sorts the lines by field, from left to right.

That is, it sorts on the basis of field 0 (leftmost), but when the leftmost fields are the same, it sorts on
the basis of field 1, and so on. This is hard to put into words, but it's really just common sense.
Suppose your office inventory manager created a file like this:
supplies pencils 148
furniture chairs 40
kitchen knives 22
kitchen forks 20
supplies pens 236
furniture couches 10
furniture tables 7
supplies paper 29

You'd want all the supplies sorted into categories, and within each category, you'd want them sorted
alphabetically:
% sort supplies
furniture chairs 40
furniture couches 10
furniture tables 7
kitchen forks 20
kitchen knives 22
supplies paper 29
supplies pencils 148
supplies pens 236

Of course, you don't always want to sort from left to right. The command-line option +n tells sort to
start sorting on field n; -n tells sort to stop sorting on field n. Remember (again) that sort counts
fields from left to right, starting with 0.[1] Here's an example. We want to sort a list of telephone
numbers of authors, presidents, and blues singers:
Robert M Johnson 344-0909
Lyndon B Johnson 933-1423
Samuel H Johnson 754-2542
Michael K Loukides 112-2535
Jerry O Peek 267-2345
Timothy F O'Reilly 443-2434

According to standard "telephone book rules," we want these names sorted by last name, first name,
and middle initial. We don't want the phone number to play a part in the sorting. So we want to start
sorting on field 2, stop sorting on field 3, continue sorting on field 0, sort on field 1, and (just to make
sure) stop sorting on field 2 (the last name). We can code this as follows:
% sort +2 -3 +0 -2 phonelist
Lyndon B Johnson 933-1423
Robert M Johnson 344-0909
Samuel H Johnson 754-2542
Michael K Loukides 112-2535
Timothy F O'Reilly 443-2434
Jerry O Peek 267-2345

A few notes:

We need the -3 option to prevent sort from sorting on the telephone number after sorting on the
last name. Without -3, the "Robert Johnson" entry would appear before "Lyndon Johnson"
because it has a lower phone number.
We don't need to state +1 explicitly. Unless you give an explicit "stop" field, +1 is implied after

+0.
If two names are completely identical, we probably don't care what happens next. However, just
to be sure that something unexpected doesn't take place, we end the option list with -2, which
says, "After sorting on the middle initial, don't do any further sorting."

There are a couple of variations that are worth mentioning. You may never need them unless you're
really serious about sorting data files, but it's good to keep them in the back of your mind. First, you
can add any "collation" operations (discard blanks, numeric sort, etc.) to the end of a field specifier
to describe how you want that field sorted. Using our previous example, let's say that if two names
are identical, you want them sorted in numeric phone number order. The following command does the
trick:
% sort +2 -3 +0 -2 +3n phonelist

The +3n option says "do a numeric sort on the fourth field." If you're worried about initial blanks
(perhaps some of the phone numbers have area codes), use +3nb.

Second, you can specify individual columns within any field for sorting, using the notation +n.c,
where n is a field number, and c is a character position within the field. Likewise, the notation -n.c
says "stop sorting at the character before character c." If you're counting characters, be sure to use the
-b (ignore whitespace) option — otherwise, it will be very difficult to figure out what character
you're counting.

— ML

[1] I harp on this because I always get confused and have to look it up in the manual page.

Changing the sort Field Delimiter

Section 22.2 explained how sort separates a line of input into two or more fields using whitespace
(spaces or tabs) as field delimiters. The -t option lets you change the field delimiter to some other
character.

For example, if you wanted to sort the login names on your system by the login shell they use, you
could issue a command like this:

/etc..wd Section 1.7
% sort -t: +6 /etc/passwd
root:SndEKOs9H7YLm:0:1:Operator:/:/bin/bash
sys:*:2:2::/:/bin/bash
jim:LjKwcUt8l6kZK:2391:1004:Jim O'Callahan:/u/jim:/bin/bash
 ...
bart:2DPD8rCOKBbUu:2665:1004:Bart Buus:/u/bart:/bin/tcsh
tap:xY7oeuJ8WxyGO:2943:1004:Tap Bronman:/u/tap:/bin/tcsh

The option -t: tells sort to use a colon as a field separator — so, in this example, field 0 is the login
name, field 1 is the encoded password, field 2 is the user ID number, field 3 is the group ID number,
and so on. By this numbering, the login shell is in the sixth field.

Remember that sort numbers fields starting with zero — this will save you lots of grief. Two
consecutive colons indicate a "null" field that still must be counted.

—ML and TOR

Confusion with Whitespace Field Delimiters

One would hope that a simple task like sorting would be relatively unambiguous. Unfortunately, it
isn't. The behavior of sort can be very puzzling. I'll try to straighten out some of the confusion — at
the same time, I'll be leaving myself open to abuse by the real sort experts. I hope you appreciate this!
Seriously, though: if you know of any other wrinkles to the story, please let us know and we'll add
them in the next edition.

The trouble with sort is figuring out where one field ends and another begins. It's simplest if you can
specify an explicit field delimiter (Section 22.3). This makes it easy to tell where fields end and
begin. But by default, sort uses whitespace characters (tabs and spaces) to separate fields, and the
rules for interpreting whitespace field delimiters are unfortunately complicated. As I see them, they
are:

The first whitespace character you encounter is a "field delimiter"; it marks the end of the old
field and the beginning of the next field.
Any whitespace character following a field delimiter is part of the new field. That is, if you
have two or more whitespace characters in a row, the first one is used as a field delimiter and
isn't sorted. The remainder are sorted, as part of the next field.
Every field has at least one nonwhitespace character, unless you're at the end of the line. (That
is, null fields only occur when you've reached the end of a line.)
All whitespace is not equal. Sorting is done according to the ASCII collating sequence.
Therefore, TABs are sorted before spaces.

Here is a silly but instructive example that demonstrates most of the hard cases. We'll sort the file
sortme, which is:
 apple Fruit shipment
20 beta beta test sites
 5 Something or other

All is not as it seems -- cat -t -v (Section 12.5, Section 12.4) shows that the file really looks like
this:
^Iapple^IFruit shipment
20^Ibeta^Ibeta test sites
 5^I^ISomething or other

^I indicates a tab character. Before showing you what sort does with this file, let's break it into
fields, being very careful to apply the rules above. In the table, we use quotes to show exactly where
each field begins and ends:

 Field 0 Field 1 Field 2 Field 3

Line 1 " Îapple" "Fruit" "shipment" null (no more data)

Line 2 "20" "beta" "beta" "test"

Line 3 " 5" " Îsomething" "or" "other"

OK, now let's try some sort commands; I've added annotations on the right, showing what character
the "sort" was based on. First, we'll sort on field zero — that is, the first field in each line:

% sort sortme
 ...sort on field zero
 apple Fruit shipments field 0, first character: TAB
 5 Something or other field 0, first character: SPACE
20 beta beta test sites field 0, first character: 2

As I noted earlier, a TAB precedes a space in the collating sequence. Everything is as expected. Now
let's try another, this time sorting on field 1 (the second field):
+% sort +1 sortme
 ...sort on field 1
 5 Something or other field 1, first character: TAB
 apple Fruit shipments field 1, first character: F
20 beta beta test sites field 1, first character: b

Again, the initial TAB causes "something or other" to appear first. "Fruit shipments" preceded "beta"
because in the ASCII table, uppercase letters precede lowercase letters. Now, let's sort on the next
field:
+% sort +2 sortme
 ...sort on field 2
20 beta beta test sites field 2, first character: b
 5 Something or other field 2, first character: o
 apple Fruit shipments field 2, first character: s

No surprises here. And finally, sort on field 3 (the "fourth" field):
+% sort +3 sortme
 ...sort on field 3
 apple Fruit shipments field 3, NULL
 5 Something or other field 3, first character: o
20 beta beta test sites field 3, first character: t

The only surprise here is that the NULL field gets sorted first. That's really no surprise, though: NULL
has the ASCII value zero, so we should expect it to come first.

OK, this was a silly example. But it was a difficult one; a casual understanding of what sort "ought to
do" won't explain any of these cases, which leads to another point. If someone tells you to sort some
terrible mess of a data file, you could be heading for a nightmare. But often, you're not just sorting;
you're also designing the data file you want to sort. If you get to design the format for the input data, a
little bit of care will save you lots of headaches. If you have a choice, never allow TABs in the file.
And be careful of leading spaces; a word with an extra space before it will be sorted before other
words. Therefore, use an explicit delimiter between fields (like a colon), or use the -b option (and an
explicit sort field), which tells sort to ignore initial whitespace.

— ML

Alphabetic and Numeric Sorting

sort performs two fundamentally different kinds of sorting operations: alphabetic sorts and numeric
sorts. An alphabetic sort is performed according to the traditional "dictionary order," using the ASCII
collating sequence. Uppercase letters come before lowercase letters (unless you specify the -f
option, which "folds" uppercase and lowercase together), with numerals and punctuation
interspersed. The -l (lowercase L) option sorts by the current locale instead of the default US/ASCII
order.

This is all fairly trivial and common sense. However, it's worth belaboring the difference, because
it's a frequent source of bugs in shell scripts. Say you sort the numbers 1 through 12. A numeric sort
gives you these numbers "in order," just like you'd expect. An alphabetic sort gives you:
1
11
12
2
...

Of course, this is how you'd sort the numbers if you applied dictionary rules to the list. Numeric sorts
can handle decimal numbers (for example, numbers like 123.44565778); they can't handle floating-
point numbers (for example, 1.2344565778E+02). The GNU sort does provide the -g flag for sorting
numbers in scientific notation. Unfortunately, it is significantly slower than plain old decimal sorting.

What happens if you include alphabetic characters in a numeric sort? Although the results are
predictable, I would prefer to say that they're "undefined." Including alphabetic characters in a
numeric sort is a mistake, and there's no guarantee that different versions of sort will handle them the
same way. As far as I know, there is no provision for sorting hexadecimal numbers.

One final note: your version of numeric sort may treat initial blanks as significant, sorting numbers
with additional spaces before them ahead of numbers without the additional spaces. This is an
incredibly stupid misfeature. There is a workaround: use the -b (ignore leading blanks) and always
specify a sort field.[2] That is, sort -nb +0 will do what you expect; sort -n won't.

— ML

[2] Stupid misfeature number 2: -b doesn't work unless you specify a sort field explicitly, with a +n
option.

Miscellaneous sort Hints

Here is a grab bag of useful, if not exactly interesting, sort features. The utility will actually do quite
a bit, if you let it.

Dealing with Repeated Lines

sort -u sorts the file and eliminates duplicate lines. It's more powerful than uniq (Section 21.20)
because:

It sorts the file for you; uniq assumes that the file is already sorted and won't do you any good if
it isn't.
It is much more flexible. sort -u considers lines "unique" if the sort fields (Section 22.2) you've
selected don't match. So the lines don't even have to be (strictly speaking) unique; differences
outside of the sort fields are ignored.

In return, there are a few things that uniq does that sort won't do — such as print only those lines that
aren't repeated, or count the number of times each line is repeated. But on the whole, I find sort -u
more useful.

Here's one idea for using sort -u. When I was writing a manual, I often needed to make tables of error
messages. The easiest way to do this was to grep the source code for printf statements, write some
Emacs (Section 19.1) macros to eliminate junk that I didn't care about, use sort -u to put the messages
in order and get rid of duplicates, and write some more Emacs macros to format the error messages
into a table. All I had to do then was write the descriptions.

Ignoring Blanks

One important option (that I've mentioned a number of times) is -b; this tells sort to ignore extra
whitespace at the beginning of each field. This is absolutely essential; otherwise, your sorts will have
rather strange results. In my opinion, -b should be the default. But they didn't ask me.

Another thing to remember about -b: it works only if you explicitly specify which fields you want to
sort. By itself, sort -b is the same as sort: whitespace characters are counted. I call this a bug, don't
you?

Case-Insensitive Sorts

If you don't care about the difference between uppercase and lowercase letters, invoke sort with the -
f (case-fold) option. This folds lowercase letters into uppercase. In other words, it treats all letters
as uppercase.

Dictionary Order

The -d option tells sort to ignore all characters except for letters, digits, and whitespace. In
particular, sort -d ignores punctuation.

Month Order

The -M option tells sort to treat the first three nonblank characters of a field as a three-letter month
abbreviation and to sort accordingly. That is, JAN comes before FEB, which comes before MAR.
This option isn't available on all versions of Unix.

Reverse Sort

The -r option tells sort to "reverse" the order of the sort; i.e., Z comes before A, 9 comes before 1,
and so on. You'll find that this option is really useful. For example, imagine you have a program
running in the background that records the number of free blocks in the filesystem at midnight each
night. Your log file might look like this:
Jan 1 2001: 108 free blocks
Jan 2 2001: 308 free blocks
Jan 3 2001: 1232 free blocks
Jan 4 2001: 76 free blocks
...

The script below finds the smallest and largest number of free blocks in your log file:

head Section 12.12
#!/bin/sh
echo "Minimum free blocks"
sort -t: +1nb logfile | head -1

echo "Maximum free blocks"
sort -t: +1nbr logfile | head -1

It's not profound, but it's an example of what you can do.

— ML

lensort: Sort Lines by Length

A nice little script to sort lines from shortest to longest can be handy when you're writing and want to
find your big words:

deroff Section 16.9, uniq Section 21.20
% deroff -w report | uniq -d | lensort
a
an
 ...
deoxyribonucleic

Once I used it to sort a list of pathnames:

find Section 9.1
% find adir -type f -print | lensort
adir/.x
adir/.temp
 ...
adir/subdir/part1/somefile
adir/subdir/part1/a_test_case

The script uses awk (Section 20.10) to print each line's length, followed by the original line. Next,
sort sorts the lengths numerically (Section 22.5). Then sed (Section 34.1) strips off the lengths and
the spaces and prints the lines:

 Go to http://examples.oreilly.com/upt3 for more information on: lensort
#! /bin/sh
awk 'BEGIN { FS=RS }
{ print length, $0 }' $* |
Sort the lines numerically
sort +0n -1 |
Remove the length and the space and print each line
sed 's/^[0-9][0-9]* //'

(Some awks require a semicolon after the first curly bracket — that is, { FS=RS };.)

Of course, you can also tackle this problem with Perl:
$ perl -lne '$l{$_}=length;END{for(sort{$l{$a}<=>$l{$b}}keys %l){print}}' \
 filename

This one-line wonder has the side effect of eliminating duplicate lines. If this seems a bit terse, that's
because it's meant to be "write-only," that is, it is a bit of shell magic that you'd use to accomplish a
short-term task. If you foresee needing this same procedure in the future, it's better to capture the
magic in script. Scripts also tend to be easier to understand, debug, and expand. The following script
does the same thing as the one-liner but a bit more clearly:
#!/usr/bin/perl

my %lines;
while(my $curr_line = <STDIN>){
 chomp $curr_line;
 $lines{$curr_line} = length $curr_line;
}

for my $line (sort{ $lines{$a} <=> $lines{$b} } keys %lines){
 print $line, "\n";
}

This script reads in a line from standard input, removes the newline character and creates an

http://examples.oreilly.com/upt3

associative array that maps whole line to its length in characters. After processing the whole file, the
keys of the associative array is sorted in ascending numerical order by each key's value. It is then a
simple matter to print the key, which is the line itself. More Perl tricks can be found in Chapter 11.

—JP and JJ

Sorting a List of People by Last Name

It's hard to sort any old list of peoples' names because some people have one-word first and last
names like Joe Smith, but other people have multi-part names like Mary Jo Appleton. This program
sorts on the last word in each name. That won't take care of the way that names are used everywhere
in the world, but it might give you some ideas.

 Go to http://examples.oreilly.com/upt3 for more information on: namesort

The script reads from files or its standard input; it writes to standard output.
#! /bin/sh
Print last field (last name), a TAB, then whole name:
awk '{print $NF "\t" $0}' $* |
sort (by last name: the temporary first field)
sort |
strip off first field and print the names:
cut -f2-

If you want more control over the sorting or you're interested in pulling apart names in general, there's
a Perl module you might want to look at called Lingua::EN::NameParse . Below is a Perl script
that also sorts a list of names by surname.
#!/usr/bin/perl

use Lingua::EN::NameParse;

my $Name_Obj = Lingua::EN::NameParse->new(auto_clean => 1);
my @names = <STDIN>;
for my $line (sort by_lastname @names){
 chomp($line);
 print $line, "\n";
}

sub by_lastname {
 my @names;
 for my $name ($a, $b) {
 chomp($name);
 if(my $err = $Name_Obj->parse($name)){
 warn "WARN: Unparsable name ($name): $err";
 }
 my %tmp = $Name_Obj->components;
 push @names, \%tmp;
 }
 return lc $names[0]->{surname_1} cmp lc $names[1]->{surname_1};
}

The script starts by bringing in the Lingua::EN::NameParse library. Then, all lines from standard
input are read in and stored in an array. Perl's sort function is particularly flexible in that it can use a
user-defined subroutine to determine the desired collating sequence. Here, the subroutine
by_lastname receives the next two items of the list to be sorted in the "magical" global variables $a
and $b. These names are then parsed by the global Lingua::EN::NameParse object, and the name
components are stored in the array @names. It's then a simple matter to alphabetically compare the
lowercased surnames and return that value to sort. Although this script may be a little bit more Perl
than you wanted to know, the problem of sorting by last names is complex. Fortunately, the
Lingua::EN::NameParse module available on CPAN was available to do the heavy lifting for us. In
fact, one of most the compelling reasons to learn Perl is the large collection of free library modules
stored on the Comprehensive Perl Archive Network (CPAN), which is mirrored throughout the
world. For more about CPAN, see Section 41.11.

http://examples.oreilly.com/upt3

—JP and JJ

Part V. Processes and the Kernel

Part V contains the following chapters:

Chapter 23

Chapter 24

Chapter 25

Chapter 26

Chapter 23. Job Control

Job Control in a Nutshell

As has been said many times in this book, Unix is a multiprocessing system. Unlike some historic
systems such as MS-DOS, all flavors of Unix run more than one process at a time. In fact, when Unix
boots, the first program executed is called init , which is the parent of all future processes. init
immediately creates a new process in which other programs can run, such as getty and the various rc
setup scripts. At some point when a user logs into the system, the getty program creates a new shell
for that session. Even when the system is in single-user mode, Unix is still capable of running
multiple processes. Multiprocessing is pervasive in Unix.

But multiprocessing isn't just for system daemons. It's also there to make your interactive shell session
just a little bit more productive. Often, you will need to execute a program that takes a long time to
run. For instance, you might be downloading a file with FTP or Lynx. It is possible to have that task
put into the background so that you may execute new commands while the previous ones are running
to completion. Just as you may have several piles of work on your desk, you often need to set aside
one stack to work on another. A process is said to be in the foreground when it is receiving your
keyboard input and is writing to your screen. Using the desk analogy, the foreground process is that
pile of work currently in front of you. Only one process can be in the foreground at a time. Putting a
process in the background is like putting the current stack of work in front of you on the floor. And if
your desk is anything like mine, you can soon find your desk surrounded by piles of work. Unlike the
real world, Unix is able to continue working on completing processes in the background. The
management and manipulation of foreground and background processes is called job control. By
understanding job control, you can begin to take better advantage of your Unix system.

One cautionary note on job control: there's no such thing as a free lunch. In other words, while Unix
blithely lets you put all the processes you want into the background, they all share the same CPU,
RAM, and hard drive resources. If one process dominates one of these resources, the other processes
won't get done any faster than they would have had you run them one after the other to completion. So
if you've got a process that's CPU-intensive (such as a photomosiac program), there's little point in
trying to run more processes on that machine.

From the days of mainframes, when programs were submitted on stacks of cards, comes the term "job
control." This chapter is going to go into some depth about using your shell's job control features. For
those already familar with the concept, here is the thirty-second version of "Job Control in a
Nutshell."

Summary Box
Unless otherwise noted, these commands apply only to the C shell, Korn shell, and bash:
command & (Section 23.3)

Run command in the background. You can continue to execute jobs in the foreground. This is the most common way to put processes in the background.
CTRL-c (Section 24.11)

Kill the current foreground job by sending the INTR signal (Section 24.10).
CTRL-z (Section 23.3, Section 23.6)

Suspend the current foreground job by sending the TSTP signal (Section 24.10).
suspend

Suspend a shell with the suspend command.
stop

Suspend a background job with the stop command or an alias that does the same thing (Section 23.7).
bg % num (Section 23.3)

Let a stopped job (by job number num) continue in the background.
fg % num (Section 23.3)

Put a background job or a stopped job (by job number num) into the foreground.
kill % num (Section 23.3)

Kill an arbitrary background job (by job number num).

kill pid (Section 24.12)
Kill an arbitrary job (by process ID number num).

jobs (Section 23.3)
List background and stopped jobs and their job numbers.

set notify (Section 23.8)
Immediate job-state change notices.

stty tostop (Section 23.9)
Automatically stop background processes if they try writing to the screen.

Some systems, like Linux, extend the kill to kill processes by name. See Section 24.15, which
introduces killall.
—ML and JJ

Job Control Basics

If you're coming from a Windows or MacOS desktop, Unix job control may seem a little strange at
first, but both of those operating systems support a form of job control too. The Windows' taskbar
shows the foreground application as a depressed icon. In the classic Mac interface, the current
application's icon is present in the upper righthand corner. Such displays aren't possible on the
command line (although there are similar metaphors available in modern X11 desktop environments
like Gnome and KDE). This article tries to give you some background on, er, background processes.

How Job Control Works

To get a better feel for how to use job control, a brief look at how Unix handles processes can be
helpful. As was mentioned in the opening section, Unix systems normally are running many processes
at once. A process is defined as a program that is executing in memory, as opposed to an executable
file (i.e., the program) that is sitting on the filesystem. When you log into a Unix system, you are
running some shell program (e.g., tcsh or bash). When you ask the shell to run another program, such
as vi, a new process starts and takes over the terminal from the shell. That new process is in the
foreground by default. When you type commands, it is vi that responds, not the shell. When you exit
vi, that process ends and parent process, the shell, returns. When you run vi, the shell itself goes into
the background. You've been using background processes all along.

You may have noticed that I slipped in a new concept about processes in the last paragraph. Process
are related to each other in hierarchical way by the kernel. When you execute a command from the
shell, that new command is a child process of the shell. When a process terminates, the parent
process is notified and is given an opportunity to take some action. What happens when you log out?
All your shell's child processes are terminated along with the shell process itself, and your system's
getty daemon waits for a new user to log in. What happens when getty dies? The ultimate ancestor for
all system processes on a Unix system is init. When init dies, the system is halted.

Using Job Control from Your Shell

Remember that the shell sits there listening to what you type and calling other programs to do jobs
that it doesn't have built-in commands to do.

Normally, when the shell calls another program, it waits for the other program to finish. The
ampersand (&) at the end of a command line tells the shell not to wait.

Basically all shells allow background processing. On systems that have job control (Section 23.3),
however, most shells will give you a lot of extra capabilities for manipulating background processes.

Here's the tip of the iceberg:

If you forget to put a job into the background, you can stop it on the fly with a suspend signal
(Section 24.1) by typing CTRL-z. Then use the bg command to put it into the background and
restart it:
% find /usr -name tim -print > mine
CTRL-z
Stopped
% bg
[1] find /usr -name tim -print > mine &

You can bring the current background job (Section 23.5) into the foreground with the fg
command. This is handy when Unix stops the background job that needs input from your
keyboard (you can't type to jobs running in the background).
If you have a lot of background processes running, you can use the jobs command to list them all,
then bring a selected job into the foreground by job number. You can also kill jobs by job
number rather than by process ID. [Recall that job numbers are per-session numbers that the
shell generates, whereas process IDs are generated by the operating system and are visible to all
other processes. — JJ]

—TOR and JJ

Using jobs Effectively

So far, you've seen how to get processes into and out of the background. That's a pretty good start, but
what happens when you put more than one process in the background? How do you remember what's
in the background at all? Fortunately the jobs command, built into Bourne and C shell derivatives,
lists all your current session's background jobs. Let's see this in action. In the example below, I
started several web browsers:
[jjohn@marian jjohn]$ jobs
[1] Running netscape &
[2]- Stopped lynx
[3]+ Stopped lynx http://aliensaliensaliens.com

Every background process is assigned a job number by your shell. This number is unique only for
your current session. It isn't globally unique like a process ID. In fact, one job number is assigned to
processes that are pipelined together. For example, the following line gets only one job number.
$ uniq bigfile.dat | sort | wc -l &

In the jobs example above, the first process was started with an ampersand, so it was immediately
backgrounded. Job 2 started as a typical interactive session, but I stopped it with CTRL-z. A stopped
process is not the same as a terminated process — it simply doesn't receive any CPU time. It's like a
caveman frozen in ice, waiting to be thawed out and come back to life. If you find that a job is
becoming a resource hog, consider using CTRL-z to suspend the process until you figure out why it's
being so gluttonous. The next job listed is a new instance of lynx, which is also put into the
background so that the jobs command could be run for this listing. The plus sign next to the job
number indicates that that job will be in the foreground when fg is typed. That job is known as the
current job . The minus sign indicates the previous job , the job that used to be the current job.

Job numbers can be supplied to fg . In the given example, the first version of lynx can be revived
using fg %2. You can also kill jobs with the job number. Why have two versions of lynx running? The
first one can be terminated with kill %2. You can also supply signal numbers, as you normally would
to kill. By default kill sends the TERM (15 on Linux) signal, which will stop most processes.

When a backgrounded job is terminated or completes, you will be notified before the next command
prompt is printed. For example:
[jjohn@marian jjohn]$ kill -9 %3
[jjohn@marian jjohn]$
[3]+ Killed xcalc
[jjohn@marian jjohn]$

Just as before, the job number is printed with a plus sign, indicating that it was the current job.
Because this process exited abnormally (it was sent a KILL signal), the reason is printed next, along
with the line that was executed. For a process that runs to completion, the output looks slightly
different:
[jjohn@marian jjohn]$ ls | uniq | sort | wc -l &
 99
[2] 10501
[2]+ Done ls --color=tty | uniq | sort | wc -l
[jjohn@marian jjohn]$

Here, the command was put in the background immediately. The shell then reported the job number
and process ID. Because the command completed very quickly, the shell reports that job 2 exited
normally even before the next command prompt could be printed.

As useful as job numbers are, sometimes you don't want to bother running jobs, searching for the
desired command, finding its job number, and then running fg %num. Luckily, the job control
mechanism uses a simple pattern-matching scheme so that you can supply only part of the command or
job you wish to foreground or kill. Instead of prefixing the job number with simply %, use %? . The
string you supply must be enough to disambiguate it from all other jobs. Take this job listing, for
example:
[1] Running netscape &
[2] Running xcalc &
[3]- Stopped lynx
[4]+ Stopped lynx http://aliensaliensaliens.com

I can put the xcalc program in the foreground with fg %?xc, because xc doesn't appear in the other
jobs. But I can't refer to either of the lynx processes with any substring of "lynx." If I do, I get
something like the following.
[jjohn@marian jjohn]$ fg %?ly
bash: fg: ambigious job spec: ly

Instead, I could refer to the second version with fg %?aliens. In order to get at the first lynx job, its
job number must be used explicitly.

You may find that your shell attempts to interpret %? as a filename wildcard. This is increasingly rare,
but you may need to escape the ?, so that you can foreground a process. That can be done like this: fg
%\? string.

One final shortcut to job control: you can put jobs in the foreground simply by referring to the job
number. For instance, typing %2 alone at the command prompt will put job number 2 in the
foreground. You can even put jobs into the background with this notation: %2 &. This seems a little
terse, even for Unix, but it will save you some typing.

— JJ

Some Gotchas with Job Control

1. If you're using Bourne-type shells, you have to watch out for putting a series of commands
separated by semicolons (Section 28.16) into the background. These shells put only the last
command on the line into the background, but wait for the first.
An easy way to test this is with the following command line, which waits for 15 seconds, then
does an ls:
$ sleep 15; ls &

In Bourne-like shells, you won't get your prompt back until the sleep (Section 25.9) command
has finished.
With Bourne-type shells, the proper way to put a series of commands into the background is to
group them with parentheses:
() Section 43.7
$ (sleep 15; ls)&

This may strike you as a defect, but in fact, it's a sign of the greater precision of Bourne shell
syntax, which makes it somewhat exasperating for interactive use but much better for
programming.

2. It doesn't make any sense to run an interactive program such as an editor in the background. For
example, if you type this from the C shell:
% vi &
[1] 3071

you'll get a message like the following:
[1] + Stopped (tty output) vi

vi can be active only in the foreground. However, it does make sense to have vi stopped
(Section 23.1) in the background.
If you are running vi or any other interactive program, you can quickly get back to the shell by
typing CTRL-z to stop the program. The shell will take control of your terminal and print another
shell prompt.
Stopping vi (Section 23.6) is more efficient than using its shell escape mechanism (Section
17.21), since it lets you go back to your original shell rather than starting a new one. Simply type
fg to get back to where you were in editing.

3. We have had the misfortune to share a system with new users who were overenthusiastic in
their use of background processes, rather like the man who loved loving so much he sought many
lovers. Because each background process is competing for the same resources, running many of
them can be a drain on the system, and everything takes longer for everyone. We knew people
who thought that if they ran three troff processes at once, they'd get their three files formatted
faster than if they did them one after another. Boy, were they mistaken.[1]

4. If you use the Bourne shell, any background processes you have running will normally be
terminated when you log out. To avoid this, use the nohup (Section 23.10) command.

5. Not all processes are created equal. Unix maintains a queue of processes ordered by priority.
Foreground processes, such as a user typing a command at a prompt, often receive higher
priority than background processes. However, you may want to run background processes at an

even lower priority, by using nice (Section 26.5). This is a relatively painless way of being
kind to other users — and making your foreground job run faster — though it will make your
background tasks take a little longer.

—TOR and DD

[1] In the old days, Unix systems gave all processes to a single CPU. Modern Unix systems can have
multiple CPUs. On these systems, you may be able to do several jobs almost as quickly as one.

The "Current Job" Isn't Always What You Expect

% is the current stopped or background job, but not always the last one. If you've stopped any jobs, the
current job is the most recently stopped job. Otherwise, it's the most recent background job. For
example, try stopping your editor (like vi), then putting another job in the background:
% vi afile
CTRL-z
Stopped
% sleep 1000 &
[2] 12345
% fg

and notice that the fg brings your editor to the foreground.

— JP

Job Control and autowrite: Real Timesavers!

I see too many people using a series of commands like the ones that follow. Programmers do this
when they write and compile programs. Writers use this when they're making a draft file and running
it through the formatter. They're probably wasting a lot of time and effort:
% vi somefile
 ...Edit somefile, then quit vi...
% someprog somefile
 ...Process somefile...
% vi somefile
 ...Edit somefile again...
% someprog somefile
 ...Process somefile again...

Each time they restart vi, they have to reset options and move the cursor to the place they were
working before. After they restart, vi has forgotten the previous search (the n command), the previous
action (the . command), the previous regular expression, the named and numbered buffers...

In the same way, why quit any other program (that isn't an editor) if you aren't done with it? The
programs lose their state. For instance, quitting a man (Section 2.1) or info (Section 2.9) command
when you're in the middle of a document means that when you start it again, it'll be at the start. It will
have forgotten the last term you searched for.

If your system has job control (Section 23.1), that solves all these problems. (If it doesn't, you can
still use a shell escape (Section 17.21).) Instead of quitting vi, get into command mode and write your
buffer with the :w command. Stop the editor with the CTRL-z command. Then process the file. When
you're ready to do more editing, bring your vi job back into the foreground with fg. The editor will be
just where it was.

Even better, you can set vi's autowrite option. If you've made any changes to the buffer before you
press CTRL-z, vi will automatically write the buffer. You won't need to remember to type :w before
you stop the editor. You can set autowrite at a colon (:) prompt, but I set it in my .exrc file (Section
17.5) instead.

You don't absolutely have to write your file before suspending vi. It's a good piece of advice, but not
required by the job control mechanism. Typing CTRL-z will suspend the editor whether you've
written out your files or not.

— JP

System Overloaded? Try Stopping Some Jobs

If your computer is barely crawling, you can kill (Section 24.12) some processes, but you'll have to
start them again later. On many Unix systems, you can renice (Section 26.7) the processes, but you
won't be able to raise the priority again later, after the system speeds up, unless you're the superuser
(Section 1.18).

If you don't need your results right away (and you won't get them, anyway, if the system is crawling!),
try stopping some jobs. The best candidates are "CPU-eaters" like formatters, compilers, and any job
that runs up a lot of time quickly in the ps (Section 24.5) or time (Section 26.2) reports. Start them
again later, and the jobs will take up where they left off.

If the job is in the foreground, just press CTRL-z (Section 23.3) to stop it. If the job is running in the
background and you're running csh or tcsh, use the shell's stop command with a job identifier — for
example, stop %3 or stop %cc.

On other shells — even shells without job control (!) — you can use kill (Section 24.12) with the -
STOP signal and either the job number or process ID number. The csh and tcsh command stop does
this for you. On other shells, if you'd like, you can add an alias named stop to the shell setup file
(Section 3.3). Later, when the system speeds up, put the job back into the background with bg or into
the foreground with fg. For example:
bash$ alias stop='kill -STOP'
bash$ jobs
[1]+ Running g++ hugeprog.cc &
bash$ stop %1
[1]+ Stopped (signal) g++ hugeprog.cc
 ...later...
bash$ bg %1
[1]+ g++ hugeprog.cc &

— JP

Notification When Jobs Change State

Normally, the shell tells you about changes to your background jobs whenever it prints its prompt.
That is, when you do something that makes the shell give you a prompt, you'll get a message like:
[1] + Stopped (tty input) rm -r
%

This message tells you that the rm -r command, which you're running in the background, needs input;
it has probably asked you whether or not to delete a read-only file, or something similar.

This default behavior is usually what you want. By waiting until it prints a prompt, the shell
minimizes "damage" to your screen. If you want to be notified immediately when a job changes state,
you should set the variable notify:
% set notify
 ...csh, tcsh
$ set -o notify
 ...bash, ksh
$ setopt notify
 ...zsh

The drawback, of course, is that you may be analyzing a screenful of output that you've laboriously
constructed, only to have that screen "destroyed" by a lot of messages from the shell. Therefore, most
users prefer to leave notify off (unset). To stop all background output, use stty tostop (Section
23.9).

— ML

Stop Background Output with stty tostop

If you put a job in the background and don't redirect (Section 43.1) its output, text that the job writes
to its standard output and standard error comes to your screen. Those messages can mess up the
screen while you're using another program. You could lose the (maybe important) messages, too —
they might scroll off your screen and be lost, or your foreground program may clear the screen and
erase them.

Many Unix systems have the command stty tostop. Type that command at a prompt, or put it in your
.login or .profile file.[2] After that, your shell's background jobs that try to write to your terminal will
be stopped. When you want to see the background job's output, bring it into the foreground (with fg).

How will you know that the background job has been stopped? The shell will print a message like
this just before it prints a prompt:
[1] + Stopped (tty output) somejob
%

The shell can also interrupt your foreground job with that message as soon as the background job is
stopped. To make it do that, set notify (Section 23.8).

In C shell, you can turn off this feature and let background jobs write to your terminal any time with
the command:
% stty -tostop

In bash , the command is similar:
$ stty tostop

— JP

[2] This command sets the Unix terminal device driver for all processes started on it. You don't need
to set this for subshells (Section 3.3).

nohup

When Unix first started, even local terminals very often communicated with the system via short-haul
modems. (After all, Unix was invented by the phone company.) When someone logged out, the modem
hung up the phone — and conversely, if the modem hung up, a "hangup" signal was sent to the login
shell, whereupon it terminated, bringing down all its child processes (Section 24.3) with it.

In the C shell, processes that you run in the background are immune to hangups, but in the Bourne
shell, a process that you started in the background might be abruptly terminated.

 Go to http://examples.oreilly.com/upt3 for more information on: nohup

The nohup command ("no hangup") allows you to circumvent this. (The GNU version is on the web
site.) Simply type:
$ nohup command &

Any output from command that would normally go to the terminal (i.e., has not been redirected) goes
to a file named nohup.out in the current directory.

Of course, if you want to run jobs at off hours, you might do even better using at, cron, or batch.

nohup is sometimes handy in shell scripts to make them ignore the HUP and TERM signals (Section
24.10), though trap (Section 35.17) is more versatile. (In System V, nohup causes a command to
ignore HUP and QUIT, but not TERM.)

— TOR

http://examples.oreilly.com/upt3

Disowning Processes

Job control isn't always a good thing. For instance, I might want to start a long equipment-monitoring
job running when I go home for the night. But if I simply put the job in the background and try to log
out, zsh says zsh: you have running jobs. If I log out anyway, the shell sends my background job
a HUP signal. I could use nohup (Section 23.10) to block the hangup signal, but there's a simpler
way: tell the shell, "Don't use job control on this job." This is also true of jobs that I know are there
— a clock running on my X Window System display, for instance — and that I'll never want to use
job control on, so the jobs are just cluttering the jobs (Section 23.3) list.

To run a job without job control, the trick in most shells is to start the job in a subshell (Section
43.7), and put the job inside that subshell into the background. This is sometimes called "disowning"
the job. Note that the ampersand (&) is inside the parentheses:
% (myprog -opts &)

The job won't appear in the jobs list, but ps (Section 24.5) should show it running. (You might need
to use a "show all jobs" option like ps -x or ps -e.) If you use ps -l for a "long" listing, you'll see that
the process' PPID (the process ID number of the parent process (Section 24.3)) is 1; this means that
the process is now "owned" by init (Section 24.2). On the other hand, if you'd started the job in the
background normally (without the subshell trick), you'd see that its PPID was that of the shell you
started it from.

The Z shell has a more direct way: its &! and &| background operators. Both of them do the same
thing: if you use one of those operators instead of plain &, the job will be disowned immediately; it
won't appear in the jobs list.

In most shells, once you start a job without the subshell trick, the shell that started the job will
continue to be its parent. (Some shells, like the C shells, will give up ownership of a child process
and let it keep running when you end the shell — that is, when you log out — and then init will
"inherit" the process.) In zsh and bash Version 2, though, you can change your mind after you start a
job by using the shell's built-in disown command. Give disown the job number you want the shell to
"forget." For instance, I'll start a background job and then disown it. It disappears from the job table,
but giving ps its process ID shows that the job is still running:
zsh% myprog -opts&
[1] 28954
zsh% jobs
[1] + running myprog -opts
zsh% disown %1
zsh% jobs
zsh% ps 28954
 PID TTY STAT TIME COMMAND
28954 pts/5 S 0:09 myprog -opts

If you don't give a job number, disown "forgets" the current job. The bash2 version of disown has
options that zsh doesn't: disown -a disowns all jobs, and disown -r disowns only running jobs. The
bash2 option -h does a different job: instead of removing a job from the job table, the job won't
receive any HUP signal sent to the shell. This is similar to what the nohup command does.

— JP

Linux Virtual Consoles

Your Linux workstation display may look like just one terminal. It's actually seven terminals — or
even more — in one. Linux has built-in virtual consoles, a series of ttys (Section 2.7) that you can
log into separately: each one can have a login session, with its own shell, working at the same time as
the others. You can see only one of these consoles at once; you bring a console into view by pressing
a hot-key combination. For instance, I log into the first virtual console as root and the second as
myself.

What Are They?

If your Linux system comes up after a reboot with a mostly blank screen something like this:
Red Hat Linux release 6.2 (Zoot)
Kernel 2.2.14-5.0 on an i686

penguin login:

you're seeing one of the virtual consoles — in this case, it's the first one you've seen since the reboot,
so it has to be console number 1. On the other hand, if your system boots to an X Window display
with a graphical xdm or gdm login box, you're using a different virtual console, probably console
number 7. All of this is configurable. But by default, consoles 1 through 6 are ttys, with getty (
Section 24.2) processes running, ready to manage individual login sessions. Virtual console 7 is an X
Window System display.

To switch between the consoles — to bring a differnt console "to the front" — use the hot-key
combination CTRL-ALT-n, where n is the console number. (Actually, the only time you need the
CTRL key is when the X Window console is in front. When you've got a nongraphical console in
front, you can switch with just ALT-n. But if you find the difference hard to remember, there's no
problem with always using the CTRL key.)

Here's one of the reasons I like to start my window system by typing a command (startx) at a shell
prompt in a virtual console. The X server, and client applications running under X, will spit error
messages onto the standard output (or standard error) at the console where I ran startx. So it's easy
for me to jump back to the console — by pressing CTRL-ALT-2 — to see error messages. Then I can
jump back to X with CTRL-ALT-7. (I actually changed this setup, later, to log X errors to a file that I
watch from a window, but that's another story.)

When you log out of one of the tty -type consoles (by typing exit or logout), the getty process there
prints a new login: prompt. But not every one of these ttys needs a login session. For instance, while
the Red Hat Linux installation program is working, it uses the first four virtual consoles as logs that
show different information about the installation process — and the fifth has a shell prompt where
you can do work during the installation. Another handy example is this tip from Chris Hilts, posted to
http://www.oreilly.com as a followup to a Linux feature in the summer of 2000. Add the following
line to your /etc/syslog.conf file:
. /dev/tty9

After the next reboot or restart of syslog, all of your system's syslog messages will appear on virtual
console number 9 — where you can see them at any time by pressing CTRL-ALT-9.

http://www.oreilly.com

Scrolling, Using a Mouse

The tty-type virtual consoles have some other nice features. One is a scrolling buffer that lets you
scroll back to see previous screens of text. Press SHIFT-PAGE UP to move to previous screenfuls,
and SHIFT-PAGE DOWN to move toward the most recent screen.

The tty-type consoles also support copy-and-paste with your mouse. To copy an area, point to the
first character and hold down the first mouse button; move to the end of the text block and release the
button. The selected text should be shown in reverse video. To paste the copied text, click the third
mouse button. You also can paste from one console into another with the same steps. You can't paste
from a tty-type console into the X Windows, or vice-versa, though. To do that, use a temporary file.
For example, highlight (copy) an area of text, then use the command:

cat > Section 12.2
% cat > /tmp/paste-me
 ...paste the text...
CTRL-d

Then switch to the other console. Either read the file directly into an application, or output the file
onto the screen (cat /tmp/paste-me) and copy from that redisplayed text.

— JP

Stopping Remote Login Sessions

Once you start telnet, rlogin, rsh , and ssh for an interactive login, they basically "take over" your
shell. Your keystrokes are sent to the shell running on the remote system. So if you type CTRL-z, it
won't stop the telnet (or whatever) job: it'll stop the job running on the remote system.

It can be very handy to suspend a connection to a remote system and resume it, sometime later, with
fg. Most of the remote login utilities let you do that.

To stop a telnet session, start by pressing the escape character. By default, this is CTRL-] (Control-
right bracket). You should get a telnet command prompt. Type z to suspend the job, Here's how that
looks:
myhost$ telnet remhost
Trying 198.59.115.17...
Connected to remhost.
Escape character is '^]'.

SunOS 5.6

login: whoever
 ...
remhost% CTRL]
telnet> z

[1]+ Stopped telnet remhost

myhost$

You can use other commands at the telnet command prompt. For a list, see your manual page or type
help at the prompt. If you get to that prompt accidentally and don't want to stop the telnet session,
simply press ENTER once.

Other remote-login utilities don't have a command prompt. Their control commands start with
ENTER-tilde (~) and one more control character. The command to stop the session is ENTER, then
tilde, then CTRL-z. It won't appear on your screen as you type it (if it does appear, it didn't work . . .
try again). For example:
myhost$ ssh remhost
Last login: Fri Dec 22 09:08:31 2000 from myhost
NetBSD 1.4.2A (GENERIC) #6: Wed May 31 06:12:46 EST 2000

remhost%
remhost% ~CTRL-z

[1]+ Stopped ssh remhost

myhost$

Notice the extra prompt: it shows me pressing ENTER first, before typing the tilde. That isn't
necessary if you pressed ENTER to complete the previous command line — but I tend to do it all the
time, "just in case" I didn't type that ENTER.

You can stop the remote session in the middle of an interactive job, like using a text editor. But I'd
recommend getting to a shell prompt on the remote system first, if you can. (For example, stop the
remote job with CTRL-z so you'll get a shell prompt on the remote system.) Otherwise, if you bring
the remote session into the foreground while you're in the middle of a full-screen editing job there, for
example, the remote system won't know that it's supposed to redraw the screen when you come back

online. Worse, if you forget where you were on the remote system, you might type a key that could do
something disastrous, like deleting lines of the file you're editing. Stopping and starting from a known
point — a shell prompt — is the best way I've found.

— JP

Chapter 24. Starting, Stopping, and Killing Processes

What's in This Chapter

Summary Box
We've already talked about so many of the topics in this chapter, here or there, that it may seem like a real hodgepodge. It's a grab-bag of important things to know about processes — which y ou can think of as programs that are actually
running, rather than sitting on the disk somewhere.

The chapter starts out with a couple of conceptual articles. They define some important terms that y ou're likely to encounter in this chapter.

Then we talk about the ps command, which tells y ou what processes y ou have running and just what they are up to (Section 24.5, Section 24.6, Section 24.8).

The next few articles cover signals, which are one way processes communicate with one another. We cover topics like:

What are signals (Section 24.10)?
How to send signals from the key board (Section 24.11 and Section 24.12; also see Section 5.8).
How shell programs can "handle" signals (Section 24.13 and Section 35.17).

We go from there to a more general discussion of way s to kill processes:

How to kill all y our processes (Section 24.14).
How to kill processes by name rather than by process ID (Section 24.16).
How to stop runaway jobs (Section 24.17).
Why some processes don't seem to go away when y ou kill them (Section 24.18, Section 24.19).
How to get rid of a frozen window (Section 24.22).
How to make sure processes don't die when y ou log out (Section 23.10).

— TOR

fork and exec

We discuss fork and exec in Section 27.2, but the concept comes up so often in this chapter that we
thought we ought to have a closer cross reference.

Put simply, fork and exec are the Unix system calls (requests for operating system services) that Unix
programs use to create new processes. When you start up a Unix system, it starts with only one
process, a program called init.
How does init magically turn into the hundreds or perhaps even thousands of processes that make up
a working Unix system? That's where fork and exec come in.

One process spawns another ("spawn" is another term you should get used to seeing) either by
replacing itself when it's done — an exec — or, if it needs to stay around, by making a copy of itself
— a fork. In the latter case, the forked copy commits polite suicide by execing the desired second
program.

A good example of this whole sequence can be seen in the way a Unix system's login procedure for
terminals (non-network (Section 1.21) logins) works. The init process spawns a series of getty
processes, each of which monitors a serial port (a tty), looking for activity. It's the getty program that
actually puts up the first login: prompt.

Once someone actually types a login name, getty's job is done; it execs the login command. login
prompts for a password (if the account has one) and, if the password is okay, execs the login shell.
Whenever you start another program, the shell forks itself, and the copy execs whatever program you
asked to run.

That's why some commands are built into the shell (Section 1.9). There's overhead involved in
starting a new process. What's more, because a child process can't affect its parent's environment
(Section 24.3), some commands don't make sense as separate processes. For example, cd must be
built in, or it couldn't change the working directory for the current shell.

There's an exec command that you can type at a shell prompt; see Section 36.5. Watch out, though: it
will replace your shell with whatever command you exec, with no going back. This is useful only if
you want to replace your shell with some other interactive command interpreter with similar powers,
or if you'll be ready to log out when the command you exec finishes.

— TOR

Managing Processes: Overall Concepts

As you know, when you log into your Unix account and start typing, you're talking to the shell (Section
27.1). The shell you use may be a variant of the Bourne shell (such as a standard sh, ksh, or the GNU
shell bash), or perhaps it is a variant of the C shell, csh (such as, perhaps, the tcsh shell that includes
line- and history-editing features). Alternatively, you may be using a somewhat less common shell
such as rc.

Your shell is a process, one of many individual programs running at the same time on the machine.
Every process has certain pieces of information associated with it, including the following:

 The process ID (PID) is a number assigned to the process when it is started up. Process IDs are
unique (that is, they cycle and are eventually reused, but no two processes have the same process
ID at the same time).
 The user ID (UID) tells who the process belongs to. This determines what files and directories
the process is allowed to read from or write to (Section 50.1), as well as who is allowed to
kill the process (Section 24.12) (tell it to stop running).
 The group ID (GID) is similar to the user ID but tells which group the process belongs to. On
some systems, this controls the group assigned to files created by the process. See Section 50.2.
 The environment contains a list of variable names and associated values. For example, when
you type echo $HOME at the shell and it prints out the name of your home directory (Section
1.15), it has told you the contents of the environment variable (Section 35.3) called HOME.
 The current working directory (Section 31.3) is the directory that is currently the default.
When you specify a filename to a program but do not say explicitly where to look for it with a
pathname (Section 31.2), the program will look in the current working directory — if the PATH
variable contains the current directory (Section 35.6 explains).
File descriptors are a record of which files a process has opened for reading or writing, as well
as the current position in each file.
 Versions of Unix with job control (Section 23.1) have process groups. A process group is used
for distribution of signals (Section 24.10, Section 24.11, Section 24.14). It's also used to
control which process can read from a terminal. A process that has the same process group as
the terminal is "in the foreground" and can read from the terminal. Other processes are stopped
when they try to read from the terminal.

When you're typing commands at the shell, it is the controlling process of your terminal, meaning that
it (the shell) is the process that gets the input you type. See Section 24.6.

Normally, when you type a command at the shell prompt, that command runs and is allowed by the
shell to take over the terminal for its lifetime. For example, if you type more .login to view your
.login file, the shell starts up the more program and then sits around waiting for it to finish; while
more is running, you can type commands to page through the file and more (not the shell) will see
them. The command you run is called a child or subprocess of the shell process, which is its parent.
All process information (user ID, group ID, etc.) is inherited by the child from its parent, except for
the process ID, since the child is assigned a new one. Built-in shell commands (Section 1.9) such as
cd don't start a child process.

Although the normal behavior is for the shell to wait until any command you run has finished before it
becomes active again, there are some situations in which you don't want this to occur. For example, if
you're using a window system such as X (Section 1.22) and want to start up a new xterm window
from your shell, you don't want to type just xterm, because then your original shell will wait until the
xterm finishes before allowing you to type any more commands. This would mean that you still have
only one shell to work in, thus defeating the purpose of starting the new xterm.

When you don't want a process to finish before getting back to the shell, you can run it in the
background. You do this by putting an ampersand (&) character at the end of the command, for
example, xterm &. The shell will start the child process and then immediately prompt you for another
command. Note that in this situation, the shell retains control of the terminal, and the newly created
background process cannot read input. Some shells have additional job control (Section 23.1)
features (processes that are running in the background are often described as background jobs or just
jobs) that enable you to do things such as kill jobs or bring a job from the background into the
foreground so that it becomes the controlling process of the terminal and you can type input at it.

An important thing to remember is that although process information is inherited by children when
they are started, it is impossible for the parent to affect its child's process information (or vice
versa) after that point. For example, if you start up the editor vi, suspend it (Section 24.6), and then
use the cd command in the shell to change directories, vi will still have the old working directory
when you bring it back into the foreground. Similarly, if you write a shell script that changes some
environment variables, those variables will contain their old values in the shell when the shell script
exits. This sometimes confuses MS-DOS users, since MS-DOS stores information such as the current
directory in a global area that is referenced by all programs. If it is necessary to communicate
information from a child back to a parent shell, other methods are needed (Section 24.10, Section
35.29).

One more useful concept: when a process exits, it returns a numeric exit status (Section 35.12) to its
parent process. By convention, a zero status means success; nonzero means some kind of failure.

Just as there are ways to modify the environment and the current working directory of the shell, there
are also useful ways to manipulate file descriptors (Section 36.16).

— JIK

Subshells

In Unix, when a program starts another program (more exactly, when a process starts another
process), the new process runs as a subprocess (Section 24.3) or child process.[1] When a shell starts
another shell, the new shell is called a subshell.[2]

So what? There are some important things to know about it: the child process gets a copy of its
parent's environment, and any changes in the environment of the child process aren't passed to its
parent. "Still," I hear you say, "so what??"

Shell scripts are run in a subshell (unless you use the source or . commands (Section 35.29) to
start the script). If the script makes changes to the environment of its (sub)shell, the parent shell
won't see those changes. If the script uses cd, it doesn't change the current directory in the parent
shell. If the script changes the value of the TZ (or any) environment variable, that won't change
TZ in the parent shell. The script can set a different umask than the parent shell — no problem.
There are times you might want to start a subshell from your current shell. Maybe you have a
special project where you need to work in a different current directory, reset environment
variables, set a new home directory, reset some aliases, use a different PATH (Section 35.6),
whatever. When you end the subshell, the parent shell's environment will be the way it was.
If your parent shell has job control (Section 23.3), you can stop the subshell and pop back to
your parent shell without losing the changes in the subshell. If the child shell has job control, too,
the command suspend (or kill -STOP $$ (Section 27.17)) will stop it. Otherwise, just type
CTRL-z at the subshell's prompt. For example:
prompt Section 4.1
myprompt% csh
myprompt% set prompt="project% "
project% cd project-directory

project% setenv PRINTER plotter
project% set path=($path some-new-directories)
project% setenv EXINIT "se ts=4 sw=4 aw wm=0"
 ...do some work...
project% suspend

Stopped
 ...back to parent shell...
myprompt%
myprompt% fg %csh
 ...back to subshell...
project%

I use suspend so much that I've made a CTRL-z-like alias named z:
alias z suspend ...csh
alias z=suspend ...bash, ksh

If you need a different type of shell temporarily, just type that shell's name at a prompt. When
you end the shell by typing exit or by suspending it (as shown above), you're back to your usual
shell. For example, you might normally use bash but want to use the zsh multiline editing for a
few loops you need to run. As another example, I started a lot of different shells while I was
writing this book — and suspended them, as above, when I wasn't using them. Very handy.
 A shell escape (Section 17.21) starts a subshell. Do whatever you want to the subshell's

environment. When you end the shell escape, the changes go away.
The su command starts a subshell. cd anywhere, change environment variables, and so on.

If you use the exit command, a subshell (or any shell) will terminate. In a script, when the shell reads
the end of file, that does an implicit exit. On the command line, an end-of-input character (usually
CTRL-d) will do the same thing. Section 35.16 explains how exit sets a shell's exit status.

— JP

[1] This isn't true when the subprocess is execd from the parent process without a fork first. Section
24.2 explains.
[2] When you use the shell's exec (Section 35.5) command, it does not start a subprocess.

The ps Command

The ps command varies from system to system. (The ps on one Red Hat Linux system reads a
PS_PERSONALITY environment variable with 21 possible settings!) This article describes several
different versions. Yours is probably different in some ways, so check your ps manual page for
details.

The ps command produces a report summarizing execution statistics for current processes. The bare
ps command lists the process ID, the terminal from which the command was started, how much CPU
time it has used, and the command itself. The output looks something like this (it differs by system):
 PID TT STAT TIME COMMAND
 1803 p5 IW 0:00 -csh (csh)
 1883 p5 IW 0:04 vi outline
 1811 p6 IW 0:01 -csh (csh)
 5353 p6 TW 0:01 vi 4890

By default, ps lists only your own processes. There are many times, though, when it's desirable to
have a more complete listing with a lot of data about all of the processes currently running on the
system. The options required to do this differ between BSD Unix and System V. Under BSD Unix, the
command is ps -aux, which produces a table of all processes, arranged in order of decreasing CPU
usage at the moment when the ps command was executed. [The -a option gives processes belonging
to all users, -u gives a more detailed listing, and -x includes processes that no longer have a
controlling terminal (Section 24.6). — TOR] It is often useful to pipe this output to head (Section
12.12), which will display the most active processes:
% ps -aux | head -5
USER PID %CPU %MEM SZ RSS TTY STAT TIME COMMAND
martin 12923 74.2 22.5 223 376 p5 R 2:12 f77 -o foo foo.F
chavez 16725 10.9 50.8 1146 1826 p6 R N 56:04 g94 HgO.dat
ng 17026 3.5 1.2 354 240 co I 0:19 vi benzene.txt
gull 7997 0.2 0.3 142 46 p3 S 0:04 csh

The meanings of the fields in this output (as well as others displayed by the -l option to ps) are given
in Table 24-1.

The first line of this output shows that user martin is running a FORTRAN compilation (f77). This
process has PID (Section 24.3) 12923 and is currently either running or runnable. User chavez's
process (PID 16725), executing the program g94, is also running or runnable, though at a lowered
priority. From this display, it's obvious who is using most system resources at this instant: martin and
chavez have about 85% of the CPU and 73% of the memory between them. However, although it does
display total CPU time, ps does not average the %CPU or %MEM values over time in any way.

Table 24-1. ps command output fields

Column[3] Contents

USER (BSD) Username of process owner

UID (System V) User ID (Section 24.3) of process owner

PID Process ID

%CPU Estimated fraction of CPU consumed (BSD)

%MEM Estimated fraction of system memory consumed (BSD)

SZ Virtual memory used in K (BSD) or pages (System V)

RSS Real memory used (in same units as SZ)

TT, TTY Terminal port associated with process

STAT (BSD), S
(System V) Current process state; one (or more under BSD) of:

 R: Running or runnable

 S: Sleeping

 I: Idle (BSD); intermediate state (System V)

 T: Stopped (Section 23.1)

 Z: Zombie process (Section 24.19)

 D (BSD): Disk wait

 P (BSD): Page wait

 X (System V): Growing,waiting for memory

 K (AIX): Available kernel process

 W (BSD): Swapped out

 N (BSD): Niced (Section 26.5, Section 26.7), execution priority lowered

 > (BSD): Execution priority artificially raised (Section 26.7)

TIME Total CPU time used

COMMAND Command line being executed (may be truncated)

STIME (System V) Time or date process started

C (System V), CP
(BSD)

Short term CPU-use factor; used by scheduler for computing execution
priority (PRI below)

F Flags associated with process (see ps manual page)

PPID Parent's PID

PRI Actual execution priority (recomputed dynamically)

NI Process nice number (Section 26.5)

WCHAN Event process is waiting for

[3] Some vendors add other fields, such as the processor number for multiprocessors and additional
or different process states (as in the AIX K field). These codes may differ from vendor to vendor:
for example, the 0 code under Stardent Unix means a process that is actually running (and R means
runnable), while 0 under AIX means a nonexistent process.

A vaguely similar listing is produced by the System V ps -ef command:
$ ps -ef
 UID PID PPID C STIME TTY TIME CMD
 root 0 0 0 09:36:35 ? 0:00 sched
 root 1 0 0 09:36:35 ? 0:02 /etc/init
 ...
 gull 7997 1 10 09:49:32 ttyp3 0:04 csh
martin 12923 11324 9 10:19:49 ttyp5 56:12 f77 -o foo foo.F
chavez 16725 16652 15 17:02:43 ttyp6 10:04 g94 HgO.dat
 ng 17026 17012 14 17:23:12 console 0:19 vi benzene.txt

The columns hold the username, process ID, parent's PID (the PID of the process that created it), the
current scheduler value, the time the process started, its associated terminal, its accumulated CPU
time, and the command it is running. Note that the ordering is by PID, not resource usage.

AIX's version of the ps command supports both BSD and System V options. The BSD options are not
preceded by a hyphen (which is a legal syntax variation), and the System V options are. Thus, under
AIX, ps -au is not the same as ps au. The command is the System V version, however, even if its
output is displayed with the BSD column headings. Thus, ps aux output is displayed in PID rather than
%CPU order.

ps is also useful in pipes; a common use is:
% ps -aux | grep chavez

to see what user chavez has currently running. Under System V, use ps -u chavez.

Another way to view the process information is with the top command. Unlike ps, top is an
interactive screen program that updates its information every few seconds. It's a good way to get a
quick pulse of your system. Not only is process information displayed, but memory statistics and the
system uptime are also shown. You can find the full range of available interactive commands by
typing h once top has started. You can sort processes in a variety of ways including CPU and memory
usage, as well as by user. You can even kill processes from within top.

—AF, from Essential System Administration (O'Reilly, 2002), and JJ

The Controlling Terminal

In Section 24.5, we pointed out that the ps command needs special options (-x for BSD-derived
versions and -e for System V-type) to list processes without a controlling terminal.

But just what is a controlling terminal? Just what it sounds like: the terminal from which the process
was started. In the ps listing, this is usually given as a tty, or terminal ID. That ps entry usually
corresponds to a serial port, or a pty. A pty or "pseudo-terminal" is a construct that makes a window
or network login (Section 1.21) look to the operating system just like a terminal.

In the ps listing, a tty might appear as t1 for /dev/tty1, p3 for /dev/ttyp3, or as some other
designation, such as co for /dev/console, the full-screen display of a workstation before any window
system is started. Processes without a controlling terminal show a question mark (?).

How does a process "lose" its controlling terminal? Easy. Some processes, such as system
"daemons" (Section 1.10) never had one — they were started by system scripts that weren't started
from any terminal, or they disconnected themselves from their controlling terminals. But it's also
possible that you started a process running in the background, logged out, and logged back on later or
on another terminal to find it still running without a controlling terminal. Disowned processes
(Section 23.11) fit this category too.

The tty command can be used to report which "terminal" you're currently connected to. For example:
% tty
/dev/ttyp2

Running tty without a controlling terminal gives the message not a tty.

— TOR

Tracking Down Processes

ps without arguments lists all processes started from the current terminal or pseudo-terminal. But
since ps is not a shell command, it doesn't correlate process IDs with the shell's job numbers. It also
doesn't help you find the ID of the runaway process in another shell window.

To get this information, use ps -a (for "all"); this lists information on a different set of processes,
depending on your Unix version.

System V

Instead of listing all that were started under a specific terminal, ps -a on System V-derived systems
lists all processes associated with any terminal that aren't group leaders. For our purposes, a "group
leader" is the parent shell of a terminal or window. Therefore, if you are using a windowing system,
ps -a lists all jobs started in all windows (by all users), but not their parent shells.

Assume that, in the previous example, you have only one terminal or window. Then ps -a will print
the same output as plain ps except for the first line, since that's the parent shell. This doesn't seem to
be very useful.

But consider what happens when you have multiple windows open. Let's say you have three
windows, all running terminal emulators such as xterm for the X Window System. You start
background jobs alice, duchess, and hatter in windows with pseudo-terminal numbers 1, 2, and 3,
respectively. This situation is shown in Figure 24-1.

Figure 24-1. Background jobs in multiple windows

Assume you are in the uppermost window. If you type ps, you will see something like this:
 PID TTY TIME COMD
 146 pts/1 0:03 bash
 2349 pts/1 0:03 alice
 2390 pts/1 0:00 ps

But if you type ps -a, you will see this:
 PID TTY TIME COMD
 146 pts/1 0:03 bash
 2349 pts/1 0:03 alice
 2367 pts/2 0:17 duchess
 2389 pts/3 0:09 hatter
 2390 pts/1 0:00 ps

Now you should see how ps -a can help you track down and kill (Section 24.12) a runaway process.
If it's hatter, you can type kill 2389. If that doesn't work, try kill -QUIT 2389, or in the worst
case, kill -KILL 2389.

BSD

On BSD-derived systems, ps -a lists all jobs that were started on any terminal; in other words, it's a
bit like concatenating the results of plain ps for every user on the system. Given the above scenario,
ps -a will show you all processes that the System V version shows, plus the group leaders (parent
shells).

Unfortunately, ps -a (on any version of Unix) will not report processes that are in certain conditions
where they "forget" things such as what shell invoked them and what terminal they belong to. Such
processes are known as zombies or orphans (Section 24.19). If you have a serious runaway process
problem, it's possible that the process has entered one of these states.

You need another option to ps to see it: on System V, it's ps -e ("everything"); on BSD, it's ps -ax.

These options tell ps to list processes that either weren't started from terminals or "forgot" what
terminal they were started from. The former category includes lots of basic processes that run the
system and daemons (Section 1.10) that handle system services like mail, printing, network file
systems, etc.

In fact, the output of ps -e or ps -ax is an excellent source of education about Unix system internals.
Run the command on your system and, for each line of the listing that looks interesting, invoke man
(Section 2.1) or info (Section 2.9) on the process name.

User shells and processes are listed at the very bottom of ps -e or ps -ax output; this is where you
should look for runaway processes. Notice that many processes in the listing have ? instead of a
terminal. Either these aren't supposed to have a terminal (such as the basic daemons), or they're
runaways. Therefore it's likely that if ps -a doesn't find a process you're trying to kill, ps -e or ps -ax
will list it with ? in the TTY (or TT) column. You can determine which process you want by looking
at the COMD (or COMMAND) column.

Section 24.22 shows a similar thing: how to close windows by killing their process.

—CN and BR

Why ps Prints Some Commands in Parentheses

There is a reason that some versions of ps, and thus derivatives such as w, sometimes print commands
in parentheses:
% ps -f -u jerry
 UID PID PPID C STIME TTY TIME COMMAND
 jerry 29240 29235 0 07:56:19 ttyp1 0:01 sh find_mh_dupes
 jerry 29259 29240 23 07:57:52 ttyp1 0:07 (egrep)

The reason is that whoever wrote ps liked it that way. The parentheses indicate that the command
overwrote its name, or ps could not find the name, and that ps is printing instead the "accounting
name." (The accounting name is the last component of the name given to the exec (Section 24.2)
system call, and is the name used in the system resource usage accounting file.) Basically, ps does
this in the C language:
if (proc->argv == NULL || strcmp(proc->acct_name, proc->argv[0]) != 0)
 printf("(%s)", proc->acct_name);

In the case of a large environment, ps is unable to find the argument vector. This is because it reads
only the last few stack pages of each process.

Other versions of ps use completely different mechanisms for locating the command arguments and
may never print parentheses.

— CT, in net.unix-wizards on Usenet, 13 November 1983

The /proc Filesystem

In Unix, it seems almost everything can be treated like a file (Section 1.19). On many modern Unix
systems, even processes are files — well, sort of. A special filesystem named /proc doesn't actually
"contain" processes, but it lets you interact with them. Almost all of the "files" in /proc are plain text,
so you can access them from scripts and programs, as well as from the command line. Of the systems
I've checked, my Red Hat Linux 6.2 box (kernel version 2.2) seems to have the most in /proc, so I'll
cover it. Please check your documentation — a proc(5) manual page, for instance — for the story on
your system.

All /proc filesystems have one subdirectory for each process currently running on the system. Each of
those process subdirectories is named for its PID (Section 24.3). Some versions of /proc also have
other named files and subdirectories — and my system has a lot of them. Here's a partial listing of my
/proc filesystem at the moment; I've left out a lot of the numbered subdirectories:

-F Section 8.10
$ ls -F /proc
1/ 17415/ 467/ cmdline ksyms pci
1047/ 2/ 482/ cpuinfo loadavg rtc
1052/ 3/ 5/ devices locks scsi/
1057/ 345/ 553/ dma mdstat self@
1287/ 370/ 593/ fb meminfo slabinfo
1289/ 379/ 594/ filesystems misc stat
14288/ 393/ 595/ fs/ modules swaps
14289/ 4/ 596/ ide/ mounts sys/
17409/ 4017/ 597/ interrupts mtrr tty/
17412/ 407/ 6/ ioports net/ uptime
17413/ 425/ apm kcore partitions version
17414/ 439/ bus/ kmsg

Linux system utilities like ps and pidof use information from /proc. Your programs can use it, too;
there are some examples below. But it's also useful when you want to know something about your
system. The "files" in /proc are most useful there. Let's look at a series of examples. We'll end with
the numbered per-process "directories."

Memory Information

The Linux free(1) utility shows your memory status. It simply reads the file /proc/meminfo and
reformats the information. If you want an alias (Section 29.2) that simply shows how much memory is
free, it's probably simpler to read the meminfo file directly. For example:

grep Section 13.1
$ cat /proc/meminfo
 total: used: free: shared: buffers: cached:
Mem: 263929856 253022208 10907648 79675392 30797824 57868288
Swap: 394784768 14585856 380198912
MemTotal: 257744 kB
MemFree: 10652 kB
MemShared: 77808 kB
Buffers: 30076 kB
Cached: 56512 kB
BigTotal: 0 kB
BigFree: 0 kB
SwapTotal: 385532 kB
SwapFree: 371288 kB
$ alias memfree='grep Free: /proc/meminfo'
$ memfree
MemFree: 10616 kB
BigFree: 0 kB
SwapFree: 371288 kB

(The free RAM decreased a bit while I was writing the alias.)

Kernel and System Statistics

The /proc/stat file has statistics on the kernel and system. As with most of the rest of /proc, it's
updated constantly. For example, we can grep for the CPU statistics. The four fields on the cpu line
show the number of jiffies (hundredths of a second) since the system was last rebooted: time spent in
normal-priority user mode, niced user mode (Section 26.5), system (kernel) mode, and the idle task,
respectively. You might want to use this information from a script that monitors your system's
utilization. Here's an example: grepping for the CPU statistics, then the start of an awk (Section
20.10) script that could watch the CPU usage:

!! Section 30.8
$ grep cpu /proc/stat
cpu 14693561 48135949 638573 4031301
$ awk '/^cpu/ { print $5 / 100 " seconds idle" }' /proc/stat
40318.7 seconds idle
$!!
awk '/^cpu/ { print $5 / 100 " seconds idle" }' /proc/stat
40323.8 seconds idle

Statistics of the Current Process

The sections below describe per-process subdirectories in /proc. One special directory is /proc/self.
It has the unusual property of giving a different answer for every process that examines it: information
about the current process. (This "directory" is actually a symbolic link (Section 10.4) to the directory
numbered for the process' PID.)

For instance, a process can check its /proc/self/fd directory to see which files its file descriptors (
Section 36.15) are currently pointing to. This isn't just what type of file (disk file, tty (Section 2.7),
pipe, etc.) but the actual full pathname of the file. If you're new to Unix, this may not seem too earth-
shaking, but it's actually pretty amazing.

For a simple example, here's a shell script that lists its input and outputs. It then redirects its standard
input (file descriptor 0) from /dev/null (Section 43.12) and lists again.
$ pwd
/tmp
$ tty
/dev/pts/5
$ cat showfds
#!/bin/sh
cd /proc/self/fd
ls -l
exec 0</dev/null
ls -l
$./showfds < somefile
total 0
lr-x------ 1 jpeek jpeek 64 Dec 2 09:03 0 -> /tmp/somefile
lrwx------ 1 jpeek jpeek 64 Dec 2 09:03 1 -> /dev/pts/5
lrwx------ 1 jpeek jpeek 64 Dec 2 09:03 2 -> /dev/pts/5
lr-x------ 1 jpeek jpeek 64 Dec 2 09:03 3 -> /tmp/showfds
total 0
lr-x------ 1 jpeek jpeek 64 Dec 2 09:03 0 -> /dev/null
lrwx------ 1 jpeek jpeek 64 Dec 2 09:03 1 -> /dev/pts/5
lrwx------ 1 jpeek jpeek 64 Dec 2 09:03 2 -> /dev/pts/5
lr-x------ 1 jpeek jpeek 64 Dec 2 09:03 3 -> /tmp/showfds

Statistics of Processes by PID

All versions of /proc that I've seen have subdirectories named for each process currently running on
the system. Each subdirectory is named for the process PID (Section 24.3). Here are a series of
examples of the useful info on my Linux system:

 Go to http://examples.oreilly.com/upt3 for more information on: showenv

You can use printenv or env (Section 35.3) to find the environment of your current process.
How about the environment of another process? Here's a shell script called showenv that works
like printenv:
#!/bin/sh
showenv - show environment of a process, by PID
If second argument given, show just that one environment variable.

f=/proc/$1/environ

if [! -r "$f"]; then
 echo "`basename $0`: can't access process $1" 1>&2
 exit 1
fi

case $# in
1) tr '\000' '\012' < $f | sort ;;
2) tr '\000' '\012' < $f | grep "^$2=" ;;
*) echo "Usage: `basename $0` pid [envariable-name]" 1>&2; exit 1 ;;
esac

The tr (Section 21.11) command translates the NUL-separated entries from the environ file into
newline-separated lines. With one argument, the whole environment is shown. With two
arguments, the script greps for the environment variable named in the second argument. Maybe
you'd like to know what the EXINIT (Section 17.27) environment variable was set to in a vi
process with PID 8984:
$ showenv 8984
DISPLAY=:0.0
ECIINI=/usr/lib/ViaVoiceTTS/eci.ini
EDITOR=vi
EXINIT=so ~/.lib/vi/exrc8
HISTFILESIZE=1000
 ...
$ showenv 8984 EXINIT
EXINIT=so ~/.lib/vi/exrc8

The status file gives status information about the process. A lot of this information is available
in ps (Section 24.5) output, but it's broken out nicely here. For instance, maybe you're wondering
what group access process 918 has, or what process started it (its parent PID (Section 24.3)):
% cd /proc/918
% grep PPid status
PPid: 916
% grep Groups status
Groups: 1000 501 103

The PPID is 916. The process has the group numbers (can access resources with the group
permissions of) GIDs 1000, 501, and 103.
The command-line arguments of a process are in the cmdline file, separated by NUL characters.
Hmmm, what files is that tail -f job, process 861, watching? Let's see...using echo (Section

http://examples.oreilly.com/upt3

27.5) to add a final newline:

; Section 28.16
$ tr '\000' ' ' < /proc/861/cmdline; echo
tail -f /var/log/messages /var/log/maillog /u/jerry/tmp/startx.log

A Glimpse at Hardware

If you are curious about your system's hardware, a quick look at /proc/cpuinfo, /proc/interrupts, and
/proc/ioports will help you size up the system. All the following examples came from a Red Hat
Linux box, but you will find these proc files on most Linux and BSD systems. For instance,
/proc/cpuinfo looks like this (on my system):
processor: 0
vendor_id: GenuineIntel
cpu family: 6
model: 6
model name: Celeron (Mendocino)
stepping: 0
cpu MHz: 400.918
cache size: 128 KB
fdiv_bug: no
hlt_bug: no
f00f_bug: no
coma_bug: no
fpu: yes
fpu_exception: yes
cpuid level: 2
wp: yes
flags: fpu vme de pse tsc msr pae mce cx8 sep mtrr pat pse36 mmx fxsr
bogomips: 799.53

The most important fields to notice are processor, model name, and cpu MHz since these identify
how many CPUs are in the system, the model name (although this isn't always so clear in older
Pentium models), and the CPU speed of your machine.

The other three proc files are important if you are installing hardware or trying to configure recently
installed hardware. /proc/interrupts lists the hardware interrupt numbers and shows which devices
are using which interrupt. On my machine, this looks like:
 CPU0
 0: 92887036 XT-PIC timer
 1: 910141 XT-PIC keyboard
 2: 0 XT-PIC cascade
 3: 4 XT-PIC serial
 5: 4794267 XT-PIC eth0
 8: 11642728 XT-PIC rtc
 10: 65248789 XT-PIC es1371
 11: 0 XT-PIC usb-uhci
 12: 5109157 XT-PIC PS/2 Mouse
 14: 560048 XT-PIC ide0
 15: 408739 XT-PIC ide1
NMI: 0
ERR: 0

/proc/ioports lists the hardware I/O port ranges that all your systems devices use. This is a good file
to examine if recently installed hardware can't be found in your drivers. Here's an abbreviated sample
of my system's /proc/ioports.
03f6-03f6 : ide0
03f8-03ff : serial(auto)
0cf8-0cff : PCI conf1
4000-403f : Intel Corporation 82371AB PIIX4 ACPI
5000-501f : Intel Corporation 82371AB PIIX4 ACPI
c000-cfff : PCI Bus #01
d000-d01f : Intel Corporation 82371AB PIIX4 USB
d400-d43f : Ensoniq ES1371 [AudioPCI-97]
d800-d807 : Lucent Microelectronics 56k WinModem
dc00-dcff : Lucent Microelectronics 56k WinModem
e000-e0ff : PCI device 1186:1300 (D-Link System Inc)
f000-f00f : Intel Corporation 82371AB PIIX4 IDE

This file makes it easy to diagnosis hardware conflicts. However, if your system is working well, you
probably won't be looking at any of these files much.

— JP

What Are Signals?

Signals are a simple but important means of interprocess communication. Interprocess communication
sounds fancy, but it's really a simple concept: it's the means by which one program sends a message to
another program. It's common to think of signals as special messages sent by the Unix kernel (Section
1.10) but, in fact, any program can signal any other program.

What kinds of messages can you send with a signal? Relatively few, in reality. Signals aren't
"arbitrary" messages, like letters; they are a small group of pre-defined messages, each with its own
special meaning. System V Unix supports 16 signals, each of which is assigned a number; BSD-
derived Unix implementations and SVR4 have 32 signals. Table 24-2 lists some of the more
commonly used signals. It also lists keyboard characters that send common signals on BSD systems
(these can be changed; see Section 5.8).

Table 24-2. Common signals

Signal
name Number Meaning and typical use

HUP 1 Hangup — stop running. Sent when you log out or disconnect a modem.

INT 2 Interrupt — stop running. Sent when you type CTRL-c.

QUIT 3 Quit — stop running (and dump core). Sent when you type CTRL-\.

KILL 9 Kill — stop unconditionally and immediately; a good "emergency kill."

SEGV 11 Segmentation violation — you have tried to access illegal memory.

TERM 15 Terminate — terminate gracefully, if possible.

STOP 17* Stop unconditionally and immediately; continue with CONT.

TSTP 18* Stop — stop executing, ready to continue (in either background or foreground).
Sent when you type CTRL-z. stty (Section 5.8) calls this susp.

CONT 19* Continue — continue executing after STOP or TSTP.

CHLD 20* Child — a child process's status has changed.

Note that signal numbers — especially the ones above 15, marked with an asterisk in Table 24-2 —
vary system-to-system. Use the signal name wherever you can.

While the list in Table 24-2 isn't definitive, it shows you the types of things signals can do. Many
signals, like SIGSEGV, are warning or error messages. You've probably seen the frustrating
"segmentation violation" message. That message came when the kernel detected something wrong and
sent your program a SIGSEGV signal; in response, your program quit. Others signals, like SIGTSTP,
are generated in response to special characters on the keyboard. And a lot of signals just say, "Your
time is up, goodbye!"

When a process receives a signal, it can take a number of actions; for example:

It can take whatever default action is specified for the signal. By default, some signals kill the
process that receives them. For some signals, the default action is to stop running and dump core.
(SIGQUIT is an example of this.) Other signals have no effect by default.
 It can trap (Section 35.17) the signal and run a special "signal handling" function — in which
case, it can do whatever it wants. A signal handler often does whatever's necessary to shut the
program down nicely: make sure that files are closed and left in a consistent state, and so on.
It can ignore the signal, in which case nothing happens.

You've probably read that the command kill -9 is guaranteed to kill a process. Why? Two special
signals in Table 24-2 can't be caught or ignored: the KILL and STOP signals.

The kill (Section 24.12) command doesn't kill — it really does nothing more than send signals. As
you now know, signals often bring death and destruction, but there's no necessary reason for them to
do so.

— ML

Killing Foreground Jobs

You probably know that typing CTRL-c (Section 24.10) will terminate your foreground job. But
what actually happens when you type CTRL-c?

When you type CTRL-c, you're sending the INT (interrupt) signal (Section 24.10) to the foreground
process. Most well-designed programs "catch" the interrupt signal, which means that the program
installs some special function (a "signal handler") that is called whenever a signal arrives. The signal
handler normally closes all open files, resets your terminal properly (if needed), and does anything
else necessary so that the program can depart from this world in peace. Then the program terminates.
The QUIT signal, sent by CTRL-\, works similarly but also makes a core file for debugging.

Of course, it's possible for the signal handler to do something else entirely: the program can decide
not to quit, or it can implement some truly bizarre feature. In fact, editors such as vi or Emacs almost
always ignore most signals. The trap (Section 35.17) command handles signals in the Bourne shell.

Whenever you send a signal from the keyboard, it's sent to all processes in the same process group (
Section 24.3). This may include the program's child processes, but it may not. And, of course, child
processes can choose to ignore signals on their own. But more often than not, killing the parent
process kills its children.

Section 5.8 explains how to set the key that sends these and other signals. The kill (Section 24.12)
command also sends signals.

—ML and JP

Destroying Processes with kill

Sometimes it's necessary to eliminate a process entirely or to signal a process (Section 24.13); this is
the purpose of the kill command. You can use the kill command with or without a signal id:
% kill
 pid
% kill
 -signal pid

where pid is the process' identification number, and signal (which is optional) is the signal to send to
the process. The default signal is number 15, the TERM signal, which tells the process to terminate.
On some systems, the signal must be specified numerically; others allow you to use either the signal
number or its symbolic name. [Use kill -l for a list of signal names; unfortunately, the listing doesn't
show the correspondence of names and numbers. However, they are in order, so if you can count, you
can figure it out. — TOR]

Sometimes, a process may still exist after a kill command. If this happens, execute the kill command
with the -KILL or -9 option. This almost always guarantees that the process will be destroyed.
However, it does not allow the dying process to clean up, and therefore may leave the process' files
in an inconsistent state.

Occasionally, processes will not die even after being sent the KILL signal. The vast majority of such
processes fall into one of three categories:

 Zombies. A process in the zombie state (Section 24.19) is displayed as Z status in BSD ps (
Section 24.5) displays and as <defunct> under System V. When a process is exiting, it informs
its parent of its imminent death; when it receives an acknowledgment, its PID is removed from
the process table. A zombie process is one whose total resources have been freed, but whose
parent process' acknowledgment has not occurred. Usually, init will step in when the parent is
gone, but very occasionally this fails to happen. Zombies are always cleared the next time the
system is booted and do not adversely affect system performance.
Processes waiting for unavailable NFS (Section 1.21) resources (for example, trying to write to
a remote file on a system that has crashed) will not die if sent a KILL signal. Use the QUIT
signal (3) or the INT (interrupt) signal (2) to kill such processes.
Processes waiting for a device to complete an operation before exiting. Often this means waiting
for a tape to finish rewinding.

Killing a process may also kill all of its children. Child processes may not die if they're blocking or
"catching" the signal you use — although, as explained above, the KILL signal (9) will usually
terminate those processes. Killing a shell can therefore kill all the foreground and stopped
background processes initiated from that shell (including other shells). Killing a user's login shell is
equivalent to logging the user out. This is a useful (if somewhat painful) way to recover from certain
kinds of problems. For example, if a user manages to confuse his editor by mistyping control keys and
escape sequences, or enters an infinite loop that he can't terminate by normal means, killing his shell
will let him regain control of the situation, possibly at the cost of some work. Use the ps command to
determine which process is the offending user's shell. Remember that you must be superuser (
Section 1.18) to kill someone else's process.

If you're using the X Window System, Section 24.20 shows how to find which window has the
processes you may need to kill.

—AF, from Essential System Adminstration (O'Reilly, 2002)

Printer Queue Watcher: A Restartable Daemon Shell Script

[This article may not appear to have a lot to do with the subject of this chapter, but it illustrates the
other side of signal handling — what a program or shell script can do when it receives a signal.
Jerry's script uses the trap (Section 35.17) command to catch several different signals and act
differently depending on whether the signal is a "hangup" (HUP , or signal 1) or a TERM (signal 15).
— TOR]

Unix systems run "daemon" programs such as cron(8) and syslogd(8) that wait in the background,
looking for work to do. Many daemons read configuration files when they start up. System
administrators sometimes change the configuration files and want the daemon to reread the file. One
way to do that is by terminating and restarting the program — but that's ugly and also means the
daemon won't be running for a few seconds until it's restarted. So many daemons are designed to
reread their configuration files and/or restart themselves when they get a signal (usually the HUP
signal, signal 1). System administrators do this by getting the daemon's process ID number and
sending the signal with the kill command. Because the daemon "catches" the signal, the daemon isn't
actually killed.

You can run a shell script as a daemon by putting it in the background.[4] Here's a simple example, a
shell script named watchq. It reads a file full of printer queue names and stores it in a shell variable.
Every 30 seconds, it runs lpq (Section 45.2) on all printer queues listed. If any queues have an error,
the script echoes a message and the output of lpq to a particular user with the write (Section 1.21)
command. (You could change it to write to the system's syslog by calling logger(1) instead of write.
Or use xmessage (Section 36.26) to pop a notice window onto someone's X Window System
console. Etc., etc.)

The script uses numbers (0, 1, 15) instead of signal names (EXIT, HUP, TERM). This is for
portability to older Unix shells that don't understand names in trap commands. But if you write a
script like this on a newer system, use signal names if you can.

 Go to http://examples.oreilly.com/upt3 for more information on: watchq

/dev/null Section 43.12
#! /bin/sh
watchq - "daemon" script that watches printer queue(s) for errors
temp=/tmp/WATCHQ$$ # Holds output of lpq
watch=/usr/local/lib/watchqs # Queue names to watch
writeto=lisa # User who gets notices about printer
queues="`cat $watch`" # Put list of queue names in $queues
trap 'queues="`cat $watch`"' 1 # Reset $queues if we get a SIGHUP
trap 'rm -f $temp; exit' 0 15 # Clean up temp file when killed

Loop forever (until someone kills script):
while :
do
 for queue in $queues
 do
 lpq -P$queue >$temp
 if egrep '(out of paper|error|warning)' $temp >/dev/null
 then echo "PRINTER QUEUE $queue:" | cat - $temp | write $writeto
 fi
 done
 sleep 30
done

http://examples.oreilly.com/upt3

Now let's run the script. After the script has run for a while, the printer named office goes down. I
edit the watchqs file and remove that printer so the poor user lisa won't keep getting complaints about
it. Then I send a signal to have the file reread:

kill Section 24.12
% echo office main lobby > /usr/local/lib/watchqs
% watchq &
[1] 4363
 ...
% echo main lobby > /usr/local/lib/watchqs
% kill -HUP 4363
 ...
% kill 4363
[1] Exit -48 watchq

In real life, the watchq script might be started from a system file like /etc/rc.local when the system
reboots. Lisa would probably edit the watchqs file herself. The username that's notified by write
might also be resettable with a kill -HUP (or kill -1).

This isn't foolproof, and you can run into subtle problems. For instance, the write command may not
work on some Unixes if it's running from a daemon without a controlling tty (Section 24.6). Also, the
error messages that egrep (Section 13.4) searches for may not catch all problems, and they are
system-dependent. If you use xmessage, a user who's away from his workstation could come back to
tens or hundreds of windows; you might want to make the script pause until the user acknowledges a
window. But this script is just a demonstration — to show a great way to write a quick-and-dirty
daemon.

— JP

[4] It's usually also a good idea to be sure that the input and outputs are redirected (Section 43.1,
Section 36.16) away from the terminal, maybe to the system console instead. On systems and shells
that kill background jobs when you log out, use nohup (Section 23.10).

Killing All Your Processes

On many Unix systems, kill (Section 24.12) interprets the special "process ID" -1 as a command to
signal all your processes (all processes with your user ID), except for the process sending the signal.
For example, the following command will terminate all your processes:[5]

% kill -TERM -1

To see if your system supports this feature, type man 2 kill (Section 2.1) to read the kill(2) manual
page.

You can use this to prevent background jobs from continuing after you logout; just stick kill -TERM
-1 into your .logout file. There are some good reasons not to do this though: if you use several
terminals, this will kill all your processes when you log out from any terminal.

This command is also useful in desperate situations. If processes are spawning out of control, or if
your terminal is locked, you can log in from another terminal and kill everything, without having to
dig through ps (Section 24.5) to find the right process. The zap (Section 24.16) script searches
process lists and kills processes automatically.

The special -1 process ID is defined differently for the superuser; if you're root, it means "all
processes except system processes."

If you can't use the -1 process ID, and you use the Bourne shell or another shell without job control,
you can use a 0 (zero) process ID. That sends the signal to all members of the process group (that is,
processes resulting from the current login). A 0 doesn't work on shells, such as the C shell, that have
job control (Section 23.3).

—ML, JP, and JIK

[5] Signal 15 is SIGTERM, which is the signal kill sends by default. In this command, you need to
specify it explicitly, for obvious syntactic reasons.

Killing Processes by Name?

This article discusses a particular version of kill that has some problems. Your system may have a
different kill and, possibly, a version of killall (Section 24.16) that doesn't seem to have as many
problems. But this article is worth reading anyway for what it shows you about process names and the
ps command. It's good info to keep in mind when you're trying to kill processes in a hurry.

On my Linux system, the kill(1) manual page says I can send signals to processes either by PID
numbers (as we showed in Section 24.12) or by process names. To an old stick-in-the-mud Unix user
like me, who's been killing processes by their PIDs for 20 years, this doesn't seem very appealing.
But hey, even I appreciate some of the new things Unix and Linux can do! ;-) So we're saying that, if
my system is slow and I want to temporarily stop the two gcc compiles I'm running in the background,
I can just type:
$ kill -STOP gcc
[2] Stopped gcc -c bigprog.c sub1.c sub2.c ...
[4]- Stopped gcc -o something something.c

Not necessarily. This is not always as simple as it seems. For one, before you kill a process by name,
you'd better be sure that there are no other processes by that name, owned by you, running at the same
time — unless you want to kill them too. That includes processes on other windows and ttys you're
logged onto at the time; it also includes at, cron, or batch jobs that are running somewhere else on the
system. Second, the process name may not be what you think it is. Third, even if your kill(1) manpage
says that kill can do this, your shell may have a built-in kill that doesn't understand how to kill
processes by name.

For example, let's say I have a runaway shell script named cruncher. I'm running it twice, and I want
to kill both instances. Watch:

& Section 23.2
1$ cruncher & cruncher &
[1] 21451
[2] 21456
2$ kill cruncher
bash2: kill: cruncher: no such pid
3$ type -all kill
kill is a shell builtin
kill is /bin/kill
4$ /bin/kill cruncher
kill: can't find process "cruncher"
5$ jobs
[1]- Running cruncher &
[2]+ Running cruncher &
6$ kill %1
[1]- Terminated cruncher
7$ ps
 ...
21456 pts/1 00:01:25 cruncher
8$ ps x
21456 pts/1 S 1:33 sh /u/jerry/.bin/cruncher

In command 1, I put the two jobs in the background. In command 2, I try to kill them by name. But my
shell, bash2, is complaining "no such pid." Hmmm; it's using the shell's built-in kill; the bash2
manpage seems to say that its kill only understands PID numbers. So, in command 3, I run type -all
and find that the system kill is /bin/kill. In command 4, I give the process name again, but /bin/kill
can't find it. Say what? Typing jobs, command 5, shows two crunchers running. And I can kill one of

them by using its job number, in command 6. More confusing, running ps, in command 7, also shows
cruncher running.

The story ends at command 8, where I ran the BSD version of ps (Section 24.5). It shows me what the
default "friendly" System V-style ps (in command 7) didn't: the complete command line is actually sh
/u/jerry/.bin/cruncher. This is a shell script, so the script filename cruncher, with the
executable's directory from the PATH (Section 35.6) prepended, is passed to a shell as an
argument (Section 27.3). So (whew): to kill these shell scripts, I should have typed kill sh. But do
I really want to kill all running shells?

Another problem with killing a process by name is that a process can start a subprocess (Section
24.3) with a different name. For instance, if your make (Section 11.10) job starts a gcc compiler, and
you type kill make, will that kill gcc too? Maybe — if the signal that make gets is passed to its
subprocesses (if its subprocesses haven't been disowned (Section 23.11), for instance). But unless all
"smart" versions of kill are smarter than I think they are, they won't kill subprocesses with different
names.

And don't think that you can just write an alias (Section 29.2) to override your shell's kill with
/bin/kill: if you do, you won't be able to use job control (Section 23.1) numbers like %1 because the
external kill doesn't have access to your shell's job table.

My advice? It might be easier to use the old way — running ps to find the process(es) and kill by PID
number — or use a script like zap (Section 24.16) instead.

— JP

Kill Processes Interactively

When you want to kill processes, it's a pain in the neck to run ps (Section 24.5), figure out the process
ID, and then kill the process — although sometimes you have to do it that way (Section 24.15).
We'll look at two easier ways.

killall -i

Many systems have a command named killall with a -i ("interactive") option. Be careful, though,
because there are several versions, and the most basic does just what it says: kills all processes on
the system (when run as the superuser (Section 1.18)). Check killall's manual page on your system.

The version of killall we're talking about here accepts multiple process-name arguments on its
command line. Without its -i option, the command sends a signal (by default, TERM) to any process
name that matches. The process name you give has to match completely. Unfortunately, killall sends a
signal to any process with that name — even processes owned by other users, which you can't kill
(unless you're the superuser); you'll get the error Operation not permitted. For example:

& Section 23.2, [5] Section 23.3
1$ cruncher & sleep 60 &
[5] 2714
[6] 2715
$ killall crunch eep
crunch: no process killed
eep: no process killed
$ killall cruncher sleep
sleep(2708): Operation not permitted
sleep(2710): Operation not permitted
sleep(2712): Operation not permitted
[5] Terminated cruncher
[6] Terminated sleep 60

With -i, killall lists the PID number and gives you a choice of typing y to kill a process or n to leave
it alone:
$ cruncher & sleep 60 &
[5] 2732
[6] 2733
$ killall -i cruncher sleep
Kill sleep(2727) ? (y/n) y
sleep(2727): Operation not permitted
Kill cruncher(2732) ? (y/n) y
Kill sleep(2733) ? (y/n) y
Kill sleep(2734) ? (y/n) n
[5] Terminated cruncher
[6] Terminated sleep 60

zap

A more flexible way to kill processes interactively is the zap shell script, presented by Brian
Kernighan and Rob Pike in their classic book The UNIX Programming Environment. The script uses
egrep (Section 13.4) to pick the processes to kill; you can type extended expressions (Section
32.15) that match more than one process. The expressions can match partial or complete command
names, any arguments to the commands, or, actually, any part of the command's line in the ps output.
For example:
% zap 'troff|fmat'
 PID TTY TIME CMD
 22117 01 0:02 fmat somefile? n
 22126 01 0:15 sqtroff -ms somefile? y

We reprint the script by permission of the authors:

 Go to http://examples.oreilly.com/upt3 for more information on: zap

'...' Section 36.24
#! /bin/sh
zap pattern: kill all processes matching pattern

PATH=/bin:/usr/bin
IFS='
' # just a newline
case $1 in
"") echo 'Usage: zap [-2] pattern' 1>&2; exit 1 ;;
-*) SIG=$1; shift
esac

echo ' PID TTY TIME CMD'
kill $SIG `pick \`ps -ag | egrep "$*"\` | awk '{print $1}'`

The ps -ag command displays all processes on the system. Leave off the a to get just your processes.
Your version of ps may need different options (Section 24.5).

This shell version of zap calls another script, pick, shown below.[6] pick shows each of its command-
line arguments and waits for you to type y, q, or anything else. Answering y writes the line to standard
output, answering q aborts pick without showing more lines, and any other answer shows the next
input line without printing the current one. zap uses awk (Section 20.10) to print the first argument
(the process ID number) from any ps line you've selected with pick. The inner set of nested (Section
36.24) backquotes (Section 28.14) in zap pass pick the output of ps, filtered through egrep. Because
the zap script has set the IFS variable (Section 36.23) to just a newline, pick gets and displays each
line of ps output as a single argument. The outer set of backquotes passes kill (Section 24.12) the
output of pick, filtered through awk.

If you're interested in shell programming and that explanation wasn't detailed enough, take a careful
look at the scripts — they're really worth studying. (This book's shell programming chapters, 35
through 37, may help, too.) Here's the pick script:

 Go to http://examples.oreilly.com/upt3 for more information on: pick

/dev/tty Section 36.15
#!/bin/sh
pick: select arguments

http://examples.oreilly.com/upt3
http://examples.oreilly.com/upt3

PATH=/bin:/usr/bin

for i
do
 echo -n "$i? " >/dev/tty
 read response
 case $response in
 y*) echo $i ;;
 q*) break
 esac
done </dev/tty

— JP

[6] The MH email system also has a command named pick. If you use MH, or frontends like exmh or
mh-e, you could rename this script to something like choose.

Processes Out of Control? Just STOP Them

Especially if you're a programmer, you can run into a situation where you have processes forking
(Section 24.2) out of control — more and more of them. By the time you kill one, fifty more fork.

On systems with job control (Section 23.3), there's a good answer: use the STOP signal to stop
the processes:
kill Section 24.12
kill -STOP ...

Stop any process you can so that it can't fork more processes. Stop them all. Then start cleaning
up with kill -9.
If your system manager has set a per-user process limit on your computer, the good news is that
your processes won't eventually crash the system. But the bad news is, when you try to run any
command that isn't built into the shell (Section 1.9) (like killall (Section 24.16), which would
be nice to use in this situation, if you have it):
% killall -STOP myprog
No more processes.

you can't because you're already at your limit.
If that happens, log on to another account or ask someone to run a command that will give a list
of your processes. Depending on your system, the command is probably like one of these two:
% ps -u yourname

 System V
% ps aux | grep yourname

 BSD

Then go back to your terminal and start stopping :-). If you get the No more processes error,
your shell must not have a built-in kill command. Many shells do — including bash and csh.
Carefully type the next commands to be sure that /bin/bash exists (assuming your shell has a
built-in echo, this trick[7] bypasses the external ls command); then, if the shell is there, replace
your shell with bash. Don't make a mistake (if you do, you may not be able to log in again):
exec Section 36.5
$ echo /bin/bas?
/bin/bash
$ exec /bin/bash
bash$ kill ...

— JP

[7] This trick uses the shell's built-in wildcard matching (Section 1.13) to show you the shell's name
— we hope. If you get an answer like /bin/bas?, or multiple answers that don't include /bin/bash,
try another shell name. (Maybe your bash is in /usr/local/bin, for instance.) If you get an answer like
No more processes, though, your echo command probably isn't built in.

Cleaning Up an Unkillable Process

You or another user might have a process that (according to ps (Section 24.5)) has been sleeping for
several days, waiting for input. If you can't kill (Section 23.12) the process, even with kill -9, there
may be a bug or some other problem.

These processes can be unkillable because they've made a request for a hardware device or
network resource. Unix has put them to sleep at a very high priority and the event that they are
waiting on hasn't happened (because of a network problem, for example). This causes all other
signals to be held until the hardware event occurs. The signal sent by kill doesn't do any good.
If the problem is with a terminal and you can get to the back of the terminal or the back of the
computer, try unplugging the line from the port. Also, try typing CTRL-q on the keyboard — if
the user typed CTRL-s while getting a lot of output, this may free the process.
Ask your vendor if there's a special command to reset the device driver. If there isn't, you may
have to reboot the computer.

— JP

Why You Can't Kill a Zombie

Processes in your ps output that are in the <exiting> or Z status are called zombies.

You cannot kill zombies; they are already dead.

"What is a zombie?" I hear you ask. "Why should a dead process stay around?"

Dead processes stick around for two principal reasons. The lesser of these is that they provide a sort
of "context" for closing open file descriptors (Section 24.3) and shutting down other resources
(memory, swap space, and so forth). This generally happens immediately, and the process remains
only for its major purpose: to hold on to its name and exit status (Section 35.12).

A process is named by its process ID or PID. Each process also has associated with it a parent
process ID. The parent PID, or PPID, is the PID of the process that created it via fork (Section 24.2);
if that particular process has since vanished, the parent PID is 1 (the PID of init (Section 24.2)).
While the original parent is around, it can remember the PIDs of its children. These PIDs cannot be
reused until the parent knows the children are done. The parent can also get a single byte of status
(Section 35.12) from each child. The wait system call looks for a zombie child, then "collects" it,
making its PID available and returning that status. The init(8) program is always waiting, so that once
a parent exits, init will collect all its children as they exit and promptly ignore each status.

So, to get rid of a zombie, you must wait for it. If you have already done so or if the process' PPID is
1, the process is almost certainly stuck in a device driver close routine, and if it remains that way
forever, the driver has a bug.

— CT

The Process Chain to Your Window

Almost everything we cover in this book works as well from an old-style, full-screen terminal as it
does from an terminal window (like xterm) under the X Window System (Section 1.22). Actually, a
lot of it works on an old printing teletype, too! In all of those cases, you're interacting with a Unix
shell. This article covers things you should know about using a shell from an X window. We'll talk
specifically about the X11R6 xterm client, but this generally applies to any window with a shell
inside of it — like GNOME terminal. This is a guided tour, so it helps to be at a workstation or other
X display. If you can't take the tour, please scan through and look for the points I make along the way.

If you don't have an xterm window open, open one (by clicking on an icon, choosing a menu entry, or
however you usually do it). We'll call this the "first window." Find its tty (Section 2.7). Next, in this
first window, set an environment variable (Section 35.3) with a unique name and any value you
want. You might call it FAVCOLOR and set the value to purple. Then, in that same window, type cd
/tmp to change your current directory to /tmp. Finally, type xterm -rv -sb (with no & after its
name); this should open a second xterm window. Here's what that first xterm should look like (we'll
show C shell syntax here):
% tty
/dev/pts/1
% setenv FAVCOLOR purple
% cd /tmp
% xterm -rv -sb
 (cursor sits here; there's no shell prompt)

When your new second xterm pops open, it should be in reverse video (swapped
foreground/background colors, the -rv option) to make it easy to identify, with a scrollbar too. In it,
type tty to get its tty number, which will be different from the previous xterm's. Run env or printenv
(Section 35.3), and you should see the special environment variable (like FAVCOLOR) that you set.
Type pwd; the current directory should be /tmp.[8]

If you've managed to follow this twisty series of steps, you've started a chain of processes (Section
24.3).

You can see that chain of processes by typing the command ps aux or ps -ef (Section 24.5). You
should get lines something like these:
% tty
/dev/pts/3
% ps -ef
UID PID PPID C STIME TTY TIME CMD
jpeek 675 1 0 May13 ? 00:00:14 xterm
jpeek 681 675 0 May13 pts/1 00:00:00 zsh
jpeek 14850 681 0 15:58 pts/1 00:00:00 xterm -rv -sb
jpeek 14852 14850 0 15:58 pts/3 00:00:00 zsh
jpeek 14992 14852 0 16:07 pts/3 00:00:00 ps -ef

This is the chain of processes that led to the second window. Let's start from the bottom and work up.
From the ps -ef command,[9] you'll see that the ps command itself had PID (process ID) 14992; its
parent's PID (PPID) was 14852. So the process that started the ps process is the shell running in that
window: in my case, a Z shell, zsh, with PID 14852. Notice that both of these processes are running
on the same tty (Section 2.7) named pts/3. That's a way to find all the processes in a particular
window: check the tty name. This zsh is the shell running in this particular xterm. When you exit the
shell (by typing CTRL-d or exit), the window will close too — but don't try that yet! Instead, find the

parent of the shell; it's the xterm process, which is running on — are you surprised? — another tty,
pts/1. This makes sense, because you started xterm from another window, the first window. There's
a shell running in the first window too; it's the zsh with PID 681. The parent of the first window's
shell is, yes, another xterm, PID 675. And its parent has PID 1; this is init (Section 24.2), the
"grandparent" of all processes on your system.

Your window system may not work quite this way. The parent of the top-level xterm might not be
init. Also, an xterm could be owned by root instead of by you. Still, you should have a "chain" of
processes, something like the one I described, on your system.

Why did we go through all this? One reason is so you'll know how to track the processes that lead to
an xterm — and to know what to look for if you have to kill (Section 24.12) a hung window or a
process in a window. It's also to show that the environment from a parent window (here, the first
window) — the current directory, environment variables, and so on — is passed to the child window
(here, the second window). Finally, it's to show what happens when you close a window by exiting
the shell: the shell terminates, so its parent xterm process terminates too.

So what happens to a shell running in a window if you close the window by clicking the "X" box on
the window frame or by choosing the close or destroy commands in the window manager? The xterm
gets a signal (Section 24.10), and the system hopes that it dies. But it may not die, and the process
may stay around. Instead of trusting the window manager to kill a window and the processes in it, I
tend to use ps so I know for sure that all the processes are gone. Knowing the stuff we've looked at
here lets me identify a window and its processes.

But let's not kill things! Instead, in the second window, type exit at the prompt. The window should go
away. And, in the first window, you should have a new prompt. (If you had started the second xterm
in the background (Section 23.2), you could have kept working in the first window while the second
window ran, too. But watch out for the zsh and ksh options named bg_nice and bgnice, respectively,
which run background commands at lower priority. You probably don't want your new windows to
run at low priority, so be sure that option isn't set.)

— JP

[8] If your setup files assume you're in your home directory (Section 3.7), you may have some
problems.
[9] Note that, if your system's process ID numbers have "recycled" and started over from 1, the ps
command may not have the highest number.

Terminal Windows Without Shells

xterm is an X client that runs a Unix process on a pty "inside" a window. By default, this process is a
shell: an instance of the same shell you log into the system with. But it can be basically any Unix
process. As you saw in Section 24.20, when the process exits, the xterm window closes because its
child process has gone.

To override the default shell process in an xterm window, use the -e option (Section 5.22), followed
by the command line to run the process. This must be the last thing on the xterm command line. If you
want to open an xterm window with no scrollbar (the +sb option) and with the vi editor in it, to edit
the log file named logfile, run the command below:
% xterm +sb -e vi logfile
%

An xterm window should open with vi running inside it. If you don't know how to use vi, the best
thing to do is to leave it alone until you've finished this example — then press the ESC key, type :q,
and press ENTER to exit vi. When vi exits, its window should close too, and you'll get another shell
prompt.

I chose to have you run vi in a window because the vi process keeps running until you tell it to quit,
and then the window closes. Other Unix processes that don't wait for a "quit" command will terminate
as soon as they're done, and the window closes before you can see the process output. For example,
let's say you want to display a file in an xterm window with a scrollbar. Start by choosing a file and
using wc -l (Section 16.6) to count the number of lines. Then open an xterm and a scrollbar, with the
scrolling buffer length set to just the right number of lines:

cat Section 12.2
% wc -l somefile
 74 somefile
% xterm -sl 74 -sb -e cat somefile
%

What happened? Unless your window manager holds it there, the xterm window closes just after it
opens. Why? Its child cat process exited, so the parent xterm did too. One easy answer is to use a
shell that runs three commands. First is the command you want to run (here, cat). Next, echo a prompt.
Finally, run the read command (Section 35.18) to pause until you give a dummy value — just
pressing ENTER will be enough to satisfy read, and then the shell will exit. Here's how:
% xterm -sl 76 -sb -e \
 sh -c 'cat somefile; echo "Press RETURN to exit..."; read dummy'

(First, two notes. The backslash (\) isn't needed if you type the entire command on one line. And
we've increased the scroll length to 76 because the echo and the newline after it add two lines of
text.) Here, xterm starts a shell, but it's not the default shell (whatever that happens to be): it's the sh
shell you specify after the xterm -e option. The sh option -c tells the Bourne shell to run the single
command line from the following argument and then exit. The command line is in quotes to be sure the
shell inside the xterm interprets it. The three commands are separated by semicolons (;) (Section
28.16). If your command line is really complicated, you might want to change the sh -c '...' to run
a little shell script (Section 35.1) instead, like sh $HOME/lib/catter.

— JP

Close a Window by Killing Its Process(es)

In the X Window System, there's a process controlling every window. If the window (or its process)
is frozen and you can't get rid of it, the easier way is usually to kill (Section 24.12) the process. As
Section 24.20 explains, there may be a chain of processes running; the window could come from the
parent process (as in the case of an xterm with a shell running inside of it) or it could be the child
(such as when a shell script runs an X client like xmessage — as in the nup script below). Your job
is to use ps (Section 24.5) to track down the process(es) behind the window and kill the right one(s).
We'll look at two different examples, then look at a shell script that opens a window and, later, closes
the window by killing its process.

Example #1: An xterm Window

Let's say you're running vi in an xterm window, and the window seems to be frozen. Start with some
detective work: open up another xterm window and run ps alwx or ps -ef. (If you're sure that all the
processes in the window are owned by you — and none were set user ID (Section 1.17) — you can
use run ps lwx, for example.) You want a listing that shows the chain of process IDs, parent-to-child,
in that window. The tty (Section 2.7) of the shell inside the xterm will help you find the right one, if
you know it. For example, I found vi 0568.sgm running on the tty pts/5, so the shell I want (the
parent of vi) must also be on pts/5. From the shell's parent ID, I can find the PID of the xterm that
started the shell. (I'll cut some of the columns in this listing to make it easier to read.)
% ps alwx
 UID PID PPID STAT TTY TIME COMMAND
1000 11287 1 S tty2 0:44 xterm -sb -sl 2000
 ...
1000 11289 11287 S pts/5 0:04 bash2
 ...
1000 2621 11289 S pts/5 0:00 vi 0568.sgm

Note
A Unix sy stem cy cles its PIDs. A child process may have a lower PID than its parent! (Here, vi's PID is 2621, but its parent's PID is 11289.)

Now you need to decide what process to kill. You could simply kill them all, assuming you own them
(on some systems, the xterm process may be owned by root, so you can't kill it unless you can
become superuser). But a little detective work can save trouble. For instance, see whether the xterm
is still alive by trying to open its menus (Section 5.17). If a menu pops up, the problem is likely with
the shell (here, bash2) or its child process (here, vi). Try killing the most junior process (here, vi)
first:

-9 Section 23.3
% kill 2671
% ps 2671
 PID TTY STAT TIME COMMAND
 2671 pts/5 S 0:00 vi 0568.sgm
% kill -9 2671
%

In this case, killing the process with a plain TERM signal didn't do the job; ps showed it was still
running. So I had to use kill -9. After this, if there's a shell prompt in the formerly frozen window,
you're probably okay — although you may need to reset the terminal modes if it's still acting weird.
On the other hand, if the window is still frozen, kill the next-higher process — here, bash2. Continue
killing from the bottom up until the window is unfrozen or until the window closes.

Example #2: A Web Browser

The rule I gave in the previous section — killing the lowest child process first — is usually right for
xterm windows, but not always right. For example, I'm using a development version of the Mozilla
browser. It starts a series of child processes. But all the processes are designed to run as a unit, so
killing the lowest child may just leave the browser in an unstable state. In cases like this, it's better to
kill the top-level process (or one of the top, as I'll explain) and then check to be sure all the children
have died.

Start with the long listing of processes. Find the parent and its children. Note that, depending on how
they were started, they may not have a tty of their own — in general, a window doesn't need a tty
unless it's running a shell-oriented utility. I've cut some lines and columns from the example to make it
more readable:
% ps lwx
 UID PID PPID STAT TTY TIME COMMAND
1000 9526 752 S tty2 0:00 sh /usr/local/mozilla/...
1000 9536 9526 S tty2 11:49 /usr/local/mozilla/...
1000 9538 9536 S tty2 0:00 /usr/local/mozilla/...
1000 9539 9538 S tty2 0:03 /usr/local/mozilla/...
1000 19843 1 S tty2 0:00 ./psm
1000 19846 19843 S tty2 0:00 ./psm
1000 19847 19846 S tty2 0:00 ./psm
1000 19858 9538 S tty2 0:00 /usr/local/mozilla/...
1000 19859 19846 S tty2 0:00 ./psm
1000 19866 19846 S tty2 0:00 ./psm
1000 32316 9538 S tty2 0:00 /usr/local/mozilla/...
1000 5705 9538 S tty2 0:00 /usr/local/mozilla/...

I started Mozilla from a menu on the window system. The window system was started from tty2 (by
typing startx in the second virtual console (Section 23.12)). So the processes are "on" tty2, too. I
happen to know that the ./psm processes are started by Mozilla. Although the parent psm is owned by
the init (Section 24.2) process (PID 1), these were either disowned (Section 23.11) by Mozilla, or
somehow the top-level psm process "lost" its parent. Finding this sort of disconnected process can be
hard. One clue is that its PID is close to other Mozilla processes. Another clue may come when you
use an output format like ps ux, which shows the starting time ("wall clock" time — not the CPU
TIME column above): you may see that the processes all started near the same time of day.

The first process in the list, the shell script (starting with sh), is what probably started the chain of
processes running. Often, on Unix systems, a shell script sets the environment correctly, then starts
another library program running. All the other processes here seem to have been started from the
process with PID 9536, which has used 11 minutes 49 seconds of CPU time. Just to be safe, I'll kill
both top processes at once:
% kill 9526 9536

The browser window closed, to I'm close to done. I also need to do another ps to be sure the other
processes have vanished; note that they may need a few seconds to die gracefully on their own.
Sometimes you'll get a zombie process (Section 24.19) that can't be killed, but it usually doesn't hurt
anything — unless your window's processes have been doing some hardware accesses and the
zombie is tying up the hardware. Section 24.18 has some ways to clean up in that case.

Closing a Window from a Shell Script

A shell script that opens windows also may need a way to close them. The simplest way is by killing
the window's process. You should be sure that whatever this process does, killing it won't cause it to
leave old lock files and other "e-debris" around; it should exit cleanly when it gets a signal.

The xmessage client works well in a case like this. It opens a little window with a text message in it.
If the user clicks a button in the window, xmessage terminates. But, in the example below, I want the
shell script to close the window instead. Here's how it works:

 Go to http://examples.oreilly.com/upt3 for more information on: nupndown

The shell script has two links (Section 10.4), or names: nup and ndown. I use them on my
workstation, which no one else (usually) shares. When I run nup, the script brings the network up by
dialing the modem and making a PPP connection. It also opens a red xmessage window with the
message "network up" to remind me that my phone line is being tied up. When I'm done online, I run
ndown. ndown disconnects the modem and closes the xmessage window by killing its process. Here's
the basic script:

$! Section 27.17, '...' Section 28.14
#!/bin/sh
pidfile=/tmp/.nup-pid

case "$0" in
*nup)
 xmessage -geometry 86x51+645+72 -fg white -bg red 'network up' &
 echo $! > $pidfile
 /sbin/ifup ppp0
 ;;
*ndown)
 pid=`cat $pidfile`
 case "`ps $pid`" in
 xmessage)
 kill $pid
 rm -f $pidfile
 ;;
 esac
 /sbin/ifdown ppp0
 ;;
esac

When the script is invoked as nup, it starts xmessage in the background (that is, disowned (Section
23.11)) and saves its PID in the temporary file. So xmessage will keep running after nup exits; its
PID will be stored in the temporary file. Later, when the same script is invoked as ndown, it reads the
temporary file to get the PID into a shell variable, runs ps to be sure that the process still exists and
that its name still contains xmessage (in case another process has replaced xmessage in the
meantime). If all's well, it kills that process to close the xmessage window, then removes the
temporary file. Finally it shuts down the network.

The point of this simple example script is to demonstrate how to close a window by killing its
process. For instance, maybe your script opens an xclipboard window and wants to close it later if
the user doesn't do so first.

— JP

http://examples.oreilly.com/upt3

Chapter 25. Delayed Execution

Building Software Robots the Easy Way

If you are more familiar with desktop systems than Unix, the concept of delayed execution may be
new to you. After all, the prime mover of all activity in the desktop metaphor is the user. In Unix, all
kinds of processes start, execute, and report without any users on the system.

There are a few good reasons why you need to know about delayed execution. The first is that long,
noninteractive jobs are best run when the fewest users are likely to be on the system. Humans find
responsive systems desirable; processes aren't as likely to complain about getting sporadic CPU time.
The second situation in which delayed execution is desirable is when a resource you need is only
available at certain times. For instance, your group of local workstations create tar archives for the
day's work, and you need to grab those files and copy them to tape. The third reason for delayed
execution is when you need to push or pull information on a regular basis. This is the case with web
masters who need to push their updated content to their production environment from their editing
machine. The reverse may also hold true: you may need to collect Rich Site Summary files from a
variety of web sites for a local cache. In all these cases, you need processes to start without you, like
a band of relentless software robots.[1]

This chapter covers the following techniques of delayed execution:

 The venerable cron (Section 25.2) system schedules process for regular, periodic execution. It
is the most frequently used utility for running programs after hours.
For processes that only need to run once at some future date, the at (Section 25.5) command is
ideally suited.
For simple scripts that need to pause before continuing on, the sleep (Section 25.9) command is
available.

— JJ

[1] Thanks to Jeff Sumler for the phrase "software robots."

Periodic Program Execution: The cron Facility

This article covers two different versions of cron. There are other versions around: Vixie cron, for
instance, has some different features and is common in Linux distributions. A variation called
anacron doesn't assume (as cron does) that the system is running 24 hours a day; it's especially nice
on portable computers. Rather than trying to cover every flavor, this article has information on older,
basic crons that should show you some of what to expect in whatever version you have.

cron allows you to schedule programs for periodic execution. For example, you can use cron to call
rsync every hour to update your production web site with new articles or to perform any number of
other tasks.

With redirection (Section 43.1), cron can send program output to a log file or to any username via
email.

Note
cron jobs are run by a sy stem program in an environment that's much different from y our normal login sessions. The search path (Section 27.6) is usually shorter; y ou may need to use absolute pathnames for programs that aren't in standard
sy stem directories. Be careful about using command aliases, shell functions and variables, and other things that may not be set for y ou by the sy stem.

Execution Scheduling

The cron system is serviced by the cron daemon (Section 1.10). What to run and when to run it are
specified to cron by crontab entries, which are stored in the system's cron schedule. On older BSD
systems, this consists of the files /usr/lib/crontab and /usr/lib/crontab.local; either file may be used
to store crontab entries. Both are ASCII files and may be modified with any text editor. Since usually
only root has access to these files, all cron scheduling must go through the system administrator. This
can be either an advantage or a disadvantage, depending on the needs and personality of your site.

Under many other versions of Unix, any user may add entries to the cron schedule. crontab entries are
stored in separate files for each user. The crontab files are not edited directly by ordinary users, but
are placed there with the crontab command (described later in this section). [If your system is using
Vixie cron, try creating a crontab file for yourself by typing crontab -l. This will create a new file
with vi or the editor you've named in the EDITOR environment variable. Each line of this file should
contain either a comment or a crontab entry (described below). When you save and exit the editor,
your file will be added to the cron spool directory. — JJ] [In my experience, the current directory
during these personal cron jobs is your home directory. If you read a file or redirect output to a file
with a relative pathname (Section 31.2), it will probably be in your home directory. Check your
system to be sure. — JP]

crontab entries direct cron to run commands at regular intervals. Each one-line entry in the crontab
file has the following format:
 mins hrs day-of-month month weekday username cmd
 (BSD)
 mins hrs day-of-month month weekday cmd
 (other)

Spaces separate the fields. However, the final field, cmd, can contain spaces within it (i.e., the cmd
field consists of everything after the space following weekday); the other fields must not contain
spaces. The username field is used in the original BSD version only and specifies the username
under which to run the command. In other versions, commands are run by the user who owns the
crontab in which they appear (and for whom it is named).

The first five fields specify the times at which cron should execute cmd. Their meanings are
described in Table 25-1.

Table 25-1. crontab entry time fields

Field Meaning Range

mins The minutes after the hour 0-59

hrs The hour of the day 0-23 (0 = midnight)

day-of-month The day within a month 1-31

month The month of the year 1-12

weekday The day of the week 1-7 (1 = Monday) BSD

 0-6 (0 = Sunday) System V

These fields can contain a single number, a pair of numbers separated by a dash (indicating a range of
numbers), a comma-separated list of numbers and ranges, or an asterisk (*, a wildcard that represents
all valid values for that field). Some versions accept strings of letters: for instance, Vixie cron, at
least, accepts month and day names instead of numbers.

If the first character in an entry is a hash mark (#), cron will treat the entry as a comment and ignore
it. This is an easy way to temporarily disable an entry without permanently deleting it.

Here are some example crontab entries (shown in non-BSD format):

/proc Section 24.9, 2>&1 Section 36.16, \% Section 25.4
0,15,30,45 * * * * (echo -n ' '; date; cat /proc/loadavg) >/dev/console
0,10,20,30,40,50 7-18 * * * /usr/lib/atrun
7 0 * * * find / -name "*.bak" -type f -atime +7 -exec rm {} \;
12 4 * * * /bin/sh /usr/adm/ckdsk >/usr/adm/disk.log 2>&1
22 2 * * * /bin/sh /usr/adm/ckpwd 2>&1 | mail root
30 3 * * 1 /bin/csh -f /usr/lib/uucp/uu.weekly >/dev/null 2>&1
12 5 15-21 * * test `date +\%a` = Mon && /usr/local/etc/mtg-notice
#30 2 * * 0,6 /usr/lib/newsbin/news.weekend

The first entry displays the date on the console terminal every 15 minutes (on the quarter hour); notice
that multiple commands are enclosed in parentheses to redirect their output as a group. (This runs the
commands together in a subshell (Section 43.7).) The second entry runs /usr/lib/atrun every 10
minutes from 7:00 a.m. to 6:50 p.m. daily. The third entry runs a find command at 7 minutes after
midnight to remove all .bak files not accessed in 7 days. To cut wear and tear and load on your disk,
try to combine find jobs (Section 14.19). Also, as Section 25.8 explains, try not to schedule your
jobs at frequently chosen times like 1:00 a.m., 2:00 a.m., and so on; pick oddball times like 4:12 a.m.

The fourth and fifth lines run a shell script every day, at 4:12 a.m. and 2:22 a.m., respectively. The
shell to execute the script is specified explicitly on the command line in both cases; the system default
shell, usually the Bourne shell, is used if none is explicitly specified. Both lines' entries redirect
standard output and standard error, sending it to a file in one case and mailing it to root in the other.

The sixth entry executes a C shell script named uu.weekly, stored in /usr/lib/uucp, at 3:30 a.m. on
Monday mornings. Notice that the command format — specifically the output redirection — is for the
Bourne shell, even though the script itself will be run under the C shell. The seventh entry runs on the
third Monday of every month; there's more explanation below. The final entry would run the command
/usr/lib/newsbin/news.weekend at 2:30 a.m. on Saturday and Sunday mornings were it not disabled
with a #. (# can also be used to add comments to your crontab.)

The fourth through sixth entries illustrate three output-handling alternatives: redirecting it to a file,
piping it through mail, and discarding it to /dev/null (Section 43.12). If no output redirection is
performed, the output is sent via mail to the user who ran the command.

The cmd field can be any Unix command or group of commands (properly separated with
semicolons). The entire crontab entry can be arbitrarily long, but it must be a single physical line in
the file.

One problem with the crontab syntax is that it lets you specify any day of the month and any day of the
week; but it doesn't let you construct cases like "the third Monday of every month." You might think
that the crontab entry:
12 5 15-21 * 1 your-command

would do the trick, but it won't; this crontab entry runs your command on every Monday, plus the 15th

through the 21st of each month.[2] An answer from Greg Ubben is shown in the seventh entry. He uses
the test (Section 35.26) and date commands to compare the name of today (like Tue) to the day we
want the entry to be executed (here, Mon). This entry will be run between the 15th and 21st of each
month, but the mtg-notice command will run only on the Monday during that period. The shell's &&
operator (Section 35.14) runs the mtg-notice command only when the previous test succeeds. Greg
actually writes the entry as shown here, testing for failure of the test command:
12 5 15-21 * * test `date +\%a` != Mon || /usr/local/etc/mtg-notice

He did it that "backwards" way so the cron job's exit status would be 0 (success) in the case when it
doesn't execute mtg-notice. You may need that technique, too.

The cron command starts the cron program. It has no options. Once started, cron never terminates. It
is normally started automatically by one of the system initialization scripts. cron reads the crontab
file(s) every minute to see whether there have been changes. Therefore, any change to its schedule
will take effect within one minute.

A Little Help, etc.

Some flavors of Unix, notably Red Hat and Debian Linux, have included an easy shortcut to creating
periodic processes. In some systems, the /etc directory will contain the following directories:
cron.daily
cron.hourly
cron.monthly
cron.weekly

By placing programs and scripts in these directories, you can have those chosen processes occur at
the interval designated by the extension of the directory name. By sacrificing granularity of when
those processes occur, you gain ease of use. Of course, adding several resource-intensive programs
to the same directory may bring an underpowered system to its knees. Excerise care.

In case you're curious, these directories are really just an extension of the Vixie cron system. Looking
inside /etc/crontab, we begin to see the magic:
SHELL=/bin/bash
PATH=/sbin:/bin:/usr/sbin:/usr/bin
MAILTO=root
HOME=/

run-parts
01 * * * * root run-parts /etc/cron.hourly
02 4 * * * root run-parts /etc/cron.daily
22 4 * * 0 root run-parts /etc/cron.weekly
42 4 1 * * root run-parts /etc/cron.monthly

If you want to change when these various cron groups execute, this is the place to make your changes.
The run-parts script is a little be more complicated, but it's worth a brief look.
#!/bin/bash

run-parts - concept taken from Debian

keep going when something fails
set +e

if [$# -lt 1]; then
 echo "Usage: run-parts <dir>"
 exit 1
fi

if [! -d $1]; then
 echo "Not a directory: $1"
 exit 1
fi

Ignore *~ and *, scripts
for i in $1/*[^~,] ; do
 [-d $i] && continue
 # Don't run *.{rpmsave,rpmorig,rpmnew,swp} scripts
 ["${i%.rpmsave}" != "${i}"] && continue
 ["${i%.rpmorig}" != "${i}"] && continue
 ["${i%.rpmnew}" != "${i}"] && continue
 ["${i%.swp}" != "${i}"] && continue
 ["${i%,v}" != "${i}"] && continue

 if [-x $i]; then
 $i 2>&1 | awk -v "progname=$i" \
 'progname {
 print progname ":\n"
 progname="";
 }

 { print; }'
 fi
done

exit 0

The first dozen or so lines of this script are either comments or sanity checks to ensure that it was
called with a directory name. The meat of the script is the loop that looks at all the non-tilde files in
the given directory. As long as the file isn't a relic from the Red Hat Package Manager or an RCS file,
the file is run and its results sent to awk, so that a somewhat clean report can be mailed by cron. You
now have the code to set up this system if your Unix doesn't have it.

— AF, JP, and JJ

[2] This strange behavior seems to be a System V peculiarity that somehow infected the rest of the
world. Original BSD systems behave the way we explained earlier.

Adding crontab Entries

For a good tip on silencing cron job mailings, see Section 25.6.

Most recent versions of Unix have a special command for maintaining the crontab file. To create a
new crontab file, create a file containing the desired crontab entries. Then run the crontab command
to install the file in the cron spool area. For example, if user chavez executes the command below,
the file mycron will be installed as /usr/spool/cron/crontabs/chavez:
$ crontab mycron

If chavez had previously installed crontab entries, they will be replaced by those in mycron; thus,
any current entries that chavez wishes to keep must also be present in mycron.

The -l option to crontab lists the current crontab entries, and redirecting its output to a file will
allow them to be captured and edited:
$ crontab -l >mycron
$ vi mycron
$ crontab mycron

The -r option will remove all current crontab entries. Many versions of the crontab have an
additional -e option that lets you directly edit your current crontab entries in a single step.

On original BSD-based Unix implementations, there is no separate crontab command, nor does each
user get a personal crontab file. It does distinguish between " global" crontab entries (in
/usr/lib/crontab) and "local" entries (in /usr/lib/crontab.local) — however, you have to edit these
files directly, which will probably require you to become superuser. It's a good idea to collect
personal and site-specific crontab entries in the crontab.local file.

— AF, from Essential System Administration (O'Reilly, 2002)

Including Standard Input Within a cron Entry

Since crontab entries must be a single line long, it's hard to include any standard input with them.
Sure, you can use commands like:
0 22 * * * echo "It's 10PM; do you know where your children are?" | wall

but you can't use "here documents" and other methods of generating multiline input; they intrinsically
take several lines.

To solve this problem, cron allows you to include standard input directly on the command line. If the
command contains a percent sign (%), cron uses any text following the sign as standard input for cmd.
Additional percent signs can be used to subdivide this text into lines. For example, the following
crontab entry:
30 11 31 12 * /etc/wall%Happy New Year!%Let's make next year great!

runs the wall command at 11:30 a.m. on December 31, using the text:
Happy New Year!
Let's make next year great!

as standard input. [If you need a literal percent sign in your entry, for a command like date +%a,
escape the percent sign with a backslash: \%. — JP]

The at Command

The at facility submits a command line (or a script) for execution at an arbitrary later time. It has the
form:
% options time

This submits scriptfile for execution at a later time. The redirection (<) isn't required on versions that
can read directly from a file. By default, at reads the commands from its standard input. So if you
don't want to write a script, you can omit the file and type your commands on the terminal, terminated
by CTRL-d:
% options time

Command 1
Command 2
...
CTRL-d

The time is most commonly a four-digit number representing a time on a 24-hour clock. For example,
0130 represents 1:30 a.m. and 1400 represents 2 p.m. You can also use abbreviations such as 1am,
130pm, and so on.

— ML

Making Your at Jobs Quiet

Most modern versions of at will mail you any output that your commands make. You might think of
using the command line below to throw at output into the Unix trash can, /dev/null (Section 43.12):

>& Section 43.5
% sometime...
 ...wrong

but that won't work because it throws away the output of the at command itself. at just saves your job
in a file to be run later by a system program. The commands you want quiet are the commands stored
in that file. One way to keep at quiet, if you use a shell like csh , is:
% sometime
at> some command
at> another command
at> ...etc...
at> CTRL-d

Bourne-type shells make it easier:

exec > Section 36.5
$ sometime
at> exec > /dev/null 2>&1
at> some command
at> another command
at> ...etc...
at> CTRL-d

Two notes:

Some versions of at have a -s option that runs your job with the Bourne shell.
Not all versions of at prompt you with at> as I showed above.

— JP

Checking and Removing Jobs

From time to time, you'll submit an at job and realize that there's something wrong with it. How do
you get it out of the queue? Two tools help you do this: atq, which reports the jobs that are in the
queue, and atrm , which deletes jobs that are already in the queue.

atq is pretty simple; by default, it reports on all jobs that have been queued. Optionally, you can give
it a user name as an argument; in this case it reports all the jobs queued by the given user. The report
looks like this:
los% atq
 Rank Execution Date Owner Job # Queue Job Name
 1st Oct 9, 1996 22:27 mikel 4637 a stdin
 2nd Oct 10, 1996 01:08 mikel 4641 a stdin
 3rd Oct 10, 1996 02:34 judy 4663 a stdin

Note that atq has no objection to telling you about other users' jobs. Although this might seem like a
security hole, it's actually useful — see Section 25.8. The jobs are ordered according to their
execution date. With the -c option, atq orders jobs according to when they were queued —
conceivably a useful feature. (atq -n just prints the number of jobs that are queued; I'm not sure when
this would be useful.)

Once you've found out the job number, you can delete it with the command atrm. You can only delete
your own jobs, not someone else's:
% atrm 4637
4637: removed
% atrm 4663
4663: permission denied

The command atrm - removes all the jobs you submitted; it's good for cleaning out your queue
completely.

Note
On some versions, use at -l to list y our jobs (instead of atq) and at -r to delete y our jobs (instead of atrm). Other sy stems may have different commands and options; check y our manpage.

Some older BSD-based implementations may not support any of these options. Once y ou submit a job, y ou can delete it by finding its filename in the /usr/spool/at directory and emptying the file (Section 15.2). Or the superuser (Section 1.18)
can go to the spool directory and delete the file by hand.

— ML

Avoiding Other at and cron Jobs

atq and at -l (Section 24.7) are more important than they seem. They give you a way to decide when
to run your jobs. I suggest that you check atq before picking a time to run your job. If you don't, the
system may have a dozen huge jobs starting at midnight or 1 a.m. They will bring the system to its
knees when there's no one around to help out. Here's an example of what can happen, using the BSD-
style at commands:
% atq
 Rank Execution Date Owner Job# Queue Job Name
 1st Sep 12, 1996 01:00 mikel 4529 a trashsys.sh
 2nd Sep 12, 1996 01:00 johnt 4531 a flame.sh
 3rd Sep 12, 1996 01:00 davek 4532 a stdin
 4th Sep 12, 1996 01:00 joek 4533 a troffit
 5th Sep 13, 1996 02:00 bobr 4534 a stdin

Four of the five users happened to pick 1 a.m. as their submission time. Therefore, four big jobs will
start in the middle of the night. Will your system survive? Will any of these be done in the morning?
These are good questions. Instead of submitting your jobs to run at 1 a.m., midnight, or some other
integral number, start them at different times, and make them times like 3:48 a.m. If your system
administrator notices lots of jobs running at the same times on your system, she might delete some of
them and ask you to reschedule.

If your system has personal crontab files (Section 25.2), you won't be able to see other users' cron
jobs. The best way to cut system load is to pick strange times like 4:37 a.m. for your cron jobs.

— ML

Waiting a Little While: sleep

 Go to http://examples.oreilly.com/upt3 for more information on: sleep

The sleep command waits. That's all it does. So what good is it?

A quick-and-dirty reminder service when you don't have leave. This will print the message Time
to go now.... in 10 minutes (600 seconds):
() & Section 43.7, ; Section 28.16
% (sleep 600; echo Time to go now....)
&

You can't use at (Section 25.5), and you have to run a job later (say, in three hours):
% (sleep 10800; someprog) &

To watch a program (usually a shell script) that's running in the background and see what
processes it runs:
!! Section 30.8
% prog &
[1] 12345
% sleep 5;ps
 PID TT STAT TIME COMMAND
18305 p4 S 0:01 -csh (csh)
18435 p4 S 0:00 /bin/sh prog
18437 p4 D 0:00 /bin/sort -r temp
18438 p4 R 0:00 ps
% !!;!!;!!;!!;!!
sleep 5; ps; sleep 5; ps; sleep 5; ps; sleep 5; ps; sleep 5; ps
 PID TT STAT TIME COMMAND
 ...
 ...5 seconds pass...
 PID TT STAT TIME COMMAND
 ...

When you're running a series of commands that could swamp the computer, to give it time to
catch up. For instance, the mail (Section 1.21) program starts background processes to deliver
the mail. If you're sending a bunch of form letters, sleep five or ten seconds after each one:
foreach Section 28.9
% foreach name (`cat people`)
? formltrprog $name | mail $name
? sleep 10
? end

Or, to send print jobs while you're at lunch — but give other people a chance to print between
yours:
% lp bigfile1;sleep 600;lp bigfile2;sleep 600;lp bigfile3

— JP

http://examples.oreilly.com/upt3

Chapter 26. System Performance and Profiling

Timing Is Everything

Whether you are a system administrator or user, the responsiveness of your Unix system is going to be
the primary criterion of evaluating your machine. Of course, "responsiveness" is a loaded word. What
about your system is responsive? Responsive to whom? How fast does the system need to be to be
responsive? There is no one silver bullet that will slay all system latencies, but there are tools that
isolate performance bottlenecks — the most important of which you carry on your shoulders.

This chapter deals with issues that affect system performance generally and how you go about finding
and attenuating system bottlenecks. Of course, this chapter cannot be a comprehensive guide to how to
maximize your system for your needs, since that is far too dependent on the flavors of Unix and the
machines on which they run. However, there are principles and programs that are widely available
that will help you assess how much more performance you can expect from your hardware.

One of the fundamental illusions in a multiuser, multiprocessing operating system like Unix is that
every user and every process is made to think that they are alone on the machine. This is by design. At
the kernel level, a program called the scheduler attempts to juggle the needs of each user, providing
overall decent performance of:

Keeping interactive sessions responsive
Processing batch jobs promptly
Maximizing CPU utilization[1]

Cranking through as many processes per hour as possible
Preventing any particular process for dominating CPU time

System performance degrades when one of these goals overwhelms the others. These problems are
very intuitive: if there are five times the normal number of users logged into your system, chances are
that your session will be less responsive than at less busy times.

Performance tuning is a multifaceted problem. At its most basic, performance issues can be looked at
as being either global or local problems. Global problems affect the system as a whole and can
generally be fixed only by the system administrator. These problems include insufficient RAM or
hard drive space, inadequately powerful CPUs, and scanty network bandwidth. The global problems
are really the result of a host of local issues, which all involve how each process on the system
consumes resources. Often, it is up to the users to fix the bottlenecks in their own processes.

Global problems are diagnosed with tools that report system-wide statistics. For instance, when a
system appears sluggish, most administrators run uptime (Section 26.4) to see how many processes
were recently trying to run. If these numbers are significantly higher than normal usage, something is
amiss (perhaps your web server has been slashdotted).

If uptime suggests increased activity, the next tool to use is either ps or top to see if you can find the
set of processes causing the trouble. Because it shows you "live" numbers, top can be particularly
useful in this situation. I also recommend checking the amount of available free disk space with df,
since a full filesystem is often an unhappy one, and its misery spreads quickly.

Once particular processes have been isolated as being problematic, it's time to think locally. Process
performance suffers when either there isn't more CPU time available to finish a task (this is known as

a CPU-bound process) or the process is waiting for some I/O resource (i.e., I/O-bound), such as the
hard drive or network. One strategy for dealing with CPU-bound processes, if you have the source
code for them, is to use a profiler like GNU's gprof. Profilers give an accounting for how much CPU
time is spent in each subroutine of a given program. For instance, if I want to profile one of my
programs, I'd first compile it with gcc and use the -pg compilation flag. Then I'd run the program.
This creates the gmon.out data file that gprof can read. Now I can use gprof to give me a report with
the following invocation:
$ gprof -b executable gmon.out

Here's an abbreviated version of the output:
Flat profile:

Each sample counts as 0.01 seconds.
 no time accumulated

 % cumulative self self total
 time seconds seconds calls Ts/call Ts/call name
 0.00 0.00 0.00 2 0.00 0.00 die_if_fault_occurred
 0.00 0.00 0.00 1 0.00 0.00 get_double
 0.00 0.00 0.00 1 0.00 0.00 print_values

Here, we see that three subroutines defined in this program (die_if_fault_occurred, get_double,
and print_values) were called. In fact, the first subroutine was called twice. Because this program
is neither processor- nor I/O-intensive, no significant time is shown to indicate how long each
subroutine took to run. If one subroutine took a significantly longer time to run than the others, or one
subroutine is called significantly more often than the others, you might want to see how you can make
that problem subroutine faster. This is just the tip of the profiling iceberg. Consult your language's
profiler documentation for more details.

One less detailed way to look at processes is to get an accounting of how much time a program took
to run in user space, in kernel space, and in real time. For this, the time (Section 26.2) command
exists as part of both C and bash shells. As an external program, /bin/time gives a slightly less
detailed report. No special compilation is necessary to use this program, so it's a good tool to use to
get a first approximation of the bottlenecks in a particular process.

Resolving I/O-bound issues is difficult for users. Only adminstrators can both tweak the low-level
system settings that control system I/O buffering and install new hardware, if needed. CPU-bound
processes might be improved by dividing the program into smaller programs that feed data to each
other. Ideally, these smaller programs can be spread across several machines. This is the basis of
distributed computing.

Sometimes, you want a particular process to hog all the system resources. This is the definition of a
dedicated server, like one that hosts the Apache web server or an Oracle database. Often, server
software will have configuration switches that help the administrator allocate system resources based
on typical usage. This, of course, is far beyond the scope of this book, but do check out Web
Performance Tuning and Oracle Performance Tuning from O'Reilly for more details. For more
system-wide tips, pick up System Performance Tuning, also from O'Reilly.

As with so many things in life, you can improve performance only so much. In fact, by improving
performance in one area, you're likely to see performance degrade in other tasks. Unless you've got a
machine that's dedicated to a very specific task, beware the temptation to over-optimize.

— JJ

[1] This list is modified from Tanenbaum and Woodhull's Operating Systems: Design and
Implementation, Second Edition (Upper Saddle River: Prentice-Hall, Inc. 1997], 83).

Timing Programs

Two commands, time and /bin/time, provide simple timings. Their information is highly accurate,
because no profiling overhead distorts the program's performance. Neither program provides any
analysis on the routine or trace level. They report the total execution time, some other global
statistics, and nothing more. You can use them on any program.

time and /bin/time differ primarily in that time is built into many shells, including bash. Therefore, it
cannot be used in safely portable Bourne shell scripts or in makefiles. It also cannot be used if you
prefer the Bourne shell (sh). /bin/time is an independent executable file and therefore can be used in
any situation. To get a simple program timing, enter either time or /bin/time, followed by the
command you would normally use to execute the program. For example, to time a program named
analyze (that takes two command-line arguments, an input file and an output file), enter the following
command:
% time analyze inputdata outputfile
9.0u 6.7s 0:30 18% 23+24k 285+148io 625pf+0w

This result (in the default C shell format) indicates that the program spent 9.0 seconds on behalf of the
user (user time), 6.7 seconds on behalf of the system (system time, or time spent executing Unix kernel
routines on the user's behalf), and a total of 30 seconds elapsed time. Elapsed time is the wall clock
time from the moment you enter the command until it terminates, including time spent waiting for other
users, I/O time, etc.

By definition, the elapsed time is greater than your total CPU time and can even be several times
larger. You can set programs to be timed automatically (without typing time first) or change the output
format by setting shell variables.

The example above shows the CPU time as a percentage of the elapsed time (18 percent). The
remaining data reports virtual memory management and I/O statistics. The meaning varies, depending
on your shell; check your online csh manual page or article.

In this example, under SunOS 4.1.1, the other fields show the amount of shared memory used, the
amount of nonshared memory used (k), the number of block input and output operations (io), and the
number of page faults plus the number of swaps (pf and w). The memory management figures are
unreliable in many implementations, so take them with a grain of salt.

/bin/time reports only the real time (elapsed time), user time, and system time. For example:
% /bin/time analyze inputdata outputfile
 60.8 real 11.4 user 4.6 sys

[If you use a shell without a built-in time command, you can just type time. — JP] This reports that
the program ran for 60.8 seconds before terminating, using 11.4 seconds of user time and 4.6 seconds
of system time, for a total of 16 seconds of CPU time. On Linux and some other systems, that external
time command is in /usr/bin/time and may make a more detailed report.

There's a third timer on some systems: timex. It can give much more detail if your system has process
accounting enabled. Check the timex(1) manpage.

— ML

What Commands Are Running and How Long Do They Take?

When your system is sluggish, you will want to see what users are on the system along with the
processes they're running. To get a brief snapshot of this information, the tersely named w can show
you who is logged in, from where, how long they've been idle, and what programs they're running.
For instance, when I run w on my Red Hat box at home, I get this result:
 3:58pm up 38 days, 4:37, 6 users, load average: 0.00, 0.07, 0.07
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
jjohn tty2 - 13Feb02 7:03m 1.32s 0.02s /bin/sh /usr/X
jjohn pts/1 :0 8:55am 7:02m 0.06s 0.06s bash
jjohn pts/3 :0 8:55am 0.00s 51.01s 0.05s w
jjohn pts/0 :0 8:55am 7:02m 0.06s 0.06s bash
jjohn pts/4 :0 8:55am 2:25m 2:01 0.12s bash
jjohn pts/2 mp3.daisypark.ne Tue 4pm 3:41m 0.23s 0.23s -bash

Originally, I logged in at the console and started X. Most of the sessions are xterminals except for the
last, which is an ssh session. The JCPU field accounts for the CPU time used by all the processes at
that TTY. The PCPU simply accounts for the process named in the WHAT field. This is a quick and
simple command to show you the state of your system, and it relies on no special process accounting
from the kernel.

When you're debugging a problem with a program, trying to figure out why your CPU usage bill is so
high [in the days when CPU cycles were rented — JJ], or curious what commands someone
(including yourself) is running, the lastcomm command on Berkeley-like Unixes can help (if your
computer has its process accounting system running, that is). Here's an example that lists the user
lesleys:
% date
Mon Sep 4 16:38:13 EDT 2001
% lastcomm lesleys
emacs lesleys ttyp1 1.41 secs Wed Sep 4 16:28
cat X lesleys ttyp1 0.06 secs Wed Sep 4 16:37
stty lesleys ttypa 0.02 secs Wed Sep 4 16:36
tset lesleys ttypa 0.12 secs Wed Sep 4 16:36
sed lesleys ttypa 0.02 secs Wed Sep 4 16:36
hostname lesleys ttypa 0.00 secs Wed Sep 4 16:36
quota lesleys ttypa 0.16 secs Wed Sep 4 16:35
 ...

The processes are listed in the order completed, most recent first. The emacs process on the tty
(Section 2.7) ttyp1 started 10 minutes ago and took 1.41 seconds of CPU time. Sometime while emacs
was on ttyp1, lesleys ran cat and killed it (the X shows that). Because emacs ran on the same terminal
as cat but finished later, Lesley might have emacs (with CTRL-z) stopped (Section 23.3) to run cat.
The processes on ttypa are the ones run from her .cshrc and .login files (though you can't tell that
from lastcomm). You don't see the login shell for ttypa (csh) here because it hasn't terminated yet; it
will be listed after Lesley logs out of ttypa.

lastcomm can do more. See its manual page.

Here's a hint: on a busy system with lots of users and commands being logged, lastcomm is pretty
slow. If you pipe the output or redirect it into a file, like this:

tee Section 43.8
% lastcomm lesleys > lesley.cmds &
% cat lesley.cmds
 ...nothing...

% lastcomm lesleys | tee lesley.cmds
 ...nothing...

the lastcomm output may be written to the file or pipe in big chunks instead of line-by-line. That can
make it look as if nothing's happening. If you can tie up a terminal while lastcomm runs, there are two
workarounds. If you're using a window system or terminal emulator with a "log to file" command, use
it while lastcomm runs. Otherwise, to copy the output to a file, start script (Section 37.7) and then run
lastcomm:
% script lesley.cmds
Script started, file is lesley.cmds
% lastcomm lesleys
emacs lesleys ttyp1 1.41 secs Wed Sep 4 16:28
cat X lesleys ttyp1 0.06 secs Wed Sep 4 16:37
 ...

% exit
Script done, file is lesley.cmds
%

A final word: lastcomm can't give information on commands that are built into the shell (Section
1.9). Those commands are counted as part of the shell's execution time; they'll be in an entry for csh,
sh, etc. after the shell terminates.

—JP and JJ

Checking System Load: uptime

 Go to http://examples.oreilly.com/upt3 for more information on: uptime

The BSD command uptime, also available under System V Release 4, AIX, and some System V
Release 3 implementations, will give you a rough estimate of the system load:
% uptime
3:24pm up 2 days, 2:41, 16 users, load average: 1.90, 1.43, 1.33

uptime reports the current time, the amount of time the system has been up, and three load average
figures. The load average is a rough measure of CPU use. These three figures report the average
number of processes active during the last minute, the last 5 minutes, and the last 15 minutes. High
load averages usually mean that the system is being used heavily and the response time is
correspondingly slow. Note that the system's load average does not take into account the priorities
and niceness (Section 26.5) of the processes that are running.

What's high? As usual, that depends on your system. Ideally, you'd like a load average under, say, 3,
but that's not always possible given what some systems are required to do. Higher load averages are
usually more tolerable on machines with more than one processor. Ultimately, "high" means high
enough that you don't need uptime to tell you that the system is overloaded — you can tell from its
response time.

Furthermore, different systems behave differently under the same load average. For example, on some
workstations, running a single CPU-bound background job at the same time as the X Window System
(Section 1.22) will bring response to a crawl even though the load average remains quite "low." In
the end, load averages are significant only when they differ from whatever is "normal" on your
system.

— AF

http://examples.oreilly.com/upt3

Know When to Be "nice" to Other Users...and When Not To

The BSD-System V split isn't so obvious in modern Unixes, but the different priority systems still live
in various flavors. This article should help you understand the system in whatever version you have.

If you are going to run a CPU-bound (Section 26.1) process that will monopolize the CPU from other
processes, you may reduce the urgency of that more intensive process in the eyes of the process
scheduler by using nice before you run the program. For example:
$ nice executable_filename

On most systems, no user can directly change a process's priority (only the scheduler does that), and
only the administrator can use nice to make a process more urgent. In practice, nice is rarely used on
multiuser systems — the tragedy of the commons — but you may be able to get more processes
running simultaneously by judicious use of this program.

If you're not familiar with Unix, you will find its definition of priority confusing — it's the opposite of
what you would expect. A process with a high nice number runs at low priority, getting relatively
little of the processor's attention; similarly, jobs with a low nice number run at high priority. This is
why the nice number is usually called niceness: a job with a lot of niceness is very kind to the other
users of your system (i.e., it runs at low priority), while a job with little niceness hogs the CPU. The
term "niceness" is awkward, like the priority system itself. Unfortunately, it's the only term that is
both accurate (nice numbers are used to compute priorities but are not the priorities themselves) and
avoids horrible circumlocutions ("increasing the priority means lowering the priority...").

Many supposedly experienced users claim that nice has virtually no effect. Don't listen to them. As a
general rule, reducing the priority of an I/O-bound job (a job that's waiting for I/O a lot of the time)
won't change things very much. The system rewards jobs that spend most of their time waiting for I/O
by increasing their priority. But reducing the priority of a CPU-bound process can have a significant
effect. Compilations, batch typesetting programs (troff, TEX, etc.), applications that do a lot of math,
and similar programs are good candidates for nice. On a moderately loaded system, I have found that
nice typically makes a CPU-intensive job roughly 30 percent slower and consequently frees that much
time for higher priority jobs. You can often significantly improve keyboard response by running CPU-
intensive jobs at low priority.

Note that System V Release 4 has a much more complex priority system, including real-time
priorities. Priorities are managed with the priocntl command. The older nice command is available
for compatibility. Other Unix implementations (including HP and Concurrent) support real-time
scheduling. These implementations have their own tools for managing the scheduler.

The nice command sets a job's niceness, which is used to compute its priority. It may be one of the
most nonuniform commands in the universe. There are four versions, each slightly different from the
others. BSD Unix has one nice that is built into the C shell, and another standalone version can be
used by other shells. System V also has one nice that is built into the C shell and a separate
standalone version.

Under BSD Unix, you must also know about the renice(8) command (Section 26.7); this lets you
change the niceness of a job after it is running. Under System V, you can't modify a job's niceness
once it has started, so there is no equivalent.

Note
Think carefully before y ou nice an interactive job like a text editor. See Section 26.6.

We'll tackle the different variations of nice in order.

BSD C Shell nice

Under BSD Unix, nice numbers run from -20 to 20. The -20 designation corresponds to the highest
priority; 20 corresponds to the lowest. By default, Unix assigns the nice number 0 to user-executed
jobs. The lowest nice numbers (-20 to -17) are unofficially reserved for system processes. Assigning
a user's job to these nice numbers can cause problems. Users can always request a higher nice
number (i.e., a lower priority) for their jobs. Only the superuser (Section 1.18) can raise a job's
priority.

To submit a job at a greater niceness, precede it with the modifier nice. For example, the following
command runs an awk command at low priority:
% nice awk -f proc.awk datafile > awk.out

By default, the csh version of nice will submit this job with a nice level of 4. To submit a job with an
arbitrary nice number, use nice one of these ways, where n is an integer between 0 and 20:
% nice + n command

% nice - n command

The +n designation requests a positive nice number (low priority); -n requests a negative nice
number. Only a superuser may request a negative nice number.

BSD Standalone nice

The standalone version of nice differs from C shell nice in that it is a separate program, not a
command built in to the C shell. You can therefore use the standalone version in any situation: within
makefiles (Section 11.10), when you are running the Bourne shell, etc. The principles are the same.
nice numbers run from -20 to 20, with the default being 0. Only the syntax has been changed to
confuse you. For the standalone version, - n requests a positive nice number (lower priority) and --
n requests a negative nice number (higher priority — superuser only). Consider these commands:
$ nice -6 awk -f proc.awk datafile > awk.out
nice --6 awk -f proc.awk datafile > awk.out

The first command runs awk with a high nice number (i.e., 6). The second command, which can be
issued only by a superuser, runs awk with a low nice number (i.e., -6). If no level is specified, the
default argument is -10.

System V C Shell nice

System V takes a slightly different view of nice numbers. nice levels run from 0 to 39; the default is
20. The numbers are different but their meanings are the same: 39 corresponds to the lowest possible
priority, and 0 is the highest. A few System V implementations support real-time submission via nice.
Jobs submitted by root with extremely low nice numbers (-20 or below) allegedly get all of the
CPU's time. Systems on which this works properly are very rare and usually advertise support for
real-time processing. In any case, running jobs this way will destroy multiuser performance. This
feature is completely different from real-time priorities in System V Release 4.

With these exceptions, the C shell version of nice is the same as its BSD cousin. To submit a job at a
low priority, use the command:
% nice command

This increases the command's niceness by the default amount (4, the same as BSD Unix); command
will run at nice level 24. To run a job at an arbitrary priority, use one of the following commands,
where n is an integer between 0 and 19:
% nice + n command

% nice - n command

The +n entry requests a higher nice level (a decreased priority), while -n requests a lower nice level
(a higher priority). Again, this is similar to BSD Unix, with one important difference: n is now
relative to the default nice level. That is, the following command runs awk at nice level 26:
% nice +6 awk -f proc.awk datafile > awk.out

System V Standalone nice

Once again, the standalone version of nice is useful if you are writing makefiles or shell scripts or if
you use the Bourne shell as your interactive shell. It is similar to the C shell version, with these
differences:

With no arguments, standalone nice increases the nice number by 10 instead of by 4; this is a
significantly greater reduction in the program's priority.
With the argument -n, nice increases the nice number by n (reducing priority).
With the argument - -n, nice decreases the nice number by n (increasing priority; superuser
only).

Consider these commands:
$ nice -6 awk -f proc.awk datafile > awk.out
nice --6 awk -f proc.awk datafile > awk.out

The first command runs awk at a higher nice level (i.e., 26, which corresponds to a lower priority).
The second command, which can be given only by the superuser, runs awk at a lower nice level (i.e.,
14).

— ML

A nice Gotcha

Note
It's not a good idea to nice a foreground job (Section 23.3). If the sy stem gets busy , y our terminal could "freeze" waiting to get enough CPU time to do something. You may not even be able to kill (Section 24.11) a nice 'd job on a very busy
sy stem because the CPU may never give the process enough CPU time to recognize the signal waiting for it! And, of course, don't nice an interactive program like a text editor unless y ou like to wait... :-)

Changing a Running Job's Niceness

On Unix systems with BSD-style priority schemes, once a job is running, you can use the renice(8)
command to change the job's priority:
% /etc/renice priority-p pid

% /etc/renice priority -g pgrp

% /etc/renice priority -u uname

where priority is the new nice level (Section 26.5) for the job. It must be a signed integer between -
20 and 20. pid is the ID number (Section 24.3) (as shown by ps (Section 24.5)) of the process you
want to change. pgrp is the number of a process group (Section 24.3), as shown by ps -l; this
version of the command modifies the priority of all commands in a process group. uname may be a
user's name, as shown in /etc/passwd; this form of the command modifies the priority of all jobs
submitted by the user.

A nice level of 19 is the "nicest": the process will run only when nothing else on the system wants to.
Negative values make a process get a greater percentage of the CPU's time than the default niceness
(which is 0). Again, only the superuser can lower the nice number (raise a process' priority). Users
can only raise the nice number (lower the priority), and they can modify the priorities of only the jobs
they started.

— ML

Part VI. Scripting

Part VI contains the following chapters:

Chapter 27

Chapter 28

Chapter 29

Chapter 30

Chapter 31

Chapter 32

Chapter 33

Chapter 34

Chapter 35

Chapter 36

Chapter 37

Chapter 27. Shell Interpretation

What the Shell Does

As we've said, the shell is just another program. It's responsible for interpreting the commands you
type. There are several commonly used shells, primarily based on two or three major families and a
wide variety of other projects:

The Bourne shell (sh) and its derivatives and progeny (including bash, ash, and even the Korn
shell ksh)
The C shell (csh) and its progeny (including tcsh)
The Korn shell (ksh) and variants (including pdksh and zsh [1])
Specialized shells based on languages such as Python, TCL, perl, and so on.
Shells invented to meet specific needs such as restricted command access (rsh), recovery after a
system failure (sash), and downloading, installing, and configuring software libraries.

If you can think of a reason to have a specialized shell, someone probably has already written one to
meet that need.

Interpreting your commands might seem simple enough, but a lot of things happen between the time
you press RETURN and the time the computer actually does what you want. The process of
interpretation is very complex: the shell has to break the command into words and expand aliases
(Section 29.2), history operators (Section 30.8), and shell and environment variables (Section
35.3, Section 35.9). It also sets up standard input and output streams (Section 43.1) and performs
a lot of other tasks. Indeed, if a command looks right but doesn't work right, the cause is probably
either one of the following:

File permissions are set incorrectly.
You don't understand how the shell is processing your command line.

I'd say that file permission problems are more common, but it's a close call. File permission
problems are usually easy to understand, once you know what to look for, but the rules by which a
shell interprets your command line are another thing altogether. Lest I scare you, we'll try to go slow
with this material. Although it's difficult, understanding how the shell parses your commands is
important to becoming a power user.

In this chapter, we'll look at how a Unix shell interprets commands. Shells have similar interpretation
rules. The C shell can be tricky at times, mostly because its behavior isn't as well defined as the
others. And zsh has some twists that others don't — they're included by design, but they can surprise
users of other shells. However, there's nothing "magical" about these rules. Tomorrow morning, you
may grab some new shell from the Net and find out that it has a new and different way of interpreting
commands. For better or worse, that's what Unix is all about.

As part of this discussion, we'll cover quoting, which is the mechanism by which you can turn off the
special meanings that the shell assigns to some characters. Quoting is an integral part of command-
line processing; it allows you to control what the shell will do to your commands.

—ML and SJC

[1] It's difficult to trace the development of all these shells in a simple manner. Their authors have
borrowed ideas and syntax from the others — and sometimes code — and sometimes a shell starts out
trying to emulate another but evolves away from its original inspiration (or the inspiration evolves
away from the aspirant).

How the Shell Executes Other Commands

When the shell executes an external command (Section 1.9), what happens?

Unix programs are executed through a combination of two system calls (low-level requests to the
operating system) called fork and exec.

The exec system call tells the kernel to execute another program. However, the kernel replaces the
calling program with the new one being called. This doesn't work too well if you want to return to the
original program after the new one has done its job.

To get around this problem, programs that want to stick around first copy themselves with the fork
system call. Then the copied program execs the new program, terminating itself in the process.

You don't really need to know this little tidbit about what goes on behind the scenes, but it sure helps
to know about fork and exec when reading some Unix manuals. Section 24.2 has more information.

—TOR and SJC

What's a Shell, Anyway?

A shell is a program that interprets your command lines and runs other programs. Another name for
the shell is "command interpreter." This article covers the two major Unix shell families, including
discussion about how shells run, search for programs, and read shell script files.

How Shells Run Other Programs

For each command it runs, a shell performs a series of steps. First, if the shell is reading commands
from a terminal (interactively), it prints a prompt (such as % or $) and waits for you to type something.
Next, the shell reads the command line (like cat -v afile bfile > cfile), interprets it (Section 27.1),
and runs the result. When the command finishes running (unless the command is in the background
(Section 23.2)), the shell is ready to read another command line.

Interactive Use Versus Shell Scripts

A shell can read command lines from a terminal or it can read them from a file. When you put
command lines into a file, that file is called a shell script (Section 35.1) or shell program. The shell
handles the shell script just as it handles the commands you type from a terminal (though the shell uses
its non-interactive mode (Section 3.4), which means, basically, that it doesn't print the % or $
prompts, among other things). With this information, you already know how to write simple shell
scripts — just put commands in a file and feed them to the shell!

In addition, though, there are a number of programming constructs that make it possible to write shell
programs that are much more powerful than just a list of commands.

Types of Shells

There are two main shell families in Unix:

The C shell and its derivatives (csh, tcsh) are considered very powerful for situations where
you are interactively working on a terminal. csh will read shell scripts and has some useful
features for programmers. Unfortunately, it has some quirks that can make shell programming
tough.
The Bourne shell (sh) and shells like it are probably used more often for shell programming.
(Some newer sh-like shells, including ksh, zsh, and bash (Section 1.6), combine handy
interactive C shell-like features with Bourne shell syntax.)

Shell Search Paths

As Section 26.6 explains, if the shell is trying to run a command, and the command isn't built-in to the
shell itself, the shell looks in a list of directories called a search path . Unix systems have standard
directories with names like /bin and /usr/bin that hold standard Unix programs. Almost everyone's
search path includes these directories.

If you do much shell programming, you should make a directory on your account for executable files.
Most people name theirs bin and put it under their home directory. See Section 7.4.

Bourne Shell Used Here

Most serious shell programmers write their scripts for the Bourne shell or its variants, such as bash
or ksh. So do we.

Newer Bourne shells have features — such as shell functions (Section 29.11), an unset command for
shell variables, and others — that the earlier Version 7 Bourne shell didn't. Most scripts in this book
are written to work on all Bourne shells — for the sake of portability, some scripts don't use these
new features. It's pretty rare to find such old shells around nowadays, though, so use your own
judgment. It is pretty unlikely that if you're writing a shell script for your own use on a new system
you will ever need to back-port it to run on a V7 system.

For the rest of these introductory articles, it may be easier if you have a terminal close by so you can
try the examples. If your account uses the Bourne shell or one of its relatives (ksh, bash, etc.), your
prompt probably has a dollar sign ($) in it somewhere, unless you've modified the prompt yourself
(Section 4.1). If your account isn't running the Bourne shell, start one by typing sh . Your prompt
should change to a dollar sign ($). You'll be using the Bourne shell until you type CTRL-d at the start
of a line:
% sh
$
$...Enter commands...
$ CTRL-d
%

Default Commands

One more thing to note is that when dealing with shell scripts, which store sequences of commands
that you want to be able to run at one time, you will likely need to specify the shell or other program
that will run the commands by default. This is normally done using the special #! notation (Section
36.2) in the first line of the script.
#!/bin/sh
everything in this script will be run under the Bourne shell

...

#!/bin/tcsh
everything in this script will be run under tcsh

...

#!/usr/bin/perl
everything in this script will be interpreted as a perl command

...

—JP and SJC

Command Evaluation and Accidentally Overwriting Files

Before getting into the details of command interpretation, I thought I'd give a very simple example of
why it's important. Here's an error that occurs all the time. Let's say you have two files, called file1
and file2. You want to create a new version of file1 that has file2 added to the end of it. That's what
cat is all about, so you give the command:
% cat file1 file2 > file1
 ...wrong

This looks like it should work. If you've ever tried it, you know it doesn't; it erases file1, and then
dumps file2 into it. Why? The shell (not cat) handles standard input and output:

As the shell is processing the command, it sees that you're redirecting standard output into file1,
so it opens the file for writing, destroying the data that's already in it.
Later, after it's finished interpreting the command line, the shell executes cat, passing file1 and
file2 as arguments. But file1 is already empty.
cat reads file1 (which is empty) and writes it on standard output (which goes into file1).
cat reads file2 (which also goes into file1). At this point, cat is finished, so it exits.

file1 and file2 are identical, which isn't what you wanted. But it's what you got.

Some versions of cat give you a warning message in this situation (cat: file1: input file is
output file). This might lead you to believe that somehow cat was smart and managed to protect
you. Sadly, that's not true. By the time cat figures out that an input file and an output file are the same,
it's too late: file1 is already gone. This bit of catty cleverness does have a function, though: it
prevents commands like the following from creating infinitely long files:
% cat file1 file2 >> file2

— ML

Output Command-Line Arguments One by One

 Go to http://examples.oreilly.com/upt3 for more information on: showargs

When you're experimenting with shell quoting, it's nice to be able to see how arguments on a
command line are quoted. Here's a demo of a simple bash script[2] named showargs; you might want
to save it in a file and run it yourself (Section 35.1). The script shows how many arguments were
passed to it. Then it lists the arguments, one per line, surrounded by >> << to show leading or trailing
spaces.

cat Section 12.2, && Section 35.14, $# Section 35.20, path Section 35.7
% cat showargs
#!/bin/bash
test $# -ne 1 && s=s
echo "I got $# argument$s:"
for arg
do echo -E ">>$arg<<"
done
% showargs "Start of path:" $path[1-3] " that's it! "
I got 5 arguments:
>>Start of path:<<
>>/u/jpeek/bin<<
>>/bin<<
>>/usr/bin<<
>> that's it! <<

The output from your shell may differ from that shown above, which is the result of running showargs
in tcsh. bash doesn't have a $path variable, for example. And zsh expects a comma, rather than a
hyphen, to separate the range. But as long as the arguments to showargs are quoted properly, you
should get the result you're looking for, with a little tweaking, of course!

—JP and SJC

[2] The script uses bash because, as this article explains later, its built-in echo (Section 27.5)
command has the -E option to prevent interpretation of special characters.

http://examples.oreilly.com/upt3

Controlling Shell Command Searches

Your search path (Section 35.6, Section 35.7) controls what directories — and in what order — the
shell searches for external (Section 1.9) commands. You can set a search path that takes effect every
time you log in by editing your shell setup file (Section 3.3). You might also want to change the path
temporarily. Most shells also keep quick-reference lists of command locations that bypass the search
path, so you'll want to know how to manage these.

Changing the path set when you log in is simple: just add the new directory to the appropriate line in
your shell's startup files (Section 3.3). It's not recommended to redefine the path completely, though,
as some packages rely on their PATH being set correctly. Usually, it is best simply to add the new
directory's absolute path (Section 31.2) to the end of the existing PATH variable:
PATH=$PATH:$HOME/bin zsh, sh, ksh, bash
set path=($path ~/bin) zsh (omit the set), csh, tcsh

Note
If y ou're configuring the superuser (root) account, be careful about using a path set by the parent process (through $PATH or $path). This path can be used in su shells, giving y ou part or all the path of the user y ou su'ed from! Also watch out
for a path set by a global setup file like /etc/profile: if it's modified for other users and an insecure version of a sy stem command is added, it could affect the superuser in unexpected way s.

Of course, there's the opposite danger: forgetting to update the superuser's path because y ou assume that changing the global path will do the job for root too. My advice is to think about it and decide what's best for y our sy stem.

For Bourne-type shells, load the updated PATH by typing a command like:
$.' .profile
 sh
$.' .bash_profile
 bash

For the C shell, type one of these commands, depending on which file you changed:
% source' .cshrc
% source' .tcshrc
% source' .login

Sometimes you'll want to change the path in just your current shell, though, which is as easy as
modifying any other shell or environment variable. Let's assume that for the current session, you want
to be able to execute commands being tested before deployment, and that those commands are in your
$HOME/someprog/bin directory. Simply add that directory to the front of your existing path:
$ PATH=$HOME/someprog/bin:$PATH
 Bourne shells
$ export PATH

$ export PATH=$HOME/someprog/bin:$PATH
 bash, ksh

% set path=(~/xxx/alpha-test $path)
 C shells

Searching the path (Section 27.6) takes time, especially if it's long or if some filesytems are slow or
mounted by a slow network link. Most shells have shortcuts to help them remember the locations of
commands.

When the C shell starts, it builds a hash table of all the commands in its path: each command name
and its absolute pathname. So, after you start a csh running, if new programs are added to directories
along the path, you need to use the shell's rehash command to rebuild its hash table. (The hash table is

internal. If you have multiple csh shells running — say, in multiple windows — type rehash in each
one.)

In bash, the command location is automatically stored the first time you use it. This means you don't
need a rehash-type command. If a program is moved to a new directory while bash is running,
however, you'll need to use the internal command hash -r to make bash "forget" the old location.

Note
Running hash -r causes bash to forget all of its hashed commands, but y ou may also invoke it with the name of a specific command whose hash should be forgotten:

$ hash -r command

The Korn shell uses tracked aliases to speed up command locating. When it is turned on with set -o
trackall, every time that ksh finds a new command by doing a path search, it creates an alias for the
command name whose value is the full pathname. In ksh88, you can turn alias tracking on and off, and
you can mark a command to have an alias defined for it the first time it's executed by using:
$ alias -t COMMAND

In ksh93, even though you can run the command set +o trackall, which turns off alias tracking in
ksh88, the shell ignores the command, and alias tracking is always in effect.

All tracked aliases are cleared when a new value is assigned to the PATH variable. If all you wish to
do is remove tracked aliases, use PATH=$PATH.

As you can see, shells' command tracking varies! Check your shell's manual page.

—JP and SJC

Wildcards Inside Aliases

Here's another example in which command-line parsing is important. Consider this shell alias for
counting the number of words in all files:

wc Section 16.6
% alias words "wc -w *"
 csh, tcsh
$ alias words="wc -w *"
 ksh, bash

Right away, we can see one effect of command-line parsing. The shell sees the quotation marks and
knows not to expand wildcards inside them. Therefore, words is aliased to wc -w *; the * isn't
evaluated when you create the alias. (If wildcards were processed before quotes, this wouldn't
work.)

Now, think about what happens when you execute the alias. You type:
% words

The shell starts working through its steps and eventually performs alias substitution. When this
happens, it converts your command into:
wc -w *

Now, watch carefully. The shell continues working through the process of interpretation (redirection,
variable substitution, command substitution) and eventually gets to filename expansion. At this point,
the shell sees the * on the command line, expands it, and substitutes the files in the current directory.
Seems simple enough. But think: you didn't type this *; the shell put it there when it expanded the
wildcard. What would have happened if the shell expanded wildcards before substituting aliases?
The * would never have been expanded; by the time the shell put it on the command line, the wildcard
expansion stage would be over, and you'd just count the words in a file named * (which probably
doesn't exist).

To me, the amazing thing is that all this works — and works well! The workings of the command line
are intricate and complex, but the shell almost always does what you want — and without a lot of
thought.

— ML

eval: When You Need Another Chance

If you read the previous article (Section 27.7), you saw that, most of the time, the shell evaluates the
command line "in the right order." But what about when it doesn't? Here's a situation that the shell
can't handle. It's admittedly contrived, but it's not too different from what you might find in a shell
program (Section 1.8):
% set b=\$a
% set a=foo
% echo $b
$a

When we use the variable $b, we'd like to get the variable $a, read it, and use its value. But that
doesn't happen. Variable substitution happens once, and it isn't recursive. The value of $b is $a, and
that's it. You don't go any further.

But there's a loophole. The eval command says, in essence, "Give me another chance. Re-evaluate
this line and execute it." Here's what happens if we stick eval before the echo:
% eval echo $b
foo

The shell converts $b into $a; then eval runs through the command-line evaluation process again,
converting echo $a into echo foo — which is what we wanted in the first place!

Here's a more realistic example; you see code like this fairly often in Bourne shell scripts:
...
command='grep $grepopts $searchstring $file'
for opt
do
 case "$opt" in
 file) output=' > $ofile' ;;
 read) output=' | more' ;;
 sort) postproc=' | sort $sortopts';;
 esac
done
...
eval $command $postproc $output

Do you see what's happening? We're constructing a command that will look something like:
grep $grepopts $searchstring $file | sort $sortopts > $ofile

But the entire command is "hidden" in shell variables, including the I/O redirectors and various
options. If the eval isn't there, this command will blow up in all sorts of bizarre ways. You'll see
messages like | not found, because variable expansion occurs after output redirection. The
"nested" variables (like $ofile, which is used inside $output) won't be expanded either, so you'll
also see $ofile not found. Putting an eval in front of the command forces the shell to process the
line again, guaranteeing that the variables will be expanded properly and that I/O redirection will
take place.

eval is incredibly useful if you have shell variables that include other shell variables, aliases, I/O
redirectors, or all sorts of perversities. It's commonly used within shell scripts to "evaluate"
commands that are built during execution. There are more examples of eval in Section 5.3 and others.

— ML

Which One Will bash Use?

bash, like all shells, performs a series of steps when evaluating a command line. (Sorry, we don't
cover all of the Unix shells; we explain bash because it's one of the most common. For other shells,
check their manual pages.) This article takes a closer look at how you can control one part of those
steps in bash: whether the shell will choose a shell function (Section 29.11), a built-in command (
Section 1.9), or an external command (Section 1.9).

Let's say that you want to write shell functions named cd, pushd, and popd. They will run the shell's
built-in cd, pushd, or popd command, respectively, each using the command-line arguments that were
passed (via the $@ array reference). Next they execute another shell function named setvars to do
some setup in the new directory:
cd() { pushd() { popd() {
 cd "$@" pushd "$@" popd "$@"
 setvars setvars setvars
} } }

But which cd will bash use when you type cd: the built-in cd or your cd function? (The same question
goes for pushd and popd.) Worse, what if the cd <">$@<"> command inside the function makes bash
call your cd function again, and that starts an endless loop? Well, that actually will start a loop — and
you need to know how to prevent it.

Typing command before the name of a command disables shell function lookup. bash will execute
only a built-in command or an external command with that name. So, you could keep the functions
from re-executing themselves by defining them this way:
cd() { pushd() { popd() {
 command cd "$@" command pushd "$@" command popd "$@"
 setvars setvars setvars
} } }

In the same way, if you don't want to run your new pushd function for some reason, here's how to use
the built-in pushd once:
bash$ command pushd somewhere

The command command still allows bash to run an external command (from your PATH (Section
35.6)) with the name you give. To force bash to use a built-in command — but not a shell function or
an external command — type builtin before the command name. Although bash will always choose a
built-in command before an external command, you can specify the built-in echo unambiguously with:
builtin echo -n 'What next? '

What if you want the external echo command? The easiest way is probably to type its absolute
pathname. For example, once I wanted to test four (!) different external versions of echo on a System
V machine — and not get the built-in bash version. So I typed commands like this:
bash$ /bin/echo hi \\ there

Finally, you can enable or disable specific built-in bash commands with the enable command. Unlike
command and builtin, the effect of enable lasts until you exit the shell. The command enable -n
disables one or more built-in commands; give the command names as arguments. For example, in my
experiments mentioned above, I could have made sure that I'd get an external echo every time by
typing this first command once:
bash$ enable -n echo
bash$ type echo

echo is hashed (/bin/echo)

The -n disables the built-in command named as the following argument. The bash type command
confirms that I'll now be using the external echo. You can re-enable a disabled built-in with enable
command-name. And enable -a lists the status of all bash built-ins.

— JP

Which One Will the C Shell Use?

[Section 27.9 shows how to control whether bash uses a built-in command, a shell function, or an
external command. The way you do that in the C shell is a little, errr, different. Chris Torek explains
why, for example, \rm disables an alias for rm and \cd disables the built-in cd command. He starts
with a fairly complex explanation, then gives some practical guidelines. At the end is a "review"
that's easy to follow and fun too. — JP]

The C shell first breaks each input line into a word vector. It then matches against aliases. Since \rm
does not match rm, any alias is ignored. Eventually the C shell fully applies any quoting (since an
alias can include quotes, some of this work must be deferred; since an alias can include multiple
words, more word vector work must be done as well; it all gets rather hairy).

The C shell implements quoting by setting the eighth bit (bit 7) of each byte of a quoted character.
Since '*'|0x80 [a character ORed with 80 hex, a.k.a. 10000000 binary — JP] is not the same
character as '*', this prevents filename expansion, further word breaking, and so on.

Eventually, the shell has a fully "parsed" line. It then compares word[0] [the first word on the
command line — JP] against all the built-ins. If there is a match, it runs the corresponding built-in
command (and it is up to that command to expand any remaining words; for instance, ls * in a
directory containing only the file -l produces a long listing, but jobs * produces a usage message). If
not, the shell performs globbing on the current word list, producing a new word list, and then:

1. Strips the eighth bit of each byte of each word
2. exec()s the resulting command.

This means that \cd not only bypasses any alias, but also reaches the built-in scanner as:
'c'|0x80, 'd', '\0'

which does not match the built-in command:
'c', 'd', '\0'

and so does not run the cd builtin. It is later stripped, and the shell looks for an external program
called cd.

If you want to avoid alias substitution but not built-in matching, you can replace:
\cd foo or \rm foo

with:
''cd foo or ""rm foo

These do not match the aliases — during alias scanning they have quote pairs in front of them — but
they do match any builtin because the quotes have by then been stripped (setting bit 7 of all the
characters contained between the two quotes, here none).

Incidentally, since alias expansion occurs early, you can do some peculiar things with it:
% [
Missing]. . . . on some systems, there is a command named [, sometimes standalone,
 and sometimes symlinked to test.
% alias [echo foo
% [
foo . . . alias expansion occurs before globbing

% unalias [
unalias: Missing]. . . . unalias globs its arguments!

% unalias \[
% alias unalias echo foo
unalias: Too dangerous to alias that. . . . the C shell attempts caution...

% alias \unalias echo foo
% alias
unalias (echo foo)
% unalias unalias
foo unalias . . . but fails!

% ''unalias unalias
% alias
% . . . Fortunately, there is an exit.

Note
On some sy stems, there is a command named [, sometimes standalone, and sometimes sy mlinked to test.

— CT

Is It "2>&1 file" or "> file 2>&1"? Why?

One of the common questions about Bourne-type shells is why only the second command shown
below will redirect both stdout and stderr (Section 43.1) to a file:
$ cat food 2>&1 >file
cat: can't open food
$ cat food >file 2>&1
$

Although some manual pages don't mention this, the shell processes I/O redirections from left to right:

1. On the first command line, the shell sees 2>&1 first. That means "make the standard error (file
descriptor 2) go to the same place that the standard output (fd1) is going." There's no effect
because both fd2 and fd1 are already going to the terminal. Then >file redirects fd1 (stdout) to
file. But fd2 (stderr) is still going to the terminal.

2. On the second command line, the shell sees >file first and redirects stdout to file. Next 2>&1
sends fd2 (stderr) to the same place fd1 is going — that's to the file. And that's what you want.

Section 36.16 has much more about the m >& n operator.

— JP

Bourne Shell Quoting

I can't understand why some people see Bourne shell quoting as a scary, mysterious set of many rules.
Quoting on Bourne-type shells is simple. (C shell quoting is slightly more complicated. See Section
27.13.)

The overall idea is this: quoting turns off (disables) the special meaning of characters. There are
three quoting characters: single quote ('), double quote ("), and backslash (\). Note that a backquote
(`) is not a quoting character — it does command substitution (Section 28.14).

Special Characters

Listed below are the characters that are special to the Bourne shell. You've probably already used
some of them. Quoting these characters turns off their special meaning. (Yes, the last three characters
are quoting characters. You can quote quoting characters; more on that later.)
& * ? [] () = | ^ ; < > ` $ " ' \

Space, tab, and newline also have special meaning as argument separators. A slash (/) has special
meaning to Unix itself, but not to the shell, so quoting doesn't change the meaning of slashes.

Newer shells have a few other special characters. For instance, bash has ! for history substitution
(Section 30.8). It's similar to the C shell ! (Section 27.13) except that, in bash, ! loses its special
meaning inside single quotes. To find particular differences in your Bourne-type shell, see the quoting
section of its manual page. In general, though, the rules below apply to all Bourne-type shells.

How Quoting Works

Table 27-1 summarizes the rules; you might want to look back at it while you read the examples.

Table 27-1. Bourne shell quoting characters

Quoting
character Explanation

'xxx' Disable all special characters in xxx.

"xxx" Disable all special characters in xxx except $, `, and \.

\x Disable the special meaning of character x. At end of line, a \ removes the newline
character (continues line).

To understand which characters will be quoted, imagine this: the Bourne shell reads what you type at
a prompt, or the lines in a shell script, character by character from first to last. (It's actually more
complicated than that, but not for the purposes of quoting.)

When the shell reads one of the three quoting characters, it does the following:

Strips away that quoting character
Turns off (disables) the special meaning of some or all other character(s) until the end of the
quoted section, by the rules in Table 27-1

You also need to know how many characters will be quoted. The next few sections have examples to
demonstrate those rules. Try typing the examples at a Bourne shell prompt, if you'd like. (Don't use C
shell; it's different (Section 27.13).) If you need to start a Bourne-type shell, type sh; type exit when
you're done.

A backslash (\) turns off the special meaning (if any) of the next character. For example, * is a
literal asterisk, not a filename wildcard (Section 1.13). So, the first expr (Section 36.21)
command gets the three arguments 79 * 45 and multiplies those two numbers:
$ expr 79 * 45
3555
$ expr 79 * 45
expr: syntax error

In the second example, without the backslash, the shell expanded * into a list of filenames —
which confused expr. (If you want to see what I mean, repeat those two examples using echo
(Section 27.5) instead of expr.)
 A single quote (') turns off the special meaning of all characters until the next single quote is
found. So, in the command line below, the words between the two single quotes are quoted. The
quotes themselves are removed by the shell. Although this mess is probably not what you want,
it's a good demonstration of what quoting does:
$ echo Hey! What's next? Mike's #1 friend has $$.
Hey! Whats next? Mikes

Let's take a close look at what happened. Spaces outside the quotes are treated as argument
separators; the shell ignores the multiple spaces. echo prints a single space between each
argument it gets. Spaces inside the quotes are passed on to echo literally. The question mark (?)
is quoted; it's given to echo as is, not used as a wildcard.
So, echo printed its first argument Hey! and a single space. The second argument to echo is
Whats next? Mikes; it's all a single argument because the single quotes surrounded the spaces
(notice that echo prints the two spaces after the question mark: ?). The next argument, #1, starts
with a hash mark, which is a comment character (Section 35.1). That means the shell will
ignore the rest of the string; it isn't passed to echo.
(zsh users: The # isn't treated as a comment character at a shell prompt unless you've run setopt
interactive_comments first.)
 Double quotes (") work almost like single quotes. The difference is that double quoting allows
the characters $ (dollar sign), ' (backquote), and \ (backslash) to keep their special meanings.
That lets you do variable substitution (Section 35.9, Section 35.3) and command substitution
(Section 28.14) inside double quotes — and also stop that substitution where you need to.
For now, let's repeat the example above. This time, put double quotes around the single quotes
(actually, around the whole string):
$ echo "Hey! What's next? Mike's #1 friend has $$."
Hey! What's next? Mike's #1 friend has 18437.

The opening double quote isn't matched until the end of the string. So, all the spaces between the
double quotes lose their special meaning, and the shell passes the whole string to echo as one
argument. The single quotes also lose their special meaning because double quotes turn off the
special meaning of single quotes! Thus, the single quotes aren't stripped off as they were in the
previous example; echo prints them.
What else lost its special meaning? The hash mark (#) did; notice that the rest of the string was
passed to echo this time because it wasn't "commented out." But the dollar sign ($) didn't lose its
meaning; the $$ was expanded into the shell's process ID number (Section 24.3) (in this shell,
18437).

In the previous example, what would happen if you put the $ inside the single quotes? (Single quotes
turn off the meaning of $, remember.) Would the shell still expand $$ to its value? Yes, it would: the
single quotes have lost their special meaning, so they don't affect any characters between them:
$ echo "What's next? How many $$ did Mike's friend bring?"
What's next? How many 18437 did Mike's friend bring?

How can you make both the $$ and the single quotes print literally? The easiest way is with a
backslash, which still works inside double quotes:
$ echo "What's next? How many \$\$ did Mike's friend bring?"
What's next? How many $$ did Mike's friend bring?

Here's another way to solve the problem. A careful look at this will show a lot about shell quoting:
$ echo "What's next? How many "'$$'" did Mike's friend bring?"
What's next? How many $$ did Mike's friend bring?

To read that example, remember that a double quote quotes characters until the next double quote is
found. The same is true for single quotes. So, the string What's next? How many (including the
space at the end) is inside a pair of double quotes. The $$ is inside a pair of single quotes. The rest of
the line is inside another pair of double quotes. Both of the double-quoted strings contain a single

quote; the double quotes turn off its special meaning and the single quote is printed literally.

Single Quotes Inside Single Quotes?

You can't put single quotes inside single quotes. A single quote turns off all special meaning until the
next single quote. Use double quotes and backslashes.

Multiline Quoting

Once you type a single quote or double quote, everything is quoted. The quoting can stretch across
many lines. (The C shell doesn't work this way.)

For example, in the short script shown in Figure 27-1, you might think that the $1 is inside quotes, but
it isn't.

Figure 27-1. Matching quotes

Actually, all argument text except $1 is in quotes. The gray shaded area shows the quoted parts. So $1
is expanded by the Bourne shell, not by awk.

Here's another example. Let's store a shell variable (Section 35.9) with a multiline message, the kind
that might be used in a shell program. A shell variable must be stored as a single argument; any
argument separators (spaces, etc.) must be quoted. Inside double quotes, $ and ' are interpreted
(before the variable is stored, by the way). The opening double quote isn't closed by the end of the
first line; the Bourne shell prints secondary prompts (Section 28.12) (>) until all quotes are closed:
$ greeting="Hi, $USER.
 > The date and time now
 > are: `date`."
$ echo "$greeting"
Hi, jerry.
The date and time now
are: Fri Sep 1 13:48:12 EDT 2000.
$ echo $greeting
Hi, jerry. The date and time now are: Fri Sep 1 13:48:12 EDT 2000.
$

The first echo command line uses double quotes, so the shell variable is expanded, but the shell
doesn't use the spaces and newlines in the variable as argument separators. (Look at the extra spaces
after the word are:.) The second echo doesn't use double quotes. The spaces and newlines are
treated as argument separators; the shell passes 14 arguments to echo, which prints them with single
spaces between.

A backslash has a quirk you should know about. If you use it outside quotes, at the end of a line (just
before the newline), the newline will be deleted. Inside single quotes, though, a backslash at the end
of a line is copied as is. Here are examples. I've numbered the prompts (1$, 2$, and so on):
1$ echo "a long long long long long long
> line or two"
a long long long long long long
line or two
2$ echo a long long long long long long\
> line
a long long long long long longline
3$ echo a long long long long long long \
> line
a long long long long long long line
4$ echo "a long long long long long long\
> line"
a long long long long long longline
5$ echo 'a long long long long long long\

> line'
a long long long long long long\
line

You've seen an example like example 1 before. The newline is in quotes, so it isn't an argument
separator; echo prints it with the rest of the (single, two-line) argument. In example 2, the backslash
before the newline tells the shell to delete the newline; the words long and line are passed to echo
as one argument. Example 3 is usually what you want when you're typing long lists of command-line
arguments: Type a space (an argument separator) before the backslash and newline. In example 4, the
backslash inside the double quotes is ignored (compare to example 1). Inside single quotes, as in
example 5, the backslash has no special meaning; it's passed on to echo.

— JP

Differences Between Bourne and C Shell Quoting

This article explains quoting in C-type shells by comparing them to Bourne-type shell quoting. If you
haven't read Section 27.12 about Bourne shell quoting, please do so now.

As in the Bourne shell, the overall idea of C shell quoting is this: quoting turns off (disables) the
special meaning of characters. There are three quoting characters: a single quote ('), a double quote
("), and a backslash (\).

Special Characters

The C shell has a few more special characters in addition to the original Bourne shell:
! { } ~

How Quoting Works

Table 27-2 summarizes the rules; you might want to look back at it while you read the examples.

Table 27-2. C shell quoting characters

Quoting
character Explanation

'xxx' Disable all special characters in xxx except !.

"xxx" Disable all special characters in xxx except $, ', and !.

\x Disable special meaning of character x. At end of line, a \ treats the newline
character like a space (continues line).

The major differences between C and Bourne shell quoting are the following:

The exclamation point (!) character can be quoted only with a backslash. That's true inside and
outside single or double quotes. So you can use history substitution (Section 30.8) inside
quotes. For example:
% grep intelligent engineering file*.txt
grep: engineering: No such file or directory
% grep '!:1-2' !:3
grep 'intelligent engineering' file*.txt
 ...

In the Bourne shell, inside double quotes, a backslash (\) stops variable and command
substitution (it turns off the special meaning of $ and ').
In the C shell, you can't disable the special meaning of $ or ' inside double quotes. You'll need a
mixture of single and double quotes. For example, searching for the string use the `-c' switch
takes some work:
% fgrep "use the \`-c' switch" *.txt
Unmatched \`.
% fgrep 'use the \`-c\' switch' *.txt
Unmatched '.
% fgrep "use the "'`-c'"' switch" *.txt
hints.txt:Be sure to use the `-c' switch.

Section 29.10 shows an amazing pair of aliases that automate complicated C shell quoting
problems like this.
In the Bourne shell, single and double quotes include newline characters. Once you open a single
or double quote, you can type multiple lines before the closing quote.
In the C shell, if the quotes on a command line don't match, the shell will print an error unless the
line ends with a backslash. In other words, to quote more than one line, type a backslash at the
end of each line before the last line. Inside single or double quotes, the backslash-newline
becomes a newline. Unquoted, backslash-newline is an argument separator:
% echo "one\
? two" three\
? four
one
two three four

Quoting Special Characters in Filenames

If you want to work with files that have spaces or special characters in the filenames, you may have to
use quotes. For instance, if you wanted to create a file that has a space in the name, you could use the
following:

/dev/null Section 43.12
% cp /dev/null 'a file with spaces in the name'

Normally, the shell uses spaces to determine the end of each argument. Quoting (Section 27.12,
Section 27.13) changes that — for example, the cp command above has only two arguments. You can
also use a backslash (\) before a special character. The example below will rename a file with a
space in the name, changing the space to an underscore (_):
% mv a\ file a_file

Using the same techniques, you can deal with any character in a filename:
% mv '$a' a

At worst, a space in a filename makes the filename difficult to use as an argument. Other characters
are dangerous to use in a filename. In particular, using ? and * in a filename is playing with fire. If
you want to delete the file a?, you may end up deleting more than the single file.

— BB

Verbose and Echo Settings Show Quoting

C-type shells have two variables that, when set, will help you follow the convoluted trail of variable
and metacharacter expansion. This command will echo every command line before shell variables
have been evaluated:

set Section 35.9
% set verbose

This command will display each line after the variables and metacharacters have been substituted:
% set echo

If you wish to turn the options off, use unset (Section 35.9) instead of set.
Bourne-type shell syntax is different. To turn on the verbose flag, use:
$ set -v

The command set -x turns on the echo flag. You can also type them together: set -xv.

If your version of Unix understands scripts that start with #!, and nearly all do, here's a convenient
way to turn these variables on from the first line of a script:
#!/bin/sh -xv

It is not necessary to modify the program. You can enable variable tracing in Bourne shell scripts by
typing the shell name and options on the command line:
$ sh -v script

$ sh -x script

Not all Bourne shells let you turn these options off. If yours does (and it probably does), you can do it
by using a plus sign instead of a minus sign:
set +xv

Here Documents

So far, we've talked about three different kinds of quoting: backslashes (\), single quotes ('), and
double quotes ("). The shells support yet one more kind of quoting, called here documents. A here
document is useful when you need to read something from standard input, but you don't want to create
a file to provide that input; you want to put that input right into your shell script (or type it directly on
the command line). To do so, use the << operator, followed by a special word:
sort >file <<EndOfSort
zygote
abacus
EndOfSort

This is very useful because variables (Section 35.9, Section 35.3) are evaluated during this
operation. Here is a way to transfer a file using anonymous ftp (Section 1.21)[3] from a shell script:

 Go to http://examples.oreilly.com/upt3 for more information on: ftpfile
#!/bin/sh
Usage:
ftpfile machine file
set -x
SOURCE=$1
FILE=$2
GETHOST="uname -n"
BFILE=`basename $FILE`
ftp -n $SOURCE <<EndFTP
ascii
user anonymous $USER@`$GETHOST`
get $FILE /tmp/$BFILE
EndFTP

As you can see, variable and command substitutions (Section 28.14) are done. If you don't want
those to be done, put a backslash in front of the name of the word:
cat >file <<\FunkyStriNG

Notice the funky string. This is done because it is very unlikely that I will want to put that particular
combination of characters in any file. You should be warned that the C shell expects the matching
word (at the end of the list) to be escaped the same way, i.e., \FunkyStriNG, while the Bourne shell
does not. See Section 36.19.

Most Bourne shells also have the <<- operator. The dash (-) at the end tells the shell to strip any
TAB characters from the beginning of each line. Use this in shell scripts to indent a section of text
without passing those TABs to the command's standard input.

Other shells, notably zsh and later versions of ksh, but in the future possibly also bash, support a
method for taking input from a string:
$ tr ... <<< "$xyzzy" | ...

— BB

[3] You might be better off using wget or curl for downloads, but this method can be useful for
automated uploads.

http://examples.oreilly.com/upt3

"Special" Characters and Operators

Before you learn about regular expressions (Section 32.1), you should understand how quoting
(Section 27.12) works in Unix.

Regular expressions use metacharacters. The shells also have metacharacters. Metacharacters are
simply characters that have a special meaning. The problem occurs when you want to use a regular
expression in a shell script. Will the shell do something special with the character? Or will it be
passed unchanged to the program? The $ character is a good example of a regular expression
metacharacter that is also used by the shell, but whose meaning is different depending upon who
interprets it, the shell or other programs. It could be the beginning of a variable name or it could be
part of a regular expression (Section 32.2). If you need a regular expression, you must know
whether any of the characters of the expression are metacharacters, and must know the right way to
quote that character so that it is passed to the program without being modified by the shell.

Table 27-3 is a table of special characters and operators in the shells covered by this book. (Because
zsh acts basically like both C-type and Bourne-type shells, its name would show up in every entry. So
we don't list it here unless an entry applies only to zsh — or one or two other shells.) The chart also
includes several combinations of characters just to be complete. But, to keep things simple, it doesn't
include:

Arithmetic operators like +, -, and so on; see the articles on built-in arithmetic for a list.
History substitution like !!, !$, and so on; see Section 30.8 instead.

As in other parts of this book, the sh entries apply to ksh and bash; the csh entries apply to tcsh.

Table 27-3. Special characters and their meanings

Character Where Meaning Articles

ESC csh Filename completion. Section 28.6

RETURN csh, sh Execute command.

space csh, sh Argument separator.

TAB csh, sh Argument separator.

TAB bash Completion (in interactive shells). Section 28.6

csh, sh Start a comment. Section 35.1

` csh, sh Command substitution (backquotes). Section 28.14

" sh Weak quotes. Section 27.12

" csh Weak quotes. Section 27.13

$var csh, sh Expand variable var. Section 35.3,

Section 35.9${var} csh, sh Same as $ var. Section 35.9
$var:mod csh Edit var with modifier mod Section 28.5

${var-default} sh If var not set, use default. Section 36.7

${var:-default} bash If var not set or null, use default. Section 36.7

${var=default} sh If var not set, set it to default and use that
value. Section 36.7

${var:=default} bash If var not set or null, set it to default and
use that value. Section 36.7

${var+instead} sh If var set, use instead. Otherwise, null
string. Section 36.7

${var:+instead} bash If var set or not null, use instead.
Otherwise, null string. Section 36.7

${var?message} sh If var set, use its value. Else print message
(or default) and exit. Section 36.7

${var:?message} bash If var set or not null, use its value. Else
print message (or default) and exit. Section 36.7

${var#pat} ksh, bash Value of var with smallest pat deleted from
start.

${var##pat} ksh, bash Value of var with largest pat deleted from
start.

${var%pat} ksh, bash Value of var with smallest pat deleted from
end.

${var%%pat} ksh, bash Value of var with largest pat deleted from
end.

${^array} zsh Expand array in place, like
rc_expand_param option. Section 35.9

${=spec} zsh Turn on sh_word_split option while
evaluating spec. Section 35.9

${~array} zsh Turn on glob_subst option while evaluating
spec. Section 35.9

| csh, sh Pipe standard output. Section 1.5,
Section 43.1

|& csh Pipe standard output and standard error. Section 43.5

csh Pipe standard output and standard error. Section 43.5

|& ksh Coroutine. Section 24.4

^ sh only Pipe character (obsolete).

^ csh, bash Edit previous command line. Section 30.5

& csh, sh Run program in background. Section 23.2

&! zsh Run program in background without job
control. Section 23.11

&| zsh Run program in background without job
control. Section 23.11

? csh, sh Match one character. Section 1.13,
Section 33.2

* csh, sh Match zero or more characters. Section 1.13,
Section 33.2

; csh, sh Command separator.

;; sh End of case element. Section 35.10

~ csh, ksh,
bash Home directory. Section 31.11

~user csh, ksh,
bash Home directory of user. Section 31.11

! csh, bash Command history. Section 30.2

!
bash,
ksh93,
zsh

Toggle exit status. Section 35.12

- zsh Make a login shell. Section 3.19

= csh, sh Assignment. Section 35.9,

$# csh, sh Number of shell arguments or words in an
array. Section 35.20,

"$@" sh Original script arguments. Section 35.20

$* csh, sh Original script arguments, broken into
words. Section 35.20

$? sh Status of previous command. Section 35.12

$$ csh, sh Process identification number. Section 27.12

$! sh Process identification number of last
background job. Section 4.15

$< csh Read input from terminal. Section 28.9

$_ bash,
ksh, zsh Last argument of previous command.

$n sh Argument n. 1 <= n <= 9 for most shells;
bash and ksh93 support ${n} for n >= 10.

$0 sh Name of the shell or shell script.

 cmd1 && cmd2 csh, sh Execute cmd2 if cmd1 succeeds. Section 35.14

 cmd1 || cmd2 csh, sh Execute cmd2 if cmd1 fails. Section 35.14

$(..) ksh, bash Command substitution. Section 36.24,
Section 28.14

. file sh Execute commands from file in this shell. Section 35.29

: sh Evaluate arguments, return true. Section 35.6

: sh Separate values in paths. Section 31.5,
Section 35.6

: csh Variable modifier. Section 28.5

[] csh, sh Match range of characters. Section 1.13,
Section 33.2

[] sh Test. Section 35.26

%n csh, ksh,
bash, zsh Job number n. Section 23.3

(cmd;cmd) csh, sh Run cmd ; cmd in a subshell. Section 43.7

{ } csh, bash In-line expansions. Section 28.4

>file csh, sh Redirect standard output. Section 43.1

>! file csh Output to file, even if noclobber set and
file exists. Section 43.6

>| file ksh, bash Output to file, even if noclobber set and
file exists. Section 43.6

>>file csh, sh Append standard output. Section 43.1

>>! file csh Append to file, even if noclobber set and
file doesn't exist. Section 43.6

<file csh, sh Redirect standard input. Section 43.1

<<word csh, sh Read until word, do command and variable
substitution.

Section 27.16,
Section 28.13

<<\word csh, sh Read until word, no substitution. Section 27.16

<<-word sh Read until word, ignoring leading TABs. Section 27.16

<> file ksh,
bash, zsh Open file for writing and reading.

>& file csh, bash Redirect standard output and standard error
to file. Section 43.5

 m> file sh Redirect output file descriptor m to file. Section 36.16

 m>> file sh Append output file descriptor m to file.

 m< file sh Redirect input file descriptor m from file.

<&m sh Take standard input from file descriptor m.

>&m sh Use file descriptor m as standard output. Section 36.16

>& - sh Close standard output. Section 36.16

 m<& - sh Close input file descriptor m. Section 36.16

 n>&m sh Connect output file descriptor n to file

descriptor m. Section 36.16

 m>& - sh Close output file descriptor m. Section 36.16

How Many Backslashes?

The problem with backslashes is that many different programs use them as quoting characters. As a
result, it's difficult to figure out how many backslashes you need in any situation.

Here's an example, taken from System V Release 4. (Notice that I'm using the standard System V
version of echo from /bin/echo. SVR4 has four versions of echo!)
% /bin/echo hi \ there
hi there
% /bin/echo hi \\ there
hi \ there
% /bin/echo hi \ there
hi \ there

In the first case, the shell uses the backslash to quote (Section 27.12) the following space character.
The space before the backslash is a word separator. So echo gets two arguments: "hi" and "·there"
(without the quotes) — where · is the space character that was quoted by the backslash. As always,
echo prints a single space between each argument. The first space you see in the output is echo's
argument-separating space, and the second space came along with the second argument (thanks to the
backslash).

In the second case, the shell converts \\ to \; the first backslash tells the shell to quote (Section
27.12) (turn off the special meaning of) the second backslash. The echo command gets three
arguments, "hi", "\", and "there", and it echoes those arguments with a single space between each.
(I've heard claims that, on some systems, this command wouldn't print any backslashes, but I wasn't
able to reconstruct that situation.)

In the third case, the shell converts each pair of backslashes into a backslash, and runs the command
echo hi \\ there. But this is System V, and System V's echo interprets backslashes as special
characters. So when echo sees the remaining two backslashes, it converts them into a single
backslash. So you see only a single backslash, even though you typed four. On BSD systems and on
Linux, echo doesn't do this; you'd see two backslashes. For that matter, if you're using SVR4's C shell,
with its built-in echo command, you'll see the BSD/Linux behavior. You'll also see the BSD/Linux
behavior if you're using SVR4's /usr/ucb/echo.

The terminal driver is also capable of "eating" backslashes if they appear before special characters.
If a backslash precedes the "erase" character (normally CTRL-h) or the "kill" character (normally
CTRL-u), the terminal driver will pass the control character to the shell, rather than interpreting it as
an editing character. In the process, it "eats" the backslash. So if you type:
% echo \CTRL-u

The shell receives the line echo CTRL-u. There are certainly system-dependent variations, though. If
your system has the termio(7) manual page, read it for more information.

What's the point of this article? Well, backslashes are messy. The shell, the terminal driver, echo
(sometimes), and several other utilities use them. If you think very carefully, you can figure out
exactly what's consuming them. If you're not of a rigorous frame of mind, you can just add backslashes
until you get what you want. (But, obviously, the nonrigorous approach has pitfalls.) I've seen
situations in troff (which is another story altogether) where you need eight backslashes in order to
have a single backslash left at the point where you want it!

(Extra credit: What happens when you put quotes (" or ') around the strings in the echo commands
above? Especially, should quotes affect the way \CTRL-u is interpreted?)

—ML and JP

Chapter 28. Saving Time on the Command Line

What's Special About the Unix Command Line

Summary Box
One of Unix's best features is the shell's command line. Why ? Nearly every modern operating sy stem has a command line; we don't use card readers with obscure job setup cards any more. What makes Unix's special?

The Unix shell command line allows lots of shortcuts. Some of these y ou'll find in other operating sy stems; some y ou won't. In this chapter, we'll introduce a lot of these shortcuts. Among other things, we'll discuss:

How to run commands more than once Section 28.8).
Filename completion (Section 28.6, Section 28.7), which allows y ou to ty pe the beginning of a filename and let the shell fill in the rest. (This is finally possible on certain Redmond-born OSes as well, but it usually involves a registry
hack or two.)
Command substitution (Section 28.14), which lets y ou use the output from one command as arguments to another. (Note that this is different from pipelining.)
 Process substitution in bash, and a script named ! for other shells, lets y ou put the output of a command into a temporary file and give that filename to a process.
The ability to repeat commands with various methods (Section 28.10, Section 28.11).
Handling of command lines that become too long (Section 28.17).

Some fundamental command-line features that we aren't discussing in this chapter, but which are discussed elsewhere, are:

Job control (Section 23.3), which lets y ou run several commands at the same time.
Aliases (Section 29.2), or abbreviations, for commands. Shell functions (Section 29.11) are similar.
Command-line editing (Section 30.14) and history substitution (Section 30.8). These are two different way s (both useful) to "recall" previous commands.
Q uoting (Section 27.12, Section 27.13), the way y ou "protect" special characters from the Unix shell.
Wildcards (Section 33.2).

You don't need to be a command-line virtuoso to use Unix effectively . But y ou'd be surprised at how much y ou can do with a few tricks. If all y ou can do at the command line is ty pe ls or start Mozilla or the Gimp, y ou're missing out on a lot.

— ML

Reprinting Your Command Line with CTRL-r

You're logged in from home, running a program and answering a prompt. As you're almost done,
modem noise prints xDxD@! on your screen. Where were you? Or you're typing a long command line
and a friend interrupts you with write (Section 1.21) to say it's time for lunch. Do you have to press
CTRL-u and start typing all over again?

If your system understands the rprnt character (usually set to CTRL-r), you can ask for the command
line to be reprinted as it was. In fact, you can use CTRL-r any time you want to know what the system
thinks you've typed on the current line — not just when you're interrupted. But this only works in the
normal cooked input mode; programs like vi that do their own input processing may treat CTRL-r
differently. Here's an example:
% egrep '(10394|29433|49401)' /work/symtower/

Message from alison@ruby on ttyp2 at 12:02 ...
how about lunch?
EOF
CTRL-r
egrep '(10394|29433|49401)' /work/symtower/logs/*

After the interruption, I just pressed CTRL-r. It reprinted the stuff I'd started typing. I finished typing
and pressed RETURN to run it.

If you use a shell like the Korn shell that has interactive command editing, you can probably use it to
reprint the command line, too. In bash and other commands that use the readline file, though, from vi
editing mode, CTRL-r still seems to start an Emacs-style reverse search. So I added this fix to my
~/.inputrc file:
set editing-mode vi

By default, in vi text-input mode, ^R does Emacs "reverse-i-search".
In command mode, you can use the vi command ^L to redraw the line.
Fix it in text-input mode:
"\C-r": redraw-current-line

— JP

Use Wildcards to Create Files?

The shells' [] (square bracket) wildcards will match a range of files. For instance, if you have files
named afile, bfile, cfile, and dfile, you can print the first three by typing:
% lpr [a-c]file

Now, let's say that you want to create some more files called efile, ffile, gfile, and hfile. What's
wrong with typing the command line below? Try it. Instead of vi, you can use your favorite editor or
the touch (Section 14.8) command:
% vi [e-h]file
 Doesn't make those four files
% ls
afile bfile cfile dfile

Stumped? Take a look at Section 1.13 about wildcard matching.

The answer: wildcards can't match names that don't exist yet. That's especially true with a command
like touch ?file (Section 14.8) or touch *file — think how many filenames those wildcards could
possibly create!

Section 28.4 explains shell { } operators that solve this problem. And, by the way, if you just created
one new file named [e-h]file, simply quote (Section 27.12) its name to remove it:
rm "[e-h]file"

— JP

Build Strings with { }

I've been finding more and more uses for the {} pattern-expansion characters in csh , tcsh, zsh, and
bash . They're similar to *, ?, and [] (Section 33.2), but they don't match filenames the way that *, ?,
and [] do. You can give them arbitrary text (not just filenames) to expand — that "expand-anything"
ability is what makes them so useful.

Here are some examples to get you thinking:

To fix a typo in a filename (change fixbold5.c fixbold6.c):
% mv fixbold{5,6}.c

To see what the shell will do with {}, add echo (Section 27.5) before the mv:
% echo mv fixbold{5,6}.c
mv fixbold5.c fixbold6.c

To copy filename to filename.bak without retyping filename:
% cp filename{,.bak}

To print files from other directory(s) without retyping the whole pathname:
% lpr /usr3/hannah/training/{ed,vi,mail}/lab.{ms,out}

That would give lpr (Section 45.2) all of these files:
/usr3/hannah/training/ed/lab.ms
/usr3/hannah/training/ed/lab.out
/usr3/hannah/training/vi/lab.ms
/usr3/hannah/training/vi/lab.out
/usr3/hannah/training/mail/lab.ms
/usr3/hannah/training/mail/lab.out

...in one fell swoop!
To edit ten new files that don't exist yet:
% vi /usr/foo/file{a,b,c,d,e,f,g,h,i,j}

That would make /usr/foo/filea, /usr/foo/fileb, ... /usr/foo/filej. Because the files don't exist
before the command starts, the wildcard vi /usr/foo/file[a-j] would not work (Section
28.3).
An easy way to step through three-digit numbers 000, 001, ..., 009, 010, 011, ..., 099, 100, 101,
... 299 in the C shell is:
foreach Section 28.9
foreach n ({0,1,2}{0,1,2,3,4,5,6,7,8,9}{0,1,2,3,4,5,6,7,8,9})
 ...Do whatever with the number $n...
end

Yes, csh also has built-in arithmetic, but its @ operator can't make numbers with leading zeros.
This nice trick shows that the {} operators are good for more than just filenames.
In zsh, {} also understands .. as an integer-range operator. So you could generate the 300
numbers in the previous example with {000..299}. The leading 00 tells zsh to pad all output
numbers to three digits with leading zeros.
If you give the range in reverse order, like {299..0}, zsh will output the integers in descending
order: 299, 298, and so on, down to 1 and 0.
To send a mail (Section 1.21) message to multiple recipients where a part of each email address

is repeated:
% mail -s "Link to me" webmaster@{foo,bar,baz}.com < msgfile

If you're using a graphical email program (not the command-line mail program shown above),
and you're sending an email message to lots of people at the same host, it can be a pain to type
the same hostname over and over in the "To:" line. Let the shell's {} operators do the dirty work!
Use echo to output the addresses. (Note the comma (,) after each address.) Then copy all of them
— except the final comma — with your mouse, and paste them into the GUI mail program:
% echo {jane,joe,jill,john,jean}@foo.org,
jane@foo.org, joe@foo.org, jill@foo.org, john@foo.org, jean@foo.org,

To create sets of subdirectories:
% mkdir man
% mkdir man/{man,cat}{1,2,3,4,5,6,7,8}
% ls -F man
cat1/ cat3/ cat5/ cat7/ man1/ man3/ man5/ man7/
cat2/ cat4/ cat6/ cat8/ man2/ man4/ man6/ man8/

Here's how to copy the remote files file1.c, file12.c, file45.c, and file77.c from the subdirectory
foo on the remote host remulac to the local system. Your local shell expands the strings (into
remulac:foo/file1.c, remulac:foo/file12.c, etc.) and passes them to scp (Section 29.14):
. Section 1.16
% scp remulac:foo/file{1,12,45,77}.c .

 Here are two ways to print 10 copies of the file project_report if your lpr (Section 45.2)
command doesn't have a -#10 option. We showed the first way in the first two editions of this
book. Dimi Shahbaz sent us the second one: 9 commas give 10 filenames. (Thanks, Dimi!) Both
of them work on all the shells I tried:
% lpr project_repor{t,t,t,t,t,t,t,t,t,t}
% lpr project_report{,,,,,,,,,}

Of course, this doesn't just work for lpr or filenames. Remember that the shell expands the list of
strings, so you can use these tricks anywhere you use {}.

In bash, the complete-into-braces editor command (which is bound to the M-{ key sequence by
default in Emacs mode) expands a string into a list of matching filenames in braces. For example:
$ ls pr*
prog1.c prog2.c program1.c program2.c
$ cc pr META{
$ cc pr{og1.c,og2.c,ogram1.c,orgram2.c}

Then you can edit the brace expression.

String Editing (Colon) Operators

When the C shells, zsh, and bash do history substitutions (Section 30.8) they can also edit the
substitution. The C shells and zsh — but not bash — can also edit variable substitutions (Section
35.9). (bash has a different syntax, which zsh understands, too.) For instance, in the first example
below, when !$ contains /a/b/c, adding the "head" operator :h will give just the head of the
pathname, /a/b.

For a complete but very terse list of these operators, see the csh manual page. We hope the examples
below will help you understand these useful operators.

:h gives the head of a pathname (Section 31.2), as follows:
% echo /a/b/c
/a/b/c
% echo !$:h
echo /a/b
/a/b

That took off the filename and left the header. This also could be used with C shell variables
(Section 35.9) as:
% set x = /a/b/c
% echo $x
/a/b/c
% echo $x:h
/a/b

:r returns the root of a filename:
% echo xyz.c abc.c
xyz.c abc.c
% echo !$:r
echo abc
abc

The :r removed the .c from the last argument, leaving the root name. This could also be used in
C shell variable names:
% set x = abc.c
% echo $x:r

:g makes the operation global if you have more than one name. For example:
% set x = (a.a b.b c.c)
% echo $x:gr
a b c

The :gr operator stripped off all dot (.) suffixes. By the way, this use of g does not work with
the history commands.
This is the C shell's answer to the basename (Section 36.13) command.
:e returns the extension (the part of the name after a dot). Using csh variables:
% set x=(abc.c)
% echo $x:e
c

No luck using that within history, either.
:t gives the tail of a pathname — the actual filename without the path:
% echo /a/b/c
/a/b/c

% echo !$:t
c

With csh variables:
% set x=(/a/b/c)
% echo $x:t
c

And with multiple pathnames, you can do it globally with:
% set x=(/a/b/c /d/e/f /g/h/i)
% echo $x:gt
c f i

The corresponding heads would be:
% set x=(/a/b/c /d/e/f /g/h/i)
% echo $x:gh

:p prints the command but does not execute it (Section 30.11):
% echo *
fn1 fn2 fn3
% !:p
echo fn1 fn2 fn3

:q prevents further filename expansion or prints the command as is:
% echo *
fn1 fn2 fn3
% !:q
echo *
*

The first command echoed the files in the directory, and when the :q was applied, it echoed only
the special character.
:x is like :q, but it breaks the line into words. That is, when using :q, it is all one word, while
:x will break it up into multiple words. :q and :x are more often used with C shell arrays.

[Wait, Dan, what about & on the right-hand side to repeat the previous substitution? And there's more
since Dan wrote this article (in 1983!). tcsh also has :u to convert the first lowercase letter to
uppercase and :l to convert the first uppercase letter to lowercase. In zsh, :u converts all letters to
uppercase and :l converts all letter to lowercase. zsh also has f and F to repeat a substitution until it
fails — and even more. Check your shell's manual page. — JP]

Automatic Completion

If you hate typing long filenames, hostnames, command names — or almost anything on a command
line — you should know about the shells' "completion" feature.

The basics are pretty simple: just press (in most shells) the TAB key, and the shell should "do the
right thing." But how the shell decides what's "right" can be complicated — especially in newer
shells, and especially in the latest zsh , which has incredibly customizable completion. As an
example, when you press TAB in bash, the shell tries to complete a shell variable if the word begins
with $, a username if the word begins with ~, a hostname if the word begins with @, or a command
(including aliases and functions). If none of these works, bash finally tries filename completion. As
another example, the original Korn shell does only simple filename completion, but the public domain
Korn shell has more features.

On more-sophisticated shells, completion is actually a function of the shell's built-in customizable
command editor. For instance, in tcsh , the TAB key is bound to (in other words, it runs) the editor's
complete-word command. This key binding can be changed. And tcsh, like other recent shells, has
plenty of other completion-related editor commands.

bash allows for the customization of the different types of completions, as well; you can define a file
containing the hostnames to check (in /etc/hosts format) when the shell is asked to complete a
hostname. Just set the environment variable HOSTFILE to the name of the file you want. There are
extensive built-in functions in bash, each associated with a key, to allow for extremely flexible
management of completions.

As you can see, completion varies shell to shell, so we'll give an overview here. For more details,
see your shell's manpage.

General Example: Filename Completion

Let's look at an example of one type of completion, filename completion. Other types of completion
work in generally the same way.

Filename completion is one of the most common types. You can type the initial part of a filename and
then press the TAB key. (In the C shell, first enable completion by setting the variable filec (Section
30.9) or complete, then press ESC.) If the shell can figure out the complete filename from the part that
you've typed, it will fill in the rest of the name. If not, it will fill in as much of the name as is
unambiguous and then let you type some more. For example:
$ ls
alpha.c alpha.o beta.c
$ cc b TAB
$ cc beta.c Shell fills in the filename automatically

(With tcsh and csh, your terminal will beep if more than one file matches the name you've typed. If all
this beeping drives you crazy, you can set the nobeep shell variable to turn it off.) In this case, only
one filename begins with b, so the shell can fill in the entire name. This works with pathnames
(Section 1.16) too: each time you press TAB, the shell completes the name up to the next slash (/) if
it can.

If you type part of a filename and then type CTRL-d (in bash, type TAB twice), the shell lists all the
files that match whatever you've typed. It then redisplays your command line and lets you continue
typing. For example:
% cc a CTRL-d
alpha.c alpha.o
% cc alpha.

Two files begin with the letter "a"; the shell lists them. It then redisplays the cc command, letting you
finish the filename.

Note
Also, be forewarned that filename completion doesn't alway s work correctly . For example, y ou can't use filename completion within some older shell applications. You can't mix filename completion with wildcards in any shell except zsh. We
won't go into detail about these rough edges, but if y ou're aware that they exist, y ou won't have trouble.

That last example shows a problem with filename completion: it's matching the ".o file," (Section
1.12) named alpha.o. It's a type of file that most users wouldn't want to manipulate from the command
line; they'd rather the shell ignore all .o files. Section 28.7 explains the fignore list; it solves this
problem in most cases. Section 31.10 shows an interesting shortcut to filename completion: cding to a
directory by typing its "initials."

Menu Completion

The filename completion section showed how completion works by default: press TAB, and the shell
completes as much as it can and then waits for you either to press TAB again (to see all possible
completions) or to type enough of the word to make it unambigious.

Menu completion, supported by zsh with the -Y option, works differently. The name might be
confusing at first: it doesn't "complete a menu," and it also doesn't pop up a menu of possible
completions. Instead, menu completion replaces the word to be completed with a single match from
the list of possible completions. Each time you press TAB again, the shell shows you the next
possible match, in turn, under your cursor. If you like one of the choices, just keep typing the rest of
the command line (or press ENTER to execute it). When the shell has shown all the possible matches,
it rings the bell and restores the original text without a match.

Menu completion doesn't work just with filenames. If your shell supports it, menu completion
probably works with all completion modes (filenames, hostnames, etc.).

Command-Specific Completion

tcsh and zsh let you customize completion even farther: specific completion instructions for each
Unix command you define. For instance, the mail command wants email addresses on its command
line, and you can declare a list of addresses that are available to complete (this could be a list of
friends and associates you send a lot of mail to). You might use the ssh and telnet commands
(Section 1.21) to connect to particular remote hosts, and you'd like to be able to complete the
hostnames for those particular hosts. (The bash hostname completion feature reads hostnames from a
file like /etc/hosts — but it only completes hostnames if the string starts with an @ character or if you
use a special editor command for completing hostnames.)

The tcsh command complete defines these custom completions. The syntax is hairy, so I won't try to
explain all of it here. Instead, let's look at an overall example from the MH email system (Section
6.2). You use MH commands directly from a shell prompt instead of first starting an email command
interpreter and entering commands at the interpreter's own prompt, as you do with most other email
packages. Most MH programs accept a mail folder name as one of their command-line arguments. A
mail folder name starts with a + (plus sign)[1] and can appear anywhere in a command line.

MH mail folders can be stored anywhere on the filesystem — even on a networked filesystem on a
remote computer. Here are the four lines that I put in my .tcshrc setup file (Section 3.3):

{ } Section 28.4
Set up MH folder name completion for "folder", "refile", "scan", "show":
folders -fast -recurse | \
 sed -e '/DELETE$/d' -e 's/^/+/' > $HOME/Mail/folderlist
complete {folder,refile,scan,show} 'C@*@`cat $HOME/Mail/folderlist`@'

The first command builds a file named folderlist with a list of strings (in this case, folder names) to
complete. I don't want completion to include folder names I'll never look in, so I filtered the folder
output with sed (Section 34.1) to exclude the names I don't want — in this case, folder names ending
with DELETE. (This list is also useful in other places, it turns out, not just in tcsh completion.) A + is
prepended to each folder name because folders doesn't add the plus signs, but we need them for tcsh
matching. So the first few lines of folderlist look like this:
+drafts
+inbox
+jobs
+jobs/bay-area
+jobs/miscellaneous
 ...

The second command, complete, starts with a list in braces of the commands that should complete
folder names. The next argument is complex and has lots of possible variations; this one matches any
pattern included with backquotes (Section 28.14) from the cat (Section 12.2) command, which gives
us the contents of folderlist. There are lots of variations! The bottom line is how this works... here's
an example of completing a folder name:
tcsh> scan +j TAB
tcsh> scan +jobs/m TAB
tcsh> scan +jobs/miscellaneous last:20

After completing the folder name (in two steps), tcsh leaves a space; I type the rest of the command
line and press ENTER to run it.

Editor Functions for Completion

Some shells have customizable, built-in command-line editors that use key bindings to control how
and where completion takes place. For example, in tcsh, pressing TAB invokes the complete-word
function, but you can change TAB to do menu completion (as explained above) by binding the editor
function complete-word-fwd to TAB key.

In bash, TAB does basic completion with the editor's complete function. But the bash editor has
many more bindings than tcsh does. For instance, typing M-/ runs complete-filename, which treats the
text before the cursor as a filename and does filename completion on it. Typing M-$ runs complete-
variable, which treats the text before the cursor as a shell variable and does variable completion on
it. There are plenty of variations — like C-x $, which invokes the possible-variable-completions
function to list all shell variable names that could be completed. Section 28.4 has an example of M-{,
the curly-brace completion function.

For details on your particular shell, check its manual page.

—JP, ML, and SJC

[1] An MH folder name can also start with an @ (at sign), but that use is less common. Besides, this is
just an example!

Don't Match Useless Files in Filename Completion

The shell variable fignore in csh and zsh (FIGNORE in bash and also zsh) lets you tell the shell that
you aren't interested in some files when using filename completion (Section 28.6). For example, you
may be more likely to refer to C language source files (whose names end with .c) than object files (.o
files); you often need to edit your source files, while you may never need to look at your object
modules. Set fignore to the suffixes that you want to ignore. For example, to ignore .o files in tcsh and
csh, type:

set Section 35.9
% set fignore=(.o)

Once you've done this, file completion will ignore your .o files when you press the TAB key (ESC in
csh) — unless a .o file is the only match it can find.

Most likely, there's a whole list of suffixes that you don't care about: .o (object modules), .out
(random executables), .gz (gzipped files), ~ (Emacs backup files (Section 19.4)), and so on. Section
1.12 has a list of them. Here's how to set fignore to a list of filenames:[2]

% set fignore=(.o .out .gz \~)
 ...tcsh, csh, zsh
$ FIGNORE='.o:.out:.gz:~'
 ...bash, zsh

fignore has no effect when you press CTRL-d to get a listing of the files that match in csh and tcsh.
Those shells always give you a complete list of all possible completions.

[2] The ~ (for Emacs) has to be quoted ((Section 27.13) when it's stored in the fignore array.
Otherwise, the shell would expand it to your home directory path (Section 31.11).

Repeating Commands

Let's start with some obvious ways to run commands more than once:

Type !! (Section 30.8) to repeat the previous command line, or repeat a cycle of commands
with !-n (Section 30.9)
Press the up-arrow key (Section 30.14) or a vi- or Emacs-style editing command
Copy and paste the command line with your mouse (Section 28.10)

Whether each of those methods will work depends on the shell you're using and whether you have
copy-and-paste built into your interface. All of those methods force you to take some action before
each command line repeats — pressing the up-arrow key, for instance. That lets you control exactly
when each command runs.

The next four articles show automated ways to repeat a command a certain number of times. You can
"mix and match" some parts of different articles — the tips on read and sleep, for instance. Each
article follows on to the one before, so we suggest glancing through all of them:

In C shells, repeat a single command with the repeat command.
zsh can repeat a series of commands with its repeat loop.
Methods for Bourne-type shells use more-general shell features.
An offbeat method that works with all shells is to output multiple commands using jot.
The shells' for and foreach loops (Section 28.9) can vary the commands they run by picking a
string (a word, for instance) from a list of strings.
To repeat a command and display its output in the same place on the screen — so it's easy to
spot differences over time — try vis (Section 28.11).

Finally, remember that you aren't stuck with the login shell you chose. If you want a feature that your
shell doesn't have, you can use another shell temporarily by typing its name (like csh), running the
commands you need, then typing exit to go back to your original shell.

— JP

Repeating and Varying Commands

A foreach Loop

When some people need to repeat a command on several files, the first thing they think of is
command line editing (Section 30.14) or — as we show here — history substitution (Section
30.5):

-v Section 12.4, less Section 12.3
% cat -t -v /usr/fran/report | less
 ...
% ^fran/report^rob/file3
cat -t -v /usr/rob/file3 | less
 ...
% ^3^21
cat -t -v /usr/rob/file21 | less
 ...
%

The second substitution (changing 3 to 21) was quick to do, but the first one was longer. If there are
lots of related commands like this, it can be easier to list all the variations at once — then let the shell
do the dirty work. To do that, use the shell's foreach loop in C-type shells — or, in Bourne-type
shells, use a for loop, shown later in this article. (zsh has both foreach and for loops.) You give the
loop a list of the words that will change each time the command line is run. In this example, it's a list
of filenames. The loop will step through the words, one by one, storing a word into a shell variable
(Section 35.9), then running the command(s). The loop goes on until it has read all the words. For
example:
% foreach file (/usr/fran/report /usr/rob/file3 /usr/rob/file21)
? cat -t -v $file | less
? end
 ...Shell runs cat -t -v /usr/fran/report | less...
 ...Shell runs cat -t -v /usr/rob/file3 | less...
 ...Shell runs cat -t -v /usr/rob/file21 | less...
%

The question marks (?) are secondary prompts (Section 28.12); the shell will keep printing them
until you type the command end. Then the loop runs.

The list between the parentheses doesn't have to be filenames. Among other things, you can use
wildcards (Section 1.13), backquotes (Section 28.14) (command substitution), variables (Section
35.9, Section 35.3), and the handy curly brace ({}) operators (Section 28.4). For example, you could
have typed the above loop this way:
% foreach file (/usr/fran/report /usr/rob/file{3,21})
? cat -t -v $file | less
? end

If you want the loop to stop before or after running each command, add the C shell operator $<. It
reads keyboard input and waits for a RETURN. In this case, you can probably ignore the input; you'll
use $< to make the loop wait. For example, to make the previous loop prompt before each command
line:

set Section 35.9
% foreach file (/usr/fran/report /usr/rob/file{3,21})
? echo -n "Press RETURN to see $file--"
? set x="$<"
? cat -t -v $file | less
? end
Press RETURN to see /usr/fran/report--RETURN

 Shell runs cat -t -v /usr/fran/report | less...
Press RETURN to see /usr/rob/file3--RETURN
 Shell runs cat -t -v /usr/rob/file3 | less...
Press RETURN to see /usr/rob/file21--RETURN
 Shell runs cat -t -v /usr/rob/file21 | less...

The loop parameters don't need to be filenames. For instance, you could send a personalized email
(Section 1.21) message to five people this way:[3]

cat - Section 12.2
% foreach person (John Cathy Agnes Brett Elma)
? echo "Dear $person," | cat - formletter | mail $person
? end

The first line of the first letter will be "Dear John,"; the second letter "Dear Cathy,"; and so on.

Want to take this idea further? It's a part of shell programming (Section 35.2). I usually don't
recommend shell programming with the C shell, but this is a handy technique to use interactively.

A for Loop

The for loop in Bourne-type shells is like the foreach loop shown earlier: it loops through a list of
words, running one or more commands for each word in the list. This saves time when you want to
run the same series of commands separately on several files.

Let's repeat an earlier example:
$ for file in /usr/fran/report /usr/rob/file2 /usr/rob/file3
> do
> cat -t -v $file | less
> done
 ...Shell runs cat -t -v /usr/fran/report | less...
 ...Shell runs cat -t -v /usr/rob/file2 | less...
 ...Shell runs cat -t -v /usr/rob/file3 | less...
$

The greater-than signs (>) are secondary prompts (Section 28.12); the Bourne shell will keep
printing them until you type the command done. Then it runs the loop. You don't have to press
RETURN after the do; you can type the first command on the same line after it.

In a shell script, the loop body (the lines between do and done) is usually indented for clarity.

The list after the in doesn't have to be filenames. Among other things, you can use backquotes
(Section 28.14) (command substitution), variables (Section 35.9, Section 35.3), wildcards (Section
33.1), and, on shells like bash that have them, curly brace ({}) operators (Section 28.4). For
example, you could have typed the previous loop this way:
$ for file in /usr/fran/report /usr/rob/file[23]
> do cat -t -v $file | less
> done

If you want the loop to stop before or after running each command, add the shell's read command (
Section 35.18). It reads keyboard input and waits for a RETURN. In this case, you can ignore the
input; you'll use read just to make the loop wait. For example, to make the above loop prompt before
each command line:
$ for file in /usr/fran/report /usr/rob/file[23]
> do
> echo -n "Press RETURN to see $file--"
> read x
> cat -t -v $file | less
> done
Press RETURN to see /usr/fran/report--RETURN
 Shell runs cat -t -v /usr/fran/report | less...
Press RETURN to see /usr/rob/file2--RETURN
 Shell runs cat -t -v /usr/rob/file2 | less...
Press RETURN to see /usr/rob/file3--RETURN
 Shell runs cat -t -v /usr/rob/file3 | less...

Section 35.21 has more information about the for loop. Section 36.12 shows how to make a for loop
that varies several parameters at once.

— JP

[3] If you're sending lots of mail messages with a loop, your system mailer may get overloaded. In that
case, it's a good idea to put a command like sleep 5 (Section 25.9) on a separate line before the end.

That will give the mailer five seconds to send each message.

Repeating a Command with Copy-and-Paste

If you're using an xterm window (Section 24.20) or another type of terminal emulator with easy copy-
and-paste functionality, that might be the easiest way to repeat all or part of a previous command line.
Just select the part you want to copy, and paste it at a new prompt, adding any other text before and
after pasting. This can be easier than using the shell's editing commands or history operators: what
you see is what you get. Figure 28-1 shows copy-and-paste.[4]

Figure 28-1. Copying and pasting a command

You can reuse the copied text over and over, if you want; after copying it once, paste as many times
and places as you need to. Also, if you've got multiple pieces of text to copy and paste, try using a
scratchpad window or xclipboard (Section 5.19).

— JP

[4] This is Figure 2-3 from O'Reilly & Associates' Learning the Unix Operating System, Fourth
Edition.

Repeating a Time-Varying Command

 Go to http://examples.oreilly.com/upt3 for more information on: vis

Sometimes you find yourself repeating the same command over and over again — for example, ps
(Section 24.5) to monitor the progress of your background processes, or lpq (Section 45.2) to know
when your printout is finished. Instead of typing the same command repeatedly, or even using shell
history (Section 30.2) to repeat it, use the vis command. For example:
% vis ps

The vis command takes over your screen and shows the output of the initial ps command. Every 15
seconds, the command is executed again and your screen is updated with the new information. If this
delay is too long for you, you can get vis to use a shorter delay using the -d option:
% vis -d 2 ps

The information will now be updated every 2 seconds. Your screen is cleared and you are shown the
output of ps. On the top line, vis tells you the command being run, how long your delay is (if not the
default), and how many times it has been executed. The Exec: line is incremented every time the
command is repeated.
Command: ps Delay: 2 Exec: 1

 PID TT STAT TIME COMMAND
 2971 p1 S 0:06 -sh (csh)
 6139 p1 S 0:00 vis -d 2 ps
 6145 p1 R 0:00 ps
 3401 q0 IW 0:13 -sh (csh)
 5954 q0 S 0:01 vi ch01
14019 q5 IW 0:02 -sh (csh)
29380 r7 IW 0:00 -bin/csh (csh)
29401 rd IW 0:00 -bin/csh (csh)

vis provides a few other command-line options. The -s option is particularly neat: using -s, any lines
that have changed since the last iteration are printed in standout mode.

Note that variations of this command have floated around in the public domain under several different
names, such as display, rep, and watch. We found vis to be the most useful.

— LM

http://examples.oreilly.com/upt3

Multiline Commands, Secondary Prompts

All shells support multiline commands. In Bourne-type shells, a newline following an open quote ('
or "), pipe symbol (|), or backslash (\) will not cause the command to be executed. Instead, you'll get
a secondary prompt (from the PS2 shell variable, set to > by default), and you can continue the
command on the next line. For example, to send a quick write (Section 1.21) message without making
the other user wait for you to type the message, try this:
$ echo "We're leaving in 10 minutes. See you downstairs." |
> write joanne

In the C shells, you can continue a line by typing a backslash (\) before the newline (Section 27.13).
In tcsh, you'll see a secondary prompt, a question mark (?), on each continued line. The original csh
doesn't prompt in this case.

Obviously, this is a convenience if you're typing a long command line. It is a minor feature and one
easily overlooked; however, it makes it much easier to use a program like sed (Section 34.1) from the
command line. For example, if you know you chronically make the typos "mvoe" (for "move") and
"thier" (for "their"), you might be inspired to type the following command:

nroff -ms Section 3.21, lp Section 45.2
$ sed '
> s/mvoe/move/g
> s/thier/their/g' myfile | nroff -ms | lp

More importantly, the ability to issue multiline commands lets you use the shell's programming
features interactively from the command line. In both the Bourne and C shells, multiline programming
constructs automatically generate a secondary prompt (> in Bourne shells and ? in C shells) until the
construct is completed. This is how our favorite programming constructs for non-programmers, the
for and foreach loops (Section 28.9), work. While a simple loop could be saved into a shell script
(Section 1.8), it is often even easier to use it interactively.

Here's an example with zsh , which makes secondary prompts that show the names of the construct(s)
it's continuing. This for loop prints files from the current directory. If a filename ends with .ps, it's
sent straight to the ps printer. Filenames ending with .tif are sent through netpbm (Section 45.19)
filters, then to the ps printer.

case Section 35.10, echo Section 27.5
zsh% for file in *
for> do case "$file" in
for case> *.ps) lpr -Pps "$file" ;;
for case> *.tif) tifftopnm "$file" | pnmtops | lpr -Pps ;;
for case> *) echo "skipping $file" ;;
for case> esac
for> done
skipping README
 ...
zsh%

zsh's multiline editing makes it easy to go back and edit that multiline nested construct. In other shells,
you might consider using a throwaway script or copying and pasting with a mouse if you have one.

—TOR and JP

Here Document Example #1: Unformatted Form Letters

 << Section 27.16

The here document operator << (Section 27.16) is often used in shell scripts — but it's also handy
at a shell prompt, especially with zsh multiline editing or a throwaway script. But you also can just
type it in at a Bourne shell prompt (Section 28.12). (If you use csh or tcsh, you can either use a
foreach loop (Section 28.9) or start a subshell (Section 24.4).)

The example below shows a for loop (Section 28.9) that prints three friendly form letters with the
lpr (Section 45.2) command. Each letter has a different person's name and the current date at the top.
Each line of the loop body starts with a TAB character, which the <<- operator removes before the
printer gets the text:
for person in "Mary Smith" "Doug Jones" "Alison Eddy"
do
 lpr <<- ENDMSG

 `date`

 Dear $person,

 This is your last notice. Buy me pizza tonight or
 else I'll type "rm -r *" when you're not looking.

 This is not a joak.

 Signed,
 The midnight skulker
 ENDMSG
done

The shell reads the standard input until it finds the terminator word, which in this case is ENDMSG. The
word ENDMSG has to be on a line all by itself. (Some Bourne shells don't have the <<- operator to
remove leading TAB characters. In that case, use << and don't indent the loop body.) The backquotes
(Section 28.14) run the date command and output its date; $person is replaced with the person's
name set at the top of the loop. The rest of the text is copied as is to the standard input of the lpr
command.

— JP

Command Substitution

A pair of backquotes (``) does command substitution. This is really useful — it lets you use the
standard output from one command as arguments to another command.

Here's an example. Assume you want to edit all files in the current directory that contain the word
"error." Type this:

-l Section 33.6
$ vi `grep -l error *.c`
3 files to edit
"bar.c" 254 lines, 28338 characters
 ...
$

But why does this work? How did we build the incantation above? First, think about how you'd do
this without using any special techniques. You'd use grep to find out which commands contain the
word "error"; then you'd use vi to edit this list:
$ grep error *.c
bar.c: error("input too long");
bar.c: error("input too long");
baz.c: error("data formatted incorrectly");
foo.c: error("can't divide by zero"):
foo.c: error("insufficient memory"):
$ vi bar.c baz.c foo.c

Is there any way to compress these into one command? Yes, by using command substitution. First, we
need to modify our grep command so that it produces only a list of filenames, rather than filenames
and text. That's easy; use grep -l:
$ grep -l error *.c
bar.c
baz.c
foo.c

The -l option lists each filename only once, even if many lines in the file match. (This makes me
think that grep -l was designed with precisely this application in mind.) Now, we want to edit these
files; so we put the grep command inside backquotes, and use it as the argument to vi :
$ vi `grep -l error *.c`
3 files to edit
"bar.c" 254 lines, 28338 characters
 ...
$

You might be wondering about the difference between the "vertical" output from grep and the
"horizontal" way that people usually type arguments on a command line. The shell handles this with
no problems. Inside backquotes, both a newline and a space are argument separators.

The list you use with command substitution doesn't have to be filenames. Let's see how to send a mail
message (Section 1.21) to all the users logged on to the system now. You want a command line like
this:
% mail joe lisa franka mondo bozo harpo ...

Getting there takes a little thinking about what Unix commands you need to run to get the output you
want. (This is real "Power Tools" stuff!) To get a list of those users, you could use who (Section
2.8). The who output also lists login time and other information — but you can cut that off with a
command like cut (Section 21.14):

% who | cut -c1-8
joe
lisa
franka
lisa
joe
mondo
joe
...

Some users are logged on more than once. To get a unique list, use sort -u (Section 22.6). You're
done. Just put the name-making command line between backquotes:
% mail `who | cut -c1-8 | sort -u`

If you aren't sure how this works, replace the command you want to run with echo (Section 26.5):
% echo `who | cut -c1-8 | sort -u`
bozo franka harpo joe lisa mondo

After using Unix for a while, you'll find that this is one of its most useful features. You'll find many
situations where you use one command to generate a list of words, then put that command in
backquotes and use it as an argument to something else. Sometimes you'll want to nest (Section
36.24) the backquotes — this is where the bash, ksh, bash, and zsh $() operators (which replace
the opening and closing backquote, respectively) come in handy. There are some problems with
command substitution, but you usually won't run into them.

This book has many, many examples of command substitution. Here are some of them: making unique
filenames (Section 8.17), removing some files from a list (Section 14.18), setting your shell
prompt (Section 4.6, Section 4.8, Section 4.14), and setting variables (Section 4.8, Section 36.23).

— JP

Handling Lots of Text with Temporary Files

Sometimes you need to execute a command with a long list of files for arguments. Here's an easy way
to create that list without having to type each filename yourself — put the list in a temporary file:

'...' Section 28.14
% ls > /tmp/mikel
% vi /tmp/mikel
 ...edit out any files you don't want...
% process-the-files
 `cat /tmp/mikel`
% rm /tmp/mikel

I added the vi step to remind you that you can edit this list; for example, you may want to delete a few
files that you don't want to process.

Possible problems: if the list is long enough, you may end up with a command line that's too long for
your shell to process. If this happens, use xargs or a related solution. See article Section 28.17.

— ML

Separating Commands with Semicolons

When the shell sees a semicolon (;) on a command line, it's treated as a command separator —
basically like pressing the ENTER key to execute a command. When would you want to use a
semicolon instead of pressing ENTER?

It's nice when you want to execute a series of commands, typing them all at once at a single
prompt. You'll see all of them on the same command line and they'll be grouped together in the
history list (Section 30.7). This makes it easy to see, later, that you intended this series of
commands to be executed one after another. And you can re-execute them all with a simple
history command.
As an example, here's a series of commands that puts a listing of the current directory into a
temporary file, emails the listing, then overwrites the previous version of the file:
$ ll > $tf-1; mail -s backup joe < $tf-1; mv $tf-1 listing

I can repeat that same command later by using a history substitution (Section 30.8) like !ll.
It's useful with sleep (Section 25.9) to run a command after a delay. The next example shows a
series of commands in a C shell alias that you might use to print a warning and give the user a
chance to abort before the last command (exit, which ends the current shell) is executed. Be sure
to read the important note after this example:
alias bye 'echo "Type CTRL-c to abort logout"; sleep 10; exit'

Note that, in C-type shells and older Bourne-type shells, pressing your interrupt key (Section
24.10) — like CTRL-c — will stop execution of all jobs on the current command line. The alias
above works in shells like that. But in some shells, like bash2, interrupting a command in a
string of commands separated by semicolons will affect only that single command. So I couldn't
rewrite the alias above for bash2 because, if I pressed CTRL-c while the sleep command was
executing, that would simply abort sleep — and proceed to run exit, which would log me out
immediately!
 If you're running a series of commands that take some time to complete, you can type all the
commands at once and leave them to run unattended. For example, I have little shell scripts
named nup and ndown (Section 24.22) (which run /sbin/ifup and /sbin/ifdown, respectively) to
start and disable the network. On a system with a dialup modem and a long file transfer to
perform, it's nice to be able to type a series of commands that bring up the network, do a couple
of file transfers, then bring down the network. I can type this string, go about my business
somewhere else, and come back later:
$ nup;ptbk;getmail;ndown

After nup returns, the network is up (the modem has connected). So the shell runs ptbk (Section
38.9) to make a backup of my work on this book. Next, getmail gets my email (it basically runs
fetchmail). When getmail finishes, ndown hangs up the modem. This can take several minutes
from start to finish, but the shell manages it all while I do something else. (If I didn't have a
windowing system with multiple xterms, I could have put that string of commands into a subshell
(Section 43.7) in the background (Section 23.2).) This is one place that a GUI interface for
network control really loses to command-line utilities and the shell.

Two related operators, && and || (Section 35.14), work like a semicolon, but they only execute the
next command if the previous one succeeded or failed, respectively.

— JP

Dealing with Too Many Arguments

Historically, one of the more annoying things about the design of many UNIX tools was their inability
to handle large numbers of arguments. For example, if you wanted to print several hundred files using
lpr, you either had to pass them a few at a time, perhaps using wildcards on the command line to split
the list up into shorter groups, or call lpr once per file, perhaps using find or a loop. One other
method, which is still useful today, involves the use of xargs.

xargs is one of those Unix utilities that seems pretty useless when you first hear about it — but turns
into one of the handiest tools you can have.

 Go to http://examples.oreilly.com/upt3 for more information on: xargs

If your system doesn't already have xargs, be sure to install it from the web site.

xargs reads a group of arguments from its standard input, then runs a Unix command with that group
of arguments. It keeps reading arguments and running the command until it runs out of arguments. The
shell's backquotes (Section 28.14) do the same kind of thing, but they give all the arguments to the
command at once. This can give you a Too many arguments error.

Here are some examples:

If you want to print most of the files in a large directory, put the output of ls into a file. Edit the
file to leave just the filenames you want printed. Give the file to xargs' standard input:
< Section 43.1
% ls > allfiles.tmp
% vi allfiles.tmp
% xargs lpr < allfiles.tmp

What did that do? With lines like these in allfiles.tmp:
% cat allfiles.tmp
afile
application
 ...
yoyotest
zapme

xargs ran one or more lpr commands, each with a group of arguments, until it had read every
word in the file:
lpr afile application ...
 ...
lpr ... yoyotest zapme

This has another advantage for lpr: each print job is fairly short, so you can delete one from the
print queue without losing all of them.
The standard output of xargs is the standard output of the commands it runs. So, if you'd created
allfiles.tmp above, but you wanted to format the files with pr (Section 45.6) first, you could
type:
% xargs pr < allfiles.tmp | lpr

Then xargs would run all of these pr commands. The shell would pipe their standard outputs[5]

http://examples.oreilly.com/upt3

to a single lpr command:
pr afile application ...
 ...

In the next example, find (Section 9.1) gets a list of all files in the directory tree. Next, we use
xargs to read those filenames and run grep -l (Section 33.6) to find which files contain the word
"WARNING". Next, we pipe that to a setup with pr and lpr, like the one in the previous
example:
% find . -type f -print | xargs grep -l WARNING | xargs pr | lpr

"Huh?" you might say. Just take that step by step. The output of find is a list of filenames, like
./afile ./bfile/adir/zfile and so on. The first xargs gives those filenames to one
or more grep -l commands:
grep -l WARNING ./afile ./bfile ...
 ...
grep -l WARNING ./adir/zfile ...

The standard output of all those greps is a (shortened) list of filenames that match. That's piped
to another xargs — it runs pr commands with the filenames that grep found.
Unix is weird and wonderful!
Sometimes you don't want xargs to run its command with as many arguments as it can fit on the
command line. The -n option sets the maximum number of arguments xargs will give to each
command. Another handy option, -p, prompts you before running each command.
Here's a directory full of files with errors (whose names end with .bad) and corrected versions
(named .fixed). I use ls to give the list of files to xargs; it reads two filenames at once, then asks
whether I want to run diff -c to compare those two files. It keeps prompting me and running diff -
c until it runs out of file pairs:
% ls
chap1.bad
chap1.fixed
chap2.bad
chap2.fixed
 ...
chap9.bad
chap9.fixed
% ls | xargs -p -n2 diff -c
diff -c chap1.bad chap1.fixed ?...y
 ...Output of diff command for chap1...
diff -c chap2.bad chap2.fixed ?...n
diff -c chap3.bad chap3.fixed ?...y
 ...Output of diff command for chap3...

[5] Actually, the shell is piping the standard output of xargs. As I said above, xargs sends the standard
output of commands it runs to its own standard output.

Expect

 Go to http://examples.oreilly.com/upt3 for more information on: expect

Expect is a program to control interactive applications such as telnet (Section 1.21) and passwd.
These and many other applications interactively prompt and expect a user to enter keystrokes in
response. But you can write simple Expect scripts to automate these interactions. Then the Expect
program can run the "interactive" program noninteractively. Expect can also be used to automate only
parts of a dialogue, since control can be passed from the script to the keyboard and vice versa. This
allows a script to do the drudgery and a user to do the fun stuff.

 Go to http://examples.oreilly.com/upt3 for more information on: tcl, tk

Expect programs can be written in any language but are almost always written in Tcl. Tcl is an
interpreted language that is widely used in many other applications. If you already use a Tcl-based
application, you won't have to learn a new language for Expect.

Tcl is a very typical-looking shell-like language. There are commands to set variables (set), control
flow (if, while, foreach, etc.), and perform the usual math and string operations. Of course, Unix
programs can be called, too.

Expect is integrated on top of Tcl and provides additional commands for interacting with programs.
Expect is named after the specific command that waits for output from a program. The expect
command is the heart of the Expect program. It describes a list of patterns to watch for. Each pattern
is followed by an action; if the pattern is found, the action is executed.

For example, the following fragment is from a script that involves a login. When executed, the script
waits for the strings welcome, failed, or busy, and then it evaluates [(executes) — JP] one of the
corresponding actions. The action associated with busy shows how multiple commands can be
evaluated. The timeout keyword is a special pattern that matches if no other patterns match in a
certain amount of time.
expect {
 "welcome" break
 "failed" abort
 timeout abort
 "busy" {
 puts "I'll wait - the system is busy!"
 continue
 }
}

http://examples.oreilly.com/upt3
http://examples.oreilly.com/upt3

Dialback

It is surprising how little scripting is necessary to produce something useful. Below is a script that
dials a phone. It is used to reverse the charges so that long-distance phone calls are charged to the
computer. It is invoked with the phone number as its argument.
spawn tip modem
expect "connected"
send "ATD$argv\r"
modem takes a while to connect
set timeout 60
expect "CONNECT"

The first line runs the tip program so that the output of a modem can be read by expect and its input
written by send. Once tip says it is connected, the modem is told to dial using the command ATD
followed by the phone number. The phone number is retrieved from argv, which is a variable
predefined to contain the original argument with which the script was called.

The fourth line is just a comment noting that the variable being set in the next line controls how long
expect will wait before giving up. At this point, the script waits for the call to complete. No matter
what happens, expect terminates. If the call succeeds, the system detects that a user is connected and
prompts with login:.

Actual scripts do more error checking, of course. For example, the script could retry if the call fails.
But the point here is that it does not take much code to produce useful scripts. This six-line script
replaced a 60 KB executable (written in C) that did the same thing!

Automating /bin/passwd

Earlier I mentioned some programs that cannot be automated with the shell. It is difficult to imagine
why you might even want to embed some of these programs in shell scripts. Certainly the original
authors of the programs did not conceive of this need. As an example, consider passwd .

passwd is the command to change a password. The passwd program does not take the new password
from the command line.[6] Instead, it interactively prompts for it — twice. Here is what it looks like
when run by a system administrator. (When run by users, the interaction is slightly more complex
because they are prompted for their old passwords as well.)
passwd libes
Changing password for libes on thunder.
New password:
Retype new password:

This is fine for a single password. But suppose you have accounts of your own on a number of
unrelated computers and you would like them all to have the same password. Or suppose you are a
system administrator establishing 1,000 accounts at the beginning of each semester. All of a sudden,
an automated passwd makes a lot of sense. Here is an Expect script to do just that: automate passwd
so that it can be called from a shell script.
spawn passwd [lindex $argv 0]
set password [lindex $argv 1]
expect "password:"
send "$password\r"
expect "password:"
send "$password\r"
expect eof

The first line starts the passwd program with the username passed as an argument. The next line saves
the password in a variable for convenience. As in shell scripts, variables do not have to be declared
in advance.

In the third line, the expect command looks for the pattern password:. expect waits until the pattern is
found before continuing.

After receiving the prompt, the next line sends a password to the current process. The \r indicates a
carriage return. (Most of the usual C string conventions are supported.) There are two expect-send
sequences because passwd asks the password to be typed twice as a spelling verification. There is no
point to this in a noninteractive passwd, but the script has to do it because passwd assumes it is
interacting with a human who does not type consistently.

The final command expect eof causes the script to wait for the end-of-file character in the output of
passwd. Similar to timeout, eof is another keyword pattern. This final expect effectively waits for
passwd to complete execution before returning control to the script.

Take a step back for a moment. Consider that this problem could be solved in a different way. You
could edit the source to passwd (should you be so lucky as to have it) and modify it so that given an
optional flag, it reads its arguments from the command line just the way that the Expect script does. If
you lack the source and have to write passwd from scratch, of course, then you will have to worry
about how to encrypt passwords, lock and write the password database, etc. In fact, even if you only
modify the existing code, you may find it surprisingly complicated code to look at. The passwd
program does some very tricky things. If you do get it to work, pray that nothing changes when your

system is upgraded. If the vendor adds NIS, NIS+, Kerberos, shadow passwords, a different
encryption function, or some other new feature, you will have to revisit the code.

Expect comes with several example scripts that demonstrate how you can do many things that are
impossible with traditional shells. For example, the passmass script lets you update your password
on many unrelated machines simultaneously. The rftp script provides your regular ftp client with
additional commands to do recursive FTP in either direction. The cryptdir script encrypts all the files
in a directory. And an amusing script is provided that lets two chess processes play each other.
Expect has no limit to the number of interactive programs it can drive at the same time. The Unix
system may limit Expect, though, by controlling the maximum number of processes or other system
resources available.

Testing: A Story

Many people use Expect for testing. You can test interactive programs as easily as you can automate
them. And hardware lends itself to testing with Expect, too. For example, we solved a thorny problem
when we had to deal with an unreliable bank of modems. We were receiving dozens of calls each
week reporting "the modem is hung." No indication of which modem, of course. And it was always
too late for us to ask the user to try something to investigate the problem. The connection was gone by
then. Our solution was an Expect script that connected to each modem hourly and exercised it. Any
problems were recorded so that we had a clear and full history of each modem's behavior. As soon as
a defective or hung modem was encountered, the Expect script would send email to the system
administrator. With this script in place, reports of modem problems from our users dropped to zero.

Other Problems

These are just a few of the problems that can be solved with Expect. And as with all Expect
solutions, recompilation of the original programs is unnecessary. You don't even need the source
code! Expect handles many other problems as well. For example, Expect can wrap existing
interactive tools with GUI wrappers. This means you can wrap interactive programs with graphic
frontends to control applications by buttons, scrollbars, and other graphic elements. And Expect
scripts work great as CGI scripts or from cron (Section 25.2) or inetd [the daemon that controls
Internet services provided by a system — JP]. Finally, learning Expect may be easier than you think.
Expect can watch you interact and then produce an Expect script for you. Interaction automation can't
get much easier than this!

More information on Expect is available in Exploring Expect, by Don Libes, from O'Reilly &
Associates.

— DL

[6] Newer versions will accept input from STDIN, however.

Chapter 29. Custom Commands

Creating Custom Commands

 In most shells, aliases are an easy way to shorten a long command line or do a short series of
commands. Section 29.2 through Section 29.10 cover C shell aliases. Section 29.4 through
Section 29.14 cover aliases in bash, pdksh, and zsh.
All except the oldest Bourne-type shells have shell functions (Section 29.11), which are
explained in Section 29.11 through Section 29.13. These are a cross between aliases and shell
scripts. They're good both for shortening command lines and for running a short or long series of
commands.

—JP and SJC

Introduction to Shell Aliases

All shells except the original Bourne shell have an "alias" facility that lets you define abbreviations
for commands.

The simplest C shell aliases, which are similar to the alias facility in newer Bourne-type shells, are
simply a short name for a command and, often, command options or arguments too. The C shell's
aliases can get very complicated. Section 29.3 describes how a C shell alias can use arguments from
its command line as it's invoked.

As we've said, aliases in Bourne-type shells (bash , zsh, and ksh) are simpler. Section 29.4 covers
some of the differences between those shells and the C shells. Still, the ideas for custom C shell
commands are useful in any kind of shell, and if you can't write something in a simple Bourne-type
alias, you almost certainly can do it in a shell function (Section 29.11).

You can define aliases from the command line, for use in just your current shell. Any aliases you
define can also be placed in your shell setup file (Section 3.3), so they'll be available whenever
you're using your shell.

Note that aliases are not passed to subprocesses (Section 3.3), so putting them in a setup file that's
read only by login shells or top-level shells probably isn't what you want. (One exception is an alias
for a command that you want to run only in a login shell. For instance, you could define an alias
named X that starts your X Window System. If that alias isn't defined in subshells, you'll get a
message like X: command not found if you try to start the window system from an existing
window.)

A common approach is to create separate files for each shell that store your aliases (such as
.bash_aliases for bash or .aliases.csh for the C shell), so that you may source them whenever you
like.

Here's one last note that applies to all shells. Anytime you want a list of the aliases currently set, just
type alias .

—JP, ML, DG, and SJC

C-Shell Aliases with Command-Line Arguments

It's convenient for your aliases to use command-line arguments. For example, let's think about an alias
named phone:
alias phone 'cat ~/phonelist | grep -i'

After you define that alias, you could type phone smith. The shell would find the phone alias and
execute it with the argument (smith) at the end (Section 29.2) this way:
cat ~/phonelist | grep -i smith

Using cat and a pipe that way is inefficient (Section 43.2). It might be more sensible to have an alias
that worked like this:
grep -i name ~/phonelist

How do we do this? The C shell's history (Section 30.8) facility lets us use the notation !$ to refer to
the last word in the previous command; the notation !* refers to all the arguments of the previous
command. Assuming that we only want to look up aliases one at a time, we can use !$ and write our
alias like this:
alias phone grep -i \!$ ~/phonelist

When we use the phone command, its final argument will be substituted into the alias. That is, when
we type phone bill, the shell executes the command grep -i bill ~/phonelist.

In this example, we needed another kind of quoting. We had to put a backslash before the exclamation
point to prevent the shell from replacing !$ with the previous command's last argument. That is, we
don't want the shell to expand !$ when we define the alias — that's nonsense. We want the shell to
insert the previous argument when we use the alias (in which case, the previous argument is just the
argument for the alias itself — clear?).

But why couldn't we just use single quotes or double quotes (Section 27.12)? This isn't the right
place for a full explanation, but neither single quotes nor double quotes protect the exclamation point.
The backslash does (Section 27.13). If you want to be convinced, experiment with some commands
like:
% echo '!!'
 Print your last command
% echo '\!!'
 Print !!

The first echo command shows that the shell performs history substitution (i.e., replaces !! with your
previous command) in spite of the single quotes. The second example shows that the backslash can
prevent the shell from interpreting ! as a special character.

Let's look at another alias. We want to pipe the output of ls -l into more. In this case, we would want
all the arguments from the command line instead of merely the last argument (or the only argument).
Here's the alias:
alias lm 'ls -l \!* | more'

This time, we needed both kinds of quoting: a backslash prevents the shell from interpreting the
exclamation point immediately. Single quotes protect the pipe symbol and the asterisk (*). If you don't
protect them both, and protect only the pipe (with a backslash), look what happens:
% alias lm ls -l \!* | more
alias: No match.

Because the backslash temporarily stops the special meaning of the !, the shell next tries to find
filenames that match the wildcard (Section 1.13) pattern !*. That fails (except in the unusual case
when you have a file in the current directory whose name starts with a !).

Note
Here's a good general rule for quoting aliases. Unless y ou're try ing to do something special with an alias and y ou understand quoting well, put single quotes (') around the whole definition and put a backslash before every exclamation point
(\!).

If you want to pick one argument from the command line, use \!:n, where n is the number of the
argument. Here's a sample alias. It uses cat (Section 12.2) to add a header file to the file named in the
first argument, then writes them both into the file named in the second argument:

~ Section 31.11
alias addhead 'cat ~/txt/header \!:1 > \!:2'

This alias has two arguments: the file to which you want to add a header and the output file. When you
type:
% addhead foo bar

the C shell substitutes the filename foo for \!:1, and the filename bar for \!:2, executing the
command:
cat ~/txt/header foo > bar

Finally, if you need to append fixed text strings to these arguments, you need to separate the argument
text from the fixed text. For instance, here's an alias that tells the Netscape browser to go to a URL
http://info/proj23/ xxx1.html, where xxx is a word like report, summary, etc., that you're typing on
the command line (as an argument to the alias). For instance, to go to the page
http://info/proj23/report1.html, you'd type:
% proj report

The first alias below shows the wrong way to do this. The second one shows how to quote the
argument in curly braces ({}) so the shell doesn't think the 1 after the argument is part of the number
(giving you argument 11 instead of what you want: argument 1 with the digit 1 after it):
alias proj 'netscape -remote "openURL(http://info/proj23/\!:11.html)"' ...wrong
alias proj 'netscape -remote "openURL(http://info/proj23/\!{:1}1.html)"' ...right

If you haven't seen this netscape -remote technique, by the way, it's very handy. It sends a message to
an already-open Netscape browser. You can use it from a command line (shell prompt) or by defining
a button or menu item on your window system desktop. Recent Unix versions of Mozilla have also
begun to support this API, as well. On the Macintosh, remote control is supported via Apple Events,
but not from the command line as of this writing.

Setting and Unsetting Bourne-Type Aliases

A lot of what we said about aliases in Section 29.2 applies to the Korn shell (ksh), zsh, and bash.
This article, along with Section 29.5 and Section 29.6, have an overview of what's different.

One thing that's different from C shells is the syntax of the alias command, which is:
$ alias
 name
 =
 definition

That is, you need an equal sign (no spaces) between the name and the definition. A good guideline is
to use single quotes (') around the definition unless you're doing something specialized and you
understand how quoting (Section 27.12) works in aliases.

You can't put arguments inside an alias as the C shell's \! operator (Section 29.3) does. To do that,
use a shell function (Section 29.11).

As in the C shells, unalias removes an alias. To remove all aliases, use unalias -a in ksh and bash or
unhash -a in zsh. alias with no arguments lists aliases that are currently defined.

bash aliases are pretty basic; this section covers them. Korn shell and zsh aliases do more.

—JP and SC

Korn-Shell Aliases

pdksh (the public domain ksh) has three types of aliases. First is the regular command alias covered
in Section 29.4.

Tracked aliases keep track of the locations of external (Section 1.9) executables. The shell has a
default list of commands to track (see the ksh manpage). The first time ksh searches the PATH for an
executable command that's marked as a tracked alias, it saves the full path of that command. This
saves the shell the trouble of performing the path search each time a command is invoked. The tracked
aliases aren't reset unless one becomes invalid or you change the PATH. The command alias -t lists
and creates tracked aliases. Here's an example with a newly invoked Korn shell:
$ alias -t
$ cat somefile > somewhere
$ alias -t
cat=/bin/cat
$ alias -t less
$ alias -t
cat=/bin/cat
less=/usr/bin/less

At first, there are no tracked aliases. But the cat command is marked for tracking; as soon as I use it,
the shell saves its location, as the next alias -t shows. Next, I add a tracked alias for less (Section
12.3) (which isn't one of the default commands to track). The Korn shell won't track a command
unless it's one of the defaults or you mark it for tracking.

The third kind of alias, directory aliases, set with alias -d, let you use a tilde abbreviation like ~ dir
for any directory.

— JP

zsh Aliases

zsh has the regular command alias covered in Section 29.4. zsh is compatible with the C shell in
many ways, but it doesn't accept csh alias syntax without an equal sign (=) between the name and
value. That's probably because, as in other Bourne-type shells, zsh allows you to set multiple aliases
with one command, like this:
zsh$ alias ri='rm -i' mi='mv -i'
 ...and so on

In zsh, alias -g defines a zsh global alias: a word that's expanded anywhere (as long as it isn't
quoted). These are like a shell variable (Section 35.9) that doesn't need a dollar sign ($) to be
expanded. Maybe you have a log file you read and edit often. You could make a global alias named
log:
zsh$ alias -g log=/work/beta/p2/worklog

zsh$ less log
zsh$ cp log logtemp

Global aliases are expanded only when they stand alone and aren't quoted. So if there's a global alias
dir for a directory, you cannot use emacs dir/file to refer to a file in that directory. Also, if you
defined the global alias fserv for the hostname fserv.bkk.ac.uk, you could type telnet fserv — but
if you type mail ed@fserv, the shell wouldn't expand it into a hostname. Named directories and shell
variables work better in cases like those.

alias -m lists aliases that match a wildcard-type pattern; alias -m 'hi*' shows all alias names that
start with hi (like hi, hist, and so on). This matches regular command aliases as well as global
aliases. You can use -m with unalias, too, to remove all aliases matching a pattern.

— JP

Sourceable Scripts

Aliases are a powerful concept in csh. Another great capability is shell scripts (Section 1.8). Each
has its strengths. An alias is just right for common sequences of commands, calling a command by a
different name, and so on. Scripts are great for more flexible processing and batch processing. There
are limitations to both, and I will show a way around them.

The limitation to aliases is that you are working pretty much with one command line. Consider this
example, which manages various stages of changing directories, updating the prompt, and so forth:
alias pp 'set o2=$cwd; popd; set old=$o2; dir_number; record_dir pp; \\
 prompt_set; set cd_attempt=(\!*); if ($#cd_attempt > 0) cd $cd_attempt'

Now this works fine for me, and it served me well for a few years and thousands of invocations, but
it's at the point where I start thinking that a script is more suited to the job. This brings me to the
limitation of scripts.

Shell scripts are great for accomplishing some task that might change a file, start a program, etc. They
are limited by the fact that any changes they make to shell or environment variables are not visible
(Section 24.3) to the parent shell that started them. In other words, you can write some really cool
script that will change directories for you if you don't touch the keyboard for five seconds, but once
the script exits, you are still in the same place you started.

The answer is to combine the best of both worlds. Consider this:
alias pp 'set cd_attempt=(\!*); source ~/bin/pp_csh'

We set up a variable and source a script. The concept is this: put your command-line arguments into a
variable and then source (Section 35.29) a script to accomplish something. The difference here is
that because you are not starting a subshell (Section 24.4) for the script, it can do everything an alias
can and more. This is much like Bourne shell functions (Section 29.11).

Some hints on using this technique:
Naming

I like to name the script that is doing all of the work after the alias, with _csh or .csh at the end
of its name. I put all of the scripts in my ~/bin (Section 7.4). [Instead of names ending in .csh, I
put mine in a directory named ~/.lib/csh. — JP]

Feedback
You don't want to execute the script directly. You want to source it. Here's a good first line that
detects this:
#! /bin/echo sorry,try:source

Usage statement
Check the variable that you expect to see from the alias. If it isn't there, you can show a usage
statement and do a goto to the end of the script:
<< Section 27.16
if ($#lg_args == 0) then
 cat << +++
usage: lg [-a][-p] pattern [command]
 -a lists all (.dot files)
 -p pipe resulting list into command
+++
 goto lg_end
endif
 ...

lg_end:

Alias options
You aren't limited to what an alias can do, since you are sourcing a script. You gain some
flexibility here. Here's one way of handling options:
set Section 35.9
unset ls_arg
while (! $?ls_arg)
 switch ("$lg_args[1]")
 case "-a":
 set ls_arg="-a"
 shift lg_args
 case "-p":
 set use_pipe
 shift lg_args
 default:
 set ls_arg
 breaksw
 endsw
end

Have fun with this! You may find yourself tossing some old aliases and rewriting them as sourceable
scripts. They're also easier to maintain.

— DS

Avoiding C-Shell Alias Loops

Section 27.9 has similar information for bash.

Here's a situation that came up on the Net a while ago. Someone wanted an exit (Section 24.4) alias
that would run a ~/.exit file (Section 31.13) before leaving the shell. The obvious solution is:
alias exit "source ~/.exit; exit"

This doesn't work; when you use the exit alias, the C shell thinks that the alias is trying to execute
itself. Recursive aliases aren't allowed on many shells, so the C shell prints an error message (Alias
loop) and gives up.

There are many ways to break the loop. Here's the best (in my opinion):
alias exit 'source ~/.exit; ""exit'

Section 27.10 has the hairy details of what works and why. To summarize, if you need to use the
alias's name within a C shell alias, you can use:
""name

Where name is the name of a built-in (Section 1.9) command or any "regular" command.
\name

Where name is the name of any "regular" command, but not a built-in command.

Tempting as this all may sound (and I have to admit, if it didn't sound a bit tempting, I wouldn't be
writing this article), I can't really recommend the practice of "redefining" commands with aliases.
You should leave the original commands as they are. The original author could have avoided all these
problems by calling his alias quit rather than exit.
If you redefine commands with aliases and then use another account where your alias isn't defined, it's
easy for things to go wrong. That's especially true for commands that do something permanent —
overwriting or removing files, for example. It also can cause problems if you let someone type a
command on your account and the person isn't expecting an aliased version.

Let me give one more example to show you what problems you can have. Let's say you've aliased the
exit command to source a .exit file before quitting. Fair enough. But now, let's say that you're not in
your login shell, that you've set ignoreeof, and that, for no apparent reason, your .exit file disappears
(maybe it develops a bad block, so the system can't read it; such things happen).

Now you're stuck. If you type exit, the source command will fail, and the "real" exit command will
never be executed. You can't leave the shell. Of course, if you remember what you did, you can
always type unalias exit and get the original command back. Or you can type " "exit. Or finally,
you could simply write the alias such that it tests for the existence of the file before trying to read it.
But if you've foisted this alias on a beginner, he or she might not know that. All of a sudden, you're
stuck in some shell that you apparently can't get out of.

The biggest virtue of Unix is that it's infinitely extendable. However, you aren't helping if your
extensions hide the basic operations that make everything work. So — extend all you want. But when
you write your extensions, give them new names. End of sermon.

— ML

How to Put if-then-else in a C-Shell Alias

The C shell's brain damage keeps you from using an if with an else in an alias. You have to use a
sourceable script (Section 29.7). Or that's what I thought until I saw an article by Lloyd Zusman on
comp.unix.questions in December 1987. He'd saved an earlier posting on that group (but without its
author's name) that showed how. The trick: use enough backslashes (\) and the eval (Section 27.8)
command.

As an example, here's an alias named C for compiling C programs. It needs the executable filename
(like C prog), not the source filename (like C prog.c). If you type a filename ending in .c, it
complains and quits. Else, it does the following:

Renames any old prog file to prog.old.
Prints the message prog SENT TO cc.
Compiles prog.c.
And — if there's a prog file (if the compile succeeded) — runs chmod 311 prog to protect the
file from accidental reading with a command like cat * or more *.

Your alias doesn't need to be as complicated. But this one shows some tricks, such as putting an if
inside the if, that you might want to use. Watch your quoting — remember that the shell strips off one
level of quoting when you set the alias (Section 29.3) and another during the first pass of the eval.
Follow this example and you'll probably be fine:

 Go to http://examples.oreilly.com/upt3 for more information on: if-else-alias.cs
COMPILE AND chmod C PROGRAMS; DON'T USE .c ON END OF FILENAME.
alias C 'eval "if (\!* =~ *.c) then \\
 echo "C quitting: no .c on end of \!* please." \\
else \\
 if (-e \!*) mv \!* \!*.old \\
 echo \!*.c SENT TO cc \\
 cc -s \!*.c -o \!* \\
 if (-e \!*) chmod 311 \!* \\
endif"'

— JP

http://examples.oreilly.com/upt3

Fix Quoting in csh Aliases with makealias and quote

Getting quoting right in C shell aliases can be a real problem. Dan Bernstein wrote two aliases called
makealias and quote that take care of this for you.

For example, here I use makealias to avoid having to quote ! and *:
% makealias mycat
cat `ls | sed '1,/!*/d'` | less
CTRL-d
alias mycat 'cat `ls | sed '\''1,/\!*/d'\''` | less'

I typed the makealias mycat command and the line starting with cat, then pressed CTRL-d and got
back an alias definition with all the quoting done correctly.

The properly quoted alias definition is sent to the standard output. That line is what you would use to
define the alias.[1]

Here are the quote and makealias aliases themselves:

 Go to http://examples.oreilly.com/upt3 for more information on: makealias.csh
alias quote "/bin/sed -e 's/\\!/\\\\\!/g' \\
 -e 's/'\\\''/'\\\'\\\\\\\'\\\''/g' \\
 -e 's/^/'\''/' -e 's/"\$"/'\''/'"
alias makealias "quote | /bin/sed 's/^/alias \!:1 /' \!:2*"

Pretty gross, but they do the job. On Darwin, as on many BSD-derived systems, sed is in /usr/bin, not
/bin. You may wish simply to use the command name without the explicit path, or use the explicit (but
correct) path. On Linux, the script above does not work with tcsh, which handles multi-line aliases
anyway.

—JIK and SJC

[1] [The mycat alias runs cat on all files with names later in the alphabet than the argument you type.
The output of cat is piped to the less (Section 12.3) pager. For example, let's say your current
directory has the files afile, count, jim, and report. Typing mycat count would display the files jim
and report. — JP]

http://examples.oreilly.com/upt3

Shell Function Basics

Most shells have aliases (Section 29.2). Almost all Bourne-type shells have functions, which are
like aliases, but richer and more flexible. Here are four examples.

Simple Functions: ls with Options

Let's start with two aliases from Section 29.2, changed into shell functions: The la function includes
"hidden" files in ls listings. The lf function labels the names as directories, executable files, and so
on.
function la () { ls -a "$@"; }
function lf () { ls -F "$@"; }

The spaces and the semicolon (;) are important. You don't need them on some shells, but writing
functions this way (or in the multiline format in later examples) is more portable.[2] The function
keyword is not needed in the original Bourne shell but is required in later versions of bash. The
"$@" (Section 35.20) is replaced by any arguments (other options, or directory and filenames) you
pass to the function:
$ la -l somedir
 ...runs ls -a -l somedir

Functions with Loops: Internet Lookup

 Go to http://examples.oreilly.com/upt3 for more information on: mx.sh

The mx function uses dig to look up the DNS MX (mail exchanger) record for a host, then sed
(Section 34.1) to pull out the "ANSWER SECTION", which has the hostname or hostnames:

for Section 35.21
function mx() {
Look up mail exchanger for host(s)
for host
do
 echo "==== $host ===="
 dig "$host" mx in |
 sed -n '/^;; ANSWER SECTION:/,/^$/{
 s/^[^;].* //p
 }'
done
}

mx takes one or more hostname arguments; it runs dig and sed on each hostname. For example, the
mail exchangers for oreilly.com are smtp2.oreilly.com and smtp.oreilly.com. The mail exchanger for
hesketh.com is mail.hesketh.com:
$ mx oreilly.com hesketh.com
==== oreilly.com ====
smtp2.oreilly.com.
smtp.oreilly.com.
==== hesketh.com ====
mail.hesketh.com.

This example shows how to write a function with more than one line. In that style, with the ending
curly brace on its own line, you don't need a semicolon after the last command. (The curly braces in
the middle of the function are inside quotes, so they're passed to sed as part of its script.)

The mx function looks like a little shell program (Section 35.2). Shell functions have the same syntax
as a shell script, except for the enclosing function name and curly braces. In fact, a shell function can
be defined and used within a shell script (Section 35.30). But, as we've seen, it's also handy for
interactive use.

http://examples.oreilly.com/upt3

Setting Current Shell Environment: The work Function

Like aliases, functions run in the current shell process — not in a subprocess as shell scripts do. So
they can change your shell's current directory, reset shell and environment variables, and do basically
anything you could do at a shell prompt. (Section 24.3 has details.)

This next function is for a group of people who are all working on a project. A directory named /work
has symbolic links (Section 10.4) named for each worker — /work/ann, /work/joe, etc. — and each
link points to the directory where that person is working. Each worker makes a function named work
that, by default, cds to her directory and summarizes it. If the person gives an argument to the function
— like work todo, for instance — the script edits the file named .todo in that directory. This setup
also lets people quickly find out where others in the group are working.

 Go to http://examples.oreilly.com/upt3 for more information on: work.sh

Okay, I admit that I made this up as a demonstration for this article, as a way to show a lot of features
in a small amount of space. Anyway, here's the function:

if Section 35.13, '...' Section 28.14, wc Section 16.6
function work () {
 local status=0
 if [$# -eq 1 -a "$1" = todo]
 then
 ${VISUAL-vi} /work/$USER/.todo
 status=$? # return status from editor
 elif [$# -ne 0]
 then
 echo "Usage: work [todo]" 1>&2
 status=1
 else
 cd /work/$USER
 echo "You're in your work directory `pwd`."
 echo "`ls | wc -w` files to edit."
 status=0
 fi
 return $status
}

There are three points I should make about this example. First, the local command defines a shell
variable named status that's local to the function — which means its value isn't available outside the
function, so it's guaranteed not to conflict with variables set other places in the shell. I've also set the
value to 0, but this isn't required. (In the original Korn shell, use the typeset command to set a local
variable.) Second, when you run a function, the first argument you pass it is stored in $1 , the second
in $2, and so on (Section 35.20). Shell and environment variables set outside of the function, and
nonlocal variables set within the function, are passed to and from the function. Finally, the return
command returns a status (Section 35.12) to the calling shell. (Without return, the function returns
the status from the last command in the function.) For a function you use interactively, like this one,
you may not care about the status. But you also can use return in the middle of a function to end
execution and return to the calling shell immediately.

http://examples.oreilly.com/upt3

Functions Calling Functions: Factorials

Okay, students, this example is "extra credit" ;-)...You can ignore this ramble unless you want some
esoterica. (I'm actually not trying to waste your time. There are some useful bits of info in here about
the internal workings of the shells.) Functions can call each other recursively, and local variables are
passed to functions they call, but changes in a called function are not passed back to the calling
function. When I say "recursion," I've gotta show the classic demonstration: a factorial function.[3]

The fac function calculates the factorial of the number passed in $1. It writes the result to standard
output, for two reasons. First, doing so lets you type fac n at the command line (why you'd need to
calculate a factorial very often, though, I'm not sure!). Second, if the shells' return command works
like the Unix exit statuses (and I haven't checked all versions of all shells), the values are only eight
bits — so it's better to return a string, which lets us handle bigger integers. I could put in more error
checking, but since this is all theoretical anyway, here's the simple version of fac:

 Go to http://examples.oreilly.com/upt3 for more information on: fac.sh
function fac () {
 if ["$1" -gt 0]
 then echo $(($1 * `fac $(($1 - 1))`))
 else echo 1
 fi
}

Then you can play:
$ fac 0
1
$ fac 15
2004310016
$ fac 18
-898433024

Oops: overflow. Try zsh instead of bash or ksh; zsh built-in arithmetic seems to have more capacity:
zsh$ fac 18
6402373705728000

You can do some simple tracing by typing set -x (Section 27.15) at a shell prompt. Then the shell
will display the commands it executes. (This works best in bash because it puts one + character at the
left edge of each line to show each level of recursion.) You also can add some tracing code that uses
a local variable, level, to store the depth of recursion. The code echoes debugging messages that
show the depth of recursion of each call. Note that because the "returned value" of each function is
written to its standard output, these debugging messages have to be on the standard error! (To see
what happens otherwise, remove the 1>&2 operator (Section 36.16).) Here's fac with debugging
code:

${..-..} Section 36.7
fac () {
local level=${level-0}
echo "debug: recursion level is $((level += 1)). Doing fac of $1" 1>&2
if ["$1" -gt 0]
then echo $(($1 * `fac $(($1 - 1))`))
else echo 1
fi
echo "debug: leaving level $level." 1>&2
}

Let's run the code with tracing. Note that changes to the value of level at deeper levels doesn't affect

http://examples.oreilly.com/upt3

the value at higher levels — and that level isn't set at all in the top-level shell:
$ fac 3
debug: recursion level is 1. Doing fac of 3
debug: recursion level is 2. Doing fac of 2
debug: recursion level is 3. Doing fac of 1
debug: recursion level is 4. Doing fac of 0
debug: leaving level 4.
debug: leaving level 3.
debug: leaving level 2.
6
debug: leaving level 1.
$ echo $level
$

Conclusion

The next two articles cover specifics about functions in particular shells, and Section 29.14 shows
how to simulate functions in shells that don't have them.

Here's another overall note. Each shell has its own commands for working with functions, but in
general, the typeset -f command lists the functions you've defined, and unset -f funcname deletes the
definition of the function named funcname.

—JP and SJC

[2] A function is a Bourne shell list construct.
[3] Factorial is the product of all integers from some nonnegative number through one. So the factorial
of 6, written 6!, is 6 × 5 × 4 × 3 × 2 × 1 or 720. Also, zero factorial (0!) is defined as 1. In
recursion, a function typically calls itself to get "the next value," then waits for that value to be
returned and returns its answer to the function that called it. If you ask a function to calculate 6!, it
will call itself and ask for 5!, then call itself and ask for 4!, and so on. This can be confusing if you
haven't seen it before, but there's information about it in almost every computer science textbook on
basic programming techniques. It is also worth mentioning that recursion is a pretty poor way to
calculate factorials in most languages, namely, those that lack support for tail recursion.

Shell Function Specifics

Section 27.11 introduces shell functions for all Bourne-type shells. This article covers details of
functions in specific shells.
Read-only functions

A bash and ksh function can be made read-only. In ksh, that means the function can't be changed.
In bash, it can't be changed or removed. To make a function read-only, use the ksh command
typeset -r funcname or use read-only -f funcname in bash, where funcname is the name of the
function.
A system administrator might want to set read-only functions from a system-wide setup file
(Section 3.3) like /etc/profile. bash users can't unset read-only functions, though. So once a
function foo has been defined, how can you define your own foo? As Section 27.9 explains, you
can type command foo to use a command named foo from your search path. Or define an alias
named foo; aliases are used before functions. Finally, if you'd like to redefine the function, make
an alias with the same name, then make the alias invoke a function with a (usually similar) name.
For instance, to override a read-only function named foo:
alias foo=_foo
function _foo() {
 ...your foo function...
}

Changing function environment
If a function uses an environment variable — like VISUAL or EDITOR (Section 35.5), your
standard text editor — you can set the value temporarily while the function executes. The syntax
is the same for functions, but only in bash and zsh . For instance, if you usually use vi, but you
want to use emacs as you run the work function (Section 29.11):
$ VISUAL=emacs work todo

Resetting zsh options
There are lots of zsh options. You may want to set some of them temporarily during a shell
function without needing to reset them to their previous values when the function returns to the
calling shell. To make that happen, set the LOCAL_OPTIONS option (run setopt local_options)
in the function body.
For instance, maybe you use setopt nounset to make your interactive shell complain if you try to
expand an unset shell variable. During your func function, though, you want to use the unset
option to allow unset variables. Define the function like this:
function mullog() {
 setopt unset local_options
 ...do whatever...
}

— JP and SJC

Propagating Shell Functions

One easy way to define shell functions that you'll have every time you start a new shell is by defining
them in your shell setup files (Section 3.3). Here are two other ways.

Exporting bash Functions

In bash , you can export functions to other bash subshells (Section 24.4). (The original Korn shell,
but not the public-domain version, supposedly does this too, but I haven't had much luck with it.) Just
use the command typeset -fx funcname, where funcname is the name of the function.

How does this work? It stores the function in an environment variable (Section 35.3) whose value
starts with (). You can see this with printenv or env (Section 35.3). For example, let's define a
simple function named dir, export it, start a subshell, run the function, and look for it in the
environment:
bash$ function dir() { ls -F "$@"; }
bash$ typeset -fx dir
 ...export the function
bash$ bash
 ...start subshell
bash$ dir
 ...the function still works
,ptbk.last ch14.sgm ch36.ps.gz fmt/
,xrefs.list ch15.ps.gz ch36.sgm gmatlogs/
bash$ printenv
 ...lots of environment variables...
dir=() { ls -F "$@"
}

FPATH Search Path

Both ksh and zsh will automatically search for functions in the PATH variable (Section 35.6). So
you can put a function in a file with the same name as the function (for instance, put the function foo in
a file named foo), and make the file executable (with chmod +x foo (Section 35.1)), and then the shell
can find the function.

I don't like to use PATH for function-searching, though. One reason is that PATH is passed to all Unix
processes — but if the process isn't a shell and it tries to execute a function file, it'll probably fail in
an ugly way.[4] Also, making a file executable if you don't tell the kernel how to execute it seems to
me a recipe for trouble. A better way to help the shell find functions is to set a function search path in
the FPATH environment variable; it has the same syntax as PATH. (In zsh, you can also set the fpath
array — with the same syntax as path.) In FPATH, list directories that hold function files. In ksh,
those files don't even need execute permission! Then ksh and zsh will search the FPATH directories
if they can't find an executable file in the PATH.

Would you like the shells to search FPATH before PATH, so that a function will be executed before a
standard command with the same name? (I would. After all, if I define a function from a shell prompt
or shell setup file like .zshrc, that function will be run instead of a standard executable.) Here's how
to set that up. Tell the shell to autoload the function. Autoloading happens automatically if there's no
match found in PATH — because, as I said above, the shell falls back to FPATH if it doesn't find a
match in PATH. But if you want the shell to look for a particular name in FPATH before it tries
PATH, you have to autoload the function. Autoloading a function doesn't actually define the function
(read the function body into the shell); it simply declares that the function exists — so the shell will
remember that when you eventually want to execute the function.

This has a few twists, so let's look at each shell separately. You might want to do this yourself and
follow along: When I first played with FPATH, I made two subdirectories of /tmp named a and b.
Each directory had three simple function files named func1, func2, and foo. The functions func1 and
func2 simply echo a message with their name and location. foo invokes a shell script of the same
name, but first uses set -xv (Section 37.1) for debugging. func1 was a single-line function and func2
was multiline. The files in /tmp/a weren't executable, and the ones in /tmp/b were executable. I set
the FPATH environment variable (set the shell variable and exported it) to /tmp/a:/tmp/b — so the
shells should try the nonexecutable function files before falling back to the executables. After setting
that up, I started a ksh subshell and played around. Then I exited the ksh and started a zsh.

Korn shell

Here's what happened in pdksh . The standard ksh is similar but not as verbose:
$ echo $FPATH
/tmp/a:/tmp/b
$ type func1
func1 is a undefined (autoload from /tmp/a/func1) function
$ func1
This is func1 from /tmp/a, a single-line unexecutable function
$ type func1
func1 is a function

$ typeset -f func2
$ type func2

func2 is a undefined (autoload from /tmp/a/func2) function
$ func2
This is func2 from /tmp/a, a multi-line unexecutable function
$ typeset -f func2
func2() {
 echo "This is func2 from /tmp/a, a multi-line unexecutable function"
}

$ type foo
foo is /home/jpeek/.bin/foo
$ autoload foo
$ type foo
foo is a undefined (autoload from /tmp/a/foo) function
$ cat /tmp/a/foo
foo() { sh -xv $HOME/.bin/foo "$@"; }
$ foo
#!/bin/sh
echo "Welcome to the exciting $0 program..."
+ echo Welcome to the exciting /home/jpeek/.bin/foo program...
Welcome to the exciting /home/jpeek/.bin/foo program...
$ type foo
foo is a function

Here's what happened with func1, func2, and foo:

First, without autoloading, I use type (Section 2.6) to see if the shell has found func1 anywhere.
There's no func1 along the PATH, so the shell searches FPATH — and finds it. So func1 is
automatically marked for autoloading; note that I didn't have to autoload it myself because there's
no func1 in a PATH directory. I run func1, then use type again; now the shell confirms that it's
read the function definition and func has been loaded into the shell.
Next I played with func2. typeset -f (Section 29.11) shows that the shell doesn't have a
definition for the function yet, but type shows that the function declaration has been autoloaded.
(This isn't just academic. If you edit a function definition file, it's good to know whether the shell
has already loaded a copy of a previous definition.) I run the function, then use typeset to display
the function, which has been loaded (of course!) by now.
Because there's a program named foo in my PATH, type shows that. But I want the shell to use
my front-end foo function, so I run autoload — and then type confirms that the shell looked
down FPATH and found the function in /tmp/a. The function definition hasn't been loaded yet, so
I use cat (Section 12.2) to display the function file. I run the foo function; because it set the
shell's verbose and echo flags, you can see the contents of the foo shell script and the commands
that are executed. Finally, type shows that the shell will now run the function when I execute foo.

If you'd like to be sure that all the functions in your FPATH are autoloaded — especially if you add
new ones pretty often — here's a way to do it. Put code like this in your ENV setup file (Section
3.3):

IFS Section 36.23, for Section 28.9
Autoload all functions in FPATH directories.
Temporarily add a colon (:) to IFS to parse FPATH:
old_ifs="$IFS"; IFS=":$IFS"
for d in $FPATH
do autoload `ls $d`
done
IFS="$oldifs"; unset old_ifs

If a directory in FPATH is empty, autoload gets no arguments and, in that case, shows the function

definitions it has already autoloaded. I only put a directory in my FPATH if it has functions to load. If
you might have an empty directory in yours, you can avoid seeing the autoload output by editing that
code to store the output of ls in a shell variable and running autoload only if the variable isn't empty.

zsh

The zsh system is mostly like ksh. The difference is that zsh doesn't automatically search FPATH.
You have to manually autoload any function that you want zsh to search for in FPATH.
zsh$ echo $FPATH
/tmp/a:/tmp/b
zsh$ type func1
func1 not found
zsh$ func1
zsh: command not found: func1
zsh$ autoload func1
zsh$ type func1
func1 is a shell function
zsh$ func1
This is func1 from /tmp/a, a single-line unexecutable function
zsh$ type func1
func1 is a shell function

zsh$ autoload func2
zsh$ typeset -f func2
undefined func2 () { }
zsh$ func2
This is func2 from /tmp/a, a multi-line unexecutable function
zsh$ typeset -f func2
func2 () {
 echo "This is func2 from /tmp/a, a multi-line unexecutable function"
}

zsh$ type foo
foo is /home/jpeek/.bin/foo
zsh$ autoload foo
zsh$ foo
#!/bin/sh
echo "Welcome to the exciting $0 program..."
+ echo Welcome to the exciting /home/jpeek/.bin/foo program...
Welcome to the exciting /home/jpeek/.bin/foo program...
zsh$ type foo
foo is a shell function

I won't repeat all of the explanation from the ksh section. Instead, let's just look at the differences:

The first examples show that zsh won't look down FPATH for func1. Once you autoload the
function, type doesn't give you a clue whether the function has been defined or just declared.
In zsh, you can see whether a function has been defined by using typeset -f (instead of type).
After autoloading it, func2 has been declared but not defined. As the example shows, running the
function once loads the definition.

If you'd like to be sure that all the functions in your FPATH are autoloaded — especially if you add
new ones pretty often — here's how to do it in zsh. Put code like this in a per-shell setup file
(Section 3.3) — typically .zshrc:
Autoload all functions in fpath directories:
for d in $fpath
do autoload `ls $d`
done

The code is simpler than in ksh because we can step through the fpath array without parsing it at
colon (:) characters. As in ksh, though, you'll want to tweak the code if a directory in fpath might be
empty: store the output of ls in an array and run autoload only if the array has members.

— JP

[4] zsh lets you define a function in a function file without the enclosing funcname () { and } syntax.
Then the file could be directly executed in a subshell by some shell that doesn't understand functions.
I'm not sure I'd ever use this because running a function this way — as an external command instead
of an internal command (Section 1.9) — means the function can't access or modify the environment
of the shell that's running it, which is one of the reasons for writing a shell function in the first place!
But, like everything in zsh, I'm sure someone had a good reason for making this work.

Simulated Bourne Shell Functions and Aliases

Until System V Release 2 (circa 1984), the Bourne shell had no way for users to set up their own
built-in commands. If you have a Bourne shell with no functions (Section 29.11) or aliases (Section
29.2) and haven't yet turned the host machine into a wet bar, CD/DVD storage case, or some other
pragmatic but fun use for a 30-year-old computer, you can do a lot of the same things with shell
variables and the eval (Section 27.8) command.

Let's look at an example. First, here's a shell function named cps (copy safely). If the destination file
exists and isn't empty, the function prints an error message instead of copying:

test Section 35.26
cps()
{
 if test ! -s "$2"
 then cp "$1" "$2"
 else echo "cps: cannot copy $1: $2 exists"
 fi
}

If you use the same cps twice, the first time you'll make bfile. The second time you try, you see the
error:
$ cps afile bfile
 ...
$ cps afile bfile
cps: cannot copy afile: bfile exists

Here's the same cps — stored in a shell variable instead of a function:
cps='
if test ! -s "$2"
then cp "$1" "$2"
else echo "cps: cannot copy $1: $2 exists"
fi
'

Because this fake function uses shell parameters, you have to add an extra step: setting the
parameters. Simpler functions are easier to use:

set Section 35.25
$ set afile bfile
$ eval "$cps"
 ...
$ eval "$cps"
cps: cannot copy afile: bfile exists

Chapter 30. The Use of History

The Lessons of History

It has been said that "the only thing we learn from history is that people don't learn from history."

Fortunately, the original maxim that "history repeats itself" is more appropriate to Unix.

Most shells include a powerful history mechanism that lets you recall and repeat past commands,
potentially editing them before execution. This can be a godsend, especially when typing a long or
complex command.

All that is needed to set C shell history in motion is a command like this in your .cshrc (or .tcshrc)
file, where n is the number of past commands that you want to save:
set history=n

In ksh and bash, the variable is HISTSIZE, and it's already set for you; the default values are 128 and
500, respectively.

The history command (Section 30.7) lists the saved commands, each with an identifying number. (It's
also possible to configure the shells to print the history number of each command as part of your
prompt (Section 4.3).)

In tcsh, csh, and bash, you can repeat a past command by typing its number (or its name) preceded by
an exclamation point (!). You can also select only parts of the command to be repeated and use
various editing operators to modify it. Section 30.8 and Section 28.5 give quick tutorial summaries of
some of the wonderful things you can do. Most of the rest of the chapter gives a miscellany of tips for
using and abusing the shells' history mechanism.

Most shells — except the original Bourne and C shells — also have interactive command-line
editing (Section 30.14). Interactive editing might seem to be better than typing !vi or lpr !$. If you
learn both systems, though, you'll find plenty of cases where the ! system is faster and more useful
than interactive editing.

— TOR

History in a Nutshell

Summary Box
The C shell and bash can save copies of the previous command lines y ou ty pe. Later, y ou can ask for a copy of some or all of a previous command line. That can save time and rety ping.

This feature is called history substitution , and it's done when y ou ty pe a string that starts with an exclamation point (! command). You can think of it like variable substitution ($varname) (Section 35.9) or command substitution ('command')
(Section 28.14): the shell replaces what y ou ty pe (like !$) with something else (in this case, part or all of a previous command line).

Section 30.1 is an introduction to shell history . These articles show lots of way s to use history substitution:

We start with favorite uses from several contributors — Section 30.3, Section 30.4, Section 30.5, and Section 30.6.
Section 30.8 starts with a quick introduction, then covers the full range of history substitutions with a series of examples that show the different kinds of things y ou can do with history .
(Back in Section 28.5 are examples of csh/tcsh and bash operators such as :r. Many of these can be used to edit history substitutions.)
See an easy way to repeat a set of csh/tcsh or bash commands in Section 30.9.
Each shell saves its own history . To pass a shell's history to another shell, see Section 30.12 and Section 30.13.
You don't have to use an exclamation point (!) for history . Section 30.15 shows how to use some other character.
The Korn shell does history in a different way . Section 30.14 introduces part of that: command-line editing in ksh and bash.

One last note: putting the history number in your prompt (Section 4.3) makes it easy to reuse commands that haven't scrolled off y our screen.

— JP

My Favorite Is !$

I use !$ so much that it's almost a single character to me. It means "take the last thing on the previous
command line." Since most Unix commands have the filename last, you often need to type filenames
only once, and then you can use !$ in subsequent lines. Here are some examples of where it comes in
handy:

I get a lot of tar archives (Section 39.2). To extract and edit a file from them, I first make a
backup for easy comparison after editing:
% tar xzf prog.1.05.tar.gz foo.c
% cp -i !$!$.orig
cp -i foo.c foo.c.orig

The same trick is also good when you've edited a file with vi and then want to check its spelling:
% vi fred.letter.txt
% ispell !$

You often want to move a file to another directory and then cd to that directory. The !$ sequence
can also be used to refer to a directory:
% mv grmacs.tar /usr/lib/tmac
% cd !$
cd /usr/lib/tmac

— AN

My Favorite Is !:n*

I use !$ (Section 30.3) a lot, but my favorite history substitution is !:n *, where n is a number from 0
to 9. It means "take arguments n through the last argument on the previous command line." Since I tend
to use more than one argument with Unix commands, this lets me type the arguments (usually
filenames) only once. For example, to use RCS (Section 39.5) and make an edit to article files named
Section 35.5 and Section 29.2 for this book, I did:
% co -l 1171.sgm 6830.sgm 2340.sgm
RCS/1171.sgm,v -> 1171.sgm
 ...
RCS/2340.sgm,v -> 2340.sgm
revision 1.8 (locked)
done
% vi !:2*
vi 1171.sgm 6830.sgm 2340.sgm
3 files to edit
 ...
% ci -m"Changed TERM xref." !*
ci -m"Changed TERM xref." 1171.sgm 6830.sgm 2340.sgm
 ...

In the first command line (co), I typed the filenames as arguments 2, 3, and 4. In the second command
line (vi), I used !:2*; which grabbed arguments 2 through the last (in this case, argument 4) from the
first command line. The result was a second command line that had those three filenames as its
arguments 1, 2, and 3. So, in the third command line (ci), I used !* to pick arguments 1 through the
last from the previous (second) command line. (!* is shorthand for !:1*.)

You can also grab arguments from previous command lines. For example, !em:2* grabs the second
through last arguments on the previous emacs command line (command line starting with "em"). There
are lots more of these in Section 30.8.

If these examples look complicated, they won't be for long. Just learn to count to the first argument
you want to grab. It took me years to start using these substitutions — but they've saved me so much
typing that I'm sorry I didn't get started earlier!

— JP

My Favorite Is ^^

Well, maybe it's not my favorite, but it's probably the history substitution I use most often. It's
especially handy if you have fumble-fingers on a strange keyboard:
% cat myflie
cat: myflie: No such file or directory
% ^li^il
cat myfile

Obviously, this doesn't save much typing for a short command, but it can sure be handy with a long
one. I also use ^^ with :p (Section 30.11) to recall an earlier command so I can change it. For
example:
% !m:p
more gobbledygook.c
% ^k^k2
more gobbledygook2.c

The point is sometimes not to save typing, but to save the effort of remembering, such as, I want to
print the file I looked at earlier, but don't remember the exact name.

[My keyboard can repeat characters when I'm not expecting it. I use a single ^ to delete extra
characters. For example:
% lpr sources/aproggg.c
lpr: sources/aproggg.c: no such file or directory
% ^gg
lpr sources/aprog.c

You could type ^gg^, but the second caret isn't required. With a single caret, you don't type a
replacement string — just the string to delete. — JP]

— TOR

Using !$ for Safety with Wildcards

We all know about using ls before a wildcarded rm to make sure that we're only deleting what we
want. But that doesn't really solve the problem: you can type ls a* and then mistakenly type rm s*
with bad consequences — it's just a minor slip of your finger. But what will always work is:
% ls a*
a1 a2 a3
% rm !$

(ls -d a* (Section 8.5) will make less output if any subdirectory names match the wildcard.)

Using the history mechanism to grab the previous command's arguments is a good way to prevent
mistakes.

— ML

History by Number

Most of the history examples we've shown use the first few letters in a command's name: !em to
repeat the previous Emacs command, for example. But you also can recall previous commands by
their numbered position in the history list. That's useful when you have several command lines that
start with the same command. It's also more useful than interactive command-line editing (Section
30.14) when you'd like to see a lot of previous commands at once and then choose one of them by
number.

To list previous commands, use the history command. For instance, in bash and the C shells, history
20 shows your last 20 commands. In zsh and the Korn shell, use a hyphen before the number: history -
20 (also see the discussion of fc, later in this article). Here's an example:
$ history 8
 15 show last +upt/authors
 16 vi ../todo
 17 co -l 0444.sgm
 18 vi 0444.sgm
 19 ci -u 0444.sgm
 20 rcsdiff -u3.4 0444.sgm > /tmp/0444-diff.txt
 21 scp /tmp/0444-diff.txt webhost:adir/11.03-diff.txt
 22 getmail;ndown
$ rm !20:$
rm /tmp/0444-diff.txt
$!16
vi ../todo

The number at the start of each line is the history number. So, to remove the temporary file I created
in command 20 (the name of which I'd already forgotten!), I can use !20:$ (Section 30.8) to pass that
filename as an argument to rm. And to repeat command 16 (vi ../todo), I can type !16.

This sort of thing is often faster than using arrow keys and editor commands to recall and edit
previous commands. It lets me see several commands all at once, which makes it easier to spot the
one(s) I want and to remember what I was doing as I worked. I use it so often that I've got a set of
aliases that list bigger and bigger chunks of previous commands and an alias that searches history,
giving me a chunk of matching command lines. Here they are in C shell syntax:

less Section 12.3, \!* Section 29.3
alias h history 5 # show last five lines
alias hi history 10 # show last ten lines
alias his history 20 # show last 20 lines
alias hist 'history 40 | less' # show last 40; pipe to 'less'
alias histo 'history 70 | less' # show last 70; pipe to 'less'
alias H 'history -r | fgrep "\!*"' # find something in history

The history -r option shows the list in reverse order: most recent first. If you don't give a count of
lines to list, you'll see all of them.

Warning
Be careful! In bash , history -r reads the current history file and uses it as the history from that point onward, trashing any current history for that shell if it has not y et been written to the history file (defined in the environment variable
HISTFILE).

To avoid typing the history command, you can include the history number in your prompt (Section
4.3). Then you can repeat a recent command by glancing up your screen to find the command number

from its prompt.

There's another way to see a list of your previous commands in bash , ksh, and zsh: the command fc
-l (lowercase L, for "list"). (In ksh, the command history is actually just an alias that executes fc -l.)
By itself, fc -l lists the previous 16 commands:
$ fc -l
 ...
19 ls -F
20 less expn.c
21 vi expn.c
22 make
23 expn info@oreilly.com
24 fc -l

For an even shorter list, give fc the first number or name you want to list. For instance, fc -l vi or
fc -l 21 would give the last four lines above. You can also use a second argument that ends the
range before the current line. If you type fc -l vi expn or fc -l 21 23, you'll see commands 21
through 23.

tcsh and zsh automatically keep timestamps with their history. The tcsh command history shows the
time of day by default. In zsh, you can see this info with the options -d, which shows the times, -f,
which shows both dates and times, and -D, which shows elapsed times. For example, the scp
command started running at 12:23 (PM) and took 1 minute 29 seconds to run:
% fc -l -f -4
 1003 10/23/2000 12:23 nup
 1004 10/23/2000 12:23 scp ../upt3_changes.html webhost:adir/.
 1005 10/23/2000 12:25 less /etc/hosts
 1006 10/23/2000 12:25 getmail;ndown
% fc -l -D -5
 1003 0:29 nup
 1004 1:29 scp ../upt3_changes.html webhost:adir/.
 1005 0:05 less /etc/hosts
 1006 0:21 getmail;ndown
 1007 0:00 fc -l -f -4

zsh also has several related options for fc that allow for the history to be written out to a file, read in
from a file, et cetera. The other shells allow for even more extended functionality. In bash, for
example, fc -e with appropriate options will start an editor (defined by the FCEDIT environment
variable) and load up a new file containing the recent history items. Think of it is jump starting a
script from a sequence of (hopefully) successfully executed commands. See the other shells' manual
pages for more details.

—JP and SJC

History Substitutions

Although most of the examples here use echo to demonstrate clearly just what is going on, you'll
normally use history with other Unix commands.

The exclamation point (!) is the default (Section 30.15) history substitution character. This allows
you to recall previously entered commands and re-execute them without retyping. To use the ! in a
command line, you have several choices. Some of the following examples are more of a headache
than they may be worth, but they are also used to select arguments from the command line in
aliases (Section 29.3):

!! repeats the last command.
!: repeats the last command. This form is used if you want to add a modifier (Section 28.5) like
the following:
% echo xy
xy
% !:s/xy/yx
echo yx
yx

The second ! was left out.
!so repeats the last command that starts with so.
!?fn? repeats the last command that has fn anywhere in it. The string could be found in an
argument or in the command name. This is opposed to !fn, in which !fn must be in a command
name. (The last ? need not be there. Thus !?fn means the same thing.)
!34executes command number 34. You can find the appropriate history number when you list
your history using the history command, or by putting the history number in your prompt
(Section 4.3).
!! & adds an ampersand (&) to the end of the last command, which executes it and places it into
the background. You can add anything to the end of a previous command. For example:
% cat -v foo
 ...
% !! | more
cat -v foo | more
 ...

In this case the shell will repeat the command to be executed and run it, adding the pipe through
the more pager. Another common usage is:
% cat -v foo
 ...
% !! > out
cat -v foo > out

which returns the command but redirects the output into a file.
!:0selects only the command name, rather than the entire command line.
% /usr/bin/grep Ah fn1
 ...
% !:0 Bh fn2
/usr/bin/grep Bh fn2

Note that as an operator (Section 28.5,), :0 can be appended to these history substitutions as

well. For example, !!:0 will give the last command name, and a colon followed by any number
will give the corresponding argument. For example, !:3 gives the third argument:
% cat fn fn1 fn2
 ...
% more !:3
more fn2
 ...

!:2-4 gives the second through the fourth argument; use any numbers you choose:
% echo 1 2 3 4 5
1 2 3 4 5
% echo !:2-4
echo 2 3 4
2 3 4

!:-3 gives zero through the third argument; use any number you wish:
% echo 1 2 3 4
1 2 3 4
% echo !:-3
echo echo 1 2 3
echo 1 2 3

!^ gives the first argument of the previous command. This is the same as !:1. Remember that
just as the ^ (caret) is the beginning-of-line anchor in regular expressions (Section 32.5), !^
gives the beginning history argument.
% cat fn fn1 fn2
 ...
% more !^
more fn
 ...

!$ gives the last argument of the last command. In the same way that $ (dollar sign) is the end-
of-line anchor in regular expressions, !$ gives the ending history argument. Thus:
% cat fn
 ...
% more !$
more fn
 ...

The new command (more) is given the last argument of the previous command. This is also
handy for pulling the last argument from earlier commands, which is typically a filename. To get
the last argument from the previous vi command, for example, you'd use !vi:$. So you could
type lpr !vi:$ to print the last file you edited with vi.
!* is shorthand for the first through the last argument. This is used a lot in aliases:
% echo 1 2 3 4 5
1 2 3 4 5
% echo !*
echo 1 2 3 4 5
1 2 3 4 5

In an alias:
alias vcat 'cat -v \!* | more'

This alias will pipe the output of cat -v (Section 12.4) command through more. The backslash
(\) has to be there to hide the history character, !, until the alias is used — see Section 29.3 for
more information.
!:2* gives the second through the last arguments; use any number you wish:
% echo 1 2 3 4 5
1 2 3 4 5
% echo !:2*

echo 2 3 4 5
2 3 4 5

!:2- is like 2* but the last argument is dropped:
% echo 1 2 3 4 5
1 2 3 4 5
% echo !:2-
echo 2 3 4
2 3 4

!?fn?% gives the first word found that has fn in it:
% sort fn1 fn2 fn3
 ...
% echo !?fn?%
echo fn1
fn1

That found the fn in fn1. You can get wilder with:
% echo 1 2 3 4 5
1 2 3 4 5
% echo !?ec?^
echo 1
1

That selected the command that had ec in it, and the caret (^) said to give the first argument of
that command. You can also do something like this:
% echo fn fn1 fn2
fn fn1 fn2
% echo !?fn1?^ !$
echo fn fn2
fn fn2

That cryptic command told the shell to look for a command that had fn1 in it (!?fn1?), and gave
the first argument of that command (^). Then it gave the last argument (!$).
^xy^yx is the shorthand substitution (Section 30.3, Section 30.5) command. In the case of:
% echo xxyyzzxx
xxyyzzxx
% ^xx^ab
echo abyyzzxx
abyyzzxx

it replaced the first set of characters xx with ab. This makes editing the previous command much
easier.
!!:s/xx/ab/ is doing the same thing as the previous example, but it is using the substitute
command instead of the ^. This works for any previous command, as in:
% more afile bfile
 ...
% echo xy
xy
% !m:s/b/c/
more afile cfile

You do not have to use the slashes (/); any character can act as a delimiter.
% !!:s:xy:yx

There we used colons (:), good when the characters you're trying to edit contain a slash. If you
want to add more to the replacement, use & to "replay it" and then add on whatever you like:
% echo xy
xy

% !!:s/xy/&yx
echo xyyx
xyyx

The & in the replacement part said to give what the search part found, which was the xy
characters.
The search part, or left side, cannot include metacharacters (Section 32.3). You must type the
actual string you are looking for.
Also, the example above replaces only the first occurrence of xy. To replace them all, use g:
% echo xy xy xy xy
xy xy xy xy
% !!:s/xy/yx/
echo yx xy xy xy
yx xy xy xy
% !!:gs/xy/yx/
echo yx yx yx yx
yx yx yx yx

The g command in this case meant "do all the xys." And oddly enough, the g has to come before
the s command. This may seem odd to those of you familiar with vi, so be careful.
Or you could have done this:
% echo xy xy xy xy
xy xy xy xy
% !!:s/xy/yx/
echo yx xy xy xy
yx xy xy xy
% !!:g&
echo yx yx yx yx
yx yx yx yx

In this example, we told the shell to globally (:g) replace every matched string from the last
command with the last substitution (&). Without the g command, the shells would have replaced
just one more xy with yx.

— DR

Repeating a Cycle of Commands

The !! history substitution gives a copy of the previous command. Most people use it to re-execute
the previous command line. Sometimes I want to repeat a cycle of two commands, one after the other.
To do that, I just type !-2 (second-previous command) over and over:
% vi plot
 ...
% vtroff -w plot
 ...
% !-2
vi plot
 ...
% !-2
vtroff -w plot
 ...

You can cycle through three commands with !-3, four commands with !-4, and so on. The best part
is that if you can count, you never have to remember what to do next. :-)

— JP

Running a Series of Commands on a File

[There are times when history is not the best way to repeat commands. Here, Jerry gives an example
where a few well-chosen aliases can make a sequence of commands, all run on the same file, even
easier to execute. — TOR]

While I was writing the articles for this book, I needed to look through a set of files, one by one, and
run certain commands on some of those files. I couldn't know which files would need which
commands, or in what order. So I typed a few temporary aliases on the C shell command line. (I
could have used shell functions (Section 29.11) on sh-like shells.) Most of these aliases run RCS
(Section 39.5) commands, but they could run any Unix command (compilers, debuggers, printers, and
so on).
% alias h 'set f="\!*";co -p -q "$f" | grep NOTE'
% alias o 'co -l "$f"'
% alias v 'vi "$f"'
% alias i 'ci -m"Fixed NOTE." "$f"'

The h alias stores the filename in a shell variable (Section 35.9). Then it runs a command on that file.
What's nice is that, after I use h once, I don't need to type the filename again. Other aliases get the
filename from $f:
% h ch01_summary
NOTE: Shorten this paragraph:
% o
RCS/ch01_summary,v -> ch01_summary
revision 1.3 (locked)
done
% v
"ch01_summary" 23 lines, 1243 characters
 ...

Typing a new h command stores a new filename.

If you always want to do the same commands on a file, you can store all the commands in one alias:
% alias d 'set f="\!*"; co -l "$f" && vi "$f" && ci "$f"'
% d ch01_summary

The && (two ampersands) (Section 35.14) means that the following command won't run unless the
previous command returns a zero ("success") status. If you don't want that, use ; (semicolon) (Section
28.16) instead of &&.

— JP

Check Your History First with :p

Here's how to be more sure of your history before you use it. First, remember that the history
substitutions !/ and !fra are replaced with the most recent command lines that started with / and
fra, respectively.

If your memory is like mine (not very good), you might not be sure that !/ will bring back the
command you want. You can test it by adding :p to the end. The shell will print the substitution but
won't execute the command line. If you like what you got, type !! to execute it. For example:
!/:p
/usr/sbin/sendmail -qv
!!
/usr/sbin/sendmail -qv
Running id12345...

At the first prompt, the :p meant the command line was only printed. At the second prompt, I didn't
use :p and the sendmail command was executed. The :p works with all history operators — for
instance, !?sendmail?:p.

— JP

Picking Up Where You Left Off

If you want your command history to be remembered even when you log out, set the C shell's savehist
shell variable (Section 35.9) to the number of lines of history you want saved. Other shells save
history automatically; you don't need to set a variable. (If you want to change the number of lines
saved by bash, set its HISTFILESIZE environment variable. In zsh , the variable is SAVEHIST. In
ksh, the HISTSIZE variable sets the number of commands available to be recalled in your current
shell as well the number saved for other shells.)

When you log out, the specified number of lines from the csh history list will be saved in a file called
.history in your home directory. zsh, bash and ksh use the filename given in the HISTFILE
environment variable. By default, bash calls the file .bash_history, and the original ksh uses
.sh_history — but note that the new pdksh and zsh don't save history unless you set HISTFILE to a
filename. For zsh, I chose $HOME/.zsh_history, but you can use anything you want.

On modern windowing systems, this isn't as trivial as it sounds. On an old-style terminal, people
usually started only one main shell, so they could set the history-saving variable in their .login or
.profile file and have it apply to their login shell.

However, under window systems like X or networked filesystems that share your home directory
between several hosts, or on networked servers to which you might login via ssh, you may have
multiple shells saving into the same history file. Linux systems with multiple virtual consoles
(Section 23.12) logged on as the same user will have the same problem. The shells might be
overwriting instead of appending, or appending instead of overwriting, or jumbling commands
together when you want them separated. The sections below give some possible fixes.

bash, ksh, zsh

Here's the basic way to give a separate history file to each bash, zsh, or ksh shell: customize your
setup file (Section 3.3) to set a different HISTFILE on each host or each window. Use names like
$HOME/.sh_history.window n or ~/.bash_history. hostname to match each file to its window or
host. If your setup is always the same each time you log in, that should give each window and/or host
the same history it had on the last invocation. (There are related tips in Section 3.18 and a series
starting at Section 3.10.)

If you open random windows, though, you'll have a harder time automatically matching a history file
to a shell the next time you log in. Cook up your own scheme.

The simplest fix is to use $$ (Section 27.17) — which will probably expand differently in almost
every shell you ever start — as a unique part of the filename. Here are two possibilities:
HISTFILE=/tmp/sh_hist.$$
HISTFILE=$HOME/.sh_hist.$$

The first example uses the system's temporary-file directory. If your system's /tmp is cleaned out
often, you may be able to leave your history files there and let the system remove them; ask the
administrator. Note that the history file may be world-readable (Section 50.2) if your umask isn't set
to protect your files. If that matters to you, you could make the temporary files in your home directory
(or some protected directory), as in the second example shown earlier. Alternately, at the end of each
session, you might want to run a command that appends your shell's history file to a global history file
that you then read in at startup of a new session (see below).

Two more bits of trivia:

The original Korn shell maintains the history file constantly, adding a new line to it as soon as
you run a command. This means you share history between all your current shells with the same
HISTFILE name, which can be a benefit or a problem.
In most other shells, each shell process keeps its own history list in memory. History isn't
written to the history file (named by the HISTFILE variable in each shell) until the shell exits.
In bash, you can force a write with the command history -w. In the same way, if you have an
existing history file (or, actually, any file full of command lines), you can read it into your
current bash with history -r. Section 30.13 has another example. Each shell has its own way to
do this, so check your manual page carefully and experiment to get it right.

C Shells

In tcsh, you can set a history file name in the histfile variable; the default filename is .history in your
home directory. To avoid conflicts between multiple saved tcsh histories, use a system like the one
described earlier for Bourne shells.

The original C shell has only one possible filename for its automatic history file: .history. If you set
the C shell variable savehist in each of your windows (e.g., by setting it in your .cshrc or .tcshrc),
they will all try to write .history at once, leading to trouble. And even if that weren't true, you get the
history from every window or host, which might not be what you want.

Of course, you could set savehist manually in a single window when you thought you were doing
work you might want to pick up later. But there is another way: use the C shell's command history -h
(which prints the history list without leading numbers, so it can be read back in later) and redirect the
output to a file. Then use source -h to read it back into your history list when you log in.

Do you want to automate this? First, you'll need to choose a system of filenames, like
~/.history.window n or ~/.history. hostname , to match each file to its window or host. If each of
your C shells is a login shell (Section 3.4),[1] you can run history -h from your .logout file and source
-h from your .login file. For nonlogin shells, automation is tougher — try this:

Set the ignoreeof variable to force you to leave the shell with an exit (Section 24.4) command.
Set an alias for exit (Section 29.8) that runs history -h before exiting.
Run source -h from your .cshrc or .tcshrc file. Use a $?prompt test to be sure this runs only in
interactive shells.

If you choose to run history -h and source -h by hand occasionally, they will allow you the kind of
control you need to write a script (Section 30.13) that saves and restores only what you want.

—JP, TOR, and SJC

[1] xterm -ls Section 5.10 runs a login shell in your xterm window.

Pass History to Another Shell

Most shells can save a history of the commands you type (Section 30.12). You can add your own
commands to some shells' history lists without retyping them. Why would you do that?

You might have a set of commands that you want to be able to recall and reuse every time you
log in. This can be more convenient than aliases because you don't have to think of names for the
aliases. It's handier than a shell script if you need to do a series of commands that aren't always
in the same order.
You might have several shells running (say, in several windows) and want to pass the history
from one shell to another shell (Section 30.12).

Unfortunately, this isn't easy to do in all shells. For instance, the new pdksh saves its history in a file
with NUL-separated lines. And the tcsh history file has a timestamp-comment before each saved line,
like this:
#+0972337571
less 1928.sgm
#+0972337575
vi 1928.sgm
#+0972337702
ls -lt | head

Let's look at an example for two of the shells that make history editing easy. Use the csh command
history -h, or the bash command history -w , to save the history from a shell to a file. Edit the file to
take out commands you don't want:
% mail -s "My report" bigboss $ mail -s "My report" bigboss

% history -h > history.std $ history -w history.std
% vi history.std $ vi history.std
 ...Clean up history...
 ...Clean up history...

Read that file into another shell's history list with the csh command source -h or the bash command
history -r :
% source -h history.std $ history -r history.std
% !ma $!ma
mail -s "My report" bigboss mail -s "My report" bigboss

Of course, you can also use bash interactive command-line editing (Section 30.14) on the saved
commands.

— JP

Shell Command-Line Editing

When Unix started, a lot of people used real teletypes — with a roll or box of paper instead of a glass
screen. So there was no way to recall and edit previous commands. (You could see them on the
paper, of course, but to reuse them you had to retype them.) The C shell added history substitution
operators (Section 30.2) that were great on teletypes — and are still surprisingly useful on "glass
teletypes" these days. All shells except the oldest Bourne shells still have history substitution,
although it's limited in the Korn shells.

Modern shells also have interactive command-line editing. That's the ability to recall previous
command lines and edit them using familiar vi or emacs commands. Arrow keys — along with
Backspace and DELETE keys — generally work, too. So you don't need to know emacs or vi to edit
command lines. But — especially if you're comfortable with Emacs-style commands (meta-this that,
control-foo bar) — you'll find that most shells let you do much more than simply editing command
lines. Shells can automatically correct spelling, complete partially-typed filenames (Section 28.6),
and much more.

The basic idea of command-line editing is that the previous commands are treated like lines in a
plain-text file, with the most recently typed commands at the "end" of the file. By using the editor's
"up line" commands (like k in vi or C-p in Emacs), you can bring copies of earlier commands under
your cursor, where you can edit them or simply re-execute them without changes. (It's important to
understand that you're not editing the original commands; you're editing copies of them. You can
recall a previous command as many times as you want to; its original version won't be changed as you
edit the copy.) When you've got a command you want to run, you simply press ENTER; your cursor
doesn't have to be at the end of the line. You can use CTRL-c (C-c in Emacs jargon) to cancel a
command without running it and get a clean shell prompt.

It would be easy for us to fill a chapter with info on command-line editing. (In this book's fourth
edition, maybe we should!) Because every shell has its own way to do this, though, we've decided to
stick to the basics — with a few of the bells and whistles tossed in as examples. To really dig into
this, check your shell's manpage or its Nutshell Handbook.

Another way to do history editing is with your own editor: use the fc command.

vi Editing Mode

All shells with command-line editing have support for basic vi commands, but it's usually not
complete and historically not well documented. For instance, I've used some shells where the . (dot)
command wouldn't repeat the previous edit — and other shells where it would — but neither shell's
manual page mentioned this useful fact. Macros are limited, and you don't define them with the usual
map (Section 18.2) command; instead, the shell's built-in key binding command controls which built-
in shell editing function is executed when a key is pressed. (The Korn shell doesn't allow any special
vi bindings, though at least it has complete documentation.) Still, with all those caveats, you'll
probably find that vi editing is pretty comfortable if you already know vi. (If you don't know vi,
though, I'd recommend Emacs editing. See the next section.)

At a bare shell prompt, you're effectively in vi text-input mode: the characters you type appear on the
command line. If you want to edit, press ESC to go to command mode. Then you can use typical
commands like dw to delete a word and ct. to change all characters to the next dot on the line.
Commands like a, i, and c take you to text-input mode. You can execute a command line from either
command mode or text-input mode: just press ENTER anywhere on the line.

One difference between the shell's vi mode and real vi is that the direction of searches is opposite. In
real vi, the motion command k and the search command ? (question mark) both move to previous
commands. In shells, k still moves to a previous command, but / (slash) searches for previous
commands. By the way, after you specify a search with \, press ENTER to do the search. These
differences from real vi can be confusing at first, but with practice they soon become natural.

To choose vi mode, type set -o vi in Bourne-type shells and bindkey -v in tcsh. In bash, you may
also use keymap editor, with a variety of different editor settings (Section 30.14.5), to set up the
editing mode. To make this the default, store the command in your shell's setup file (Section 3.3) (in
bash, you can also edit your Readline inputrc file). You can switch back and forth between the two
modes as you work; this is useful because the Emacs mode lets you do things you can't do in vi.

Emacs Editing Mode

If you know the Emacs (Section 19.1) editor, you'll feel right at home in the shells. Although the
support isn't complete — for instance, you can't write eLisp code (and you can't run psychoanalyze-
pinhead (Section 19.13) :-)) — the emacs-mode commands act like a natural extension to
traditional, simple shell editing commands. So, even if you don't know emacs, you'll probably be
comfortable with emacs mode. Even many browsers nowadays use the traditional emacs mode
commands for moving about in the Location field, so you may already know some of these even if
you're not aware that you do.

To move to the beginning of a line, use C-a (that's CTRL-a in Emacs-speak); C-e moves to the end of
a line. C-f moves forward a character, and C-b moves backward one character (without deleting). C-
n moves forward to the next command, and C-p moves backward to the previous line. Your
keyboard's arrow keys probably also work. Your shell has at least one search command; try C-r to
start a search and press ENTER to run the search.

Your keyboard's usual delete key (Backspace or DEL) deletes one character backward, and C-d
deletes one character forward. C-k deletes ("kills") to the end of the line, and C-w deletes ("wipes")
backward to the start of the line.

To choose emacs mode, type set -o emacs in Bourne-type shells and bindkey -e in tcsh. In bash,
use one of the keymap editor commands, such as keymap emacs. To make this the default, store the
command in your shell's setup file (Section 3.3) (in bash, you can also edit your Readline inputrc
file). You can switch back and forth between emacs and vi modes as you work.

tcsh Editing

The bindkey command is used to bind keys to built-in editor functions. With no arguments, it gives a
list of all key bindings, like this:
tcsh> bindkey
Standard key bindings
"^@" -> set-mark-command
"^A" -> beginning-of-line
"^B" -> backward-char
 ...

"¡" to "^y" -> self-insert-command
Alternative key bindings
Multi-character bindings
"^[[A" -> up-history
"^[[B" -> down-history
 ...
"^X^D" -> list-choices-raw
Arrow key bindings
down -> down-history
up -> up-history
left -> backward-char
right -> forward-char

In this list, ^ (caret) starts control characters, so ^A means CTRL-a. ^[is an escape character (which
is also generated when you press a function key, like F1 or up-arrow, on most keyboards). Thus, ^[[A
is the sequence ESC left-bracket A (which is also sent by the up-arrow key on VT100-type
keyboards). The "alternative key bindings" are used in vi command mode, which wasn't enabled in
the example above, because I made it while using emacs bindings.

There's a list of some editor functions in the tcsh manual page, but that list only includes "interesting"
functions. To get a complete list, including "boring" functions like backward-char (to move
backward one character), type the command bindkey -l (lowercase letter L); that lists all the editor
functions and describes each one briefly:
tcsh> bindkey -l
backward-char
 Move back a character
backward-delete-char
 Delete the character behind cursor
 ...

You'll probably want to redirect the output of those bindkey commands into a file — or pipe it to a
pager such as less (Section 12.3) that lets you page through and do searches. (You could probably
merge the output of bindkey and bindkey -l into one list with perl (Section 41.1) or awk (Section
20.10) and an associative array, but I haven't tried.)

To bind a key to an editor function, use bindkey with two arguments: the key to bind and the function
name. The key can be the literal key you want to type, but that can be messy when you're trying to put
the definition in a shell setup file (which traditionally doesn't have nonprintable characters in it) or
when you're trying to bind an arrow key or some other key. So you can represent a control character
with two characters: a literal caret (^) followed by the letter — for example, ^A. You can use
standard backslash escape sequences, such as \t for a TAB character, but remember to quote
(Section 27.13) special characters. And the special option -k lets you name an arrow key: for
instance, bindkey -k left for the left arrow.

Here's an example of one of my favorite tcsh editor functions: magic-space . By default, it isn't bound

to a key, but it's meant to be bound to the space key. The function expands any history substitutions
(Section 30.8) in the command line, then lets you continue editing. In this example, I start by executing
an ls command. Then I bind the space key. After that, I start a new command line. I type find and a
space, but nothing happens yet because there are no history references. Then I type !ls:$, which is
the history substitution for the last argument of the previous ls command; when I press the space key,
that argument is expanded to /usr/local/bin, and I can type the rest of the command line:
tcsh> ls /usr/local/bin
acroread netscape rsh-add ssh
ex nex rsh-agent ssh-add
lcdctl nsgmls rsh-askpass ssh-add1
 ...
tcsh> bindkey " " magic-space
tcsh> find !ls:$ SPACE
tcsh> find /usr/local/bin -perm ...

You also can bind a key to a Unix command by using bindkey with its -c option. This is different
from simply executing a command at a shell prompt. When a Unix command is bound to a key, the
shell will run that command without disturbing the command line you're editing! When the bound
command finishes running, the command line you were editing is redisplayed as it was. For example,
the binding below makes CTRL-x l run the command ls -lt | less:
bindkey -c ^Xl 'ls -lt | less'

There's much, much more. The tcsh(1) manpage is too brief to teach this well (for me, at least). I
recommend the O'Reilly book Using csh & tcsh; it doesn't cover all of the newest tcsh, but it does a
complete job on the command-line editor.

ksh Editing

This section covers the public domain Korn shell, pdksh. The original Korn shell is similar.

The bind command binds keys to built-in Emacs editor functions. (You can't re-bind in vi mode.)
With no arguments, it gives a list of all key bindings, like this:
$ bind
^A = beginning-of-line
^B = backward-char
 ...
^[b = backward-word
^[c = capitalize-word
 ...
^XC = forward-char
^XD = backward-char

In that list, ^ (caret) starts control characters, so ^A means CTRL-a. And ^[is an escape character
(which is also generated when you press a function key, like F1 or up-arrow, on most keyboards) —
so ^[b is the sequence ESC b.

There's a complete list of editor functions in the ksh manual page. You can also get a list from the
command bind -l (lowercase letter L):
$ bind -l
abort
beginning-of-history
complete-command
 ...

To bind a key to an editor function, use bind with the string to bind, an equal sign (=), then the
binding. The key can be the literal key you want to type, but that can be messy when you're trying to
put the definition in a shell setup file (which traditionally doesn't have nonprintable characters in it)
or when you're trying to bind an arrow key or some other key. So you can represent a control
character with two characters: a literal caret (^) followed by the letter — for example, ^A. The other
special prefix supported is the two-character sequence ^[(caret left-square-bracket), which stands
for the ESC or Meta key. And remember to quote (Section 27.12) any special characters. So, if you
want to make CTRL-r be the traditional Unix rprnt (Section 28.2) operation (to reprint the command
line), and make META-r search the history (which is bound to CTRL-r by default in pdksh), you
could use these two bindings:
bind '^R'=redraw
bind '^[r'=search-history

bash Editing

The most permanent place to customize bash editing is in the Readline inputrc file. But you also can
add temporary bindings from the command line with the bind command. These bindings work only in
the current shell, until the shell exits. The bind syntax is the same as the inputrc file, but you have to
put quotes (Section 27.12) around the whole binding — so watch out for quoting conflicts. For
example, to make CTRL-o output a redirection (Section 43.1) command and pathname:
bash$ bind 'Control-o: ">> /usr/local/project/log"'

To get a list of all key bindings, use bind -P in Version 2 or bind -v in original bash. In the next
example, for instance, you can see that CTRL-m (the ENTER key) and CTRL-j (the LINEFEED key)
both accept the command line. Quite a few characters (CTRL-a, CTRL-b, etc.) simply insert
themselves into the command line when you type them. If you need a literal control character, you may
be able to type CTRL-v and then the character.

less Section 12.3
bash$ bind -P | less
abort is not bound to any keys
accept-line can be found on "\C-j", "\C-m".
 ...
backward-delete-char can be found on "\C-h", "\C-?".
 ...
self-insert can be found on "\C-a", "\C-b", "\C-c", "\C-e", "\C-f", ...

There are two bind options good for use with inputrc type files. To write all the current key bindings
out to a file named inputrc.new, type bind -p > inputrc.new in bash2; use the -d option in
original bash. (You can overwrite your default .inputrc file this way, too, if you want.) To read an
inputrc file into the current shell (if you've just edited it, for instance), use bind -f and give the
filename as an argument.

Finally, the bind option -m keymap chooses the keymap that subsequent bindings apply to. The
keymap names that bash2 understands are emacs, emacs-standard, emacs-meta, emacs-ctlx, vi, vi-
move, vi-command, and vi-insert. (vi is the same as vi-command, and emacs is the same as emacs-
standard.)

zsh Editing

zsh, as you migh expect by now, has a wide variety of command-line editing capabilities, many
similar to or the same as those found in ksh, tcsh, or bash. Emacs mode is the default, but vi mode
may also be chosen, and all of the key commands found in either mode may be bound to any character
you like using the bindkey -v command. See the zshzle manual page for a long list of these commands
and their default bindings.

—JP and SJC

Changing History Characters with histchars

The existence of special characters (particularly !) can be a pain; you may often need to type
commands that have exclamation points in them, and occasionally need commands with carets (^).
These get the C shell confused unless you "quote" them properly. If you use these special characters
often, you can choose different ones by setting the histchars variable. histchars is a two-character
string; the first character replaces the exclamation point (the "history" character), and the second
character replaces the caret (the "modification" character (Section 30.5)). For example:
% set histchars='@#'
% ls file*
file1 file2 file3
% @@
 Repeat previous command (was
 !!
)
ls file*
file1 file2 file3
% #file#data#
 Edit previous command (was
 ^file^data^
)
ls data*
data4 data5

zsh's histchars is like the csh and tcsh version, but it has three characters. The third is the comment
character — by default, #.

An obvious point: you can set histchars to any characters you like (provided they are different!), but
it's a good idea to choose characters that you aren't likely to use often on command lines. Two good
choices might be # (hash mark) and , (comma).[2]

— ML

[2] In the C shell and tcsh, # is a comment character (Section 35.1) only in noninteractive shells.
Using it as a history character doesn't conflict because history isn't enabled in noninteractive shells.

Instead of Changing History Characters

If you need to use ! (or your current history character) for a command (for example, if you still use
uucp or send mail to someone who does, using the command-line mail (Section 1.21) command), you
can type a backslash (\) before each history character. You can also drop into the Bourne or Korn
shell quickly — assuming that you aren't on a system that has replaced the real Bourne shell with a
shell like bash that has history substitution built in. (If you're stuck, you can use the command set +H
in bash; this disables history substitution.) Either of these are probably easier than changing
histchars. For example:
% mail ora\!ishtar\!sally < file1
 Quote the !s
% sh
 Start the Bourne shell
$ mail ora!ishtar!sally < file1
 ! not special here
$ exit
 Quit the Bourne shell
% And back to the C shell

The original Bourne shell doesn't have any kind of history substitution, so ! doesn't mean anything
special; it's just a regular character.

By the way, if you have a window system, you can probably copy and paste the command line
(Section 28.10) instead of using shell history.

— ML

Chapter 31. Moving Around in a Hurry

Getting Around the Filesystem

Summary Box
How quickly can y ou move around the Unix filesy stem? Can y ou locate any file or directory on y our filesy stem with both its absolute and relative pathnames? How can sy mbolic links help y ou and hurt y ou?

A lot of Unix users don't realize how much they 'll be helped by completely understanding a few filesy stem basics. Here are some of the most important concepts and tricks to know:

Using relative and absolute pathnames: Section 31.2.
What good is a current directory ? Section 31.3.
Saving time and ty ping when changing directories with cdpath: Section 31.5.
Directory stacks keep a list of directories y ou're using and let y ou get to them quickly : Section 31.7, Section 31.8.
Quick cd aliases: Section 31.9.
Using variables and a tilde (~) to help y ou find directories and files: Section 31.11.
A mark alias to mark directory for cd'ing back: Section 31.12.
Automatic setup for entering and exiting a directory : Section 31.13.

— JP

Using Relative and Absolute Pathnames

Everything in the Unix filesystem — files, directories, devices, named pipes, and so on — has two
pathnames: absolute and relative. If you know how to find those names, you'll know the best way to
locate the file (or whatever) and use it. Even though pathnames are amazingly simple, they're one of
the biggest problems beginners have. Studying this article carefully can save you a lot of time and
frustration. See Figure 31-1 for an illustration of the Unix filesystem.

Figure 31-1. A Unix filesystem tree

Table 31-1 describes the two kinds of pathnames.

Table 31-1. Absolute and relative pathnames

Absolute pathnames Relative pathnames

Start at the root directory. Start at your current directory (Section 1.16).

Always start with a slash (/). Never start with a slash.

The absolute pathname to some object (file, etc.)
is always the same.

The relative pathname to an object depends on
your current directory.

To make an absolute pathname:

Start at the root directory (/) and work down.
Put a slash (/) after every directory name — though if the path ends at a directory, the slash after
the last name is optional.

For example, to get a listing of the directory highlighted in Figure 31-1, no matter what your current
directory is, you'd use an absolute pathname like this:
% ls /home/jane/data
Sub a b c

To make a relative pathname:

Start at your current directory.
As you move down the tree, away from root, add subdirectory names.
As you move up the tree toward root, add .. (two dots) for each directory.
Put a slash (/) after every directory name — though if the path is to a directory, the slash after
the last name is optional, as it is with absolute pathnames.

For example, if your current directory is the one shown in Figure 31-1, to get a listing of the Sub
subdirectory, use a relative pathname:
% ls Sub
d e f

Without changing your current directory, you can use a relative pathname to read the file d in the Sub
subdirectory:
% cat Sub/d

To change the current directory to Jim's home directory, you could use a relative pathname to it:
% cd ../../jim

Using the absolute pathname, /home/jim, might be easier there.

The symbolic link (Section 10.4) adds a twist to pathnames. What two absolute pathnames would
read the file that the symlink points to? The answer: /home/jane/.setup or /work/setups/generic. (The
second pathname points directly to the file, so it's a little more efficient.) If your current directory was
the one shown in Figure 31-1, what would be the easiest way to read that file with the more pager?
It's probably through the symlink:
% more ../.setup

Remember, when you need to use something in the filesystem, you don't always need to use cd first.
Think about using a relative or absolute pathname with the command; that'll almost always work. If
you get an error message, check your pathname carefully; that's usually the problem.

— JP

What Good Is a Current Directory?

People who think the cd command is all they need to know about current directories should read this
article! Understanding how Unix uses the current directory can save you work.

Each Unix process has its own current directory. For instance, your shell has a current directory. So
do vi, ls, sed, and every other Unix process. When your shell starts a process running, that child
process starts with the same current directory as its parent. So how does ls know which directory to
list? It uses the current directory it inherited from its parent process, the shell:
% ls
 ...Listing of ls's current directory appears,
 which is the same current directory as the shell.

Each process can change its current directory and that won't change the current directory of other
processes that are already running. So:

Your shell script (which runs in a separate process) can cd to another directory without affecting
the shell that started it. (So, the script doesn't need to cd back to the directory where it started
before it exits.)
If you have more than one window or login session to the same computer, they probably run
separate processes. So, they have independent current directories.
When you use a subshell (Section 43.7, Section 24.4) or a shell escape, you can cd anywhere
you want. After you exit that shell, the parent shell's current directory won't have changed. For
example, if you want to run a command in another directory without cding there first (and having
to cd back), do it in a subshell:
% pwd
/foo/bar
% (cd
 baz; somecommand
 > somefile)
% pwd
/foo/bar

When you really get down to it, what good is a current directory? Here it is: relative pathnames start
at the current directory. Having a current directory means you can refer to a file by its relative
pathname, like afile. Programs like ls access the current directory through its relative pathname .
(dot) (Section 1.16). Without a current directory and relative pathnames, you'd always have to use
absolute pathnames (Section 31.2) like /usr/joe/projects/alpha/afile.

— JP

How Does Unix Find Your Current Directory?

[This article is about the standard Unix pwd command, an external (Section 1.9) command that isn't
built into your shell. (The external pwd is usually stored at /bin/pwd.) Most shells have an internal
version of pwd that "keeps track" of you as you change your current directory; it doesn't have to
search the filesystem to find the current directory name. This article describes how the external
version finds the pathname of its current directory. This isn't just academic stuff: seeing how pwd
finds its current directory should help you understand how the filesystem is put together. — JP]

A command like pwd inherits the current directory of the process that started it (usually a shell). It
could be started from anywhere. How does pwd find out where it is in the filesystem? See Figure 31-
2 for a picture of the current directory /usr/joe and its parent directories. The current directory
doesn't contain its own name, so that doesn't help pwd. But it has an entry named . (dot), which gives
the i-number of the directory (Section 10.2).

Figure 31-2. Finding the current directory name

The current directory has i-number 234. Next, pwd asks Unix to open the parent directory file, the
directory one level up, through the relative pathname (..). It's looking for the name that goes with i-
number 234. Aha: the current directory is named joe, so the end of the pathname must be joe.

Next step: pwd looks at the . entry in the directory one level up to get its i-number, 14. As always, the
name of the one-level-up directory is in its parent (.., i-number 12). To get its name, pwd opens the
directory two levels up and looks for i-number 14, usr. Now pwd has the pathname usr/joe.

Same steps: look in the parent, i-number 12. What's its name? Hmmm. The i-number of its parent, 12,
is the same as its own — and there's only one directory on the filesystem like this: the root directory
(/). So pwd adds a slash to the start of the pathname and it's done: /usr/joe.

This explanation is really missing one or two parts: filesystems can be mounted on other filesystems,
or they can be mounted across the network from other hosts. So at each step, pwd also needs to check
the device that the current directory is mounted on. If you're curious, see the stat(2) manual page or
check a Unix internals book. Also see the last few paragraphs of Section 10.4 for more about the links
between directories.

— JP

Saving Time When You Change Directories: cdpath

Some people make a shell alias (Section 29.2) for directories they cd to often. Other people set shell
variables (Section 35.9) to hold the pathnames of directories they don't want to retype. But both of
those methods make you remember directory abbreviations — and make you put new aliases or shell
variables in your shell startup files (Section 3.3) each time you want to add or change one. There's
another way: the C shell's cdpath shell variable and the CDPATH variable in ksh, bash, and some
versions of sh. (zsh understands both cdpath and CDPATH.) I'll use the term "cdpath" to talk about all
shells.

When you type the command cd foo, the shell first tries to go to the exact pathname foo. If that
doesn't work, and if foo is a relative pathname, the shell tries the same command from every
directory listed in the cdpath. (If you use ksh or sh, see the note at the end of this article.)

Let's say that your home directory is /home/lisa and your current directory is somewhere else. Let's
also say that your cdpath has the directories /home/lisa, /home/lisa/projects, and /books/troff. If
your cd foo command doesn't work in your current directory, your shell will try cd /home/lisa/
foo, cd /home/lisa/projects/ foo, and cd /books/troff/ foo, in that order. If the shell finds
one, it shows the pathname:
% cd foo
/home/lisa/foo
%

If there is more than one matching directory, the shell uses the first match; if this isn't what you
wanted, you can change the order of the directories in the cdpath.

Some Bourne shells don't show the directory name. All shells print an error, though, if they can't find
any foo directory.

So, set your cdpath to a list of the parent directories that contain directories you might want to cd to.
Don't list the exact directories — list the parent directories (Section 1.16). This list goes in your
.tcshrc, .cshrc, or .profile file. For example, lisa's .tcshrc could have:

~ Section 31.11
set cdpath=(~ ~/projects /books/troff)

A Bourne shell user would have this in his .profile file:
CDPATH=:$HOME:$HOME/projects:/books/troff
export CDPATH

A bash user might have it in her .bashrc or .bash_profile.

(If your system doesn't define $HOME, try $LOGDIR.)

Note
Note that the Bourne shell CDPATH in the above example starts with a colon (:) — which, as in the PATH variable, is actually an empty entry (Section 35.6) that stands for "the current directory ." Both the sh and ksh I tested required that.
Without an empty entry , neither sh or ksh would cd into the current directory ! (bash seemed to work like csh, though.) You could actually call this a feature. If there's no empty entry in CDPATH, a user has to use cd ./subdirname to go to
a subdirectory of the current directory .

—JP and SJC

Loop Control: break and continue

Normally a for loop (Section 35.21) iterates until it has processed all its word arguments. while and
until loops (Section 35.15) iterate until the loop control command returns a certain status. But
sometimes — for instance, if there's an error — you want a loop to immediately terminate or jump to
the next iteration. That's where you use break and continue, respectively.

break terminates the loop and takes control to the line after done. continue skips the rest of the
commands in the loop body and starts the next iteration. Here's an example of both. An outer loop is
stepping through a list of directories. If we can't cd to one of them, we'll abort the loop with break.
The inner loop steps through all entries in the directory. If one of the entries isn't a file or isn't
readable, we skip it and try the next one.

'...' Section 28.14, || Section 35.14, * Section 1.13, test Section 35.26
for dir in `find $HOME/projdir -type d -print`
do
 cd "$dir" || break
 echo "Processing $dir"
 for file in *
 do
 test -f "$file" -a -r "$file" || continue
 ...process $dir/$file...
 done
done

With nested loops (like the file loop above), which loop is broken or continued? It's the loop being
processed at that time. So, the continue here restarts the inner (file) loop. The break terminates the
outer (directory) loop — which means the inner loop is also terminated. Note also that the -print
argument to find is often redundant in the absence of another expression, depending on your version of
find.

Here we've used break and continue within for loops, after the shell's || operator. But you can use
them anywhere within the body of any loop — in an if statement within a while loop, for instance.

— JP

The Shells' pushd and popd Commands

How often do you need to move to some other directory temporarily, look at some file, and then move
back to the directory where you started? If you're like most users, you do this all the time. Most shells
have pushd and popd commands to make this a lot easier. (If you use the original ksh , Learning the
Korn Shell, by Bill Rosenblatt and Arnold Robbins and also published by O'Reilly, shows you shell
functions that do the same thing.)

These commands implement a "directory stack." The classical analogy for a stack is one of those
spring-loaded plate stackers in a school (or corporate) cafeteria. The last plate put ("pushed") onto
the stack is the first plate taken ("popped") from the stack. It's just the same with directories: each
time you use pushd, the shell adds your current directory to the stack and moves you to the new
directory. When you use popd, the shell takes the top directory off the stack and moves you to the
directory underneath.[1]

You may as well learn about pushd the way I did: by watching. Let's say that I'm in the directory
~/power, working on this book. I want to change to my Mail directory briefly, to look at some old
correspondence. Let's see how. (Note that if you have a cdpath (Section 31.5) that includes your
home directory, ~ or $HOME, you won't need to type the ~/ with arguments to pushd. In other words,
pushd looks at your cdpath.)
los% pushd ~/Mail
 current directory becomes ~/Mail
~/Mail ~/power

pushd prints the entire stack, giving me some confirmation about where I am and where I can go.
When I'm done reading the old mail, I want to move back:
los% popd
 current directory becomes ~/power
~/power

We're back where we started; the Mail directory is no longer on the stack.

What if you want to move back and forth repeatedly? pushd, with no arguments, just switches the two
top directories on the stack, like this:
los% pwd
 current directory is ~/power
/home/los/mikel/power
los% pushd ~/Mail
 current directory becomes ~/Mail
~/Mail ~/power
los% pushd
 current directory becomes ~/power
~/power ~/Mail
los% pushd
 current directory becomes ~/Mail
~/Mail ~/power

And so on.

If you like, you can let your directory stack get really long. In this case, two special commands are
useful. popd +n deletes the n entry in the stack. Entries are counted "down" from the top, starting with
zero; that is, your current directory is 0. So popd +0 and popd are the same. If n is greater than 0,
your current directory does not change. This may seem surprising, but it isn't; after all, you haven't
changed the top of the stack.

The command pushd +n "rotates" the stack, so that the nth directory moves to the top, becoming the
current directory. Note that this is a "rotation": the whole stack moves. I don't find the +n commands
too useful, but you should know about them.

The dirs command prints the directory stack. It's a good way to find out where you are. (Some people
like to put the dirs command in their prompt (Section 4.14), but I personally find incredibly long
prompts more annoying than helpful.) If you'd like a numbered list of the directories on the stack, most
shells support dirs -v.

The one drawback to pushd and popd is that you can easily build up a gigantic directory stack full of
useless directories. I suppose this doesn't really hurt anything, but it's needless clutter. One way to
clear the stack is to popd repeatedly. More to the point, the directories you're most likely to want are
at the top of the stack. With seven directories in the stack, you could conceivably do something like
this to get rid of the bottom two elements:
% pushd +5 ; popd ; popd

The pushd moves the bottom two elements of a seven-directory stack to the top. A bit inconvenient.

The zsh commands cd +n and cd -n move a directory to the top of the stack and change to the
"popped" directory. The + counts from the top (left end) of the stack (starting with zero), and - counts
from the bottom. As you do this, remember that in zsh terminology, the current directory is not on the
stack; it's separate from the stack. As the previous footnote explains, this different interpretation of the
stack takes some getting used to. Also see the zshbuiltins(1) manual page. Whew.

If the stack gets too messy, here's an easy way to start over: In bash Version 2 and in tcsh, the
command dirs -c clears the stack. In csh, you can use the built-in repeat command to clear the stack.
For example, if the stack has seven directories, type:
% repeat 6 popd

—ML and JP

[1] Some people — the zsh maintainers, for instance — think of this with a different model. In this
other model, the current directory isn't at the top of the stack: it's separate from the stack. The stack is
just a list of "remembered" directories. So when you use pushd, that first puts the current directory
onto the top of the stack, then cds to the directory given. And, when you use popd, the top of the stack
is popped off to become the new current directory. Maybe you'd like to keep both of the models in
mind as you read and experiment with directory stacks — and then decide which seems clearer to
you.

Nice Aliases for pushd

The pushd command (Section 31.7) is nice for jumping around the filesystem, but some of the
commands you might type a lot, like pushd +4, are sort of a pain to type. I saw these aliases (Section
29.2) in Daniel Gilly's setup file. They looked so handy that I decided to steal them for this book.
There are C shell versions in the first column and Bourne-type in the second:
alias pd pushd alias pd=pushd
alias pd2 'pushd +2' alias pd2='pushd +2'
alias pd3 'pushd +3' alias pd3='pushd +3'
alias pd4 'pushd +4' alias pd4='pushd +4'
 ...

So, for example, to swap the fourth directory on the stack, just type pd4.

— JP

Quick cds with Aliases

If you do a lot of work in some particular directories, it can be handy to make aliases (Section 29.2)
that take you to each directory quickly. For example, this Korn shell alias lets you type pwr to change
to the /books/troff/pwrtools directory:
alias pwr='cd /books/troff/pwrtools'

(If your shell doesn't have aliases, you can use a shell function (Section 29.11). A shell script
(Section 1.8) won't work, though, because it runs in a subshell (Section 24.4).)

When you pick the alias names, it's a good idea not to conflict with command names that are already
on the system. Section 35.27 shows how to pick a new name.

If you have a lot of these directory-changing aliases, you might want to put them in a separate file
named something like .cd_aliases. Then add these lines to your shell setup file (Section 3.3), like this
C shell example for your .cshrc :

source Section 35.29, ~ Section 31.11
alias setcds source ~/.cd_aliases
setcds

That reads your aliases into each shell. If you edit the .cd_aliases file, you can read the new file into
your shell by typing setcds from any directory.

Finally, if you're in a group of people who all work on the same directories, you could make a central
alias file that everyone reads from their shell setup files as they log in. Just adapt the example above.

— JP

cd by Directory Initials

Here's a handy shell function called c for people who cd all over the filesystem. (I first saw Marc
Brumlik's posting of it on Usenet years ago, as a C shell alias. He and I have both made some changes
to it since then.) This function is great for shells that don't have filename completion (Section 28.6).
This function works a bit like filename completion, but it's faster because the "initials" match only
directories and you don't have to press TAB or ESC after each part of the pathname. Instead, you just
type the initials (first letter or more) of each directory in the pathname. Start at the root directory. Put
a dot (.) after each part.

Here are three examples. The first one shows that there's no subdirectory of root whose name starts
with q. The second one matches the directory /usr/include/hsfs and cds there:
$ c q.
c: no match for /q*/.
$ c u.i.h.
/usr/include/hsfs/.
$

In the next example, trying to change to /usr/include/pascal the abbreviations aren't unique the first
time. The function shows me all the matches; the second time, I add another letter ("a") to make the
name unique:
$ c u.i.p.
c: too many matches for u.i.p.:
/usr/include/pascal/. /usr/include/pixrect/. /usr/include/protocols/.
$ c u.i.pa.
/usr/include/pascal/.
$

 Go to http://examples.oreilly.com/upt3 for more information on: c.csh, c.sh

The Bourne shell function is straightforward; it's shown below.[2] The C shell alias needs some
trickery, and there are two versions of it: one if you already have an alias for cd and another if you
don't. (The C shell if used in the c alias won't work with a cd alias. Although the csh manual page
admits it won't work, I'd call that another C shell bug.)

set Section 35.25, $# Section 35.20
function c()
{
 dir="$1"

 # Delete dots. Surround every letter with "/" and "*".
 # Add a final "/." to be sure this only matches a directory:
 dirpat="`echo $dir | sed 's/\([^.]*\)\./\/\1*/g'`/."

 # In case $dirpat is empty, set dummy "x" then shift it away:
 set x $dirpat; shift

 # Do the cd if we got one match, else print error:
 if ["$1" = "$dirpat"]; then
 # pattern didn't match (shell didn't expand it)
 echo "c: no match for $dirpat" 1>&2
 elif [$# = 1]; then
 echo "$1"
 cd "$1"
 else
 echo "c: too many matches for $dir:" 1>&2
 ls -d "$@"
 fi

http://examples.oreilly.com/upt3

 unset dir dirpat
}

The function starts by building a wildcard pattern to match the directory initials. For example, if you
type c u.i.h., sed makes the pattern /u*/i*/h*/. in $dirpat. Next, the shell expands the wildcards
onto its command-line parameters; the trailing dot makes sure the pattern matches only a directory. If
the Bourne shell can't match a wildcard pattern, it leaves the pattern unchanged; the first if test spots
that. If there was just one match, there will be one command-line parameter left, and the shell cds
there. Otherwise, there were too many matches; the function shows them so you can make your pattern
longer and more specific.

— JP

[2] You may need to remove the function keyword in older Bourne shells, but it is required for bash.

Finding (Anyone's) Home Directory, Quickly

Most shells have a shortcut for the pathname to your home directory: a tilde (~), often called
"twiddle" by Unix-heads. You can use ~ in a pathname to the home directory from wherever you are.
For example, from any directory, you can list your home directory or edit your .cshrc file in it by
typing:
% ls ~
 ...
% vi ~/.cshrc

If you're using a very old Bourne shell, one that does not support the tilde convention, try the $HOME or
$LOGDIR variables instead.

You could change your current directory to your home directory by typing cd ~ or cd $HOME, but all
shells have a shorter shortcut: typing plain cd with no argument also takes you home.

If your shell understands the tilde, it should also have an abbreviation for other users' home
directories: a tilde with the username on the end. For example, the home directory for mandi, which
might really be /remote/users/m/a/mandi, could be abbreviated ~mandi. On your account, if Mandi
told you to copy the file named menu.c from her src directory, you could type:
% cp ~mandi/src/menu.c .

Don't confuse this with filenames like report~. Some programs, like the GNU Emacs (Section 19.4)
editor and vi, may create temporary filenames that end with a ~ (tilde).

Your version of the Bourne shell might also emulate the special "directory" /u — if your system
administrator hasn't already set up /u, that is. It's a directory full of symbolic links (Section 10.4) to
users' home directories. For instance, /u/jane could be a link to /home/users/jane. Many systems are
now using /home for home directories, in favor of the old /usr/users or /u conventions. Darwin uses
/Users/username (note the uppercase U!), but the tilde works the same there, too.

If all else fails, here's a trick that's probably too ugly to type a lot, but it's useful in Bourne shell
scripts, where you don't want to "hardcode" users' home directory pathnames. This command calls the
C shell to put mandi's home directory pathname into $dir:
username=mandi
dir=`csh -fc "echo ~$username"`

In fact, using echo (Section 27.5) yourself is a good way to see how ~ works. Try echo ~, echo
~/xyz, echo ~xyz, and so on. Note that different shells do different things when ~ user doesn't
match any user: some print an error, others return the unmatched string.

— JP

Marking Your Place with a Shell Variable

The following alias stores the current directory name in a variable:
alias mark 'set \!:1=$cwd'

so as to use a feature of the C shell:
% mark
 here
 ...
% cd
 here

One need not even type $ here. If a directory does not exist, csh tries searching its cdpath (Section
31.5), then tries to evaluate the name as a variable.

(I generally use pushd and popd (Section 31.7) to store directory names; mark is more useful with
commands that need to look in two different paths, and in that case $ here is necessary anyway. Ah
well.)

[In bash and zsh, you can do this by setting cdable_vars . In your shell setup file (Section 3.3), use
cdable_vars=1 for bash or setopt cdable_vars or setopt -T for zsh. — JP]

— CT

Automatic Setup When You Enter/Exit a Directory

If you work in a lot of different directories, here's a way to make the shell do automatic setup when
you enter a directory or do cleanup as you leave. We've broken it onto two lines for printing; enter it
as one line. On bash, make a shell function instead.

 Go to http://examples.oreilly.com/upt3 for more information on: csh_init, sh_init
alias cd 'if (-o .exit.csh) source .exit.csh; chdir \!*;
 if (-o .enter.csh) source .enter.csh'

function cd() {
 test -r .exit.sh && . .exit.sh
 builtin cd "$1" # builtin is a bash command
 test -r .enter.sh && . .enter.sh
}

Then create .enter.csh and/or .exit.csh files in the directories where you want a custom setup.
Bourne-type shell users, make .enter.sh and/or .exit.sh files instead. When you cd to a new directory,
an .exit file is sourced (Section 35.29) into your current shell before you leave the old directory. As
you enter the new directory, a .enter file will be read if it exists. If you use pushd and popd (Section
31.7), you'll probably want to make the same kind of aliases or functions for them.

The C shell alias tests to be sure you own the files; this helps to stop other users from leaving
surprises for you! But if lots of users will be sharing the directory, they may all want to share the
same files — in that case, replace the -o tests with -r (true if the file is readable).

Here's a sample .enter.csh file:

 Go to http://examples.oreilly.com/upt3 for more information on: .enter.csh, .enter.sh
Save previous umask; reset in .exit.csh:
set prevumask=`umask`

Let everyone in the group edit my files here:
umask 002
echo ".enter.csh: setting umask to 002"
Prompt (with blank line before) to keep me awake:
set prompt="\
$cwd - PROJECT DEVELOPMENT DIRECTORY. EDIT CAREFULLY...\
% "

Here's the .exit.csh to go with it:

 Go to http://examples.oreilly.com/upt3 for more information on: .exit.csh, .exit.sh

setprompt Section 4.7
.enter.csh file may put old umask in shell variable:
if ($?prevumask) then
 umask $prevumask
 echo ".exit.csh: setting umask to $prevumask"
 unset prevumask
endif
Reminder to come back here if need to:
echo "If you didn't check in the RCS files, type 'cd $cwd'."
Set generic prompt (setprompt alias comes from .cshrc file):
setprompt

Note

http://examples.oreilly.com/upt3
http://examples.oreilly.com/upt3
http://examples.oreilly.com/upt3

Note
The umask set in the .enter file for some directory will also set the permissions for files y ou create in other directories with commands that use pathnames — like vi / somedir / somefile.

Can more than one of your directories use the same .enter or .exit file? If they can, you'll save disk
space and redundant editing, as well as the risk of the files getting out of sync, by making hard links
(Section 10.4) between the files. If the directories are on different filesystems, you'll have to use a
symbolic link (Section 10.4) — though that probably won't save much disk space. If you link the files,
you should probably add a comment that reminds you of the links when you make your next edit. When
your .enter files get really long, you might be able to put a command like this in them:

source Section 35.29
source ~/.global_enter

where the .global_enter file in your home directory has a procedure that you want to run from a lot of
your .enter files. (Same goes for .exit, of course.)

One last idea: if a lot of users share the same directory, they can make files with names like
.enter.joanne, .exit.allan, and so on. Your aliases can test for a file named .enter.$user.

Chapter 32. Regular Expressions (Pattern Matching)

That's an Expression

When my young daughter is struggling to understand the meaning of an idiomatic expression, such as,
"Someone let the cat out of the bag," before I tell her what it means, I have to tell her that it's an
expression, that she's not to interpret it literally. (As a consequence, she also uses "That's just an
expression" to qualify her own remarks, especially when she is unsure about what she has just said.)

An expression, even in computer terminology, is not something to be interpreted literally. It is
something that needs to be evaluated.

Many Unix programs use a special "regular expression syntax" for specifying what you could think of
as "wildcard searches" through files. Regular expressions describe patterns, or sequences of
characters, without necessarily specifying the characters literally. You'll also hear this process
referred to as " pattern matching."

In this chapter, we depart a bit from the usual "tips and tricks" style of the book to provide an
extended tutorial about regular expressions that starts in Section 32.4. We did this because regular
expressions are so important to many of the tips and tricks elsewhere in the book, and we wanted to
make sure that they are covered thoroughly.

This tutorial article is accompanied by a few snippets of advice (Section 32.16 and Section 32.18)
and a few tools that help you see what your expressions are matching (Section 32.17). There's also a
quick reference (Section 32.21) for those of you who just need a refresher.

For tips, tricks, and tools that rely on an understanding of regular expression syntax, you have only to
look at:

Chapter 13
Chapter 17
Chapter 20
Chapter 34
Chapter 41

O'Reilly's Mastering Regular Expressions, by Jeffrey Friedl, is a gold mine of examples and
specifics.

—DD and TOR

Don't Confuse Regular Expressions with Wildcards

Before we even start talking about regular expressions, a word of caution for beginners: regular
expressions can be confusing because they look a lot like the file-matching patterns ("wildcards") the
shell uses. Both the shell and programs that use regular expressions have special meanings for the
asterisk (*), question mark (?), parentheses (()), square brackets ([]), and vertical bar (|, the
"pipe").

Some of these characters even act the same way — almost.

Just remember, the shells, find, and some others generally use filename-matching patterns and not
regular expressions.[1]

You also have to remember that shell wildcards are expanded before the shell passes the arguments
to the program. To prevent this expansion, the special characters in a regular expression must be
quoted (Section 27.12) when passed as an argument from the shell.

The command:
$ grep [A-Z]*.c chap[12]

could, for example, be interpreted by the shell as:
grep Array.c Bug.c Comp.c chap1 chap2

and so grep would then try to find the pattern "Array.c" in files Bug.c, Comp.c, chap1, and chap2.

The simplest solution in most cases is to surround the regular expression with single quotes (').
Another is to use the echo command to echo your command line to see how the shell will interpret the
special characters.

—BB and DG, TOR

[1] Recent versions of many programs, including find, now support regex via special command-line
options. For example, find on my Linux server supports the -regex and -iregex options, for
specifying filenames via a regular expression, case-sensitive and -insensitive, respectively. But the
find command on my OS X laptop does not. — SJC

Understanding Expressions

You are probably familiar with the kinds of expressions that a calculator interprets. Look at the
following arithmetic expression:
2 + 4

"Two plus four" consists of several constants or literal values and an operator. A calculator program
must recognize, for instance, that 2 is a numeric constant and that the plus sign represents an operator,
not to be interpreted as the + character.

An expression tells the computer how to produce a result. Although it is the sum of "two plus four"
that we really want, we don't simply tell the computer to return a six. We instruct the computer to
evaluate the expression and return a value.

An expression can be more complicated than 2+4; in fact, it might consist of multiple simple
expressions, such as the following:
2 + 3 * 4

A calculator normally evaluates an expression from left to right. However, certain operators have
precedence over others: that is, they will be performed first. Thus, the above expression evaluates to
14 and not 20 because multiplication takes precedence over addition. Precedence can be overridden
by placing the simple expression in parentheses. Thus, (2+3)*4 or "the sum of two plus three times
four" evaluates to 20. The parentheses are symbols that instruct the calculator to change the order in
which the expression is evaluated.

A regular expression, by contrast, is descriptive of a pattern or sequence of characters. Concatenation
is the basic operation implied in every regular expression. That is, a pattern matches adjacent
characters. Look at the following example of a regular expression:
ABE

Each literal character is a regular expression that matches only that single character. This expression
describes "an A followed by a B followed by an E" or simply the string ABE. The term "string" means
each character concatenated to the one preceding it. That a regular expression describes a sequence
of characters can't be emphasized enough. (Novice users are inclined to think in higher-level units
such as words, and not individual characters.) Regular expressions are case-sensitive; A does not
match a.

Programs such as grep (Section 13.2) that accept regular expressions must first evaluate the syntax of
the regular expression to produce a pattern. They then read the input, line by line, trying to match the
pattern. An input line is a string, and to see if a string matches the pattern, a program compares the
first character in the string to the first character of the pattern. If there is a match, it compares the
second character in the string to the second character of the pattern. Whenever it fails to make a
match, it compares the next character in the string to the first character of the pattern. Figure 32-1
illustrates this process, trying to match the pattern abe on an input line.

Figure 32-1. Interpreting a regular expression

A regular expression is not limited to literal characters. There is, for instance, a metacharacter — the
dot (.) — that can be used as a "wildcard" to match any single character. You can think of this
wildcard as analogous to a blank tile in Scrabble™ where it means any letter. Thus, we can specify
the regular expression A.E, and it will match ACE, ABE, and ALE. It matches any character in the
position following A.

The metacharacter * (the asterisk) is used to match zero or more occurrences of the preceding regular
expression, which typically is a single character. You may be familiar with * as a shell
metacharacter, where it also means "zero or more characters." But that meaning is very different from
* in a regular expression. By itself, the metacharacter * does not match anything in a regular
expression; it modifies what goes before it. The regular expression .* matches any number of
characters. The regular expression A.*E matches any string that matches A.E but it also matches any
number of characters between A and E: AIRPLANE, A, FINE, AE, A 34-cent S.A.S.E, or A LONG WAY
HOME, for example.

If you understand the difference between . and * in regular expressions, you already know about the
two basic types of metacharacters: those that can be evaluated to a single character, and those that
modify how characters that precede it are evaluated.

It should also be apparent that by use of metacharacters you can expand or limit the possible matches.
You have more control over what is matched and what is not. In Section 32.4 and after, Bruce Barnett
explains in detail how to use regular expression metacharacters.

— DD

Using Metacharacters in Regular Expressions

Summary Box
There are three important parts to a regular expression:
Anchors

Specify the position of the pattern in relation to a line of text.
Character sets

Match one or more characters in a single position.
Modifiers

Specify how many times the previous character set is repeated.

The following regular expression demonstrates all three parts:

^#*

The caret (^) is an anchor that indicates the beginning of the line. The hash mark is a simple character set that matches the single character #. The asterisk (*) is a modifier. In a regular expression, it specifies that the previous character set can
appear any number of times, including zero. As y ou will see shortly , this is a useless regular expression (except for demonstrating the sy ntax!).

There are two main ty pes of regular expressions: simple (also known as basic) regular expressions and extended regular expressions. (As we'll see in the next dozen articles, the boundaries between the two ty pes have become blurred as regular
expressions have evolved.) A few utilities like awk and egrep use the extended regular expression. Most use the simple regular expression. From now on, if I talk about a "regular expression" (without specify ing simple or extended), I am
describing a feature common to both ty pes. For the most part, though, when using modern tools, y ou'll find that extended regular expressions are the rule rather than the exception; it all depends on who wrote the version of the tool y ou're using
and when, and whether it made sense to worry about supporting extended regular expressions.

[The situation is complicated by the fact that simple regular expressions have evolved over time, so there are versions of "simple regular expressions" that support extensions missing from extended regular expressions! Bruce explains the
incompatibility at the end of Section 32.15. — TOR]

The next eleven articles cover metacharacters and regular expressions:

The anchor characters ^ and $ (Section 32.5)
Matching a character with a character set (Section 32.6)
Match any character with . (dot) (Section 32.7)
Specify ing a range of characters with [...] (Section 32.8)
Exceptions in a character set (Section 32.9)
Repeating character sets with * (Section 32.10)
Matching a specific number of sets with \{ and \} (Section 32.11)
Matching words with \< and \> (Section 32.12)
Remembering patterns with \(, \), and \1 (Section 32.13)
Potential problems (Section 32.14)
Extended regular expressions (Section 32.15)

— BB

Regular Expressions: The Anchor Characters ^ and $

Most Unix text facilities are line-oriented. Searching for patterns that span several lines is not easy to
do. [But it is possible (Section 13.9, Section 11.10). — JP] You see, the end-of-line character is not
included in the block of text that is searched. It is a separator, and regular expressions examine the
text between the separators. If you want to search for a pattern that is at one end or the other, you use
anchors. The caret (^) is the starting anchor, and the dollar sign ($) is the end anchor. The regular
expression ^A will match all lines that start with an uppercase A. The expression A$ will match all
lines that end with uppercase A. If the anchor characters are not used at the proper end of the pattern,
they no longer act as anchors. That is, the ^ is an anchor only if it is the first character in a regular
expression. The $ is an anchor only if it is the last character. The expression $1 does not have an
anchor. Neither does 1^. If you need to match a ^ at the beginning of the line or a $ at the end of a
line, you must escape the special character by typing a backslash (\) before it. Table 32-1 has a
summary.

Table 32-1. Regular expression anchor character examples

Pattern Matches

^A An A at the beginning of a line

A$ An A at the end of a line

A An A anywhere on a line

$A A $A anywhere on a line

^\^ A ^ at the beginning of a line

^^ Same as ^\^

\$$ A $ at the end of a line

$$ Same as \$$ [2]

[2] Beware! If your regular expression isn't properly quoted, this means "process ID of current
process." Always quote your expressions properly.

The use of ^ and $ as indicators of the beginning or end of a line is a convention other utilities use.
The vi editor uses these two characters as commands to go to the beginning or end of a line. The C
shell uses !^ to specify the first argument of the previous line, and !$ is the last argument on the
previous line (Section 30.8 explains).

It is one of those choices that other utilities go along with to maintain consistency. For instance, $ can
refer to the last line of a file when using ed and sed. cat -v -e (Section 12.5, Section 12.4) marks
ends of lines with a $. You might also see it in other programs.

— BB

Regular Expressions: Matching a Character with a Character Set

The simplest character set is a single character. The regular expression the contains three character
sets: t, h, and e. It will match any line that contains the string the, including the word other. To
prevent this, put spaces (·) before and after the pattern: ·the·.

You can combine the string with an anchor. The pattern ^From:· will match the lines of a mail
message (Section 1.21) that identify the sender. Use this pattern with grep to print every address in
your incoming mailbox. [If your system doesn't define the environment variable MAIL, try
/var/spool/mail/$USER or possibly /usr/spool/mail/$USER. — SJC]

$USER Section 35.5
% grep '^From: ' $MAIL

Some characters have a special meaning in regular expressions. If you want to search for such a
character as itself, escape it with a backslash (\).

— BB

Regular Expressions: Match Any Character with . (Dot)

The dot (.) is one of those special metacharacters. By itself it will match any character except the
end-of-line character. The pattern that will match a line with any single character is ^.$.

— BB

Regular Expressions: Specifying a Range of Characters with [...]

If you want to match specific characters, you can use square brackets, [], to identify the exact
characters you are searching for. The pattern that will match any line of text that contains exactly one
digit is ^[0123456789]$. This is longer than it has to be. You can use the hyphen between two
characters to specify a range: ^[0-9]$. You can intermix explicit characters with character ranges.
This pattern will match a single character that is a letter, digit, or underscore: [A-Za-z0-9_].
Character sets can be combined by placing them next to one another. If you wanted to search for a
word that:

started with an uppercase T,
was the first word on a line,
had a lowercase letter as its second letter,
was three letters long (followed by a space character (·)), and
had a lowercase vowel as its third letter,

the regular expression would be:
^T[a-z][aeiou]·

To be specific: a range is a contiguous series of characters, from low to high, in the ASCII character
set.[3] For example, [z-a] is not a range because it's backwards. The range [A-z] matches both
uppercase and lowercase letters, but it also matches the six characters that fall between uppercase
and lowercase letters in the ASCII chart: [, \,], ^, _, and '.

— BB

[3] Some languages, notably Java and Perl, do support Unicode regular expressions, but as Unicode
generally subsumes the ASCII 7-bit character set, regular expressions written for ASCII will work as
well.

Regular Expressions: Exceptions in a Character Set

You can easily search for all characters except those in square brackets by putting a caret (^) as the
first character after the left square bracket ([). To match all characters except lowercase vowels, use
[^aeiou].

Like the anchors in places that can't be considered an anchor, the right square bracket (]) and dash (-)
do not have a special meaning if they directly follow a [. Table 32-2 has some examples.

Table 32-2. Regular expression character set examples

Regular expression Matches

[0-9] Any digit

[^0-9] Any character other than a digit

[-0-9] Any digit or a -

[0-9-] Any digit or a -

[^-0-9] Any character except a digit or a -

[]0-9] Any digit or a]

[0-9]] Any digit followed by a]

[0-99-z] Any digit or any character between 9 and z

[]0-9-] Any digit, a -, or a]

Many languages have adopted the Perl regular expression syntax for ranges; for example, \w is
equivalent to "any word character" or [A-Za-z0-9_], while \W matches anything but a word
character. See the perlre(1) manual page for more details.

— BB

Regular Expressions: Repeating Character Sets with *

The third part of a regular expression is the modifier. It is used to specify how many times you expect
to see the previous character set. The special character * (asterisk) matches zero or more copies.
That is, the regular expression 0* matches zero or more zeros, while the expression [0-9]* matches
zero or more digits.

This explains why the pattern ^#* is useless (Section 32.4), as it matches any number of #s at the
beginning of the line, including zero. Therefore, this will match every line, because every line starts
with zero or more #s.

At first glance, it might seem that starting the count at zero is stupid. Not so. Looking for an unknown
number of characters is very important. Suppose you wanted to look for a digit at the beginning of a
line, and there may or may not be spaces before the digit. Just use ^·* to match zero or more spaces
at the beginning of the line. If you need to match one or more, just repeat the character set. That is,
[0-9]* matches zero or more digits and [0-9][0-9]* matches one or more digits.

— BB

Regular Expressions: Matching a Specific Number of Sets with \ {
and \ }

You cannot specify a maximum number of sets with the * modifier. However, some programs
(Section 32.20) recognize a special pattern you can use to specify the minimum and maximum number
of repeats. This is done by putting those two numbers between \{ and \}.

Having convinced you that \{ isn't a plot to confuse you, an example is in order. The regular
expression to match four, five, six, seven, or eight lowercase letters is:
[a-z]\{4,8\}

Any numbers between 0 and 255 can be used. The second number may be omitted, which removes the
upper limit. If the comma and the second number are omitted, the pattern must be duplicated the exact
number of times specified by the first number.

Warning
The backslashes deserve a special discussion. Normally a backslash turns off the special meaning for a character. For example, a literal period is matched by \. and a literal asterisk is matched by *. However, if a backslash is placed before a
<, >, {, }, (, or) or before a digit, the backslash turns on a special meaning. This was done because these special functions were added late in the life of regular expressions. Changing the meaning of {, }, (,), <, and > would have broken old
expressions. (This is a horrible crime punishable by a y ear of hard labor writing COBOL programs.) Instead, adding a backslash added functionality without breaking old programs. Rather than complain about the change, view it as evolution.

You must remember that modifiers like * and \{1,5\} act as modifiers only if they follow a
character set. If they were at the beginning of a pattern, they would not be modifiers. Table 32-3 is a
list of examples and the exceptions.

Table 32-3. Regular expression pattern repetition examples

Regular expression Matches

* Any line with a *

* Any line with a *

\\ Any line with a \

^* Any line starting with a *

^A* Any line

^A* Any line starting with an A*

^AA* Any line starting with one A

^AA*B Any line starting with one or more A's followed by a B

^A\{4,8\}B Any line starting with four, five, six, seven, or eight A's followed by a B

^A\{4,\}B Any line starting with four or more A's followed by a B

^A\{4\}B Any line starting with an AAAAB

\{4,8\} Any line with a {4,8}

\{4,8\} Any line with a {4,8}

A{4,8} Any line with an A{4,8}

— BB

Regular Expressions: Matching Words with \ < and \ >

Searching for a word isn't quite as simple as it at first appears. The string the will match the word
other. You can put spaces before and after the letters and use this regular expression: ·the·.
However, this does not match words at the beginning or the end of the line. And it does not match the
case where there is a punctuation mark after the word.

There is an easy solution — at least in many versions of ed, ex, vi, and grep. The characters \< and
\> are similar to the ^ and $ anchors, as they don't occupy a position of a character. They anchor the
expression between to match only if it is on a word boundary. The pattern to search for the words the
and The would be: \<[tT]he\>.

Let's define a "word boundary." The character before the t or T must be either a newline character or
anything except a letter, digit, or underscore (_). The character after the e must also be a character
other than a digit, letter, or underscore, or it could be the end-of-line character.

— BB

Regular Expressions: Remembering Patterns with \ (, \), and \1

Another pattern that requires a special mechanism is searching for repeated words. The expression
[a-z][a-z] will match any two lowercase letters. If you wanted to search for lines that had two
adjoining identical letters, the above pattern wouldn't help. You need a way to remember what you
found and see if the same pattern occurs again. In some programs, you can mark part of a pattern using
\(and \). You can recall the remembered pattern with \ followed by a single digit.[4] Therefore, to
search for two identical letters, use \([a-z]\)\1. You can have nine different remembered patterns.
Each occurrence of \(starts a new pattern. The regular expression to match a five-letter palindrome
(e.g., "radar") is: \([a-z]\)\([a-z]\)[a-z]\2\1. [Some versions of some programs can't handle \
(\) in the same regular expression as \1, etc. In all versions of sed, you're safe if you use \(\) on
the pattern side of an s command — and \1, etc., on the replacement side (Section 34.11). — JP]

— BB

[4] In Perl, you can also use $1 through $9 and even beyond, with the right switches, in addition to the
backslash mechanism.

Regular Expressions: Potential Problems

Before I discuss the extensions that extended expressions (Section 32.15) offer, I want to mention
two potential problem areas.

The \< and \> characters were introduced in the vi editor. The other programs didn't have this ability
at that time. Also, the \{ min,max \} modifier is new, and earlier utilities didn't have this ability. This
makes it difficult for the novice user of regular expressions, because it seems as if each utility has a
different convention. Sun has retrofitted the newest regular expression library to all of their programs,
so they all have the same ability. If you try to use these newer features on other vendors' machines,
you might find they don't work the same way.

The other potential point of confusion is the extent of the pattern matches (Section 32.17). Regular
expressions match the longest possible pattern. That is, the regular expression A.*B matches AAB as
well as AAAABBBBABCCCCBBBAAAB. This doesn't cause many problems using grep, because an
oversight in a regular expression will just match more lines than desired. If you use sed, and your
patterns get carried away, you may end up deleting or changing more than you want to. Perl answers
this problem by defining a variety of "greedy" and "non-greedy" regular expressions, which allow
you to specify which behavior you want. See the perlre(1) manual page for details.

— BB

Extended Regular Expressions

At least two programs use extended regular expressions: egrep and awk. [perl uses expressions that
are even more extended. — JP] With these extensions, special characters preceded by a backslash no
longer have special meaning: \{, \}, \<, \>, \(, \), as well as \ digit. There is a very good reason
for this, which I will delay explaining to build up suspense.

The question mark (?) matches zero or one instance of the character set before it, and the plus sign (+)
matches one or more copies of the character set. You can't use \{ and \} in extended regular
expressions, but if you could, you might consider ? to be the same as \{0,1\} and + to be the same as
\{1,\}.

By now, you are wondering why the extended regular expressions are even worth using. Except for
two abbreviations, there seem to be no advantages and a lot of disadvantages. Therefore, examples
would be useful.

The three important characters in the expanded regular expressions are (, |, and). Parentheses are
used to group expressions; the vertical bar acts an an OR operator. Together, they let you match a
choice of patterns. As an example, you can use egrep to print all From: and Subject: lines from your
incoming mail [which may also be in /var/spool/mail/$USER. — JP]:
% egrep '^(From|Subject): ' /usr/spool/mail/$USER

All lines starting with From: or Subject: will be printed. There is no easy way to do this with simple
regular expressions. You could try something like ^[FS][ru][ob][mj]e*c*t*: and hope you don't
have any lines that start with Sromeet:. Extended expressions don't have the \< and \> characters.
You can compensate by using the alternation mechanism. Matching the word "the" in the beginning,
middle, or end of a sentence or at the end of a line can be done with the extended regular expression
(^|)the([^a-z]|$). There are two choices before the word: a space or the beginning of a line.
Following the word, there must be something besides a lowercase letter or else the end of the line.
One extra bonus with extended regular expressions is the ability to use the *, +, and ? modifiers after
a (...) grouping.

[If you're on a Darwin system and use Apple Mail or one of the many other clients, you can grep
through your mail files locally. For Mail, look in your home directory's Library/Mail/ directory.
There should be a subdirectory there, perhaps named something like
iTools:example@mail.example.com, with an IMAP directory tree beneath it. IMAP stores
messages individually, not in standard Unix mbox format, so there is no way to look for all matches in
a single mailbox by grepping a single file, but fortunately, you can use regular expressions to
construct a file list to search. :-) — SJC]

Here are two ways to match "a simple problem", "an easy problem", as well as "a problem"; the
second expression is more exact:
% egrep "a[n]? (simple|easy)? ?problem" data
% egrep "a[n]? ((simple|easy))?problem" data

I promised to explain why the backslash characters don't work in extended regular expressions. Well,
perhaps the \{...\} and \<...\> could be added to the extended expressions, but it might confuse
people if those characters are added and the \(...\) are not. And there is no way to add that
functionality to the extended expressions without changing the current usage. Do you see why? It's

quite simple. If (has a special meaning, then \(must be the ordinary character. This is the opposite
of the simple regular expressions, where (is ordinary and \(is special. The usage of the parentheses
is incompatible, and any change could break old programs.

If the extended expression used (...|...) as regular characters, and \(...\|...\) for specifying
alternate patterns, then it is possible to have one set of regular expressions that has full functionality.
This is exactly what GNU Emacs (Section 19.1) does, by the way — it combines all of the features
of regular and extended expressions with one syntax.

— BB

Getting Regular Expressions Right

Writing regular expressions involves more than learning the mechanics. You not only have to learn
how to describe patterns, but you also have to recognize the context in which they appear. You have
to be able to think through the level of detail that is necessary in a regular expression, based on the
context in which the pattern will be applied.

The same thing that makes writing regular expressions difficult is what makes writing them
interesting: the variety of occurrences or contexts in which a pattern appears. This complexity is
inherent in language itself, just as you can't always understand an expression (Section 32.1) by
looking up each word in the dictionary.

The process of writing a regular expression involves three steps:

1. Knowing what you want to match and how it might appear in the text.
2. Writing a pattern to describe what you want to match.
3. Testing the pattern to see what it matches.

This process is virtually the same kind of process that a programmer follows to develop a program.
Step 1 might be considered the specification, which should reflect an understanding of the problem to
be solved as well as how to solve it. Step 2 is analogous to the actual coding of the program, and step
3 involves running the program and testing it against the specification. Steps 2 and 3 form a loop that
is repeated until the program works satisfactorily.

Testing your description of what you want to match ensures that the description works as expected. It
usually uncovers a few surprises. Carefully examining the results of a test, comparing the output
against the input, will greatly improve your understanding of regular expressions. You might consider
evaluating the results of a pattern-matching operation as follows:
Hits

The lines that I wanted to match.
Misses

The lines that I didn't want to match.
Misses that should be hits

The lines that I didn't match but wanted to match.
Hits that should be misses

The lines that I matched but didn't want to match.

Trying to perfect your description of a pattern is something that you work at from opposite ends: you
try to eliminate the "hits that should be misses" by limiting the possible matches, and you try to
capture the "misses that should be hits" by expanding the possible matches.

The difficulty is especially apparent when you must describe patterns using fixed strings. Each
character you remove from the fixed-string pattern increases the number of possible matches. For
instance, while searching for the string what, you determine that you'd like to match What as well.
The only fixed-string pattern that will match What and what is hat, the longest string common to both.
It is obvious, though, that searching for hat will produce unwanted matches. Each character you add
to a fixed-string pattern decreases the number of possible matches. The string them is going to

produce fewer matches than the string the.

Using metacharacters in patterns provides greater flexibility in extending or narrowing the range of
matches. Metacharacters, used in combination with literals or other metacharacters, can be used to
expand the range of matches while still eliminating the matches that you do not want.

— DD

Just What Does a Regular Expression Match?

One of the toughest things to learn about regular expressions is just what they do match. The problem
is that a regular expression tends to find the longest possible match — which can be more than you
want.

 Go to http://examples.oreilly.com/upt3 for more information on: showmatch

Here's a simple script called showmatch that is useful for testing regular expressions, when writing
sed scripts, etc. Given a regular expression and a filename, it finds lines in the file matching that
expression, just like grep, but it uses a row of carets (^^^^) to highlight the portion of the line that
was actually matched. Depending on your system, you may need to call nawk instead of awk; most
modern systems have an awk that supports the syntax introduced by nawk, however.
#! /bin/sh
showmatch - mark string that matches pattern
pattern=$1; shift
awk 'match($0,pattern) > 0 {
 s = substr($0,1,RSTART-1)
 m = substr($0,1,RLENGTH)
 gsub (/[^\b-]/, " ", s)
 gsub (/./, "^", m)
 printf "%s\n%s%s\n", $0, s, m
}' pattern="$pattern" $*

For example:
% showmatch 'CD-...' mbox
and CD-ROM publishing. We have recognized
 ^^^^^^
that documentation will be shipped on CD-ROM; however,
 ^^^^^^

 Go to http://examples.oreilly.com/upt3 for more information on: xgrep

xgrep is a related script that simply retrieves only the matched text. This allows you to extract
patterned data from a file. For example, you could extract only the numbers from a table containing
both text and numbers. It's also great for counting the number of occurrences of some pattern in your
file, as shown below. Just be sure that your expression matches only what you want. If you aren't sure,
leave off the wc command and glance at the output. For example, the regular expression [0-9]* will
match numbers like 3.2 twice: once for the 3 and again for the 2! You want to include a dot (.) and/or
comma (,), depending on how your numbers are written. For example: [0-9][.0-9]* matches a
leading digit, possibly followed by more dots and digits.

Note
Remember that an expression like [0-9]* will match zero numbers (because * means "zero or more of the preceding character"). That expression can make xgrep run for a very long time! The following expression, which matches one or
more digits, is probably what y ou want instead:

 xgrep "[0-9][0-9]*"
 files
 | wc -l

The xgrep shell script runs the sed commands below, replacing $re with the regular expression from
the command line and $x with a CTRL-b character (which is used as a delimiter). We've shown the
sed commands numbered, like 5>; these are only for reference and aren't part of the script:

http://examples.oreilly.com/upt3
http://examples.oreilly.com/upt3

 1> \xre$x!d
2> s//$x&$x/g
3> s/[^$x]*$x//
4> s/$x[^$x]*$x/\
 /g
5> s/$x.*//

Command 1 deletes all input lines that don't contain a match. On the remaining lines (which do
match), command 2 surrounds the matching text with CTRL-b delimiter characters. Command 3
removes all characters (including the first delimiter) before the first match on a line. When there's
more than one match on a line, command 4 breaks the multiple matches onto separate lines. Command
5 removes the last delimiter, and any text after it, from every output line.

Greg Ubben revised showmatch and wrote xgrep.

—JP, DD, andTOR

Limiting the Extent of a Match

A regular expression tries to match the longest string possible, which can cause unexpected problems.
For instance, look at the following regular expression, which matches any number of characters inside
quotation marks:
".*"

Let's imagine an HTML table with lots of entries, each of which has two quoted strings, as shown
below:
<td>

All the text in each line of the table is the same, except the text inside the quotes. To match the line
through the first quoted string, a novice might describe the pattern with the following regular
expression:
<td>

However, the pattern ends up matching almost all of the entry because the second quotation mark in
the pattern matches the last quotation mark on the line! If you know how many quoted strings there
are, you can specify each of them:
<td>

Although this works as you'd expect, some line in the file might not have the same number of quoted
strings, causing misses that should be hits — you simply want the first argument. Here's a different
regular expression that matches the shortest possible extent between two quotation marks:
"[^"]*"

It matches "a quote, followed by any number of characters that do not match a quote, followed by a
quote." Note, however, that it will be fooled by escaped quotes, in strings such as the following:
$strExample = "This sentence contains an escaped \" character.";

The use of what we might call "negated character classes" like this is one of the things that
distinguishes the journeyman regular expression user from the novice.

—DD and JP

I Never Meta Character I Didn't Like

Once you know regular expression syntax, you can match almost anything. But sometimes, it's a pain
to think through how to get what you want. Table 32-4 lists some useful regular expressions that
match various kinds of data you might have to deal with in the Unix environment. Some of these
examples work in any program that uses regular expressions; others only work with a specific
program such as egrep. (Section 32.20 lists the metacharacters that each program accepts.) The ·
means to use a space as part of the regular expression. Bear in mind that you may also be able to use
\< and \> to match on word boundaries.

Note that these regular expressions are only examples. They aren't meant to match (for instance) every
occurrence of a city and state in any arbitrary text. But if you can picture what the expression does
and why, that should help you write an expression that fits your text.

Table 32-4. Some useful regular expressions

Item Example Regular expression

U.S. state abbreviation (NM) ·[A-Z][A-Z]·

U.S. city, state (Portland, OR) ^.*,·[A-Z][A-Z]

Month day, year (JAN 05, 1993); (January
5, 1993)

[A-Z][A-Za-z]\{2,8\}·[0-9]\
{1,2\},·[0-9]\{4\}

U.S. Social Security
number (123-45-6789) [0-9]\{3\}-[0-9]\{2\}-[0-9]\{4\}=

U.S. telephone number (547-5800) [0-9]\{3\}-[0-9]\{4\}

Unformatted dollar
amounts ($1); ($ 1000000.00) \$·*[0-9]+(\.[0-9][0-9])?

HTML/SGML/XML
tags

(<h2>); (<UL
COMPACT>)

<[^>]*>

troff macro with first
argument (.SH "SEE ALSO") ^\.[A-Z12].·"[^"]*"

troff macro with all
arguments (.Ah "Tips for" "ex & vi") ^\.[A-Z12].·".*"

Blank lines ^$

Entire line ^.*$

One or more spaces ··*

—DD and JP

Valid Metacharacters for Different Unix Programs

Some regular expression metacharacters are valid for one program but not for another. Those that are
available to a particular Unix program are marked by a check (✓) in Table 32-5. Quick reference
descriptions of each of the characters can be found in Section 32.21.

[Unfortunately, even this table doesn't give the whole story. For example, Sun has taken some of the
extensions originally developed for ed, ex, and vi (such as the \< \> and \{ min, max \} modifiers)
and added them to other programs that use regular expressions. So don't be bashful — try things out,
but don't be surprised if every possible regular expression feature isn't supported by every program.
In addition, there are many programs that recognize regular expressions, such as perl, emacs, more,
dbx, expr, lex, pg, and less, that aren't covered in Daniel's table. — TOR]

Table 32-5. Valid metacharacters for different programs

Symbol ed ex vi sed awk grep egrep Action

. ✓ ✓ ✓ ✓ ✓ ✓ ✓ Match any character.

* ✓ ✓ ✓ ✓ ✓ ✓ ✓ Match zero or more preceding.

^ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Match beginning of line.

$ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Match end of line.

\ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Escape character following.

[] ✓ ✓ ✓ ✓ ✓ ✓ ✓ Match one from a set.

\(\) ✓ ✓ ✓ Store pattern for later replay.

\{\} ✓ ✓ ✓ Match a range of instances.

\<\> ✓ ✓ ✓ Match word's beginning or end.

+ ✓ ✓ Match one or more preceding.

? ✓ ✓ Match zero or one preceding.

| ✓ ✓ Separate choices to match.

() ✓ ✓ Group expressions to match.

In ed , ex, and sed, note that you specify both a search pattern (on the left) and a replacement pattern
(on the right). The metacharacters in Table 32-5 are meaningful only in a search pattern. ed, ex, and
sed support the additional metacharacters in Table 32-6 that are valid only in a replacement pattern.

Table 32-6. Valid metacharacters for replacement patterns

Symbol ex sed ed Action

\ ✓ ✓ ✓ Escape character following.
\ n ✓ ✓ ✓ Reuse pattern stored by \(\) pair number \n.

& ✓ ✓ Reuse previous search pattern.

~ ✓ Reuse previous replacement pattern.

\u \U ✓ Change character(s) to uppercase.

\l \L ✓ Change character(s) to lowercase.

\E ✓ Turn off previous \U or \L.

\e ✓ Turn off previous \u or \l.

— DG

Pattern Matching Quick Reference with Examples

Section 32.4 gives an introduction to regular expressions. This article is intended for those of you
who need just a quick listing of regular expression syntax as a refresher from time to time. It also
includes some simple examples. The characters in Table 32-7 have special meaning only in search
patterns.

Table 32-7. Special characters in search patterns

Pattern What does it match?

. Match any single character except newline.

*
Match any number (including none) of the single characters that immediately precede it.
The preceding character can also be a regular expression. For example, since . (dot) means
any character, .* means "match any number of any character."

^ Match the following regular expression at the beginning of the line.

$ Match the preceding regular expression at the end of the line.

[] Match any one of the enclosed characters.

A hyphen (-) indicates a range of consecutive characters. A caret (^) as the first character
in the brackets reverses the sense: it matches any one character not in the list. A hyphen or
a right square bracket (]) as the first character is treated as a member of the list. All other
metacharacters are treated as members of the list.

\{n,m
\}

Match a range of occurrences of the single character that immediately precedes it. The
preceding character can also be a regular expression. \{n\} will match exactly n
occurrences, \{n,\} will match at least n occurrences, and \{n,m\} will match any number of
occurrences between n and m.

\
Turn off the special meaning of the character that follows (except for \{ and \(, etc., where
it turns on the special meaning of the character that follows).

\(\)
Save the pattern enclosed between \(and \) into a special holding space. Up to nine patterns
can be saved on a single line. They can be "replayed" in substitutions by the escape
sequences \1 to \9.

\< \> Match characters at beginning (\<) or end (\>) of a word.

+ Match one or more instances of preceding regular expression.

? Match zero or one instances of preceding regular expression.

| Match the regular expression specified before or after.

(') Apply a match to the enclosed group of regular expressions.

The characters in Table 32-8 have special meaning only in replacement patterns.

Table 32-8. Special characters in replacement patterns

Pattern What does it do?

\ Turn off the special meaning of the character that follows.

\ n Restore the nth pattern previously saved by \(and \). n is a number from 1 to 9, with 1
starting on the left.

& Reuse the string that matched the search pattern as part of the replacement pattern.

\u Convert first character of replacement pattern to uppercase.

\U Convert replacement pattern to uppercase.

\l Convert first character of replacement pattern to lowercase.

\L Convert replacement pattern to lowercase.

Note that many programs, especially perl , awk, and sed, implement their own programming
languages and often have much more extensive support for regular expressions. As such, their manual
pages are the best place to look when you wish to confirm which expressions are supported or
whether the program supports more than simple regular expressions. On many systems, notably those
with a large complement of GNU tools, the regular expression support is astonishing, and many
generations of tools may be implemented by one program (as with grep, which also emulates the later
egrep in the same program, with widely varying support for expression formats based on how the
program is invoked). Don't make the mistake of thinking that all of these patterns will work
everywhere in every program with regex support, or of thinking that this is all there is.

Examples of Searching

When used with grep or egrep, regular expressions are surrounded by quotes. (If the pattern contains
a $, you must use single quotes from the shell; e.g., ' pattern '.) When used with ed, ex, sed, and
awk, regular expressions are usually surrounded by / (although any delimiter works). Table 32-9 has
some example patterns.

Table 32-9. Search pattern examples

Pattern What does it match?

bag The string bag.

^bag bag at beginning of line.

bag$ bag at end of line.

^bag$ bag as the only word on line.

[Bb]ag Bag or bag.

b[aeiou]g Second letter is a vowel.

b[^aeiou]g Second letter is a consonant (or uppercase or symbol).

b.g Second letter is any character.

^...$ Any line containing exactly three characters.

^\. Any line that begins with a . (dot).

^\.[a-z][a-z]
Same, followed by two lowercase letters (e.g., troff
requests).

^\.[a-z]\{2\} Same as previous, grep or sed only.

^[^.] Any line that doesn't begin with a . (dot).

bugs* bug, bugs, bugss, etc.

"word" A word in quotes.

"*word"* A word, with or without quotes.

[A-Z][A-Z]* One or more uppercase letters.

[A-Z]+ Same, extended regular expression format.

[A-Z].* An uppercase letter, followed by zero or more characters.

[A-Z]* Zero or more uppercase letters.

[a-zA-Z] Any letter.

[a-zA-Z] Any letter.

[^0-9A-Za-z] Any symbol (not a letter or a number).

[567] One of the numbers 5, 6, or 7.

Extended regular expression
patterns:

five|six|seven One of the words five, six, or seven.

80[23]?86 One of the numbers 8086, 80286, or 80386.

compan(y|ies) One of the words company or companies.

\<the Words like theater or the.

the\> Words like breathe or the.

\<the\> The word the.

0\{5,\} Five or more zeros in a row.

[0-9]\{3\}-[0-9]\{2\}-[0-9]\
{4\} U.S. Social Security number (nnn - nn - nnnn).

Examples of Searching and Replacing

Table 32-10 shows the metacharacters available to sed or ex. (ex commands begin with a colon.) A
space is marked by ·; a TAB is marked by tab.

Table 32-10. Search and replace commands

Command Result

s/.*/(&)/ Redo the entire line, but add parentheses.

s/.*/mv & &.old/ Change a word list into mv commands.

/^$/d Delete blank lines.

:g/^$/d ex version of previous.

/^[· tab]*$/d Delete blank lines, plus lines containing only spaces or
TABs.

:g/^[· tab]*$/d ex version of previous.

s/··*/·/g Turn one or more spaces into one space.

:%s/·*/·/g ex version of previous.

:s/[0-9]/Item &:/ Turn a number into an item label (on the current line).

:s Repeat the substitution on the first occurrence.

:& Same.

:sg Same, but for all occurrences on the line.

:&g Same.

:%&g Repeat the substitution globally.

:.,$s/Fortran/\U&/g Change word to uppercase, on current line to last line.

:%s/.*/\L&/ Lowercase entire file.

:s/\<./\u&/g
Uppercase first letter of each word on current line (useful
for titles).

:%s/yes/No/g Globally change a word to No.

:%s/Yes/~/g
Globally change a different word to No (previous
replacement).

s/die or do/do or die/ Transpose words.

s/\([Dd]ie\) or \([Dd]o\)/\2
or \1/

Transpose, using hold buffers to preserve case.

— DG

Chapter 33. Wildcards

File-Naming Wildcards

Wildcards (Section 1.13) are the shell's way of abbreviating filenames. Just as in poker, where a
wildcard is a special card that can match any card in the deck, filename wildcards are capable of
matching letters or groups of letters in the alphabet. Rather than typing a long filename or a long chain
of filenames, a wildcard lets you provide parts of names and then use some "wildcard characters" for
the rest. For example, if you want to delete all files whose names end in .o, you can give the
following command:
% rm *.o

You don't have to list every filename.

I'm sure you already know that wildcards are useful in many situations. If not, they are summarized in
Section 33.2. Here are a few of my favorite wildcard applications:

If you remember part of a filename, but not the whole name, you can use wildcards to help you
find it. If I have a file on genetics saved in a directory with several hundred other files, a
command like:
% ls *gene*

will often find what I want. It's quicker and easier than find (Section 9.1).
Wildcards are a natural when you want to work with groups of files. If I have a general purpose
directory that's full of filenames ending in .c and .h, I can make new subdirectories and use
wildcards to move the files easily:
% mkdir c h
% mv *.c c

Wildcards often help you to work with files with inconvenient characters in their names. Let's
say you have a file named abc x e, where x is some unknown control character. You can delete
or rename that file by using the wildcarded name abc?e. (When you do this, be careful that your
wildcard doesn't match more than you intend, perhaps by running an ls using the pattern first.)
 Wildcards can appear in any component of a pathname. This can often be used to your
advantage. For example, let's say that you have a directory named /work, split into
subdirectories for a dozen different projects. For each project, you have a schedule, in a file
called (obviously enough) schedule.txt. You can print all the schedules with a command like:
% lpr /work/*/schedule.txt

(However, you can occasionally run into problems (Section 33.5).)

It's a common misconception, particularly among new users, that application programs and utilities
have something to do with wildcards. Given a command like grep ident *.c, many users think that
grep handles the * and looks to see which files have names that end in .c. If you're at all familiar with
Unix's workings, you'll realize that this is the wrong picture. The shell interprets wildcards. That is,
the shell figures out which files have names ending in .c, puts them in a list, puts that list on the
command line, and then hands that command line to grep. As it processes the command line, the shell
turns grep ident *.c into grep ident file1.c file2.c....

Since there are several shells, one might think (or fear!) that there should be several different sets of
wildcards. Fortunately, there aren't. The basic wildcards work the same for all shells.

— ML

Filename Wildcards in a Nutshell

This article summarizes the wildcards that are used for filename expansion (see Table 33-1). The
shells use the same basic wildcards, though most shells have some extensions. Unless otherwise
noted, assume that wildcards are valid for all shells.

Table 33-1. Filename wildcards

Wildcard Shells Description

* All Match zero or more characters. For example, a* matches the files a, ab, abc,
abc.d, and so on. (zsh users: also see x# and x##, below.)

? All Match exactly one character. For example, a? matches aa, ab, ac, etc.

[12..a..z] All Match any character listed in the brackets. For example, a[ab] matches aa or
ab.

[a-z] All
Match all characters between a and z, in a case-sensitive manner, based on the
characters' value in the ASCII character set. For example, a[0-9] matches a0,
a1, and so on, up to a9.

[!ab..z]

bash,
ksh,
zsh,
newer
sh

Match any character that does not appear within the brackets. For example,
a[!0-9] doesn't match a0 but does match aa.

[^ab..z]
tcsh,
zsh

Match any character that does not appear within the brackets. For example,
a[^0-9] doesn't match a0, but does match aa.

< m-n > zsh
Any number in the range m to n. If m is omitted, this matches numbers less than
or equal to n. If n is omitted, it matches numbers greater than or equal to m. The
pattern <-> matches all numbers.

{
word1,word2
...}

bash,
csh,
pdksh,
zsh

Match word1, word2, etc. For example, a_{dog,cat,horse} matches the
filenames a_dog, a_cat, and a_horse. These (Section 28.4) actually aren't
filename-matching wildcards. They expand to all strings you specify, including
filenames that don't exist yet, email addresses, and more. (If you want to match
one or more of a group of filenames that already exist, see also the parenthesis
operators () below.)

?(x | y | z
)

ksh,
bash2

Match zero or one instance of any of the specified patterns. For example, w?
(abc)w matches ww or wabcw. Also, ?(foo|bar) matches only foo, bar, and
the empty string. In bash2, this works only if you've set the extglob option
using shopt.

Match zero or more instances of any of the specified patterns. For example, w*

*(x | y | z
)

ksh,
bash2

(abc)w matches ww, wabcw, wabcabcw, etc. Also, *(foo|bar) matches foo,
bar, foobarfoo, etc., as well as the empty string. In bash2, this works only if
you've set the extglob option using shopt.

+(x | y | z
)

ksh,
bash2

Match one or more instances of any of the specified patterns. For example, w+
(abc)w matches wabcw, wabcabcw, etc. Also, +(foo|bar) matches foo, bar,
foobarfoo, etc. In bash2, this works only if you've set the extglob option using
shopt.

@(x | y | z
)

ksh,
bash2

Match exactly one of any of the specified patterns. For example, @(foo|bar)
matches foo or bar. (See also {word1,word2...}.) In bash2, this works only
if you've set the extglob option using shopt.

!(x | y | z
)

ksh,
bash2

Match anything that doesn't contain any of the specified patterns. For example,
w!(abc)w doesn't match wabcw or wabcabcw, but it does match practically
anything else that begins or ends with w. Also, !(foo|bar) matches all strings
except foo and bar. In bash2, this works only if you've set the extglob option
using shopt. (For other shells, see nom (Section 33.8).)

^ pat tcsh,
zsh

Match any name that doesn't match pat. In zsh, this only works if you've set the
EXTENDED_GLOB option. In tcsh, the pat must include at least one of the
wildcards *, ? and []. So, to match all except a single name in tcsh, here's a
trick: put brackets around one character. For instance, you can match all except
abc with ^ab[c]. (For other shells, see nom (Section 33.8).)

(x | y) zsh Match either x or y. The vertical bar (|) must be used inside parentheses.

** zsh Search recursively.

*** zsh Search recursively, following symbolic links to directories.

x # zsh
Matches zero or more occurrences of the pattern x (like the regular
expresssion (Section 32.2) x*). The pattern can have parentheses () around
it. You must have set the EXTENDED_GLOB option.

x ## zsh
Matches one or more occurrences of the pattern x (like the regular
expresssion (Section 32.15) x+). The pattern can have parentheses () around
it. You must have set the EXTENDED_GLOB option.

Note that wildcards do not match files whose names begin with a dot (.), like .cshrc. This prevents
you from deleting (or otherwise mucking around with) these files by accident. The usual way to match
those files is to type the dot literally. For example, .[a-z]* matches anything whose name starts with
a dot and a lowercase letter. Watch out for plain .*, though; it matches the directory entries . and ...
If you're constantly needing to match dot-files, though, you can set the bash variable
glob_dot_filenames and the zsh option GLOB_DOTS to include dot-files' names in those shells'
wildcard expansion.

You can prevent wildcard expansion by quoting (Section 27.12, Section 27.13), of course. In the C
shells, you can stop all wildcard expansion (which is also called globbing, by the way) without

quoting if you set the noglob shell variable. In bash, ksh, and zsh, set the noglob option.

And a final note: many operating systems (VAX/VMS and DOS included) consider a file's name and
extension to be different entities; therefore, you can't use a single wildcard to match both. What do
we mean? Consider the file abc.def. Under DOS or VMS, to match this filename you'd need the
wildcard expression *.*. The first * matches the name (the part before the period), and the second
matches the extension (the part after the period). Although Unix uses extensions, they aren't
considered a separate part of the filename, so a single * will match the entire name.

—JP, ML, and SJC

Who Handles Wildcards?

Wildcards (Section 1.13) are actually defined by the Unix shells, rather than the Unix filesystem. In
theory, a new shell could define new wildcards, and consequently, we should discuss wildcarding
when we discuss the shell. In practice, all Unix shells (including ksh, bash, and other variants
(Section 1.6)) honor the same wildcard conventions, and we don't expect to see anyone change the
rules. (But most new shells also have extended wildcards (Section 33.2). And different shells do
different things when a wildcard doesn't match (Section 33.4).)

You may see different wildcarding if you have a special-purpose shell that emulates another
operating system (for example, a shell that looks like the COMMAND.COM in MS-DOS) — in this
case, your shell will obey the other operating system's wildcard rules. But even in this case, operating
system designers stick to a reasonably similar set of wildcard rules.

The fact that the shell defines wildcards, rather than the filesystem itself or the program you're
running, has some important implications for a few commands. Most of the time, a program never
sees wildcards. For example, the result of typing:
% lpr *

is exactly the same as typing:
% lpr
 file1 file2 file3 file4 file5

In this case everything works as expected. But there are other situations in which wildcards don't
work at all. Assume you want to read some files from a tape, which requires the command tar x
(Section 38.6), so you type the command tar x *.txt. Will you be happy or disappointed?

You'll be disappointed — unless older versions of the files you want are already in your current
directory (Section 1.16). The shell expands the wildcard *.txt, according to what's in the current
directory, before it hands the completed command line over to tar for execution. All tar gets is a
list of files. But you're probably not interested in the current directory; you probably want the
wildcard * to be expanded on the tape, retrieving any *.txt files that the tape has.

There's a way to pass wildcards to programs, without having them interpreted by the shell. Simply put
*.txt in quotes (Section 27.12). The quotes prevent the Unix shell from expanding the wildcard,
passing it to the command unchanged. Programs that can be used in this way (like ssh and scp
(Section 46.6)) know how to handle wildcards, obeying the same rules as the shell (in fact, these
programs usually start a shell to interpret their arguments). You only need to make sure that the
programs see the wildcards, that they aren't stripped by the shell before it passes the command line to
the program. As a more general rule, you should be aware of when and why a wildcard gets
expanded, and you should know how to make sure that wildcards are expanded at an appropriate
time.

Note
If y our shell understands the {} characters (Section 28.4), y ou can use them because they can generate any string — not just filenames that already exist. You have to ty pe the unique part of each name, but y ou only have to ty pe the common
part once. For example, to extract the files called project/wk9/summary, project/wk14/summary, and project/wk15/summary from a tar tape or file, y ou might use:

% tar xv project/wk{9,14,15}/summary
x project/wk9/summary, 3161 bytes, 7 tape blocks
x project/wk14/summary, 878 bytes, 2 tape blocks

x project/wk15/summary, 2268 bytes, 5 tape blocks

Some versions of tar understand wildcards, but many don't. There is a clever workaround (Section
38.10).

— ML

What if a Wildcard Doesn't Match?

I ran into a strange situation the other day. I was compiling a program that was core dumping. At some
point, I decided to delete the object files and the core file, and start over, so I gave the command:
% rm *.o core

It works as expected most of the time, except when no object files exist. (I don't remember why I did
this, but it was probably by using !! (Section 30.8) when I knew there weren't any .o's around.) In this
case, you get No match, and the core file is not deleted.

It turns out, for C shell users, that if none of the wildcards can be expanded, you get a No match
error. It doesn't matter that there's a perfectly good match for other name(s). That's because, when csh
can't match a wildcard, it aborts and prints an error — it won't run the command. If you create one .o
file or remove the *.o from the command line, core will disappear happily.

On the other hand, if the Bourne shell can't match a wildcard, it just passes the unmatched wildcard
and other filenames:
*.o core

to the command (in this case, to rm) and lets the command decide what to do with it. So, with Bourne
shell, what happens will depend on what your rm command does when it sees the literal characters
*.o.

The Korn shell works like the Bourne shell.

You can make csh and tcsh act a lot like sh (and ksh) by setting the shell's nonomatch option. Without
nonomatch set, the shell sees a nonmatching wildcard and never runs ls at all. Then I set nonomatch
and the shell passes the unmatched wildcard on to ls, which prints its own error message:
% ls a*
ls: No match.
% set nonomatch
% ls a*
ls: a*: No such file or directory

In bash Version 1, the option allow_null_glob_expansion converts nonmatching wildcard patterns
into the null string. Otherwise, the wildcard is left as is without expansion. Here's an example with
echo (Section 27.5), which simply shows the arguments that it gets from the shell. In the directory
where I'm running this example, there are no names starting with a, but there are two starting with s.
In the first case below, allow_null_glob_expansion isn't set, so the shell passes the unmatched a* to
echo. After setting allow_null_glob_expansion, the shell removes the unmatched a* before it passes
the results to echo:
bash$ echo a* s*
a* sedscr subdir
bash$ allow_null_glob_expansion=1
bash$ echo a* s*
sedscr subdir

bash Version 2 leaves nonmatching wildcard patterns as they are unless you've set the shell's
nullglob option (shopt -s nullglob). The nullglob option does the same thing that
allow_null_glob_expansion=1 does in bash version 1.

zsh gives you all of those choices. See the options CSH_NULL_GLOB, NOMATCH and
NULL_GLOB.

—ML and JP

Maybe You Shouldn't Use Wildcards in Pathnames

Suppose you're giving a command like the one below (not necessarily rm — this applies to any Unix
command):
% rm /somedir/otherdir/*

Let's say that matches 100 files. The rm command gets 100 complete pathnames from the shell:
/somedir/otherdir/afile, /somedir/otherdir/bfile, and so on. For each of these files, the Unix kernel
has to start at the root directory, then search the somedir and otherdir directories before it finds the
file to remove.

That can make a significant difference, especially if your disk is already busy. It's better to cd to the
directory first and run the rm from there. You can do it in a subshell (with parentheses) (Section
43.7) if you want to, so you won't have to cd back to where you started:

&& Section 35.14
% (cd /somedir/otherdir && rm *)

There's one more benefit to this second way: you're not as likely to get the error Arguments too
long. (Another way to handle long command lines is with the xargs (Section 28.17) command.)

— JP

Getting a List of Matching Files with grep -l

Normally when you run grep (Section 13.1) on a group of files, the output lists the filename along
with the line containing the search pattern. Sometimes you want to know only the names of the files,
and you don't care to know the line (or lines) that match. In this case, use the -l (lowercase letter "l")
option to list only filenames where matches occur. For example, the following command:
% grep -l R6
 file1 file2 ...
 > r6.filelist

searches the files for a line containing the string R6, produces a list of those filenames, and stores the
list in r6.filelist. (This list might represent the files containing Release 6 documentation of a
particular product.) Because these Release 6 files can now be referenced by one list, you can treat
them as a single entity and run various commands on them all at once:

'...' Section 28.14
% lpr `cat r6.filelist`
 Print only the Release 6 files
% grep UNIX `cat r6.filelist`
 Search limited to the Release 5 files

You don't have to create a file list, though. You can insert the output of a grep directly into a
command line with command substitution. For example, to edit only the subset of files containing R6,
you would type:
% vi `grep -l R6
 file1 file2 ...`

(Of course, you also could use a wildcard like file* instead of a list of filenames.)

grep -l is also good for shell programs that need to check whether a file contains a particular string.
The traditional way to do that test is by throwing away grep's output and checking its exit status:
if grep something somefile >/dev/null
then ...

If somefile is huge, though, grep has to search all of it. Adding the grep -l option saves time because
grep can stop searching after it finds the first matching line.

—DG and JP

Getting a List of Nonmatching Files

You can use the grep (Section 13.2) option -c to tell you how many occurrences of a pattern appear
in a given file, so you can also use it to find files that don't contain a pattern (i.e., zero occurrences of
the pattern). This is a handy technique to package into a shell script.

Using grep -c

Let's say you're indexing a DocBook (SGML) document and you want to make a list of files that don't
yet contain indexing tags. What you need to find are files with zero occurrences of the string
<indexterm>. (If your tags might be uppercase, you'll also want the -i option (Section 9.22).) The
following command:
% grep -c "<indexterm>" chapter*

might produce the following output:
chapter1.sgm:10
chapter2.sgm:27
chapter3.sgm:19
chapter4.sgm:0
chapter5.sgm:39
 ...

This is all well and good, but suppose you need to check index entries in hundreds of reference pages.
Well, just filter grep's output by piping it through another grep. The previous command can be
modified as follows:
% grep -c "<indexterm>" chapter* | grep :0

This results in the following output:
chapter4.sgm:0

Using sed (Section 34.1) to truncate the :0, you can save the output as a list of files. For example,
here's a trick for creating a list of files that don't contain index macros:
% grep -c "<indexterm>" * | sed -n 's/:0$//p' > ../not_indexed.list

The sed -n command prints only the lines that contain :0; it also strips the :0 from the output so that
../not_indexed.list contains a list of files, one per line. For a bit of extra safety, we've added a $
anchor (Section 32.5) to be sure sed matches only 0 at the end of a line — and not, say, in some
bizarre filename that contains :0. (We've quoted (Section 27.12) the $ for safety — though it's not
really necessary in most shells because $/ can't match shell variables.) The .. pathname (Section
1.16) puts the not_indexed.list file into the parent directory — this is one easy way to keep grep from
searching that file, but it may not be worth the bother.

To edit all files that need index macros added, you could type this:
% vi `grep -c "<indexterm>" * | sed -n 's/:0$//p'`

This command is more obvious once you start using backquotes a lot.

The vgrep Script

You can put the grep -c technique into a little script named vgrep with a couple of safety features
added:

"$@" Section 35.20

 Go to http://examples.oreilly.com/upt3 for more information on: vgrep
#!/bin/sh
case $# in
0|1) echo "Usage: `basename $0` pattern file [files...]" 1>&2; exit 2 ;;
2) # Given a single filename, grep returns a count with no colon or name.
 grep -c -e "$1" "$2" | sed -n "s|^0\$|$2|p"
 ;;
*) # With more than one filename, grep returns "name:count" for each file.
 pat="$1"; shift
 grep -c -e "$pat" "$@" | sed -n "s|:0\$||p"
 ;;
esac

Now you can type, for example:
% vi `vgrep "<indexterm>" *`

One of the script's safety features works around a problem that happens if you pass grep just one
filename. In that case, most versions of grep won't print the file's name, just the number of matches.
So the first sed command substitutes a digit 0 with the filename.

The second safety feature is the grep -e option. It tells grep that the following argument is the search
pattern, even if that pattern looks like an option because it starts with a dash (-). This lets you type
commands like vgrep -0123 * to find files that don't contain the string -0123.

—DG and JP

http://examples.oreilly.com/upt3

nom: List Files That Don't Match a Wildcard

 Go to http://examples.oreilly.com/upt3 for more information on: nom

The nom (no match) script takes filenames (usually expanded by the shell) from its command line. It
outputs all filenames in the current directory that don't match. As Section 33.2 shows, some shells
have an operator — ! or ^ — that works like nom, but other shells don't. Here are some examples of
nom:

To get the names of all files that don't end with .ms:
% nom *.ms

To edit all files whose names don't have any lowercase letters, use command substitution
(Section 27.14):
% vi `nom *[a-z]*`

To copy all files to a subdirectory named Backup (except Backup itself):
% cp `nom Backup` Backup

Here's the script:

trap Section 35.17, case Section 35.11, $* Section 35.20, comm Section 11.8
#! /bin/sh
temp=/tmp/NOM$$
stat=1 # Error exit status (set to 0 before normal exit)
trap 'rm -f $temp; exit $stat' 0 1 2 15

Must have at least one argument, and all have to be in current directory:
case "$*" in
"") echo Usage: `basename $0` pattern 1>&2; exit ;;
/) echo "`basename $0` quitting: I can't handle '/'s." 1>&2; exit ;;
esac

ls gives sorted file list. -d=don't enter directories, -1=one name/line.
ls -d ${1+"$@"} > $temp # Get filenames we don't want to match
ls -1 | comm -23 - $temp # Compare to current dir; output names we want
stat=0

The -d option (Section 8.5) tells ls to list the names of any directories, not their contents. The
${1+"$@"} (Section 36.7) works around a problem in some Bourne shells. You can remove the -1
option on the script's ls command line if your version of ls lists one filename per line by default;
almost all versions of ls do that when they're writing into a pipe. Note that nom doesn't know about
files whose names begin with a dot (.); you can change that if you'd like by adding the ls -A option
(uppercase letter "A", which isn't on all versions of ls).

Finally, if you've got a shell with process substitution, such as bash, which is what we use below,
you can rewrite nom without the temporary file and the trap:
#!/bin/bash
Must have at least one argument, and all have to be in current directory:
case "$*" in
"") echo Usage: `basename $0` pattern 1>&2; exit ;;
/) echo "`basename $0` quitting: I can't handle '/'s." 1>&2; exit ;;
esac

ls gives sorted file list. -d=don't enter directories, -1=one name/line.
Compare current directory with names we don't want; output names we want:
comm -23 <(ls -1) <(ls -d "$@")

http://examples.oreilly.com/upt3

Chapter 34. The sed Stream Editor

sed Sermon^H^H^H^H^H^HSummary

^H^H^H are ASCII backspace characters. Written printably in email and Usenet messages, they're a
tongue-in-cheek way of "erasing" the characters before without actually erasing them. They let you
say "I didn't want you to see that" when you actually do.

sed (stream editor) amazes me. Why? It's not just that sed can edit data as it streams through a pipe
(like all well-behaved Unix filters (Section 1.5) do). sed can test and branch and substitute and hold
and exchange data as it streams through, but so can almost any scripting language. Maybe it's the
minimalist in me that loves a tiny program (by today's standards, at least) with just a few operations
— but operations so well-chosen that they make the tool powerful for its size. Sure, sure, Perl
probably can do everything that sed can — and do each of those things in twenty different ways. Ah,
I've got it: when I'm trying to do anything more than a simple substitution on data streaming by, sed's
elegant simplicity almost forces me to strip a problem to its basics, to think of what I really need to
do. No functions, no libraries, nothing except beautifully simple functionality.

[As someone who learned Perl regular expressions before I learned sed, I can relate to what Jerry is
saying. One of the things I like about the classic Unix toolbox programs like sed is that they really do
force you into a sort of Shaker-like elegant simplicity; the best programs, no matter what the language,
have a quality like a Shaker chair: pure function, but with a respect for the fact that function doesn't
have to be ugly. — SJC]

End of sermon. ;-) Even if you aren't into elegance and simplicity, and you just wanna get the job
done, what do we cover about sed that might be useful?

In this chapter, we start out with the basics: Section 34.2, Section 34.3, Section 34.4, Section 34.5,
Section 34.6, and Section 34.7 show you how to get started, how to test your scripts, and how to
structure more advanced scripts. Section 34.8 through Section 34.14 cover regular expressions and
complex transformations. Section 34.15 through Section 34.24 deal with advanced topics such as
multiline matching and deletions, tests, and exiting a script when you're done.

—JP and SJC

Two Things You Must Know About sed

If you are already familiar with global edits in other editors like vi or ex, you know most of what you
need to know to begin to use sed. There are two things, though, that make it very different:

1. It doesn't change the file it edits. It is just what its name says: a "stream editor" — designed to
take a stream of data from standard input (Section 43.1) or a file, transform it, and pass it to
standard output (Section 43.1). If you want to edit a file, you have to write a shell wrapper
(Section 34.4) to capture standard output and write it back into your original file.

2. sed commands are implicitly global. In an editor like ex, the command:
s/old/new/

will change "old" to "new" only on the current line unless you use the global command or
various addressing symbols to apply it to additional lines. In sed, exactly the opposite is true. A
command like the one above will be applied to all lines in a file. Addressing symbols are used
to limit the extent of the match. (However, like ex, only the first occurrence of a pattern on a
given line will be changed unless the g flag is added to the end of the substitution command.)

If all you want to do is make simple substitutions, you're ready to go. If you want to do more than that,
sed has some unique and powerful commands.

This chapter makes no attempt to cover everything there is to know about sed. For the most part, this
chapter simply contains advice on working with sed and extended explanations of how to use some of
its more difficult commands.

— TOR

Invoking sed

If you were using sed on the fly, as a stream editor (Section 34.2), you might execute it as simply as
this:
% somecommand
 | sed 's/old/new/' |
 othercommand

Given filenames, sed will read them instead of standard input:
% sed 's/old/new/' myfile

A simple script can go right on the command line. If you want to execute more than one editing
command, you can use the -e option:
% sed -e 's/old/new/' -e '/bad/d' myfile

Or you can use semicolons (;), which are a sed command separator:
% sed 's/old/new/; /bad/d' myfile

Or (especially useful in shell scripts (Section 1.8)) you can use the Bourne shell's ability to
understand multiline commands:
sed '
s/old/new/
/bad/d' myfile

Or you can put your commands into a file and tell sed to read that file with the -f option:
% sed -f scriptfile myfile

There's only one other command-line option: -n . sed normally prints every line of its input (except
those that have been deleted by the editing script). But there are times when you want only lines that
your script has affected or that you explicitly ask for with the p command. In these cases, use -n to
suppress the normal output.

— TOR

Testing and Using a sed Script: checksed, runsed

All but the simplest sed scripts are often invoked from a "shell wrapper," a shell script (Section
35.2) that invokes sed and also contains the editing commands that sed executes. A shell wrapper is
an easy way to turn what could be a complex command line into a single-word command. The fact
that sed is being used might be transparent to users of the command.

Two shell scripts that you should immediately arm yourself with are described here. Both use a shell
for loop (Section 35.21) to apply the same edits to any number of files. But the first just shows the
changes, so you can make sure that your edits were made correctly. The second writes the edits back
into the original file, making them permanent.

checksed

 Go to http://examples.oreilly.com/upt3 for more information on: checksed

The shell script checksed automates the process of checking the edits that sed makes. It expects to
find the script file, sedscr, in the current directory and applies these instructions to the input files
named on the command line. The output is shown by a pager program; the default pager is more .
#! /bin/sh
script=sedscr

for file
do
 echo "********** < = $file > = sed output **********"
 sed -f $script "$file" | diff "$file" -
done | ${PAGER-more}

For example:
$ cat sedscr
s/jpeek@ora\.com/jpeek@jpeek.com/g
$ checksed home.html new.html
********** < = home.html > = sed output **********
102c102
< Email it or use this form:
--
> Email it or use this form:
124c124
< Page created by: jpeek@ora.com>
--
> Page created by: jpeek@jpeek.com
********** < = new.html > = sed output **********
22c22
< Send comments to me!

> Send comments to me!

If you find that your script did not produce the results you expected, perfect the editing script and run
checksed again.

http://examples.oreilly.com/upt3

runsed

 Go to http://examples.oreilly.com/upt3 for more information on: runsed

The shell script runsed was developed to make changes to a file permanently. It applies your sedscr
to an input file, creates a temporary file, then copies that file over the original. runsed has several
safety checks:

It won't edit the sed script file (if you accidentally include sedscr on the command line).
It complains if you try to edit an empty file or something that isn't a file (like a directory).
If the sed script doesn't produce any output, runsed aborts instead of emptying your original file.

runsed only modifies a file if your sedscr made edits. So, the file's timestamp (Section 8.2) won't
change if the file's contents weren't changed.

Like checksed, runsed expects to find a sed script named sedscr in the directory where you want to
make the edits. Supply the name or names of the files to edit on the command line. Of course, shell
metacharacters (Section 33.2) can be used to specify a set of files:
$ runsed *.html
runsed: editing home.html:
runsed: done with home.html
runsed: editing new.html:
runsed: done with new.html
runsed: all done

runsed does not protect you from imperfect editing scripts. You should use checksed first to verify
your changes before actually making them permanent with runsed. (You could also modify runsed to
keep backup copies of the original versions.)

—DD, JP, and TOR

http://examples.oreilly.com/upt3

sed Addressing Basics

A sed command can specify zero, one, or two addresses. An address can be a line number, a line
addressing symbol, or a regular expression (Section 32.4) that describes a pattern.

If no address is specified, the command is applied to each line.
If there is only one address, the command is applied to any line matching the address.
If two comma-separated addresses are specified, the command is performed on the first
matching line and all succeeding lines up to and including a line matching the second address.
This range may match multiple times throughout the input.
If an address is followed by an exclamation mark (!), the command is applied to all lines that do
not match the address.

To illustrate how addressing works, let's look at examples using the delete command, d. A script
consisting of simply the d command and no address:
d

produces no output since it deletes all lines.

When a line number is supplied as an address, the command affects only that line. For instance, the
following example deletes only the first line:
1d

The line number refers to an internal line count maintained by sed. This counter is not reset for
multiple input files. Thus, no matter how many files were specified as input, there is only one line 1
in the input stream.

Similarly, the input stream has only one last line. It can be specified using the addressing symbol, $.
The following example deletes the last line of input:
$d

The $ symbol should not be confused with the $ used in regular expressions, where it means the end
of the line.

When a regular expression is supplied as an address, the command affects only the lines matching that
pattern. The regular expression must be enclosed by slashes (/). The following delete command:
/^$/d

deletes only blank lines. All other lines are passed through untouched.

If you supply two addresses, you specify a range of lines over which the command is executed. The
following example shows how to delete all lines surrounded by a pair of XHTML tags, in this case,
 and , that mark the start and end of an unordered list:
/^/,/^<\/ul>/d

It deletes all lines beginning with the line matched by the first pattern up to and including the line
matched by the second pattern. Lines outside this range are not affected. If there is more than one list
(another pair of and after the first), those lists will also be deleted.

The following command deletes from line 50 to the last line in the file:
50,$d

You can mix a line address and a pattern address:

1,/^$/d

This example deletes from the first line up to the first blank line, which, for instance, will delete the
header from an email message.

You can think of the first address as enabling the action and the second address as disabling it. sed
has no way of looking ahead to determine if the second match will be made. The action will be
applied to lines once the first match is made. The command will be applied to all subsequent lines
until the second match is made. In the previous example, if the file did not contain a blank line, then
all lines would be deleted.

An exclamation mark following an address reverses the sense of the match. For instance, the
following script deletes all lines except those inside XHTML unordered lists:
/^/,/^<\/ul>/!d

Curly braces ({}) let you give more than one command with an address. For example, to search every
line of a list, capitalize the word Caution on any of those lines, and delete any line with
:
/^/,/^<\/ul>/{
 s/Caution/CAUTION/g
 /<br \/>/d
}

Order of Commands in a Script

Combining a series of edits in a script can have unexpected results. You might not think of the
consequences one edit can have on another. New users typically think that sed applies an individual
editing command to all lines of input before applying the next editing command. But the opposite is
true. sed applies every editing command to the first input line before reading the second input line and
applying the editing script to it. Because sed is always working with the latest version of the original
line, any edit that is made changes the line for subsequent commands. sed doesn't retain the original.
This means that a pattern that might have matched the original input line may no longer match the line
after an edit has been made.

Let's look at an example that uses the substitute command. Suppose someone quickly wrote the
following script to change pig to cow and cow to horse:
s/pig/cow/
s/cow/horse/

The first command would change pig to cow as expected. However, when the second command
changed cow to horse on the same line, it also changed the cow that had been a pig. So, where the
input file contained pigs and cows, the output file has only horses!

This mistake is simply a problem of the order of the commands in the script. Reversing the order of
the commands — changing cow into horse before changing pig into cow — does the trick.

Another way to deal with this effect is to use a pattern you know won't be in the document except
when you put it there, as a temporary placeholder. Either way, you know what the "document" looks
like after each step in the program.
s/pig/cXXXoXXXw/
s/cow/horse/
s/cXXXoXXXw/cow/

Some sed commands change the flow through the script. For example, the N command (Section
34.16) reads another line into the pattern space without removing the current line, so you can test for
patterns across multiple lines. Other commands tell sed to exit before reaching the bottom of the
script or to go to a labeled command. sed also maintains a second temporary buffer called the hold
space. You can copy the contents of the pattern space to the hold space and retrieve it later. The
commands that make use of the hold space are discussed in Section 34.14 and other articles after it.

— DD

One Thing at a Time

I find that when I begin to tackle a problem using sed, I do best if I make a mental list of all the things
I want to do. When I begin coding, I write a script containing a single command that does one thing. I
test that it works, then I add another command, repeating this cycle until I've done all that's obvious to
do. I say what's obvious because my list is not always complete, and the cycle of implement-and-test
often adds other items to the list. Another approach involves actually typing the list of tasks into a
file, as comments, and then slowly replacing them with sed commands. If you're one of the rare but
highly appreciated breed that actually documents their code, you can just leave the comments in the
script or expand on them.

It may seem to be a rather tedious process to work this way, and indeed there are a number of scripts
where it's fine to take a crack at writing the whole script in one pass and then begin testing it.
However, the one-step-at-a-time method is highly recommended for beginners, because you isolate
each command and get to easily see what is working and what is not. When you try to do several
commands at once, you might find that when problems arise, you end up recreating the recommended
process in reverse; that is, removing or commenting out commands one by one until you locate the
problem.

— DD

Delimiting a Regular Expression

Whether in sed or vi, when using the substitution command, a delimiter is required to separate the
search pattern from the replacement string. The delimiter can be any character except blank or a
newline (vi seems to be more restrictive than sed, although vim is extremely flexible). However, the
usual practice is to use the slash (/) as a delimiter (for example, s/ search / replacement /).

When either the search pattern or the replacement string contains a slash, it is easier to change the
delimiter character than to escape the slash. Thus, if the pattern was attempting to match Unix
pathnames, which contain slashes, you could choose another character, such as a colon, as the
delimiter:
s:/usr/mail:/usr2/mail:

Note that the delimiter appears three times and is required after the replacement. Regardless of which
delimiter you use, if it does appear in the search pattern or the replacement, put a backslash (\)
before it to escape it.

If you don't know what characters the search pattern might have (in a shell program that handles any
kind of input, for instance), the safest choice for the delimiter can be a control character.

You can use any delimiter for a pattern address (not just a slash). Put a backslash before the first
delimiter. For example, to delete all lines containing /usr/mail, using a colon (:) as the delimiter:
\:/usr/mail:d

—DD and JP

Newlines in a sed Replacement

The backslash (\) in the replacement string of the sed substitution command is generally used to
escape other metacharacters, but it is also used to include a newline in a replacement string.

Given the following input line where each item is separated by a tab:
Column1 Column2 Column3 Column4

we can replace the second tab character on each line with a newline character:

2 Section 34.12
s/TAB/\
/2

Note that no spaces are permitted after the backslash. This script produces the following result:
Column1 Column2
Column3 Column4

Another example comes from the conversion of a file for troff to HTML. It converts the following
line for troff:
.Ah "Major Heading"

to a similar line for HTML:
<h1>Major Heading</h1>

The twist in this problem is that the line needs to be preceded and followed by a blank line. It is an
example of writing a multiline replacement string:
/^\.Ah/{
s/\.Ah */\
\
<h1>
s/"//g
s@$@</h1>\
@
}

The first substitute command replaces .Ah with two newlines and <h1>. Each backslash at the end of
the line is necessary to escape the newline. The second substitution removes the quotation marks. The
last command matches end of line in the pattern space (not the embedded newline); it appends </h1>
and a newline. We use @ as the delimiter, instead of /, to avoid conflicts with the / in </h1>.

— DD

Referencing the Search String in a Replacement

As a metacharacter, the ampersand (&) represents the extent of the pattern match, not the line that was
matched. For instance, you might use it to match a word and surround it with troff requests. The
following example surrounds a word with point-size requests:
s/UNIX/\\s-2&\\s0/g

Because backslashes are also replacement metacharacters, two backslashes are necessary to output a
single backslash. The & in the replacement string refers to the string which was originally matched,
UNIX. If the input line is:
on the UNIX Operating System.

the substitute command produces:
on the \s-2UNIX\s0 Operating System.

The ampersand is particularly useful when the regular expression matches variations of a word. It
allows you to specify a variable replacement string that corresponds to what was actually matched.
For instance, let's say that you wanted to surround with parentheses any cross reference to a numbered
section in a document. In other words, any reference such as See Section 1.4 or See Section
12.9 should appear in parentheses, as (See Section 12.9). A regular expression can match the
different combination of numbers, so we use & in the replacement string and surround whatever was
matched:
s/See Section [1-9][0-9]*\.[1-9][0-9]*/(&)/

The ampersand makes it possible to reference the entire match in the replacement string.

In the next example, the backslash is used to escape the ampersand, which appears literally in the
replacement section:
s/ORA/O'Reilly \& Associates, Inc./g

It's easy to forget about the ampersand appearing literally in the replacement string. If we had not
escaped it in this example, the output would have been O'Reilly ORA Associates, Inc.

— DD

Referencing Portions of a Search String

In sed, the substitution command provides metacharacters to select any individual portion of a string
that is matched and recall it in the replacement string. A pair of escaped parentheses are used in sed
to enclose any part of a regular expression and save it for recall. Up to nine "saves" are permitted for
a single line. \ n is used to recall the portion of the match that was saved, where n is a number from 1
to 9 referencing a particular "saved" string in order of use. (Section 32.13 has more information.)

For example, when converting a plain-text document into HTML, we could convert section numbers
that appear in a cross-reference into an HTML hyperlink. The following expression is broken onto
two lines for printing, but you should type all of it on one line:
s/\([sS]ee \)\(Section \)\([1-9][0-9]*\)\.\([1-9][0-9]*\)/
 \1\2\3.\4<\/a>/

Four pairs of escaped parentheses are specified. String 1 captures the word see with an upper- or
lowercase s. String 2 captures the section number (because this is a fixed string, it could have been
simply retyped in the replacement string). String 3 captures the part of the section number before the
decimal point, and String 4 captures the part of the section number after the decimal point. The
replacement string recalls the first saved substring as \1. Next starts a link where the two parts of the
section number, \3 and \4, are separated by an underscore (_) and have the string SEC- before them.
Finally, the link text replays the section number again — this time with a decimal point between its
parts. Note that although a dot (.) is special in the search pattern and has to be quoted with a
backslash there, it's not special on the replacement side and can be typed literally. Here's the script
run on a short test document, using checksed (Section 34.4):
% checksed testdoc
********** < = testdoc > = sed output **********
8c8
< See Section 1.2 for details.

> See Section 1.2 for details.
19c19
< Be sure to see Section 23.16!

> Be sure to see Section 23.16!

We can use a similar technique to match parts of a line and swap them. For instance, let's say there
are two parts of a line separated by a colon. We can match each part, putting them within escaped
parentheses and swapping them in the replacement:
% cat test1
first:second
one:two
% sed 's/\(.*\):\(.*\)/\2:\1/' test1
second:first
two:one

The larger point is that you can recall a saved substring in any order and multiple times. If you find
that you need more than nine saved matches, or would like to be able to group them into matches and
submatches, take a look at Perl.

Section 43.10, Section 31.10, Section 10.9, and Section 36.23 have examples.

—DD and JP

Search and Replacement: One Match Among Many

One of the more unusual options of sed's substitution command is the numeric flag that allows you to
point to one particular match when there are many possible matches on a particular line. It is used
where a pattern repeats itself on a line and the replacement must be made for only one of those
occurrences by position. For instance, a line, perhaps containing tbl input, might contain multiple tab
characters. Let's say that there are three tabs per line, and you'd like to replace the second tab with >.
The following substitute command would do it:
s/TAB/>/2

TAB represents an actual tab character, which is otherwise invisible on the screen. If the input is a
one-line file such as the following:
Column1TABColumn2TABColumn3TABColumn4

the output produced by running the script on this file will be:
Column1TABColumn2>Column3TABColumn4

Note that without the numeric flag, the substitute command would replace only the first tab.
(Therefore, 1 can be considered the default numeric flag.) The range of the allowed numeric value is
from 1 to 512, though this may be implementation-dependent.

— DD

Transformations on Text

The transform command (y) is useful for exchanging lowercase letters for uppercase letters on a line.
Effectively, it performs a similar function to tr (Section 21.11). It replaces any character found in the
first string with the equivalent character in the second string. The command:
y/abcdefghijklmnopqrstuvwxyz/ABCDEFGHIJKLMNOPQRSTUVWXYZ/

will convert any lowercase letter into the corresponding uppercase letter. The following:
y/abcdefghijklmnopqrstuvwxyz/nopqrstuvwxyzabcdefghijklm/

would perform a rot13 transformation — a simple form of encryption in which each alphabetic
character is replaced by the character halfway through the alphabet. (rot13 encryption is sometimes
used to keep offensive (or comical) news postings (Section 1.21) from being read except by someone
who really means to (such as if you have read the joke and now want to read the punch line).
Encryption and decryption are automatically supported by most news readers, but it's fun to see how
simple the encryption is. By the way, the command above handles only lowercase letters; if we'd
shown uppercase as well, the command would have run past the margins!)

— TOR

Hold Space: The Set-Aside Buffer

The pattern space is a buffer that contains the current input line. There is also a set-aside buffer
called the hold space . The contents of the pattern space can be copied to the hold space, and the
contents of the hold space can be copied to the pattern space. A group of commands allows you to
move data between the hold space and the pattern space. The hold space is used for temporary
storage, and that's it. Individual commands can't address the hold space or alter its contents.

The most frequent use of the hold space is to have it retain a duplicate of the current input line while
you change the original in the pattern space. [It's also used as a way to do the "move" and "copy"
commands that most editors have — but which sed can't do directly because it's designed for editing a
stream of input text line-by-line. — GU] The commands that affect the hold space are:

Hold h Copy contents of pattern space to hold space, replacing previous.

 H Append newline, then append contents of pattern space, to hold space.

Get g Copy contents of hold space to pattern space, replacing previous.

 G Append newline, then append contents of hold space, to pattern space.

Exchange x Swap contents of hold space and pattern space.

Each of these commands can take an address that specifies a single line or a range of lines. The hold
commands (h, H) move data into the hold space and the get commands (g, G) move data from the hold
space back into the pattern space. The difference between the lowercase and uppercase versions of
the same command is that the lowercase command overwrites the contents of the target buffer, while
the uppercase command appends to the existing contents after adding a newline.

The hold command replaces the contents of the hold space with the contents of the pattern space. The
get command replaces the contents of the pattern space with the contents of the hold space. The Hold
command puts a newline followed by the contents of the pattern space after the contents of the hold
space. (The newline is appended to the hold space even if the hold space is empty.) The Get
command puts a newline followed by the contents of the hold space after the contents of the pattern
space.

The exchange command (x) swaps the contents of the two buffers. It has no side effects on either
buffer.

Here's an example to illustrate putting lines into the hold space and retrieving them later. We are
going to write a script that reads a particular HTML file and copies all headings to the end of the file
for a summary. The headings we want start with <h1> or <h2>. For example:
...
<body>
<h1>Introduction</h1>
The blah blah blah
<h1>Background of the Project</h1>
 ...
<h2>The First Year</h2>
 ...
<h2>The Second Year</h2>
 ...

</body>

The object is to copy those headings into the hold space as sed reads them. When sed reaches the end
of the body (at the </body> tag), output Summary:, then output the saved tags without the heading tags
(<h1> or <h2>).

Look at the script:
/^<h[12]>/H
/^<\/body>/ {
 i\
Summary:
 x
 G
 s/<\/*h[12]>//g
}

Any line matching <h1> or <h2> is added to the hold space. (All those lines are also printed; that's the
default in sed unless lines have been deleted.[1]) The last part of the script watches for the </body>
tag. When it's reached, sed inserts the Summary: heading. Then the script uses x to exchange the
pattern space (which has the </body> tag) with the saved headers from the hold space. Now the
pattern space has the saved headers. Next, G adds the </body> tag to the end of the headers in the
pattern space. Finally, a substitute command strips the <h1>, </h1>, <h2>, and </h2> tags. At the end
of the script, the pattern space is printed by default.

The sequence of x followed by G is a way to find a matching line — in this case, </body> — and
insert the contents of the hold space before the matched line. In other words, it's like an i command
that inserts the hold space at the current line.

The script could do more cleanup and formatting. For instance, it could make the saved headings into
a list with and . But this example is mostly about the hold space.

Here's the result of running the script on the sample file:
% sed -f sedscr report.html
 ...
<body>
<h1>Introduction</h1>
The blah blah blah
<h1>Background of the Project</h1>
 ...
<h2>The First Year</h2>
 ...
<h2>The Second Year</h2>
 ...
Summary:

Introduction
Background of the Project
The First Year
The Second Year
</body>

For other scripts that use the hold space, see Section 34.18. For a fanciful analogy that makes clear
how it works, see Section 34.17.

—DD and JP

[1] Note that this can lead to confusion when the same line is matched by several patterns and then
printed, once per match!

Transforming Part of a Line

The transform command, y (Section 34.13), acts on the entire contents of the pattern space. It is
something of a chore to do a letter-by-letter transformation of a portion of the line, but it is possible
(though convoluted) as the following example demonstrates. [The real importance of this example is
probably not the use of the y command, but the use of the hold space to isolate and preserve part of
the line. — TOR]

While working on a programming guide, we found that the names of statements were entered
inconsistently. They needed to be uppercase, but some were lowercase while others had an initial
capital letter. While the task was simple — to capitalize the name of the statement — there were
nearly a hundred statements and it seemed a tedious project to write that many explicit substitutions of
the form:
s/find the Match statement/find the MATCH statement/g

The transform command could do the lowercase-to-uppercase conversion, but it applies the
conversion to the entire line. The hold space makes this task possible because we use it to store a
copy of the input line while we isolate and convert the statement name in the pattern space. Look at
the script first:
capitalize statement names
/the .* statement/{
 h
 s/.*the \(.*\) statement.*/\1/
 y/abcdefghijklmnopqrstuvwxyz/ABCDEFGHIJKLMNOPQRSTUVWXYZ/
 G
 s/\(.*\)\n\(.*the \).*\(statement.*\)/\2\1\3/
}

The address limits the procedure to lines that match the .* statement. Let's look at what each
command does:
h

The hold command copies the current input line into the hold space. Using the sample line find
the Match statement, we'll show what the contents of the pattern space and hold space
contain. After the h command, the pattern space and hold space are identical.

Pattern space find the Match statement

Hold space find the Match statement

s/.*the \(.*\) statement.*/\1/
The substitute command extracts the name of the statement from the line and replaces the entire
line with it.

Pattern space Match

Hold space find the Match statement

y/abcdefghijklmnopqrstuvwxyz/ABCDEFGHIJKLMNOPQRSTUVWXYZ/
The transform command changes each lowercase letter to an uppercase letter.

Pattern space MATCH

Hold space find the Match statement

G
The Get command appends the line saved in the hold space to the pattern space. The embedded
newline from the Get command is shown as \n.

Pattern space MATCH\nfind the Match statement

Hold space find the Match statement

s/\(.*\)\n\(.*the \).*\(statement.*\)/\2\1\3/
The substitute command matches three different parts of the pattern space: (1) all characters up
to the embedded newline, (2) all characters following the embedded newline and up to and
including the followed by a space, and (3) all characters beginning with a space and followed
by statement up to the end of the pattern space. The name of the statement as it appeared in the
original line is matched but not saved. The replacement section of this command recalls the
saved portions and reassembles them in a different order, putting the capitalized name of the
command in between the and statement.

Pattern space find the MATCH statement

Hold space find the Match statement

Let's look at a test run. Here's our sample file:
find the Match statement
Consult the Get statement.
using the Read statement to retrieve data

Running the script on the sample file produces:
find the MATCH statement
Consult the GET statement.
using the READ statement to retrieve data

As you can see from this script, the hold space can be skillfully used to isolate and manipulate
portions of the input line.

— DD

Making Edits Across Line Boundaries

Most programs that use regular expressions (Section 32.4) are able to match a pattern only on a
single line of input. This makes it difficult to find or change a phrase, for instance, because it can start
near the end of one line and finish near the beginning of the next line. Other patterns might be
significant only when repeated on multiple lines.

sed has the ability to load more than one line into the pattern space. This allows you to match (and
change) patterns that extend over multiple lines. In this article, we show how to create a multiline
pattern space and manipulate its contents.

The multiline Next command, N, creates a multiline pattern space by reading a new line of input and
appending it to the contents of the pattern space. The original contents of the pattern space and the
new input line are separated by a newline. The embedded newline character can be matched in
patterns by the escape sequence \n. In a multiline pattern space, only the metacharacter ^ matches the
newline at the beginning of the pattern space, and $ matches the newline at the end. After the Next
command is executed, control is then passed to subsequent commands in the script.

The Next command differs from the next command, n, which outputs the contents of the pattern space
and then reads a new line of input. The next command does not create a multiline pattern space.

For our first example, let's suppose that we wanted to change "Owner and Operator Guide" to
"Installation Guide", but we found that it appears in the file on two lines, splitting between Operator
and Guide. For instance, here are a few lines of sample text:
Consult Section 3.1 in the Owner and Operator
Guide for a description of the tape drives
available on your system.

The following script looks for Operator at the end of a line, reads the next line of input, and then
makes the replacement:
/Operator$/{
 N
 s/Owner and Operator\nGuide/Installation Guide/
}

In this example, we know where the two lines split and where to specify the embedded newline.
When the script is run on the sample file, it produces the two lines of output, one of which combines
the first and second lines and is too long to show here. This happens because the substitute command
matches the embedded newline but does not replace it. Unfortunately, you cannot use \n to insert a
newline in the replacement string. You must either use the backslash to escape the newline, as
follows:
s/Owner and Operator\nGuide /Installation Guide\
/

or use the \(..\) operators (Section 34.11) to keep the newline:
s/Owner and Operator\(\n\)Guide /Installation Guide\1/

This command restores the newline after Installation Guide. It is also necessary to match a blank
space following Guide so the new line won't begin with a space. Now we can show the output:
Consult Section 3.1 in the Installation Guide
for a description of the tape drives
available on your system.

Remember, you don't have to replace the newline, but if you don't, it can make for some long lines.

What if there are other occurrences of "Owner and Operator Guide" that break over multiple lines in
different places? You could change the address to match Owner, the first word in the pattern instead
of the last, and then modify the regular expression to look for a space or a newline between words, as
shown below:
/Owner/{
N
s/Owner *\n*and *\n*Operator *\n*Guide/Installation Guide/
}

The asterisk (*) indicates that the space or newline is optional. This seems like hard work though,
and indeed there is a more general way. We can read the newline into the pattern space and then use a
substitute command to remove the embedded newline, wherever it is:
s/Owner and Operator Guide/Installation Guide/
/Owner/{
N
s/ *\n/ /
s/Owner and Operator Guide */Installation Guide\
/
}

The first line of the script matches Owner and Operator Guide when it appears on a line by itself.
(See the discussion at the end of the article about why this is necessary.) If we match the string Owner,
we read the next line into the pattern space and replace the embedded newline with a space. Then we
attempt to match the whole pattern and make the replacement followed by a newline. This script will
match Owner and Operator Guide regardless of how it is broken across two lines. Here's our
expanded test file:
Consult Section 3.1 in the Owner and Operator
Guide for a description of the tape drives
available on your system.

Look in the Owner and Operator Guide shipped with your system.

Two manuals are provided, including the Owner and
Operator Guide and the User Guide.

The Owner and Operator Guide is shipped with your system.

Running the above script on the sample file produces the following result:
% sed -f sedscr sample
Consult Section 3.1 in the Installation Guide
for a description of the tape drives
available on your system.

Look in the Installation Guide shipped with your system.

Two manuals are provided, including the Installation Guide
and the User Guide.

The Installation Guide is shipped with your system.

In this sample script, it might seem redundant to have two substitute commands that match the pattern.
The first command matches it when the pattern is found already on one line, and the second matches
the pattern after two lines have been read into the pattern space. Why the first command is necessary
is perhaps best demonstrated by removing that command from the script and running it on the sample
file:
% sed -f sedscr2 sample
Consult Section 3.1 in the Installation Guide
for a description of the tape drives
available on your system.

Look in the Installation Guide
shipped with your system.
Two manuals are provided, including the Installation Guide
and the User Guide.

Do you see the two problems? The most obvious problem is that the last line did not print. The last
line matches Owner, and when N is executed, there is not another input line to read, so sed quits. It
does not even output the line. If this is the normal behavior, the Next command should be used as
follows to be safe:
$!N

It excludes the last line ($) from the Next command. As it is in our script, by matching Owner and
Operator Guide on the last line, we avoid matching Owner and applying the N command. However,
if the word Owner appeared on the last line, we'd have the same problem unless we implement the
$!N syntax.

The second problem is a little less conspicuous. It has to do with the occurrence of Owner and
Operator Guide in the second paragraph. In the input file, it is found on a line by itself:
Look in the Owner and Operator Guide shipped with your system.

In the output shown above, the blank line following shipped with your system is missing. The
reason for this is that this line matches Owner and the next line, a blank line, is appended to the pattern
space. The substitute command removes the embedded newline, and the blank line has in effect
vanished. (If the line were not blank, the newline would still be removed but the text would appear on
the same line with shipped with your system.) The best solution seems to be to avoid reading the
next line when the pattern can be matched on one line. That is why the first instruction attempts to
match the case where the string appears all on one line.

— DD

The Deliberate Scrivener

The operations of sed's most difficult commands — hold (h or H), get (g or G), and exchange (x) —
can be explained, somewhat fancifully, in terms of an extremely deliberate medieval scrivener or
amanuensis toiling to make a copy of a manuscript. His work is bound by several spatial restrictions:
the original manuscript is displayed in one room; the set of instructions for copying the manuscript are
stored in a middle room; and the quill, ink, and folio are set up in yet another room. The original
manuscript and the set of instructions are written in stone and cannot be moved about. The dutiful
scrivener, being sounder of body than mind, is able to make a copy by going from room to room,
working on only one line at a time. Entering the room where the original manuscript is, he removes
from his robes a scrap of paper to take down the first line of the manuscript. Then he moves to the
room containing the list of editing instructions. He reads each instruction to see if it applies to the
single line he has scribbled down.

Each instruction, written in special notation, consists of two parts: a pattern and a procedure. The
scrivener reads the first instruction and checks the pattern against his line. If there is no match, he
doesn't have to worry about the procedure, so he goes to the next instruction. If he finds a match, the
scrivener follows the action or actions specified in the procedure.

He makes the edit on his piece of paper before trying to match the pattern in the next instruction.
Remember, the scrivener has to read through a series of instructions, and he reads all of them, not just
the first instruction that matches the pattern. Because he makes his edits as he goes, he is always
trying to match the latest version against the next pattern; he doesn't remember the original line.

When he gets to the bottom of the list of instructions, and has made any edits that were necessary on
his piece of paper, he goes into the next room to copy out the line. (He doesn't need to be told to print
out the line.) After that is done, he returns to the first room and takes down the next line on a new
scrap of paper. When he goes to the second room, once again he reads every instruction from first to
last before leaving.

This is what he normally does, that is, unless he is told otherwise. For instance, before he starts, he
can be told not to write out every line (the -n option). In this case, he must wait for an instruction that
tells him to print (p). If he does not get that instruction, he throws away his piece of paper and starts
over. By the way, regardless of whether or not he is told to write out the line, he always gets to the
last instruction on the list.

Let's look at other kinds of instructions the scrivener has to interpret. First of all, an instruction can
have zero, one, or two patterns specified:

If no pattern is specified, the same procedure is followed for each line.
If there is only one pattern, he will follow the procedure for any line matching the pattern.
If a pattern is followed by a !, the procedure is followed for all lines that do not match the
pattern.
If two patterns are specified, the actions described in the procedure are performed on the first
matching line and all succeeding lines until a line matches the second pattern.

The scrivener can work on only one line at a time, so you might wonder how he handles a range of

lines. Each time he goes through the instructions, he tries to match only the first of two patterns. Now,
after he has found a line that matches the first pattern, each time through with a new line he tries to
match the second pattern. He interprets the second pattern as pattern !, so that the procedure is
followed only if there is no match. When the second pattern is matched, he starts looking again for the
first pattern.

Each procedure contains one or more commands or actions. Remember, if a pattern is specified with
a procedure, the pattern must be matched before the procedure is executed. We have already shown
many of the usual commands that are similar to other editing commands. However, there are several
highly unusual commands.

For instance, the N command tells the scrivener to go, right now, and get another line, adding it to the
same piece of paper. The scrivener can be instructed to "hold" on to a single piece of scrap paper.
The h command tells him to make a copy of the line on another piece of paper and put it in his pocket.
The x command tells him to exchange the extra piece of paper in his pocket with the one in his hand.
The g command tells him to throw out the paper in his hand and replace it with the one in his pocket.
The G command tells him to append the line he is holding to the paper in front of him. If he encounters
a d command, he throws out the scrap of paper and begins again at the top of the list of instructions. A
D command has effect when he has been instructed to append two lines on his piece of paper. The D
command tells him to delete the first of those lines.

If you want the analogy converted back to computers, the first and last rooms in this medieval manor
are standard input and standard output. Thus, the original file is never changed. The line on the
scrivener's piece of scrap paper is in the pattern space ; the line on the piece of paper that he holds in
his pocket is in the hold space. The hold space allows you to retain a duplicate of a line while you
change the original in the pattern space.

Section 34.18 shows a practical application of the scrivener's work, a sed program that searches for a
particular phrase that might be split across two lines.

— DD

Searching for Patterns Split Across Lines

[Section 13.9 introduced a script called cgrep , a general-purpose, grep-like program built with sed.
It allows you to look for one or more words that appear on one line or across several lines. This
article explains the sed tricks that are necessary to do this kind of thing. It gets into territory that is
essential for any advanced applications of this obscure yet wonderful editor. Section 34.14 through
Section 34.17 have background information. — JP]

Let's review the two examples from Section 13.9. The first command below finds all lines containing
the word system in the file main.c and shows 10 additional lines of context above and below each
match. The second command finds all occurrences of the word "awk" where it is followed by the
word "perl" somewhere within the next 3 lines:
cgrep -10 system main.c
cgrep -3 "awk.*perl"

Now the script, followed by an explanation of how it works:

case Section 35.11, expr Section 36.21, shift Section 35.22, ${?} Section 36.7, \~..~ Section
34.8, "$@" Section 35.20
#!/bin/sh
cgrep - multiline context grep using sed
Usage: cgrep [-context] pattern [file...]

n=3
case $1 in -[1-9]*)
 n=`expr 1 - "$1"`
 shift
esac
re=${1?}; shift

sed -n "
 1b start
 : top
 \~$re~{
 h; n; p; H; g
 b endif
 }
 N
 : start
 //{ =; p; }
 : endif
 $n,\$D
 b top
" "$@"

The sed script is embedded in a bare-bones shell wrapper (Section 35.19) to parse out the initial
arguments because, unlike awk and perl, sed cannot directly access command-line parameters. If the
first argument looks like a -context option, variable n is reset to one more than the number of lines
specified, using a little trick — the argument is treated as a negative number and subtracted from 1.
The pattern argument is then stored in $re, with the ${1?} syntax causing the shell to abort with an
error message if no pattern was given. Any remaining arguments are passed as filenames to the sed
command.

So that the $re and $n parameters can be embedded, the sed script is enclosed in double quotes
(Section 27.12). We use the -n option because we don't want to print out every line by default, and
because we need to use the n command in the script without its side effect of outputting a line.

The sed script itself looks rather unstructured (it was actually designed using a flowchart), but the
basic algorithm is easy enough to understand. We keep a "window" of n lines in the pattern space and
scroll this window through the input stream. If an occurrence of the pattern comes into the window,
the entire window is printed (providing n lines of previous context), and each subsequent line is
printed until the pattern scrolls out of view again (providing n lines of following context). The sed
idiom N;D is used to advance the window, with the D not kicking in until the first n lines of input have
been accumulated.

The core of the script is basically an if-then-else construct that decides whether we are currently "in
context." (The regular expression here is delimited by tilde (~) characters because tildes are less
likely to occur in the user-supplied pattern than slashes.) If we are still in context, then the next line
of input is read and output, temporarily using the hold space to save the window (and effectively
doing an N in the process). Else we append the next input line (N) and search for the pattern again (an
empty regular expression means to reuse the last pattern). If it's now found, the pattern must have just
come into view — so we print the current line number followed by the contents of the window.
Subsequent iterations will take the "then" branch until the pattern scrolls out of the window.

— GU

Multiline Delete

The sed delete command, d, deletes the contents of the pattern space (Section 34.14) and causes a
new line of input to be read, with editing resuming at the top of the script. The Delete command, D,
works slightly differently: it deletes a portion of the pattern space, up to the first embedded newline.
It does not cause a new line of input to be read; instead, it returns to the top of the script, applying
these instructions to what remains in the pattern space. We can see the difference by writing a script
that looks for a series of blank lines and outputs a single blank line. The version below uses the
delete command:
reduce multiple blank lines to one; version using d command
/^$/{
 N
 /^\n$/d
}

When a blank line is encountered, the next line is appended to the pattern space. Then we try to match
the embedded newline. Note that the positional metacharacters, ^ and $, match the beginning and the
end of the pattern space, respectively. Here's a test file:
This line is followed by 1 blank line.

This line is followed by 2 blank lines.

This line is followed by 3 blank lines.

This line is followed by 4 blank lines.

This is the end.

Running the script on the test file produces the following result:
% sed -f sed.blank test.blank
This line is followed by 1 blank line.

This line is followed by 2 blank lines.
This line is followed by 3 blank lines.

This line is followed by 4 blank lines.
This is the end.

Where there was an even number of blank lines, all the blank lines were removed. Only when there
was an odd number of blank lines was a single blank line preserved. That is because the delete
command clears the entire pattern space. Once the first blank line is encountered, the next line is read
in, and both are deleted. If a third blank line is encountered, and the next line is not blank, the delete
command is not applied, and thus a blank line is output. If we use the multiline Delete command,
/^\n$/D, we get a different result, and the one that we wanted.

The reason the multiline Delete command gets the job done is that when we encounter two blank
lines, the Delete command removes only the first of the two. The next time through the script, the
blank line will cause another line to be read into the pattern space. If that line is not blank, both lines
are output, thus ensuring that a single blank line will be output. In other words, when there are two
blank lines in the pattern space, only the first is deleted. When a blank line is followed by text, the

pattern space is output normally.

— DD

Making Edits Everywhere Except...

There are two ways in sed to avoid specified portions of a document while making the edits
everywhere else. You can use the ! command to specify that the edit applies only to lines that do not
match the pattern. Another approach is to use the b (branch) command to skip over portions of the
editing script. Let's look at an example.

We've used sed to preprocess the input to troff so that double dashes (--) are converted
automatically to em-dashes (—) and straight quotes are converted to curly quotes. However,
program examples in technical books are usually shown in a constant-width font that clearly shows
each character as it appears on the computer screen. When typesetting a document, we don't want sed
to apply the same editing rules within these examples as it does to the rest of the document. For
instance, straight quotes should not be replaced by curly quotes.

Because program examples are set off by a pair of macros (something like .ES and .EE, for "Example
Start" and "Example End"), we can use those as the basis for exclusion. Here's some sample text that
includes an example:
.LP
The \fItrue\fP command returns a zero exit status.
As Joe says, "this is only useful in programming":
.ES
% \fBtrue\fP
% \fBecho "the status was $status"\fP
the status was 0
.EE

So you can say:
/^\.ES/,/^\.EE/!{
 s/^"/``/
 ...
 s/\\(em"/\\(em``/g
}

All of the commands enclosed in braces ({}) will be subject to the initial pattern address.

There is another way to accomplish the same thing. The b command allows you to transfer control to
another line in the script that is marked with an optional label. Using this feature, you could write the
previous script like this:
/^\.ES/,/^\.EE/bend
s/^"/``/
 ...
s/\\(em"/\\(em``/g
:end

A label consists of a colon (:) followed by up to seven characters. If the label is missing, the b
command branches to the end of the script. (In the example above, the label end was included just to
show how to use one, but a label is not really necessary here.)

The b command is designed for flow control within the script. It allows you to create subscripts that
will be applied only to lines matching certain patterns and not elsewhere. However, as in this case, it
also provides a powerful way to exempt part of the text from the action of a single-level script.

The advantage of b over ! for this application is that you can more easily specify multiple conditions
to avoid. The ! command can be applied to a single command or to the set of commands, enclosed in
braces, that immediately follows. On the other hand, b gives you almost unlimited control over

movement around the script.

— TOR

The sed Test Command

The test command, t, branches to a label (or the end of the script) if a successful substitution has been
made on the currently addressed line. It implies a conditional branch. Its syntax is as follows:

[address]t[label]

If no label is supplied, control falls through to the end of the script. If label is supplied, execution
resumes at the line following the label.

Let's look at a spelling corrector written by Greg Ubben. The script fixes common (in this example,
silly) spelling goofs; the t command tells about corrections that were made:
h
s/seperate/separate/g
s/compooter/computer/g
s/said editor/sed editor/g
s/lable/label/g
t changed
b
: changed
p
g
s/.*/[WAS: &]/
t

First, h (Section 34.14) holds a copy of the current input line. Then, if any of the four substitutions
succeed, the command t changed branches to the corresponding label (: changed) at the end of the
script. Otherwise, if no s succeeded, the b command restarts the script on the next line (as always in
sed, the input line is printed before the script restarts).

After the label, the script prints the current input line (the line with a spelling error — which, by now,
has been corrected). Then g (Section 34.14) gets the original uncorrected line. An s command
brackets that line [WAS: xxx]. Here's some sample output:
$ sed -f sedscr afile
This is a separate test.
[WAS: This is a seperate test.]
I put a label on my computer!
[WAS: I put a lable on my compooter!]
That's all for now.

The final t in the script is a work-around for a bug in some versions of sed. Greg says, "The t flag is
supposed to be reset after either the t command is executed or a new line of input is read, but some
versions of sed don't reset it on a new line of input. So I added a do-nothing t to make sure it's reset
after the previous always-true s///." Try the script without the extra t; if adding it makes the script
work right, your sed has the bug and you might try a new version, like GNU sed.

—JP and DD

Uses of the sed Quit Command

The quit command, q, causes sed to stop reading new input lines (and stop sending them to the
output). Its syntax is:

[line-address]q

 Section 34.23

It can take only a single-line address. Once the line matching address (line-address) is reached, the
script will be terminated.

For instance, the following one-liner uses the quit command to print the first ten lines from a file:
% sed '10q' myfile
 ...

sed prints each line until it gets to line 10 and quits.

The previous version is much more efficient than its functional equivalent:

-n Section 34.3
% sed -n '1,10p' myfile

(especially if myfile is a long file) because sed doesn't need to keep reading its input once the
patterns in the script are satisfied.

One possible use of q is to quit a script after you've extracted what you want from a file. There is
some inefficiency in continuing to scan through a large file after sed has found what it is looking for.

— TOR

Dangers of the sed Quit Command

The sed quit command, q (Section 34.22), is very useful for getting sed to stop processing any more
input once you've done what you want.

However, you need to be very careful not to use q in any sed script that writes its edits back to the
original file. After q is executed, no further output is produced. It should not be used in any case
where you want to edit the front of the file and pass the remainder through unchanged. Using q in this
case is a dangerous beginner's mistake.

— TOR

sed Newlines, Quoting, and Backslashes in a Shell Script

Feeding sed (Section 34.1) newlines is easy; the real trick is getting them past the C shell and its
derivatives (tcsh has the same problem, on the systems where we've tested it).

The sed documentation says that in order to insert newlines in substitute commands, you should quote
them with backslashes. [Surround the commands with single quotes ('), as Chris has. If you use
double quotes ("), this script will become s/foo/bar/ because of the way quoting works with
backslashes and newlines (Section 27.12). — JP]:
sed -e 's/foo/b\
a\
r/'

Indeed, this works quite well in the Bourne shell and derivatives, such as bash, which do what I
consider the proper thing (Section 27.12) with this input. The C shell, however, thinks it is smarter
than you are and removes the trailing backslashes (Section 27.13), and instead you must type:
sed -e 's/foo/b\\
a\\
r/'

Probably the best solution is to place your sed commands in a separate file (Section 34.3) to keep
the shell's sticky fingers off them.

Chapter 35. Shell Programming for the Uninitiated

Writing a Simple Shell Program

A shell script need be no more than a command line saved in a file. For example, let's assume that
you'd like a compact list of all the users who are currently logged in on the system.

A command like this might do the trick:
% who | cut -c1-8 | sort -u | pr -l1 -8 -w78 -t

A list of logged-in users should come out in columns, looking something like this:
abraham appleton biscuit charlie charlott fizzie howard howie
hstern jerry kosmo linda ocshner peterson root ross
sutton yuppie

We used four Unix commands joined with pipes:

1. who (Section 2.8) gives a list of all users.
2. cut -c1-8 (Section 21.14) outputs columns 1-8 of the who output — the usernames.
3. sort -u (Section 22.6) puts names in order and takes out names of users who are logged on more

than once.
4. pr -l1 -8 -w78 -t (Section 21.15, Section 45.6) takes the list of usernames, one per line, and

makes it into 8 columns on 78-character-wide lines. (The -l1 is the lowercase letter L followed
by the digit 1.)

If you wanted to do this frequently, wouldn't it be better if all you had to do was type something like:
% loggedin

to get the same result? Here's how:

1. Start a text editor on a new file named loggedin.
2. If your system supports the special #! notation (Section 36.2) (and it probably does), the first

line of the script file should be:
#!/bin/sh

Otherwise, leave the first line blank. (When the first line of a script is blank, most shells will
start a Bourne shell to read it. Section 36.2 has more information.)
I think that the second line of a shell script should always be a comment to explain what the
script does. (Use more than one line, if you want.) A comment starts with a hash mark (#); all
characters after it on the line are ignored. Oh, and try to make sure there's a bit of whitespace
between the comment character and the actual comment; that's a pet peeve of mine:
loggedin - list logged-in users, once per user, in 8 columns

Put this on the third line, just like you did on the command line:
who | cut -c1-8 | sort -u | pr -l1 -8 -w78 -t

3. Save the file and leave the editor. You've just written a shell script.
4. Next, you need to make the shell script executable. The chmod (Section 50.5) (change mode)

command is used to change permissions on a file. The plus sign followed by an x (+x) makes the
file executable:
% chmod +x loggedin

5. If your login shell (Section 3.4) is csh or tcsh, you'll need to reset its command search table. To
do that, type:

rehash Section 27.6
% rehash

6. Finally, try the script. Just type its name and it should run:
% loggedin

If that doesn't run, your current directory may not be in your shell's command search path
(Section 35.6, Section 35.7). In that case, try this:
% ./loggedin

If it still doesn't work, and you started the first line of your script with #!, be sure that the
Bourne shell's pathname on that line (like /bin/sh) is correct. Another common error is to swap
the # and !, so check that, too. You should get an error like this, if that is the problem, although
the script may itself run as well, depending on your system:
!#/bin/sh: No such file or directory

7. If you want to run the script from somewhere other than the current directory, or if you want
other programs and scripts you write to be able to use it, you need to put it in a directory that's in
your search path and/or change your search path (Section 27.6). If you're the only person who
plans to use the script, you should put it in your personal bin directory (Section 7.4). Otherwise,
you might ask your system administrator if there's a systemwide directory for local commands.

— JP

Everyone Should Learn Some Shell Programming

One of the great things about Unix is that it's made up of individual utilities, "building blocks" like cat
and grep, that you run from a shell prompt. Using pipes, redirection, filters, and so on, you can
combine those utilities to do an incredible number of things. Shell programming lets you take the same
commands you'd type at a shell prompt and put them into a file you can run by just typing its name.
You can make new programs that combine Unix programs (and other shell scripts) in your own way
to do exactly what you need. If you don't like the way a program works, you can write a shell script to
do just what you want.

Because many Unix users use the shell every day, they don't need to learn a whole new language for
programming, just some tips and techniques. In fact, this chapter covers a lot of programming
techniques that you'll want to use even when you aren't programming. For example, loops and tests
are handy on the command line.

(This series of articles does assume that you've written programs in some language before or are
generally familiar with programming concepts. If you haven't and aren't, you might start with a more
comprehensive shell programming book.)

Summary Box
Unix has plenty of other scripting languages — Perl, Py thon, and Tcl/Tk are some of the best known. So when should y ou write a script with the shell and when shouldn't y ou? That's a personal choice; as you learn more languages and their
strengths and weaknesses, y ou're better able to choose the best one for a situation. My rule of thumb is something like this. I write a shell script if:

It's a script I developed at the command line, so it's easy to just drop those same commands into a file.
I know some Unix utility that'll do just what I want.
It has to be portable to a sy stem that might not have another scripting language I'd rather use.
The (possibly) slower speed of forking processes to run Unix utilities (especially in loops) doesn't matter.
The script simply has to make a few decisions — like whether standard input is a tty (Section 2.7), checking options and arguments, or something else simple) — before the script ends by running some Unix utility .
It just feels natural to write a shell script, for whatever reason.

On the other hand, may be y our script needs lots of pipes (|) (Section 1.5) or temporary files, or y ou have out-of-band data that y ou have to keep passing in to each Unix utility (may be because y ou can't shoehorn multiple ty pes of data into a
single chain of pipelines between utilities). In that case, y ou'll be happier with a scripting language that doesn't depend on Unix utilities and pipes.

Some of the topics y ou need to learn about as a beginning shell programmer have already been covered in other chapters. Here are the articles y ou'll probably want to read, in an order that makes sense if y ou're looking for something of a
tutorial:

To see how to write a simple shell program, Section 35.1. To embed scripts from other languages such as sed and awk in a shell script, Section 35.19.
For explanation of shells in general, Section 27.3.
To read about environment and shell variables, Section 35.3 and Section 35.9, respectively .
Shell quoting is explained in Section 27.12.
Stepping through arguments or any list of words with a for loop is discussed in Section 28.9 (as well as in Section 35.21, later in this chapter).

Then, once y ou've had y our refresher, come on back and read the following articles:

Test strings with a case statement, Section 35.10. Match patterns in a case statement, Section 35.11.
Use the output of one command as arguments to another command with command substitution, Section 28.14.
Find out whether a program worked or failed with its exit status, Section 35.12.
Loop through a set of commands and use another command to control that loop, Section 35.15.
Set exit status of a shell (shell script), Section 35.16.
Handle interrupts (like CTRL-c) and other signals, Section 35.17.
Read input from the key board, Section 35.18.
Handle command-line arguments (options, filenames, etc.), Section 35.20.
Test a program's exit status and do different things if it worked or failed, Section 35.13 and Section 35.14.
Handle arguments with the while and shift commands, Section 35.22.
Handle command-line arguments in a more standard and portable way with getopt, Section 35.24.
Set shell options and command-line arguments with the set command, Section 35.25.
Test files and strings of characters with the test command, Section 35.26.
Pick a name for a new command with no conflict, Section 35.27.
Find the name of a program and use it in the script, Section 35.28.
Use "subprograms" that can change the current environment, Section 35.29.

This chapter discusses only Bourne shell programming. We don't cover many features from more
advanced Bourne-type shells, like bash and zsh, because those can make your shell scripts
nonportable; we stick to concepts that should work almost anywhere. Also, in most cases, the C shell
isn't great for shell programming.

A note about command versions: unfortunately, the same commands on different versions of Unix can

have different options. Some Bourne shells are a little different from others. For instance, some test
(Section 35.26) commands have a -x option to test for an executable file; others don't. Some echo
commands use a -n option to mean "no newline at the end of this string"; others have you put \c at the
end of the string. And so on. Where there are differences, these articles generally use the commands
in original Berkeley Unix from the 1980s. If a command doesn't seem to work on your system, check
its online manual page or the sh manual page.

— JP

What Environment Variables Are Good For

Many Unix utilities, including the shell, need information about you and what you're doing in order to
do a reasonable job.

What kinds of information? Well, to start with, a lot of programs (particularly editors) need to know
what kind of terminal you're using. The shell needs to know where any commands you want to use are
likely to be found. Lots of Unix programs (like mail programs) include a command to start an editor
as a subprocess; they like to know your favorite editor. And so on.

Of course, one could always write programs that made you put all this information on the command
line. For example, you might have to type commands like:
% mail -editor vi -term aardvark48 -favoritecolor blue_no_red

But your favorite editor probably doesn't change every day. (Nor will your favorite color.) The
terminal you use may change frequently, but it certainly won't change from the time you log in until the
time you log out. And you certainly wouldn't want to type something like this whenever you want to
send mail.

Rather than forcing you to type this information with every command, Unix uses environment
variables to store information you'd rather not worry about. For example, the TERM (Section 5.2)
environment variable tells programs what kind of terminal you're using. Any programs that care about
your terminal type know (or ought to know) that they can read this variable, find out your terminal
type, and act accordingly.

Similarly, the directories that store the commands you want to execute are listed in the PATH
(Section 35.6) variable. When you type a command, your shell looks through each directory in your
PATH variable to find that command. Presumably, Unix wouldn't need a PATH variable if all
commands were located in the same directory, but you'll soon be writing your own commands (if you
aren't already), and storing them in your own "private" command directories (Section 7.4), and
you'll need to tell the shell how to find them (Section 27.6).

Environment variables are managed by your shell. The difference between environment variables and
regular shell variables (Section 35.9) is that a shell variable is local to a particular instance of the
shell (such as a shell script), while environment variables are "inherited" by any program you start,
including another shell (Section 24.4). That is, the new process gets its own copy of these variables,
which it can read, modify, and pass on in turn to its own children. In fact, every Unix process (not just
the shell) passes its environment variables to its child processes.

You can set environment variables with a command like this:
% setenv
 NAME value
 C-type shells
$ NAME=value
 ; export
 NAME
 all Bourne-type shells
$ export
 NAME=value
 newer Bourne-type shells

There's nothing particularly special about the NAME; you can create environment variables with any

names you want. Of course, these don't necessarily do anything for you; variables like PATH and
TERM are important because lots of programs have "agreed" (Section 35.5) that these names are
important. But if you want to create an environment variable that holds the name of your lover, that's
your business:
% setenv LOVER Judy

If you're so inclined, you could write a program called valentine that reads the LOVER environment
variable and generates an appropriate message. If you like short-term relationships or tend to forget
names, this might even be convenient!

By convention, the names of environment variables use all uppercase letters. There's nothing to
enforce this convention — if you're making your own names, you can use any capitalization you
please. But there's no advantage to violating the convention, either. The environment variables used
by standard Unix programs all have uppercase names. Making shell variable names lowercase so it's
easy to tell the difference is helpful.

If you want the C shell to forget that an environment variable ever existed, use the command unsetenv
NAME. The tcsh understands filename wildcard (Section 1.13)-type expressions — for instance,
unsetenv VAR* would unset all environment variables whose names start with VAR. Most Bourne-
type shells, but not all, have a similar command, unset NAME, but it doesn't understand wildcards
like the tcsh version. The bash version accepts multiple names as arguments, however, and can also
unset functions with the -f option.

 Go to http://examples.oreilly.com/upt3 for more information on: printenv, env

If you want to list all of your environment variables, use printenv or env. The printenv command also
lets you ask about a particular variable. Here's a typical report:
% printenv EDITOR
EDITOR=/usr/local/bin/emacs
% printenv
HOME=/home/los/mikel
SHELL=/bin/csh
TERM=sun
USER=mikel
PATH=/usr/local/bin:/usr/ucb:/bin:/usr/bin:.:/home/los/mikel/bin
LOGNAME=mikel
PWD=/home/los/mikel/power/articles
PRINTER=ps
EDITOR=/usr/local/bin/emacs

The set (Section 35.9) command provides a similar listing of shell variables and functions (in newer
Bourne-like shells such as bash).

You can also use the echo command to show the value of a particular variable by preceding the
variable name with a dollar sign (which tells the shell to substitute the value of the variable):
% echo $TERM
xterm

Or — and this is particularly useful when you want a shell or environment variable's value
interpolated into a line — you can surround the variable name with curly brackets:
% echo ${TERM}
vt100
% echo ${TERM}-like
vt100-like

— ML

http://examples.oreilly.com/upt3

Parent-Child Relationships

No, this is not about the psychology of computing. It's just a reminder of one important point.

In the environment variable overview (Section 35.3) we said that each process gets its own copy of
its parent's environment variables. We chose those words carefully, and if you think about them, you
won't make one common mistake.

Sooner or later, almost everyone writes a shell script that gathers some information, sets a few
environment variables, and quits. The writer then wonders why there's no trace of the "new"
environment variables to be found. The problem is simple. A Unix process (Section 24.3) cannot
change its parent's environment; a Unix process gets its own copy of the parent's environment, and any
changes it makes it keeps to itself. A process can make changes and pass them to its children, but
there's no way of going in reverse.

(You can't teach an old dog new tricks.)

[This is important in window systems, too. Environment variables set in one window (more exactly,
in one process) probably won't affect any process running in any other window. To affect all
windows, set the environment variable before you start the window system. For instance, if you log in
and then type startx from a shell prompt to start X, you can set environment variables from that
prompt or from that shell's setup files (Section 3.3). — JP]

— ML

Predefined Environment Variables

We've said that environment variables are used to store information that you'd rather not worry about,
and that there are a number of standard environment variables that many Unix programs use. These
are often called "predefined" environment variables — not because their values are predefined, but
because their names and uses are predefined. Here are some important ones:
PATH (Section 35.6)

contains your command search path (Section 27.6). This is a list of directories in which the
shell looks to find commands. It's usually set in one of your shell setup files (Section 3.3).

EDITOR and VISUAL
can be loaded with the name of your favorite editor. They're usually set in one of your shell
setup files. Some programs distinguish between EDITOR (usually set to a line editor (Section
20.1) such as ed) and VISUAL (set to a full-screen editor like vi). Many people don't follow that
convention; they set both to the same editor. (The Korn shell checks VISUAL and EDITOR, in
that order, to determine your command editing mode (Section 30.14).)

PRINTER (Section 45.4) or LPDEST
can be loaded with the name of your default printer. This is quite useful at a site with many
printers — you don't need to tell lpr or lp (Section 45.2) which printer to use. (PRINTER works
on systems that print with lpr , and LPDEST is for lp.) This variable is usually set in one of your
shell setup files.

PWD
may contain the absolute pathname of your current directory. It's set automatically by the cd
command in some Unix shells. PWD may be fooled by cding through symbolic links.

HOME (Section 31.11) (called LOGDIR on some systems)
contains the absolute pathname of your home directory. It's set automatically when you log in.

SHELL
contains the absolute pathname of your login shell. It's set automatically whenever you log in.

USER or LOGNAME
contains your username. It's set automatically when you log in.

TERM
contains the name of your terminal type in the termcap or terminfo database. It's usually set in a
shell setup file. On Darwin, in the Terminal program, the TERM_PROGRAM variable is also
set.

TERMCAP
is an environment variable that can be loaded with the complete termcap database entry for the
terminal you are using. This may make some programs start up more quickly, but it's not
necessary. It's set (under some conditions) by the tset command, which is usually run in your
shell setup file.

ENV
contains the name of an initialization file to be executed whenever a new Korn shell is started.
(See Section 3.3.) Korn shell only.

BASH_ENV
contains the name of an initialization file to be executed whenever a new bash shell is started.
(See Section 3.3.) bash only. Often set to .bashrc by default.

PAGER
can be set to the name of your favorite page-by-page screen display program like less (Section
12.3) or more . (Programs like man (Section 2.1) use PAGER to determine which paging
program to use if their output is longer than a single screen.)

PS1
contains the primary prompt (i.e., interactive command prompt) for Bourne-type shells. You also
can set it in a particular shell, as a shell variable with the same name, but it won't be passed to
subshells automatically. (The C shell doesn't store the prompt in an environment variable. It uses
a shell variable called prompt because the .cshrc file (Section 3.3) is read to set up each
instance of the shell. See Section 4.4.)

PS2 (Section 28.12)
contains the secondary prompt (used within compound commands like while and for) for Bourne
shells. Some Bourne-type shells also use PS3 and PS4. As with PS1, these don't have to be
stored in the environment.

MANPATH (Section 3.21)
if your man (Section 2.1) command supports it, is a colon-separated list of directories to search
for manual pages.

TZ
contains the time zone. This is the name of a file in the zoneinfo directory that provides time
zone information for your locality. It is read by commands such as date.

DISPLAY
is used by the X Window System (Section 1.22) to identify the display server (keyboard and
screen handling program) that will be used for input and output by X applications. It may be set
by ssh when you log into a remote system, as well.

INPUTRC
lets you choose a setup filename for the Readline library instead of the default $HOME/.inputrc.

LS_COLORS (or LS_COLOURS)
lists the colors used by the color ls command (Section 8.6).

Because Bourne-type shells don't make as strict a distinction between environment variables and
shell variables as the C shell does, we've included a few things here that might not be on other
people's lists.

But we haven't even tried to include everything. Here are two good ways to see what's there. One is
to look at the end of a command's manual page (Section 2.1) in the ENVIRONMENT section (if there
is one). Another is to list your current environment variables (with env or printenv (Section 35.3))
and make some guesses from the names and corresponding values.

We may have implied that environment variables are relatively constant (like your favorite editor).
That's not true. For example, in a windowing environment, the current length of your window might be
kept in an environment variable. That can change as often as you resize your window. What is true
(fortunately) is exactly what we've said: environment variables store information that you'd rather not
have to worry about.

—ML, JP, and SJC

The PATH Environment Variable

Of all the environment variables, the PATH and TERM variables are the most important. The others
are often great conveniences, but PATH and TERM can make your life miserable if they get screwed
up.

The PATH variable is just a list of directories separated by colon (:) characters. The shell searches
through these directories in order whenever it needs to find a command. So, if you want to execute
commands in /bin, /usr/bin, /usr/local, the current directory, and your personal bin directory, you
would put a line like the one below in your .login file. An empty entry (: as the first or last character,
or :: in the middle) means "the current directory."

$HOME/bin Section 7.4
setenv PATH /bin:/usr/bin:/usr/local::$HOME/bin

Section 27.6 explains more about setting the path.

The most common problem with PATH is that, somehow, it gets deleted. This usually happens if you
try to change PATH and do so incorrectly. When PATH is deleted, your shell can find only its built-in
commands (Section 1.9) and commands for which you give the complete pathname. Here's a
demonstration:
% setenv PATH
 Set PATH to null accidentally
% ls
ls: Command not found.

Needless to say, this can be very frustrating — especially if you can't figure out what's going on.
There are a couple of easy fixes. The easiest is just to log out and log back in again. (logout is a
built-in C shell command, so you won't have trouble finding it. If you get an error message like "Not
login shell," try exit instead.) Another fix is to read (Section 35.29) whichever initialization file
defined your PATH variable, usually .login for C shell users or .profile or .bash_profile for Bourne
or bash shell users, respectively:
% source ~/.login
$. $HOME/.profile
bash$. $HOME/.bash_profile

This will almost certainly give you some of your path back; the problem is that a lot of initialization
files merely add a few "private" directories to a system-wide default path. In this case, just execute
the system-wide initialization files first (if your system has them). Their pathnames vary:
+$ source /etc/profile
$ source /etc/profile.d/*.sh
$ source ~/.login
bash$ source ~/.bash_profile

Your best bet, if you're unfamiliar with the quirks of your system and how it sets up your shell, is to
simply log out and log back in again. Some newer Linux systems, for example, use /etc/profile for
bash setup, inheriting the hardwired defaults set by the login command, and then go on to read shell-
specific files (often in /etc/profile.d, for example). tcsh and csh are configured using the
/etc/csh.login, /etc/csh.cshrc, and other files in /etc/profile.d in similar fashion to bash. This allows
package managers to install package specific initialization without modifying (and potentially
corrupting) the system's default initialization.

The other common PATH problem is that users sometimes can't find the commands they want. This

happens most often when someone writes a new shell script with the same name as a standard Unix
command — say, true. He or she tries to execute it and can't; in fact, all that happens is:
% true
%

After staring at the script for a long time, the user sometimes gets the right idea: the script is fine; it's
the path that's wrong. The PATH variable will look something like this:
% printenv PATH
/bin:/usr/local/bin:/usr/bin:/sbin::/home/schampeo/bin

The shell searches the PATH in order; therefore, it finds the system's standard true command before
seeing the new one. The new command never gets a chance. You could fix this problem by putting the
current directory and $HOME/bin at the head of the search path, in which case commands in the
current directory and your private bin directory will override the standard commands. However,
that's not recommended; it's a well-known security hole.

So what is recommended? Nothing much, except that if you write shell scripts or other programs, give
them names that are different from the standard Unix utilities (Section 35.27). If you really need an
overlapping name, you can use a relative pathname (Section 1.16) to specify "the program called
true in the current directory":
% ./true

You can search your PATH for a command with which (Section 2.6), findcmd, and whereiz. Section
35.7 explains the pair of path variables in csh and zsh.

—ML and SJC

PATH and path

For csh and zsh, it's slightly incorrect to say that PATH contains the search list for commands. It's a
bit more complicated. The PATH environment variable is used to set the path shell variable; that is,
whenever you use setenv PATH (Section 35.6) in csh or export PATH in zsh, the shell modifies path
accordingly. For example:
setenv PATH /bin:/usr/bin:/usr/local::$HOME/bin csh
export PATH=/bin:/usr/bin:/usr/local::$HOME/bin zsh

In PATH, an empty entry (::) stands for the current directory. The shells' path shell variable (Section
35.9) is the actual search list. Its syntax is slightly different; the list of directories is enclosed in
parentheses ([XREF: UPT-ART-0508]), and the directories are separated by spaces. For example:

~ Section 30.11
set path=(/bin /usr/bin /usr/local . ~/bin) csh

path=(/bin /usr/bin /usr/local . ~/bin) zsh

If you set the path shell variable, the shell will automatically set the PATH environment variable.
You don't need to set both. Many people set the shell variable instead of the environment variable.

— ML

The DISPLAY Environment Variable

The most important environment variable for X Window System clients is DISPLAY. When a user
logs in at an X terminal, the DISPLAY environment variable in each xterm window is set to her X
terminal's hostname followed by :0.0.
ruby:joan % echo $DISPLAY
ncd15.ora.com:0.0

When the same user logs in at the console of the workstation named sapphire that's running X, the
DISPLAY environment variable is defined as just :0.0:[1]

sapphire:joan % echo $DISPLAY
:0.0

The DISPLAY environment variable is used by all X clients to determine what X server to display
on. Since any X client can connect to any X server that allows it, all X clients need to know what
display to connect to upon startup. If DISPLAY is not properly set, the client cannot execute:
sapphire:joan % setenv DISPLAY foo:0
sapphire:joan % xterm
xterm Xt error: Can't open display:

You can override the value of DISPLAY by using the -display command-line option. For example:
sapphire:joan % xterm -display sapphire:0.0 &

The first part of the display name (up to and including the colon) identifies the type of connection to
use and the host that the server is running on. The second part (in most cases, the string 0.0) identifies
a server number and an optional screen number. In most cases, the server and screen numbers will
both be 0. You can omit the screen number name if the default (screen 0) is correct.

Note that we used both :0.0 and sapphire:0.0 to access the local console display of the
workstation named sapphire. Although both these names will work, they imply different ways of
connecting to the X server.

The : character without an initial hostname specifies that the client should connect using UNIX
domain sockets (IPC).
Since processes can communicate via IPC only if they are running on the same host, you can use
a leading colon or the unix keyword in a display name only if both the client and server are
running on the same host — that is, for local clients displaying to the local console display of a
workstation.
Using the hostname followed by a colon (e.g., sapphire:) specifies that the client should
connect using Internet domain sockets (TCP/IP). You can use TCP/IP connections for displaying
clients on any X server on the TCP/IP network, as long as the client has permission to access
that server.

Note that like all other environment variables set in your shell environment, the DISPLAY
environment variable will propagate (Section 35.3) to all processes you start from that shell.

When you run clients from remote machines, some additional problems with the DISPLAY
environment variable need to be addressed. See Section 6.10 for more information on running remote
clients.

—LM and EP

[1] Before X11 Release 5, the DISPLAY variable might appear as unix:0.0.

Shell Variables

Shell variables are really just the "general case" of environment variables (Section 35.3). If you're a
programmer, remember that a Unix shell really runs an interpreted programming language. Shell
variables belong to the shell; you can set them, print them, and work with them much as you can in a C
program (or a FORTRAN program or a BASIC program). If you're not a programmer, just remember
that shell variables are pigeonholes that store information for you or your shell to use.

If you've read the articles on environment variables, you realize that we defined them in exactly the
same way. How are shell variables different from environment variables? Whenever you start a new
shell or a Unix program, it inherits all of its parent's environment variables. However, it does not
inherit any shell variables; it starts with a clean slate (except, possibly, variables in some shell setup
files (Section 3.3)). If you're a programmer, you can think of environment variables as "global"
variables, while shell variables are "local" variables. By convention, shell variables have lowercase
names.

Just as some programs use certain environment variables, the shell expects to use certain shell
variables. For example, the C shell uses the history (Section 30.1) variable to determine how many
of your previous commands to remember; if the noclobber (Section 43.6) variable is defined, the C
shell prevents you from damaging files by making mistakes with standard output. Most users insert
code into their .cshrc or .tcshrc (Section 3.3) files to define these important variables appropriately.
Alternatively, they split them up into context-specific files and then read them into their
environment (Section 35.29) as needed.

To set a shell variable, use one of these commands:
% set
 name
 =
 value
 C shell
$ name
 =
 value
 other shells

As a special case, if you omit value, the shell variable is set to a "null" value. For example, the
following commands are valid:
% set
 name
 C shell
$ name
 =
 other shells

This is important: giving a variable a null value is not the same as deleting the value. Some programs
look at variables to see whether or not they exist; they don't care what the actual value is, and an
empty value is as good as anything else.

Most newer shells — but not the original C and Bourne shells — let you prevent accidental changes
in a variable by marking it read-only after you've stored its value:
% set -r
 name
 tcsh

$ readonly
 name
 other shells

(In zsh , you can mark a variable read-only as you initialize it: readonly name=value.) If you want
to make the shell forget that a variable ever existed, use the unset command. Note that, in general, you
can't unset a read-only variable! Also, older Bourne shells don't have a command like unset:
% unset
 name
 C shell
$ unset
 name
 others except old Bourne shell

If you want to list all of your environment variables, use the command printenv or env (Section
35.3).[2] If you want to list all of your Bourne or C shell variables, just type set. Here's a typical
report in the C shell:
% set
argv ()
cwd /home/los/mikel/power/articles
history 40
home /home/los/mikel
noclobber
path (/home/los/mikel/bin /usr/local/bin /usr/ucb /bin /usr/bin .)
prompt los%
shell /bin/csh
status 0
term sun
user mikel

If you want to print the value of an individual variable, give the command:
% echo "$
 variablename
 "

(While the example above gives a C shell prompt, this command works in all Unix shells.) The
quotes aren't necessary for something as simple as an echo statement, but if you want the value
captured, for example, so that you can apply it to another variable, they are recommended.

Whenever you need the value of a shell variable — not just with echo — you need to put a dollar sign
($) in front of the name. Don't use the dollar sign when you're assigning a new value to a shell
variable. You can also stick curly braces ({}) around the name if you want to (e.g., ${ name }); when
you're writing shell programs, this can often make your code much clearer. Curly braces are mostly
used when you need to separate the variable name from what comes after it.

But that's getting us out of the range of interactive variable use and into shell programming (Section
35.2).

—ML and SJC

[2] printenv and env are external (Section 1.9) commands; they work with any shell.

Test String Values with Bourne-Shell case

Each time you type a command line at a shell prompt, you can see what happens and decide what
command to run next. But a shell script needs to make decisions like that itself. A case statement
helps the script make decisions. A case statement compares a string (usually taken from a shell or
environment variable (Section 35.9, Section 35.3)) to one or more patterns. The patterns can be
simple strings (words, digits, etc.) or they can be case wildcard expressions (Section 35.11). When
the case statement finds a pattern that matches the string, it executes one or more commands.

Here's an example that tests your TERM (Section 5.2) environment variable. If you're using a vt100
or tk4023 terminal, it runs a command to send some characters to your terminal. If you aren't on either
of those, it prints an error and quits:

exit Section 35.16
case "$TERM" in
vt100) echo 'ea[w' | tr 'eaw' '\033\001\027' ;;
tk4023) echo "*[p23" ;;
*) # Not a VT100 or tk4023. Print error message:
 echo "progname: quitting: you aren't on a VT100 or tk4023." 1>&2
 exit
 ;;
esac

Here are more details about how this works. The statement compares the string between the words
case and in to the strings at the left-hand edge of the lines ending with a) (right parenthesis)
character. If it matches the first case (in this example, if it's the vt100), the command up to the ;; is
executed. The ;; means "jump to the esac" (esac is "case" spelled backwards). You can put as many
commands as you want before each ;;, but put each command on a separate line (or separate
commands on a line with semicolons (Section 28.16)).

If the first pattern doesn't match, the shell tries the next case — here, tk4023. As above, a match runs
the command and jumps to the esac. No match? The next pattern is the wildcard *. It matches any
answer other than vt100 or tk4023 (such as xterm or an empty string).

You can use as many patterns as you want to. The first one that matches is used. It's okay if none of
them match. The style doesn't matter much. Pick one that's readable and be consistent.

— JP

Pattern Matching in case Statements

A case statement (Section 35.10) is good at string pattern matching. Its "wildcard" pattern-matching
metacharacters work like the filename wildcards (Section 1.13) in the shell, with a few twists. Here
are some examples:
?)

Matches a string with exactly one character like a, 3, !, and so on.
?*)

Matches a string with one or more characters (a nonempty string).
[yY]|[yY][eE][sS])

Matches y, Y or yes, YES, YeS, etc. The | means "or."
/*/*[0-9])

Matches a file pathname, like /xxx/yyy/somedir/file2, that starts with a slash, contains at least
one more slash, and ends with a digit.

'What now?')
Matches the pattern What now?. The quotes (Section 27.12) tell the shell to treat the string
literally: not to break it at the space and not to treat the ? as a wildcard.

"$msgs")
Matches the contents of the msgs variable. The double quotes let the shell substitute the
variable's value; the quotes also protect spaces and other special characters from the shell. For
example, if msgs contains first next, this would match the same string, first next.

To clarify: in bash, for example, the case statement uses the same pathname expansion rules it uses
elsewhere in the shell, to determine how to expand the value. In other shells, such as ksh, there are
minor differences (such as a relaxation of special treatment for . and / characters). See the manual
page for your shell if you have any questions or concerns about what rules your shell will follow.

—JP and SJC

Exit Status of Unix Processes

When a Unix process (command) runs, it can return a numeric status value to the parent process that
called (started) it. The status can tell the calling process whether the command succeeded or failed.
Many (but not all) Unix commands return a status of zero if everything was okay and nonzero (1, 2,
etc.) if something went wrong. A few commands, such as grep and diff, return a different nonzero
status for different kinds of problems; see your online manual pages (or just experiment!) to find out.

The Bourne shell puts the exit status of the previous command in the question mark (?) variable. You
can get its value by preceding it with a dollar sign ($), just like any other shell variable. For example,
when cp copies a file, it sets the status to 0. If something goes wrong, cp sets the status to 1:
$ cp afile /tmp
$ echo $?
0
$ cp afiel /tmp
cp: afiel: No such file or directory
$ echo $?
1

In the C shell, use the status variable instead (tcsh supports both):
% cp afiel /tmp
cp: afiel: No such file or directory
% echo $status
1
tcsh> cp afiel /tmp
cp: afiel: No such file or directory
tcsh> echo $status
1

Of course, you usually don't have to display the exit status in this way, because there are several
ways (Section 35.13, Section 35.14, Section 35.15) to use the exit status of one command as a
condition of further execution.

 Go to http://examples.oreilly.com/upt3 for more information on: true, false

Two simple Unix utilities do nothing but return an exit status. true returns a status of 0 (zero); false
returns 1 (one). There are GNU versions on the web site — and no, they don't have any amazing extra
features. ;-)

bash and zsh have a handy way to reverse the status of a command line: put an exclamation point (!)
before it. Let's look at a simple example (of course, you'd use ! with something besides true or
false):
bash$ true
bash$ echo $?
0
bash$! true
bash$ echo $?
1
bash$ false
bash$ echo $?
1
bash$! false
bash$ echo $?
0

tcsh and zsh have a handy feature for work with exit statuses. If you set the tcsh shell variable

http://examples.oreilly.com/upt3

printexitvalue or the zsh shell option PRINT_EXIT_VALUE , the shell will print the exit status of any
program that doesn't return zero. For example:
zsh$ setopt printexitvalue
zsh$ grep '<title>' 0001.sgm
<title>Too Many Arguments for the Command Line</title>
zsh$ grep '<title>' 0000.sgm
grep: 0000.sgm: No such file or directory
zsh: exit 2 grep <title> 0000.sgm
zsh$ grep '<ttle>' 0001.sgm
zsh: exit 1 grep <ttle> 0001.sgm

tcsh% set printexitvalue
tcsh% true
tcsh% false
Exit 1

You can't test the exit status of a background job in the Bourne shell unless you use the wait command
to wait for it (in effect, to bring the job out of the background). Pipelines, however, return the exit
status of the last program in the pipeline.

— JP

Test Exit Status with the if Statement

If you are going to write a shell script of any complexity at all, you need some way to write
"conditional expressions." Conditional expressions are nothing more than statements that have a value
of "true" or "false", such as "Am I wearing pants today?" or "Is it before 5 p.m.?" or "Does the file
indata exist?" or "Is the value of $aardvark greater than 60?"

The Unix shell is a complete programming language. Therefore, it allows you to write "if" statements
with conditional expressions — just like C, BASIC, Pascal, or any other language. Conditional
expressions can also be used in several other situations, but most obviously, they're the basis for any
sort of if statement. Here's the syntax of an if statement for the Bourne shell:
if conditional
then
 # do this if conditional returns a zero ("true") status
 one-or-more-commands
else
 # do this if conditional returns non-zero ("false") status
 one-or-more-commands
fi

Depending on how many different ways the command might exit, and thus the varying values its exit
status may have, you may want to use either a case statement or elif (for testing multiple conditionals
in a single if/else block.)

You can omit the else and the block of code following it. However, you can't omit the then or the fi. If
you want to omit the then (i.e., if you want to do something special when condition is false, but
nothing when it is true), write the statement like this:
if conditional
then
 : # do nothing
else
 # do this if conditional returns non-zero ("false") status
 one-or-more-commands
fi

Note that this uses a special null command, a colon (:) (Section 36.6). There's another, more useful
way of expressing the inverse of a condition (do something if conditional is not "true"), the ||
operator (Section 35.14) (two vertical bars). You can use this to write an if-type statement without
the if!
Don't forget the fi terminating the statement. This is a surprisingly common source of bugs (at least for
me).

Another common debugging problem: the manual pages that discuss this material imply that you can
smash the if, then, and else onto one line. Well, it's true, but it's not always easy. Do yourself a favor:
write your if statements exactly like the one above. You'll rarely be disappointed, and you may even
start writing programs that work correctly the first time.

Here's a real-life example, a shell script named bkedit that makes a backup copy of a file before
editing it. If cp returns a zero status, the script edits the file; otherwise, it prints a message. (The $1 is
replaced with the first filename from the command line — see Section 35.20.)
#!/bin/sh
if cp "$1" "$1.bak"
then

 vi "$1"
else
echo "bkedit quitting: can't make backup?" 1>&2
fi

You can try typing that shell script in and running it. Or just type in the lines (starting with the if) on a
terminal running the Bourne shell; use a real filename instead of $1.

The if statement is often used with a command named test (Section 35.26). The test command does a
test and returns an exit status of 0 or 1.

—ML, JP, and SJC

Testing Your Success

The shells let you test for success right on the command line. This gives you a very efficient way to
write quick and comprehensible shell scripts.

I'm referring to the || and && operators and in particular, the || operator. comm1 || comm2 is
typically explained as "execute the command on the right if the command on the left failed." I prefer to
explain it as an "either-or" construct: "execute either comm1 or comm2." While this isn't really
precise, let's see what it means in context:[3]

cat filea fileb > filec || exit

This means "either cat the files or exit." If you can't cat the files (if cat returns an exit status of 1),
you exit (Section 24.4). If you can cat the files, you don't exit. You execute the left side or the right
side.

I'm stretching normal terminology a bit here, but I think it's necessary to clarify the purpose of ||. By
the way, we could give the poor user an error message before flaming out (which, by the way, is a
way to write an "inverse if (Section 35.13)):
cat filea fileb > filec || {
 echo sorry, no dice 1>&2
 exit 1
}

Similarly, comm1 && comm2 means "execute comm1 AND comm2," or execute comm2 if comm1
succeeds. (But if you can't execute the first, don't do any.) This might be helpful if you want to print a
temporary file and delete it immediately.
lpr file && rm file

If lpr fails for some reason, you want to leave the file around. Again, I want to stress how to read
this: print the file and delete it. (Implicitly: if you don't print it, don't delete it.)

— ML

[3] Others refer to it as a "short-circuit" operator.

Loops That Test Exit Status

The Bourne shell has two kinds of loops that run a command and test its exit status. An until loop will
continue until the command returns a zero status. A while loop will continue while the command
returns a zero status.

Looping Until a Command Succeeds

The until loop runs a command repeatedly until it succeeds. That is, if the command returns a nonzero
status, the shell executes the body of the loop and then runs the loop control command again. The shell
keeps running the command until it returns a zero status, as shown in the following example:
% cat sysmgr
#!/bin/sh
until who | grep "^barb "
do sleep 60
done
echo The system manager just logged on.
% sysmgr
 &
[1] 2345
 ...time passes...
barb ttyp7 Jul 15 09:30
The system manager just logged on.

The loop runs who (Section 2.8) and pipes that output to grep (Section 13.1), which searches for any
line starting with barb and a space. (The space makes sure that usernames like barbara don't match.)
If grep returns a nonzero status (no lines matched), the shell waits 60 seconds. Then the loop repeats,
and the script tries the who | grep command again. It keeps doing this until grep returns a zero status
— then the loop is broken and control goes past the done line. The echo command prints a message
and the script quits. (I ran this script in the background so I could do something else while I waited
for Barb.)

This is also a useful way to get someone with whom you share a machine to turn on their cell phone:
just set a loop to wait until they login and then send them a write message (in case they don't always
check their email, like a few nocturnal system administrators I know).

[A Bourne shell until loop is not identical to the until construction in most programming languages,
because the condition is evaluated at the top of the loop. Virtually all languages with an until loop
evaluate the condition at the bottom. — ML]

Looping Until a Command Fails

 Go to http://examples.oreilly.com/upt3 for more information on: catsaway

The while loop is the opposite of the until loop. A while loop runs a command and loops until the
command fails (returns a nonzero status). The catsaway program below uses a while loop to watch
the who output for the system manager to log off. It's the opposite of the sysmgr script.

/dev/null Section 43.12
% cat catsaway
#!/bin/sh
while who | grep "^barb " > /dev/null
do sleep 60
done
echo "The cat's away..."
% catsaway &
[1] 4567
 ...time passes...
The cat's away...

— JP

http://examples.oreilly.com/upt3

Set Exit Status of a Shell (Script)

Most standard Unix toolbox commands return a status (Section 35.12). Your shell script should, too.
This section shows how to set the right exit status for both normal exits and error exits.

To end a shell script and set its exit status, use the exit command. Give exit the exit status that your
script should have. If it has no explicit status, it will exit with the status of the last command run.

 Go to http://examples.oreilly.com/upt3 for more information on: bkedit

Here's an example, a rewrite of the bkedit script from Section 35.13. If the script can make a backup
copy, the editor is run and the script returns the exit status from vi (usually 0). If something goes
wrong with the copy, the script prints an error and returns an exit status of 1. Here's the script:
#!/bin/sh
if cp "$1" "$1.bak"
then
 vi "$1"
 exit # Use status from vi
else
 echo "bkedit quitting: can't make backup?" 1>&2
 exit 1
fi

Here's what happens if I run it without a filename:
$ bkedit
cp: usage: cp fn1 fn2 or cp fn1 [fn2...] dir
bkedit quitting: can't make backup?

And here's what's left in the exit status variable:
$ echo $?
1

— JP

http://examples.oreilly.com/upt3

Trapping Exits Caused by Interrupts

If you're running a shell script and you press your interrupt key (Section 5.8) (like CTRL-c), the
shell quits right away. That can be a problem if you use temporary files in your script, because the
sudden exit might leave the temporary files there. The trap command lets you tell the shell what to do
before it exits. A trap can be used for a normal exit, too. See Table 35-1.

Table 35-1. Some Unix signal numbers for trap commands

Signal
number

Signal
name Explanation

0 EXIT exit command

1 HUP When session disconnected

2 INT Interrupt — often CTRL-c

3 QUIT Quit — often CTRL-\

9 KILL Kill, often used as a way to stop an errant program (it cannot be caught, so
don't bother to trap it)

15 TERM From kill command

Here's a script named zmore that uses a temporary file named /tmp/zmore$$ in a system temporary-
file directory. The shell will replace $$ with its process ID number (Section 24.3). Because no other
process will have the same ID number, that file should have a unique name. The script uncompresses
(Section 15.6) the file named on its command line, then starts the more file viewer.[4] The script uses
traps, so it will clean up the temporary files, even if the user presses CTRL-c. The script also sets a
default exit status of 1 that's reset to 0 if more quits on its own (without an interrupt). If you are on a
Linux system, you may find that gzcat is simply named zcat.
exit Section 35.16
#!/bin/sh
zmore - UNCOMPRESS FILE, DISPLAY WITH more
Usage: zmore file
stat=1 # DEFAULT EXIT STATUS; RESET TO 0 BEFORE NORMAL EXIT
temp=/tmp/zmore$$
trap 'rm -f $temp; exit $stat' 0
trap 'echo "`basename $0`: Ouch! Quitting early." 1>&2' 1 2 15

case $# in
1) gzcat "$1" >$temp
 more $temp
 stat=0
 ;;
*) echo "Usage: `basename $0` filename" 1>&2 ;;
esac

There are two traps in the script:

The first trap, ending with the number 0, is executed for all shell exits — normal or interrupted.
It runs the command line between the single quotes. In this example, there are two commands

separated with a semicolon (;) (Section 28.16). The first command removes the temporary file
(using the -f option (Section 14.10), so rm won't give an error message if the file doesn't exist
yet). The second command exits with the value stored in the stat shell variable. Look ahead at
the rest of the script — $stat will always be 1 unless the more command quit on its own, in
which case stat will be reset to 0. Therefore, this shell script will always return the right exit
status — if it's interrupted before it finishes, it'll return 1; otherwise, 0.[5]

 The second trap has the numbers 1 2 15 at the end. These are signal numbers that correspond to
different kinds of interrupts. On newer shells, you can use signal names instead of the numbers.
There's a short list in Table 35-1. For a list of all signals, type kill -l (lowercase "L") or see
your online signal(3) or signal(2) manual page. Alternatively, look for a file named
/usr/include/signal.h or /usr/include/linux/signal.h (which itself just includes
/usr/include/asm/signal.h, which is where the constants themselves are defined).
This trap is done on an abnormal exit (like CTRL-c). It prints a message, but it could run any list
of commands.

Shell scripts don't always have two traps. Look at the nom (Section 33.8) script for an example.

I usually don't trap signal 3 (QUIT) in scripts that I use myself. That gives me an easy way to abort the
script without springing the trap (removing temporary files, etc.). In scripts for general use, though, I
usually do trap it.

Also, notice that the echo commands in the script have 1>&2 (Section 36.16) at the end. This is the
standard way to make error messages. In this particular script, that doesn't matter much because the
script is used interactively. But it's a good habit to get into for all of your scripts.

If your trap runs a series of commands, it's probably neater to call a shell function (Section 29.11)
than a list of commands:
trap funcname 1 2 15

—JP and SJC

[4] The script could run gzcat $1 | more directly, but some versions of more can't back up when
reading from a pipe. You may prefer to use less, at any rate.
[5] It's important to use single quotes rather than double quotes around the trap. That way, the value of
$stat won't be interpreted until the trap is actually executed when the script exits.

read: Reading from the Keyboard

The Bourne shell read command reads a line of one or more words from the keyboard (or standard
input)[6] and stores the words in one or more shell variables. This is usually what you use to read an
answer from the keyboard. For example:
echo -n "Type the filename: "
read filename

Here is how the read command works:

If you give the name of one shell variable, read stores everything from the line into that variable:
read varname

If you name more than one variable, the first word typed goes into the first variable, the second
word into the second variable, and so on. All leftover words go into the last variable. For
example, with these commands:
echo -n "Enter first and last name: "
read fn ln

if a user types John Smith, the word John would be available from $fn and Smith would be in
$ln. If the user types Jane de Boes, then Jane would be in $fn and the two words de Boes are
in $ln.

Some Bourne shells have a built-in function named line that reads a line from standard input and
writes it to standard output. Use it with command substitutions (Section 28.14):
value=`line`

 Go to http://examples.oreilly.com/upt3 for more information on: grabchars

The grabchars program lets you read from the keyboard without needing to press RETURN.

— JP

[6] Some early versions of read don't handle < redirection (Section 43.1); they can only read from the
terminal.

http://examples.oreilly.com/upt3

Shell Script "Wrappers" for awk, sed, etc.

Although most scripts for most languages can execute directly (Section 36.3) without needing the
Bourne shell, it's common to "wrap" other scripts in a shell script to take advantage of the shell's
strengths. For instance, sed can't accept arbitrary text on its command line, only commands and
filenames. So you can let the shell handle the command line (Section 35.20) and pass information to
sed via shell variables, command substitution, and so on. Simply use correct quoting (Section 27.12)
to pass information from the shell into the "wrapped" sed script:

|| Section 35.14
#!/bin/sh
seder - cd to directory in first command-line argument ($1),
read all files and substitute $2 with $3, write result to stdout
cd "$1" || exit
sed "s/$2/$3/g" *

In SunExpert magazine, in his article on awk (January, 1991), Peter Collinson suggests a stylization
similar to this for awk programs in shell scripts (Section 35.2):
#!/bin/sh
awkprog='
/foo/{print $3}
/bar/{print $4}'

awk "$awkprog" $*

He argues that this is more intelligible in long pipelines because it separates the program from the
command. For example:
grep foo $input | sed | awk "$awkprog" - | ...

Not everyone is thrilled by the "advantages" of writing awk this way, but it's true that there are
disadvantages to writing awk the standard way.

Here's an even more complex variation:

<<\ Section 27.16
#!/bin/sh
temp=/tmp/awk.prog.$$
cat > $temp <<\END
/foo/{print $3}
/bar/{print $4}
END
awk -f $temp $1
rm -f $temp

This version makes it a bit easier to create complex programs dynamically. The final awk command
becomes the equivalent of a shell eval (Section 27.8); it executes something that has been built up at
runtime. The first strategy (program in shell variable) could also be massaged to work this way.

As another example, a program that I used once was really just one long pipeline, about 200 lines
long. Huge awk scripts and sed scripts intervened in the middle. As a result, it was almost completely
unintelligible. But if you start each program with a comment block and end it with a pipe, the result
can be fairly easy to read. It's more direct than using big shell variables or temporary files, especially
if there are several scripts.
#
READ THE FILE AND DO XXX WITH awk:
#
awk '

 ...the indented awk program...
 ...
 ...
' |
#
SORT BY THE FIRST FIELD, THEN BY XXX:
#
sort +0n -1 +3r |
#
MASSAGE THE LINES WITH sed AND XXX:
#
sed '
 ...

Multiline pipes like that one are uglier in the C shell because each line has to end with a backslash
(\) (Section 27.13). Section 27.12 and Section 27.13 have more about quoting.

—ML and JP

Handling Command-Line Arguments in Shell Scripts

To write flexible shell scripts, you usually want to give them command-line arguments. As you've
seen in other articles (Section 35.16, Section 35.17), $1 holds the first command-line argument. The
Bourne shell can give you arguments through the ninth, $9. The Korn shell and some other newer
Bourne-type shells understand ${10} for the tenth argument, and so on.

With the "$@" Parameter

If you've been reading this series (Section 35.2) of articles in order, you saw the zmore (Section
35.17) script that accepted just one command-line argument. If you put "$@" in a script, the shell will
replace that string with a quoted (Section 27.12) set of the script's command-line arguments. Then
you can pass as many arguments as you want, including pathnames with unusual characters (Section
14.11):
% zmore report memo "savearts/What's next?"

The third argument has a perfectly legal filename; we see more and more of them on our system —
especially filesystems that are networked to computers like the Macintosh, or on systems that use
windowing systems to run graphical programs such as FrameMaker, where spaces and other
"special" characters in filenames are common. Double-quoting all arguments through the script helps
to be sure that the script can handle these unusual but legal pathnames.

In this case, we want the arguments to be passed to the GNU zcat command. Let's change the zmore
script to read:
zcat "$@" >$temp

When the shell runs the script with the arguments shown above, the command line will become:
zcat "report" "memo" "savearts/What's next?" >/tmp/zmore12345

Note
On some Bourne shells, if there are no command-line arguments, the "$@" becomes a single empty argument (Section 37.5), as if y ou'd ty ped this:

zcat "" >/tmp/zmore12345

In this case, the zcat command would complain that it can't find a file. (Of course, in this script, the case would prevent this problem. But not all scripts test the number of arguments.)

On those shells, y ou can replace "$@" with ${1+"$@"} (Section 36.7). That means that if $1 is defined, "$@" should be used. A not-quite-as-good fix is to replace "$@" with $*. It gives y ou an unquoted list of command-line arguments; that's
usually fine but can cause trouble on pathnames with special characters in them.

With a Loop

A for loop (Section 35.21) can step through all command-line arguments, one by one. You can also
use a while loop (Section 35.15) that tests $# (see below) and removes the arguments one by one with
the shift command (Section 35.22). The getopt and getopts (Section 35.24) commands handle
arguments in a more standard way.

Counting Arguments with $#

The $# parameter counts the number of command-line arguments. For instance, if there are three
arguments, $# will contain 3. This is usually used for error-checking (as in the zmore script in
Section 35.17) with case (Section 35.10) or test (Section 35.26).

— JP

Handling Command-Line Arguments with a for Loop

Sometimes you want a script that will step through the command-line arguments one by one. (The
"$@" parameter (Section 35.20) gives you all of them at once.) The Bourne shell for loop can do
this. The for loop looks like this:
for arg in list
do
 ...handle $arg...
done

If you omit the in list, the loop steps through the command-line arguments. It puts the first
command-line argument in arg (or whatever else you choose to call the shell variable (Section
35.9)), then executes the commands from do to done. Then it puts the next command-line argument in
arg, does the loop, and so on, ending the loop after handling all the arguments.

For an example of a for loop, let's hack on the zmore (Section 35.17) script.

case Section 35.11
#!/bin/sh
zmore - Uncompress file(s), display with "more"
Usage: zmore [more options] file [...files]
stat=1 # Default exit status; reset to 0 before normal exit
temp=/tmp/zmore$$
trap 'rm -f $temp; exit $stat' 0
trap 'echo "`basename $0`: Ouch! Quitting early..." 1>&2' 1 2 15

files= switches=
for arg
do
 case "$arg" in
 -*) switches="$switches $arg" ;;
 *) files="$files $arg" ;;
 esac
done

case "$files" in
"") echo "Usage: `basename $0` [more options] file [files]" 1>&2 ;;
*) for file in $files
 do
 zcat "$file" | more $switches
 done
 stat=0
 ;;
esac

We added a for loop to get and check each command-line argument. For example, let's say that a user
typed the following:
% zmore -s afile ../bfile

The first pass through the for loop, $arg is -s. Because the argument starts with a minus sign (-), the
case treats it as an option. Now the switches variable is replaced by its previous contents (an empty
string), a space, and -s. Control goes to the esac and the loop repeats with the next argument.

The next argument, afile, doesn't look like an option. So now the files variable will contain a
space and afile.

The loop starts over once more with ../bfile in $arg. Again, this looks like a file, so now $files
has afile ../bfile. Because ../bfile was the last argument, the loop ends; $switches has the
options and $files has all the other arguments.

Next, we added another for loop. This one has the word in followed by $files, so the loop steps
through the contents of $files. The loop runs zcat on each file, piping it to more with any switches
you gave.

Note that $switches isn't quoted (Section 27.12). This way, if $switches is empty, the shell won't
pass an empty argument to more. Also, if $switches has more than one switch, the shell will break
the switches into separate arguments at the spaces and pass them individually to more.

You can use a for loop with any space-separated (actually, IFS (Section 36.23)-separated) list of
words — not just filenames. You don't have to use a shell variable as the list; you can use command
substitution (Section 28.14) (backquotes) or shell wildcards (Section 33.2), or just "hardcode" the
list of words:

lpr Section 45.2
for person in Joe Leslie Edie Allan
do
 echo "Dear $person," | cat - form_letter | lpr
done

The getopt and getopts (Section 35.24) commands handle command-line arguments in a more
standard way than for loops.

— JP

Handling Arguments with while and shift

A for loop (Section 35.21) is great if you want to handle all of the command-line arguments to a
script, one by one. But, as is often the case, some arguments are options that have their own
arguments. For example, in the command grep -f filename, filename is an argument to -f; the
option and its argument need to be processed together. One good way to handle this is with a
combination of while (Section 35.15), test (Section 35.26), case (Section 35.10), and shift. Here's
the basic construct:
while [$# -gt 0]
do
 case "$1" in
 -a) options="$options $1";;
 ...
 -f) options="$options $1"
 argfile="$2"
 shift
 ;;
 *) files="$files $1";;
 esac
 shift
done

The trick is this: shift removes an argument from the script's argument list, shifting all the others over
by one ($1 disappears, $2 becomes $1, $3 becomes $2, and so on). To handle an option with its own
argument, do another shift. The while loop uses test (Section 35.26) to check that $# — the number
of arguments — is greater than zero and keeps going until this is no longer true, which only happens
when they have all been used up.

Meanwhile, all the case has to do is to test $1 against the desired option strings. In the simple
example shown above, we simply assume that anything beginning with a minus sign is an option,
which we (presumably) want to pass on to some program that is being invoked by the script. So all
we do is build up a shell variable that will eventually contain all the options. It would be quite
possible to do something else instead, perhaps setting other shell variables or executing commands.

We assume that anything without a minus sign is a file. This last case could be written more robustly
with a test to be sure the argument is a file. Here's an example of a simple script that uses this
construct to pass an option and some files to pr and from there to a program that converts text to
PostScript and on to the print spooler (or you could convert SGML or XML files to PDF, whatever):
while [$# -ne 0]
do
 case $1 in
 +*) pages="$1" ;;
 *) if [-f "$1"]; then
 files="$files $1"
 else
 echo "$0: file $1 not found" 1>&2
 fi;;
 esac
 shift
done
pr $pages $files | psprint | lpr

This approach is perhaps obsolete if you have getopts (Section 35.24) (it's built into bash, for
instance), since getopts lets you recognize option strings like -abc as being equivalent to -a -b -c,
but I still find it handy. [In this example, it's essential. The pr option +page-list starts with a plus
sign. getopt and getopts don't support those old-style options. — JP]

—TOR and SJC

Loop Control: break and continue

Normally a for loop (Section 35.21) iterates until it has processed all its word arguments. while and
until loops (Section 35.15) iterate until the loop control command returns a certain status. But
sometimes — for instance, if there's an error — you want a loop to immediately terminate or jump to
the next iteration. That's where you use break and continue, respectively.

break terminates the loop and takes control to the line after done. continue skips the rest of the
commands in the loop body and starts the next iteration. Here's an example of both. An outer loop is
stepping through a list of directories. If we can't cd to one of them, we'll abort the loop with break.
The inner loop steps through all entries in the directory. If one of the entries isn't a file or isn't
readable, we skip it and try the next one.

'...' Section 28.14, || Section 35.14, * Section 1.13, test Section 35.26
for dir in `find $HOME/projdir -type d -print`
do
 cd "$dir" || break
 echo "Processing $dir"

 for file in *
 do
 test -f "$file" -a -r "$file" || continue
 ...process $dir/$file...
 done
done

With nested loops (like the file loop above), which loop is broken or continued? It's the loop being
processed at that time. So the continue here restarts the inner (file) loop. The break terminates the
outer (directory) loop, which means the inner loop is also terminated. Note also that the -print
argument to find is often redundant in the absence of another expression, depending on your version of
find.

Here we've used break and continue within for loops, after the shell's || operator. But you can use
them anywhere within the body of any loop — in an if statement within a while loop, for instance.

— JP

Standard Command-Line Parsing

Most shell scripts need to handle command-line arguments — options, filenames, and so on. Section
35.20, Section 35.21, and Section 35.22 show how to parse command lines with any Bourne shell.
Those methods have two problems. You can't combine arguments with a single dash, e.g., -abc
instead of -a -b -c. You also can't specify arguments to options without a space in between, e.g., -b
arg in addition to -b arg.[7]

Your Bourne shell may have a built-in command named getopts.[8] getopts lets you deal with multiple
complex options without these constraints. To find out whether your shell has getopts, see your online
sh or getopts(1) manual page.

getopt takes two or more arguments. The first is a string that can contain letters and colons (:). Each
letter names a valid option; if a letter is followed by a colon, the option requires an argument. The
second and following arguments are the original command-line options; you'll usually give "$@"
(Section 35.20) to pass all the arguments to getopt.
getopt picks each option off the command line, checks to see if the option is valid, and writes the
correct option to its standard output. If an option has an argument, getopt writes the argument after its
option. When getopt finds the first nonoption argument (the first argument that doesn't start with a -
character), it outputs two dashes (--) and the rest of the arguments. If getopt finds an invalid option,
or an option that should have an argument but doesn't, it prints an error message and returns a nonzero
status (Section 35.12).

 Go to http://examples.oreilly.com/upt3 for more information on: opttest

Your script can use a loop to parse the getopt output. Here's an example script named opttest that
shows how getopt works:

|| Section 35.14, : Section 36.6
#!/bin/sh
set -- `getopt "ab:" "$@"` || {
 echo "Usage: `basename $0` [-a] [-b name] [files]" 1>&2
 exit 1
}
echo "Before loop, command line has: $*"
aflag=0 name=NONE
while :
do
 case "$1" in
 -a) aflag=1 ;;
 -b) shift; name="$1" ;;
 --) break ;;
 esac
 shift
done
shift # REMOVE THE TRAILING --
echo "aflag=$aflag / name=$name / Files are $*"

The script has two legal options. The -a option sets the variable named aflag to 1. The -b option
takes a single argument; the argument is stored in the variable named name. Any other arguments are
filenames.

The script starts by running getopt inside backquotes (Section 28.14) and using the set (Section

http://examples.oreilly.com/upt3

35.25) command to replace the command-line arguments with the getopt output. The first argument to
set, -- (two dashes) (Section 35.25), is important: it makes sure that set passes the script's options to
getopt instead of treating them as options to the shell itself. An echo command shows the output of
getopt. Then the loop parses the getopt output, setting shell variables as it goes. When the loop finds
the -- argument from getopt, it quits and leaves the remaining filenames (if any) in the command-line
arguments. A second echo shows what's in the shell variables and on the command line after the loop.
Here are a few examples:
% opttest
Before loop, command line has: --
aflag=0 / name=NONE / Files are
% opttest -b file1 -a file2 file3
Before loop, command line has: -b file1 -a -- file2 file3
aflag=1 / name=file1 / Files are file2 file3
% opttest -q -b file1
getopt: illegal option -- q
Usage: opttest [-a] [-b name] [files]
% opttest -bfile1
Before loop, command line has: -b file1 --
aflag=0 / name=file1 / Files are
% opttest -ab
getopt: option requires an argument -- b
Usage: opttest [-a] [-b name] [files]

Some old Bourne shells have problems with an empty "$@" parameter (Section 37.5). If the
opttest script doesn't work with an empty command line, as in the first example above, you can
change the "$@" in the script to ${1+"$@"}. If you find you're still having some trouble running the
script, particularly with bash, try setting the GETOPT_COMPATIBLE environment variable, which
sets GNU getopt to emulate the older, less featureful version. Also be sure to read the GNU getopt(1)
manual page, as it details the support for POSIX-style long options (which let you do things like pass
-- longoptions to programs such as GNU getopt.)
The advantages of getopt are that it minimizes extra code necessary to process options and fully
supports the standard Unix option syntax (as specified in intro of the User's Manual).

—JP and BR

[7] Although most Unix commands allow this, it is actually contrary to the Command Syntax Standard
Rules in intro of the User's Manual. Check your shell's manual pages for whether it supports getopts.
[8] Both bash and ksh have it. getopts replaces the old command getopt; it is better integrated into the
shell's syntax and runs more efficiently. C programmers will recognize getopts as very similar to the
standard library routine getopt(3).

The Bourne Shell set Command

[Most of this article, except IFS and --, also applies to the C shell. — JP]

You can pass options and arguments to a shell as you start it, as in:
sh -v file1 file2

and also when a script is invoked with #!. The set command lets you set command-line parameters,
including most[9] shell options, after you've started the shell. This simple idea has more uses than you
might realize.

Setting Options

The Bourne shell command line can have options like -e (exit if any command returns nonzero
status). It can also have other arguments; these are passed to shell scripts. You can set new command-
line parameters while you're typing interactive commands (at a shell prompt) or in a shell script.

To reset the command-line parameters, just type set followed by the new parameters. For example, to
ask the shell to show expanded versions of command lines after you type them, set the -v (verbose)
option (Section 27.15):
$ set -v
$ mail $group1 < message
mail andy ellen heather steve wilma < message
$ mail $group2 < message
mail jpeek@jpeek.com randy@xyz.edu yori@mongo.medfly.com < message
$ set +v

On many Bourne shells, typing set +v cancels the v option. On other (mostly early) shells, there's no
+ feature. To work around that problem, you could start a subshell (Section 24.4) with sh -v, run the
commands there, then exit the subshell to cancel the verbose option.

Setting (and Parsing) Parameters

 Go to http://examples.oreilly.com/upt3 for more information on: users

You can put filenames or any other strings in the command-line parameters interactively or from a
shell script. That's handy for storing and parsing the output of a Unix command with backquotes
(Section 28.14). For example, you can get a list of all logged-in users from the parameters $1, $2, and
so on. Use users (or rusers to find all the logged in users on the local network) if your system has it.
Otherwise, use who (Section 2.8) and cut (Section 21.14) to strip off everything but the usernames:

for Section 35.21
$ set `users`
$ set `who | cut -c1-8`
$ for u
> do
> ...do something with each user ($u)...
> done

You can save the original parameters in another variable and reset them later:
oldparms="$*"
set something new
 ...use new settings...
set $oldparms

Be sure to watch your quoting (as the next section explains).

If the first parameter you set starts with a dash, like -e, the shell will treat it as its own option instead
of as a string to put into the command-line parameters. To avoid this, use -- (two dashes) as the first
argument to set. In this example, $1 gets -e, and the filenames expanded from the wildcard pattern go
into $2, $3, etc.:
set -- -e file*

http://examples.oreilly.com/upt3

(Avoiding?) set with No Arguments

If you type set by itself with no arguments, it will show a list of all currently set shell variables. In
newer Bourne-type shells, it also shows shell functions (Section 29.11) and other shell settings.

This can cause you grief if you accidentally don't pass arguments to set in the middle of a script, and
screenfuls of variables spew onto the user's screen. For example, your script runs set 'users' from
a cron (Section 25.2) job, in the middle of the night when no one is logged on. The users command
returns an empty string, so set gets no arguments, so it outputs a long list of junk.

The standard workaround for this problem is to always use a dummy first parameter — typically, a
single x — when you're setting parameters. Then use shift (Section 35.22) to shift away the x, leaving
the other parameters (possibly none). For example:
set x `users`
shift

Watch Your Quoting

Because the shell parses and scans the new parameters before it stores them, wildcards (Section
33.2) and other special characters (Section 27.17) will be interpreted, so watch your quoting
(Section 27.12). You can take advantage of this to parse lines of text into pieces that aren't separated
with the usual spaces and TABs — for instance, a line from a database with colon-separated fields
— by setting the IFS (Section 36.23) variable before the set command.

If you want to save any special quoting on the original command line, be careful: the quoting will be
lost unless you're clever. For example, if $1 used to be John Smith, it will be split after it's restored:
$1 will have John and $2 will be Smith. A better solution might be to use a subshell (Section 43.7)
for the part of the script where you need to reset the command-line parameters:
reset command-line parameters during subshell only:
(set some new parameters
 ...do something with new parameters...
)
original parameters aren't affected from here on...

Can't Set $0

One last note: set won't set $0, the name of the script file.

— JP

[9] Some options for some shells can be set only from the command line as the shell is invoked. Check
the shell's manual page.

test: Testing Files and Strings

Unix has a command called test that does a lot of useful tests. For instance, test can check whether a
file is writable before your script tries to write to it. It can treat the string in a shell variable as a
number and do comparisons ("Is that number less than 1000?"). You can combine tests, too ("If the
file exists and it's readable and the message number is more than 500..."). Some versions of test have
more tests than others. For a complete list, read your shell's manual page (if your shell has test built
in (Section 1.9)) or the online test(1) manual page.

The test command returns a zero status (Section 35.12) if the test was true and a nonzero status
otherwise, so people usually use test with if , while, or until. Here's a way your program could check
to see if the user has a readable file named .signature in the home directory:

$HOME Section 35.5, $myname Section 35.28
if test -r $HOME/.signature
then
 ...Do whatever...
else
 echo "$myname: Can't read your '.signature'. Quitting." 1>&2
 exit 1
fi

The test command also lets you test for something that isn't true. Add an exclamation point (!) before
the condition you're testing. For example, the following test is true if the .signature file is not
readable:
if test ! -r $HOME/.signature
then
 echo "$myname: Can't read your '.signature'. Quitting." 1>&2
 exit 1
fi

Unix also has a version of test (a link to the same program, actually) named [. Yes, that's a left
bracket. You can use it interchangeably with the test command with one exception: there has to be a
matching right bracket (]) at the end of the test. The second example above could be rewritten this
way:
if [! -r $HOME/.signature]
then
 echo "$myname: Can't read your '.signature'. Quitting." 1>&2
 exit 1
fi

Be sure to leave space between the brackets and other text. There are a couple of other common
gotchas caused by empty arguments; Section 37.3 and Section 37.4 have workarounds.

— JP

Picking a Name for a New Command

When you write a new program or shell script, you'll probably want to be sure that its name doesn't
conflict with any other commands on the system. For instance, you might wonder whether there's a
command named tscan. You can check by typing one of the commands in the following example. If
you get output (besides an error) from one of them, there's probably already a command with the same
name. (The type command works on ksh, bash, and many Bourne shells; I've shown it with a dollar
sign ($) prompt.)

which Section 2.6, whereis Section 2.3, alias Section 29.2
% man 1 tscan
No manual entry for tscan in section 1.
% which tscan
no tscan in . /xxx/ehuser/bin /usr/bin/X11 /usr/local/bin ...
% whereis tscan
tscan:
% alias tscan
%
% whatis tscan
tscan:
$ type tscan
tscan not found

— JP

Finding a Program Name and Giving Your Program Multiple
Names

A Unix program should use its name as the first word in error messages it prints. That's important
when the program is running in the background or as part of a pipeline — you need to know which
program has the problem:
 someprog: quitting: can't read file xxxxxx

It's tempting to use just the program name in the echo commands:
echo "someprog: quitting: can't read file $file" 1>&2

If you ever change the program name, however, it's easy to forget to fix the messages. A better way is
to store the program name in a shell variable at the top of the script file and use the variable in all
messages:
myname=someprog
 ...
echo "$myname: quitting: can't read file $file" 1>&2

Even better, use the $0 parameter. The shell automatically puts the script's name there. But $0 can
have the absolute pathname of the script, such as /xxx/yyy/bin/someprog. The basename (Section
36.13) program fixes this: basename strips off the head of a pathname — everything but the filename.

For example, if $0 is /u/ehuser/bin/sendit:
myname="`basename $0`"

would put sendit into the myname shell variable.

Just as you can make links (Section 10.3) to give Unix files several names, you can use links to give
your program several names (Section 36.8). For instance, see the script named ll, lf, lg (...and so
on). Use $0 to get the current name of the program.

— JP

Reading Files with the . and source Commands

As Section 35.4 explains, Unix programs can never, ever modify the environment of their parents. A
program can only modify the environment that later will be passed to its children. This is a common
mistake that many new Unix users make: they try to write a program that changes a directory (or does
something else involving an environment variable) and attempt to figure out why it doesn't work. You
can't do this. If you write a program that executes the cd command, that cd will be effective within
your program — but when the program finishes, you'll be back in your original (parent) shell.

One workaround is to "source" the shell script file (for csh and bash) or run it as a "dot" script (sh,
ksh, and bash, too). For example, if the file named change-my-directory contains:
cd /somewhere/else

you could use the following commands to change the current directory of the current shell:
% source change-my-directory
$. change-my-directory

The source and . commands read a script file into the current shell instead of starting a child shell.
These commands work only for shell script files (files containing command lines as you'd type them
at a shell prompt). You can't use source or . to read a binary (directly executable) file into the shell.

If your shell doesn't have shell functions (Section 29.11), you can simulate them (Section 29.14)
with the . command. It acts a lot like a subroutine or function in a programming language.

—ML and JP

Using Shell Functions in Shell Scripts

So far, we have discussed some shell function basics (Section 29.11), using examples such as the
mx() function that uses sed and dig to find out what host accepts mail for a given address. In that
example, we simply made a set of complex functionality available as a quick and easy (and short)
call from the command line. But you can also define functions and use them within shell scripts, or
you can use the . and source commands to include those functions from an external file (Section
35.29).

We've also discussed using functions to automate repetitive tasks (Section 29.11), such as
calculating factorials.

For now, let's demonstrate both of these approaches specifically with respect to defining a function to
automate a repetitive task and then sharing the function with other shell scripts. Using the mx()
function we defined earlier, let's put it into its own file, mx.sh, and store it in our personal shell
function library directory (in this case, $HOME/lib):
$ cat > ~/lib/mx.sh
function mx() {
Look up mail exchanger for host(s)
for host
do
 echo "==== $host ===="
 dig "$host" mx in |
 sed -n '/^;; ANSWER SECTION:/,/^$/{
 s/^[^;].* //p
 }'
done
}
^D
$ more !$
function mx() {
Look up mail exchanger for host(s)
for host
do
 echo "==== $host ===="
 dig "$host" mx in |
 sed -n '/^;; ANSWER SECTION:/,/^$/{
 s/^[^;].* //p
 }'
done
}
$

Now the file ~/lib/mx.sh contains a function named mx() — fair enough, but let's say we want to be
able to pass a list of hosts (determined dynamically on a regular basis, say, from spam-fighting tools
that find open SMTP proxies) to a shell script, and have that shell script email a form letter to the
postmaster address at that host. We will call the shell script proxynotify, and call it as follows:
$ proxynotify < proxyList

proxylist contains a list of hosts, one per line, in the com domain. We want to iterate over them and
mail the postmaster for the domain, rather than mailing directly to an address such as postmaster@[
IP], on the assumption that maybe the top-level postmaster can fix what may be an unmonitored
relay. Just to verify that some other system isn't responsible for delivering the mail, we will check
using the mx() shell function. We've also included a quickie shell function named ip() that returns
the IP address for a given hostname. As you can see, we use a local variable for the IP address, and
we use the -z test for zero length of a string. We also check whether the file is readable, check the

script arguments, and use a variety of other tricks.
#!/bin/sh
proxynotify demo

get our function
. $HOME/lib/mx.sh

function ip() {
 for host
 do
 local ip=`dig in host $host |\
 grep $host |\
 grep "TABATAB" |\
 awk '{print $5}'`
 echo $ip
 done
}

if [-z "$1"]
then
 echo "Usage: $0 [file]"
 exit 1
elif [-r "$1"]
then
 echo "found a file and it is readable"
else
 echo "file $1 not readable or does not exist"
 exit 1
fi

 for domain in `cat "$1"`
 do
 echo "processing $domain"
 themx=`mx $domain`
 echo "MX for $domain is '$themx'"
 if [! -z $themx]
 then
 cat formletter | mail -s "proxy" postmaster@$themx
 else
 echo "couldn't find MX for $domain,"
 echo "mailing direct-to-IP instead."
 theip=`ip $domain`
 if [! -z $theip]; then
 cat formletter | mail -s "proxy" postmaster@$theip
 else
 echo "giving up, can't find anyone to notify"
 echo "$domain" >> /tmp/proxybadlist.$$
 return 1
 fi
 fi
done
mail -s "bad proxies" <</tmp/proxybadlist.$$
rm /tmp/proxybadlist.$$

Chapter 36. Shell Programming for the Initiated

Beyond the Basics

This chapter has a bunch of tricks and techniques for programming with the Bourne shell. Some of
them are documented but hard to find; others aren't documented at all. Here is a summary of this
chapter's articles:

The first group of articles is about making a file directly executable with #! on the first line. On
many versions of Unix, an executable file can start with a first line like this:
#!/path/to/interpreter

The kernel will start the program named in that line and give it the file to read. Chris Torek's
Usenet classic, Section 36.2, explains how #! started. Section 36.3 explains that your "shell
scripts" may not need a shell at all.
The next bunch of articles are about processes and commands. The exec command, Section 36.5,
replaces the shell with another process; it can also be used to change input/output redirection
(see below). The : (colon) operator evaluates its arguments and returns a zero status — Section
36.6 explains why you should care.
Next are techniques for handling variables and parameters. Parameter substitution, explained in
Section 36.7, is a compact way to test, set, and give default values for variables. You can use the
$0 parameter and Unix links to give the same script multiple names and make it do multiple
things; see Section 36.8. Section 36.9 shows the easy way to get the last command-line argument.
Section 36.10 has an easy way to remove all the command-line arguments.
Four articles cover sh loops. A for loop usually reads a list of single arguments into a single
shell variable. Section 36.11 shows how to make the for loop read from standard input. Section
36.12 has techniques for making a for loop set more than one variable. The dirname and
basename commands can be used to split pathnames with a loop; see Section 36.13. A while
loop can have more than one command line at the start; see Section 36.14.
Next is an assortment of articles about input/output. Section 36.15 introduces open files and file
descriptors — there's more to know about standard input/output/error than you might have
realized! Section 36.16 has a look at file-descriptor handling in the Bourne shell, swapping
standard output and standard error.
The shell can read commands directly from a shell script file. As Section 36.17 points out, a
shell can also read commands from its standard input, but that can cause some problems. Section
36.18 shows one place scripts from stdin are useful: writing a script that creates another script
as it goes.
Next are two articles about miscellaneous I/O. One gotcha with the here-document operator (for
redirecting input from a script file) is that the terminators are different in the Bourne and C
shells; Section 36.19 explains. Section 36.20 shows how to turn off echoing while your script
reads a "secret" answer such as a password.
Two articles — Section 36.22 and Section 36.23 — show uses for the versatile expr
expression-handling command. Section 36.21 is a quick reference to expr. Section 36.24 covers
multiple command substitution (Section 28.14).
Section 36.25 shows a trick for making one case statement (Section 35.10) test two things at
once. Finally, Section 36.27 has a simple technique for getting exclusive access to a file or other
system resource.

— JP

The Story of : # #!

Once upon a time, there was the Bourne shell. Since there was only "the" shell, there was no trouble
deciding how to run a script: run it with the shell. It worked, and everyone was happy.

Along came progress and wrote another shell. The people thought this was good, for now they could
choose their own shell. So some chose the one, and some the other, and they wrote shell scripts and
were happy. But one day someone who used the "other" shell ran a script by someone who used the
"other other" shell, and alas! it bombed spectacularly. The people wailed and called upon their Guru
for help.

"Well," said the Guru, "I see the problem. The one shell and the other are not compatible. We need to
make sure that the shells know which other shell to use to run each script. And lo! the one shell has a
`comment' called :, and the other a true comment called #. I hereby decree that henceforth, the one
shell will run scripts that start with :, and the other those that start with #." And it was so, and the
people were happy.

But progress was not finished. This time he noticed that only shells ran scripts and thought that if the
kernel too could run scripts, this would be good, and the people would be happy. So he wrote more
code, and now the kernel could run scripts but only if they began with the magic incantation #! , and if
they told the kernel which shell ran the script. And it was so, and the people were confused.

For the #! looked like a "comment." Though the kernel could see the #! and run a shell, it would not
do so unless certain magic bits were set. And if the incantation were mispronounced, that too could
stop the kernel, which, after all, was not omniscient. And so the people wailed, but alas! the Guru did
not respond. And so it was, and still it is today. Anyway, you will get best results from a 4BSD
machine by using
#! /bin/sh

or:
#! /bin/csh

as the first line of your script. #! /bin/csh -f is also helpful on occasion, and it's usually faster
because csh won't read your .cshrc file (Section 3.3).

— CT

Don't Need a Shell for Your Script? Don't Use One

If your Unix understands files that start with:
#!/interpreter/program

(and nearly all of them do by now) you don't have to use those lines to start a shell, such as
#!/bin/sh. If your script is just starting a program like awk, Unix can start the program directly and
save execution time. This is especially useful on small or overloaded computers, or when your script
has to be called over and over (such as in a loop).

First, here are two scripts. Both scripts print the second word from each line of text files. One uses a
shell; the other runs awk directly:
% cat with_sh
#!/bin/sh
awk '
{ print $2 }
' $*
% cat no_sh
#!/usr/bin/awk -f
{ print $2 }
% cat afile
one two three four five

Let's run both commands and time (Section 26.2) them. (This is running on a very slow machine. On
faster systems, this difference may be harder to measure — though the difference can still add up over
time.)
% time with_sh afile
two
0.1u 0.2s 0:00 26%
% time no_sh afile
two
0.0u 0.1s 0:00 13%

One of the things that's really important to understand here is that when the kernel runs the program on
the interpreter line, it is given the script's filename as an argument. If the intepreter program
understands a file directly, like /bin/sh does, nothing special needs to be done. But a program like
awk or sed requires the -f option to read its script from a file. This leads to the seemingly odd syntax
in the example above, with a call to awk -f with no following filename. The script itself is the input
file!

One implication of this usage is that the interpreter program needs to understand # as a comment, or
the first interpreter-selection line itself will be acted upon (and probably rejected by) the interpreter.
(Fortunately, the shells, Perl, sed, and awk, among other programs, do recognize this comment
character.)

[One last comment: if you have GNU time or some other version that has a verbose mode, you can see
that the major difference between the two invocations is in terms of the page faults each requires. On
a relatively speedy Pentium III/450 running RedHat Linux, the version using a shell as the interpreter
required more than twice the major page faults and more than three times as many minor page faults
as the version calling awk directly. On a system, no matter how fast, that is using a large amount of
virtual memory, these differences can be crucial. So opt for performance, and skip the shell when it's
not needed. — SJC]

—JP and SJC

Making #! Search the PATH

As Section 36.3 explains, you can use #! /path/name to run a script with the interpreter located at
/path/name in the filesystem. The problem comes if a new version of the interpreter is installed
somewhere else or if you run the script on another system that has a different location. It's usually not
a problem for Bourne shell programmers: /bin/sh exists on every Unix-type system I've seen. But
some newer shells — and interpreters like Perl — may be lurking almost anywhere (although this is
becoming more and more standardized as Perl and other tools like it become part of standard Linux
distributions and the like). If the interpreter isn't found, you'll probably get a cryptic message like
scriptname: Command not found, where scriptname is the name of the script file.

The env command will search your PATH (Section 35.6) for an interpreter, then execute (exec
(Section 24.2), replace itself) with the interpreter. If you want to try this, type env ls; env will find
and run ls for you. This is pretty useless when you have a shell around to interpret your commands —
because the shell can do the same thing without getting env involved. But when the kernel interprets
an executable file that starts with #!, there's no shell (yet!). That's where you can use env. For
instance, to run your script with zsh, you could start its file with:
#!/usr/bin/env zsh
 ...zsh script here...

The kernel execs /usr/bin/env, then env finds and execs the zsh it found. Nice trick, eh? What do you
think the problem is? (You have ten seconds... tick, tick, tick...) The catch is: if the env command isn't
in /usr/bin on your system, this trick won't work. So it's not as portable as it might be, but it's still
handy and probably still better than trying to specify the pathname of a less common interpreter like
zsh.

Running an interpreter this way can also be a security problem. Someone's PATH might be wrong; for
instance, it might execute some random command named zsh in the user's bin directory. An intruder
could change the PATH to make the script use a completely different interpreter with the same name.

One more problem worth mentioning: you can't specify any options for the interpreter on the first line.
Some shell options can be set later, as the script starts, with a command like set, shopt, and so on —
check the shell's manual page.

Finally, understand that using env like this pretty much erases any performance gains you may have
achieved using the trick in the previous article.

—JP and SJC

The exec Command

The exec command executes a command in place of the current shell; that is, it terminates the current
shell and starts a new process (Section 24.3) in its place.

Historically, exec was often used to execute the last command of a shell script. This would kill the
shell slightly earlier; otherwise, the shell would wait until the last command was finished. This
practice saved a process and some memory. (Aren't you glad you're using a modern system? This sort
of conservation usually isn't necessary any longer unless your system limits the number of processes
each user can have.)

exec can be used to replace one shell with another shell:
% exec ksh
$

without incurring the additional overhead of having an unused shell waiting for the new shell to
finish.

exec also manipulates file descriptors (Section 36.16) in the Bourne shell. When you use exec to
manage file descriptors, it does not replace the current process. For example, the following command
makes the standard input of all commands come from the file formfile instead of the default place
(usually, your terminal):
exec < formfile

—ML and JP

The Unappreciated Bourne Shell ":" Operator

Some people think that the Bourne shell's : is a comment character. It isn't, really. It evaluates its
arguments and returns a zero exit status (Section 35.12). Here are a few places to use it:

Replace the Unix true command to make an endless while loop (Section 35.15). This is more
efficient because the shell doesn't have to start a new process each time around the loop (as it
does when you use while true):
while :
do
 commands
done

(Of course, one of the commands will probably be break, to end the loop eventually. This
presumes that it is actually a savings to have the break test inside the loop body rather than at the
top, but it may well be clearer under certain circumstances to do it that way.)
When you want to use the else in an if (Section 35.13) but leave the then empty, the : makes a
nice "do-nothing" place filler:
if something
then :
else
 commands
fi

 If your Bourne shell doesn't have a true # comment character (but nearly all of them do
nowadays), you can use : to "fake it." It's safest to use quotes so the shell won't try to interpret
characters like > or | in your "comment":
: 'read answer and branch if < 3 or > 6'

Finally, it's useful with parameter substitution (Section 35.7) like ${ var ?} or ${ var =
default }. For instance, using this line in your script will print an error and exit if either the
USER or HOME variables aren't set:
: ${USER?} ${HOME?}

— JP

Parameter Substitution

The Bourne shell has a handy set of operators for testing and setting shell variables. They're listed in
Table 36-1.

Table 36-1. Bourne shell parameter substitution operators

Operator Explanation

${ var :-
default
}

If var is not set or is empty, use default instead.

${ var :=
default
}

If var is not set or is empty, set it to default and use that value.

${ var :+
instead
}

If var is set and is not empty, use instead. Otherwise, use nothing (null string).

${ var :?
message
}

If var is set and is not empty, use its value. Otherwise, print message, if any, and exit
from the shell. If message is missing, print a default message (which depends on your
shell).

If you omit the colon (:) from the expressions in Table 36-1, the shell doesn't check for an empty
parameter. In other words, the substitution happens whenever the parameter is set. (That's how some
early Bourne shells work: they don't understand a colon in parameter substitution.)

To see how parameter substitution works, here's another version of the bkedit script (Section 35.13,
Section 35.16):
+#!/bin/sh
if cp "$1" "$1.bak"
then
 ${VISUAL:-/usr/ucb/vi} "$1"
 exit # Use status from editor
else
 echo "`basename $0` quitting: can't make backup?" 1>&2
 exit 1
fi

If the VISUAL (Section 35.5) environment variable is set and is not empty, its value (such as
/usr/local/bin/emacs) is used and the command line becomes /usr/local/bin/emacs "$1". If
VISUAL isn't set, the command line defaults to /usr/ucb/vi "$1".

You can use parameter substitution operators in any command line. You'll see them used with the
colon (:) operator (Section 36.6), checking or setting default values. There's an example below. The
first substitution (${nothing=default}) leaves $nothing empty because the variable has been set.
The second substitution sets $nothing to default because the variable has been set but is empty. The
third substitution leaves $something set to stuff:
+nothing=
something=stuff
: ${nothing=default}
: ${nothing:=default}

: ${something:=default}

Several Bourne-type shells have similar string editing operators, such as ${ var##pattern }.
They're useful in shell programs, as well as on the command line and in shell setup files. See your
shell's manual page for more details.

— JP

Save Disk Space and Programming: Multiple Names for a Program

If you're writing:

several programs that do the same kinds of things,
programs that use a lot of the same code (as you're writing the second, third, etc., programs, you
copy a lot of lines from the first program), or
a program with several options that make big changes in the way it works,

you might want to write just one program and make links (Section 10.4, Section 10.3) to it instead.
The program can find the name you called it with and, through case or test commands, work in
different ways. For instance, the Berkeley Unix commands ex, vi, view, edit, and others are all links
to the same executable file. This takes less disk space and makes maintenance easier. It's usually
sensible only when most of the code is the same in each program. If the program is full of name tests
and lots of separate code, this technique may be more trouble than it's worth.

Depending on how the script program is called, this name can be a simple relative pathname like
prog or ./prog — it can also be an absolute pathname like /usr/joe/bin/prog (Section 31.2
explains pathnames). There are a couple of ways to handle this in a shell script. If there's just one
main piece of code in the script, as in the lf script, a case that tests $0 might be best. The asterisk (*)
wildcard at the start of each case (see Section 35.11) handles the different pathnames that might be
used to call the script:
case "$0" in
*name1)
 ...do this when called as name1...
 ;;
*name2)
 ...do this when called as name2...
 ;;
 ...
*) ...print error and exit if $0 doesn't match...
 ;;
esac

You might also want to use basename (Section 36.13) to strip off any leading pathname and store the
cleaned-up $0 in a variable called myname. You can test $myname anywhere in the script and also
use it for error messages:
myname=`basename $0`
 ...
case "$myname" in
 ...

echo "$myname: aborting; error in xxxxxx" 1>&2
 ...

— JP

Finding the Last Command-Line Argument

Do you need to pick up the last parameter $1, $2 ... from the parameter list on the command line? It
looks like eval \$$# would do it:

eval Section 27.8
$ set foo bar baz
$ eval echo \$$#
baz

except for a small problem with sh argument syntax:
$ set m n o p q r s t u v w x
$ echo $11
m1

$11 means ${1}1, not ${11}. Trying ${11} directly gives bad substitution. (More recent shells,
such as bash, do support the ${11} syntax, however, to arbitrary lengths. Our copy of bash, for
example, allowed at least 10240 command line arguments to set with recall of the last via
${10240}). Your mileage may vary.

The only reliable way to get at the last parameter in the Bourne shell is to use something like this:
for i do last="$i"; done

The for loop assigns each parameter to the shell variable named last; after the loop ends, $last will
have the last parameter. Also, note that you won't need this trick on all sh-like shells. The Korn shell,
zsh, and bash understand ${11}.

— CT

How to Unset All Command-Line Parameters

The shift (Section 35.22) command "shifts away" one command-line parameter. You can shift three
times if there are three command-line parameters. Many shells also can take an argument, like shift 3,
that tells how many times to shift; on those shells, you can shift $# (Section 35.20) to unset all
parameters.

The portable way to unset all command-line parameters is probably to set (Section 35.25) a single
dummy parameter, then shift it away:
+set x
shift

Setting the single parameter wipes out whatever other parameters were set before.

— JP

Standard Input to a for Loop

An obvious place to use a Bourne shell for loop (Section 35.21) is to step through a list of arguments
— from the command line or a variable. But combine the loop with backquotes (Section 28.14) and
cat (Section 12.2), and the loop will step through the words on standard input.

Here's an example:
for x in `cat`
do
 ...handle $x
done

Because this method splits the input into separate words, no matter how many words are on each
input line, it can be more convenient than a while loop running the read command. When you use this
script interactively, though, the loop won't start running until you've typed all of the input; using while
read will run the loop after each line of input.

— JP

Making a for Loop with Multiple Variables

The normal Bourne shell for loop (Section 35.21) lets you take a list of items, store the items one by
one in a shell variable, and loop through a set of commands once for each item:
for file in prog1 prog2 prog3
do
 ...process $file
done

I wanted a for loop that stores several different shell variables and makes one pass through the loop
for each set of variables (instead of one pass for each item, as a regular for loop does). This loop
does the job:

set Section 35.25
for bunch in "ellie file16" "donna file23" "steve file34"
do
 # PUT FIRST WORD (USER) IN $1, SECOND (FILE) IN $2...
 set $bunch
 mail $1 < $2
done

If you have any command-line arguments and still need them, store them in another variable before
you use the set command. Or you can make the loop this way:
while read line ; do
 eval $line
 mail -s "$s" $u < $f
done <<"EOF"
 u=donna f=file23 s=’a memo’
 u=steve f=file34 s=report
 u=ellie f=file16 s=’your files’done
EOF

This script uses the shell's eval (Section 27.8) command to rescan the contents of the bunch variable
and store it in separate variables. Notice the single quotes, as in s='your files'; this groups the
words for eval. The shell removes the single quotes before it stores the value into the s variable.

— JP

Using basename and dirname

Almost every Unix command can use relative and absolute pathnames (Section 31.2) to find a file
or directory. There are times you'll need part of a pathname — the head (everything before the last
slash) or the tail (the name after the last slash). The utilities basename and dirname , available on
most Unix systems, handle that.

Introduction to basename and dirname

The basename command strips any "path" name components from a filename, leaving you with a
"pure" filename. For example:
% basename /usr/bin/gigiplot
gigiplot
% basename /home/mikel/bin/bvurns.sh
bvurns.sh

basename can also strip a suffix from a filename. For example:
% basename /home/mikel/bin/bvurns.sh .sh
bvurns

The dirname command strips the filename itself, giving you the "directory" part of the pathname:
% dirname /usr/bin/screenblank
/usr/bin
% dirname local
.

If you give dirname a "pure" filename (i.e., a filename with no path, as in the second example), it tells
you that the directory is . (the current directory).

Note
dirname and basename have a bug in some implementations. They don't recognize the second argument as a filename suffix to strip. Here's a good test:

% basename 0.foo .foo

If the result is 0, y our basename implementation is good. If the answer is 0.foo, the implementation is bad. If basename doesn't work, dirname won't, either.

Use with Loops

Here's an example of basename and dirname. There's a directory tree with some very large files —
over 100,000 characters. You want to find those files, run split (Section 21.9) on them, and add huge.
to the start of the original filename. By default, split names the file chunks xaa, xab, xac, and so on;
you want to use the original filename and a dot (.) instead of x:

|| Section 35.14, exit Section 35.16
for path in `find /home/you -type f -size +100000c -print`
do
 cd `dirname $path` || exit
 filename=`basename $path`
 split $filename $filename.
 mv -i $filename huge.$filename
done

The find command will output pathnames like these:
/home/you/somefile
/home/you/subdir/anotherfile

(The absolute pathnames are important here. The cd would fail on the second pass of the loop if you
use relative pathnames.) In the loop, the cd command uses dirname to go to the directory where the
file is. The filename variable, with the output of basename, is used several places — twice on the
split command line.

If the previous code results in the error command line too long, replace the first lines with the two
lines below. This makes a redirected-input loop:
find /home/you -type f -size +100000c -print |
while read path

—JP and ML

A while Loop with Several Loop Control Commands

I used to think that the Bourne shell's while loop (Section 35.15) looked like this, with a single
command controlling the loop:
while command
do
 ...whatever
done

But command can actually be a list of commands. The exit status of the last command controls the
loop. This is handy for prompting users and reading answers. When the user types an empty answer,
the read command returns "false" and the loop ends:
while echo -e "Enter command or CTRL-d to quit: \c"
 read command
do
 ...process $command
done

You may need a -e option to make echo treat escaped characters like \c the way you want. In this
case, the character rings the terminal bell, however your terminal interprets that (often with a flash of
the screen, for instance.)

Here's a loop that runs who and does a quick search on its output. If the grep returns nonzero status
(because it doesn't find $who in $tempfile), the loop quits — otherwise, the loop does lots of
processing:
while
 who > $tempfile
 grep "$who" $tempfile >/dev/null
do
 ...process $tempfile...
done

—JP and SJC

Overview: Open Files and File Descriptors

This introduction is general and simplified. If you're a technical person who needs a complete and
exact description, read a book on Unix programming.

Unix shells let you redirect the input and output of programs with operators such as > and |. How
does that work? How can you use it better? Here's an overview.

When the Unix kernel starts any process (Section 24.3) — for example, grep, ls, or a shell — it sets
up several places for that process to read from and write to, as shown in Figure 36-1.

Figure 36-1. Open standard I/O files with no command-line redirection

These places are called open files. The kernel gives each file a number called a file descriptor. But
people usually use names for these places instead of the numbers:

 The standard input or stdin (File Descriptor (F.D.) number 0) is the place where the process
can read text. This might be text from other programs (through a pipe, on the command line) or
from your keyboard.
 The standard output or stdout (F.D. 1) is a place for the process to write its results.
 The standard error or stderr (F.D. 2) is where the process can send error messages.

By default, as Figure 36-1 shows, the file that's opened for stdin, stdout, and stderr is /dev/tty — a
name for your terminal. This makes life easier for users — and programmers, too. The user doesn't
have to tell a program where to read or write because the default is your terminal. A programmer
doesn't have to open files to read or write from (in many cases); the programs can just read from
stdin, write to stdout, and send errors to stderr.

It gets better. When the shell starts a process (when you type a command at a prompt), you can tell the
shell what file to "connect to" any of those file descriptors. For example, Figure 36-2 shows what
happens when you run grep and make the shell redirect grep's standard output away from the terminal
to a file named grepout.

Figure 36-2. Standard output redirected to a file

Programs can read and write files besides the ones on stdin, stdout, and stderr. For instance, in
Figure 36-2, grep opened the file somefile itself — it didn't use any of the standard file descriptors
for somefile. A Unix convention is that if you don't name any files on the command line, a program
will read from its standard input. Programs that work that way are called filters.

All shells can do basic redirection with stdin, stdout, and stderr. But as you'll see in Section 36.16,
the Bourne shell also handles file descriptors 3 through 9. (Newer shells have higher limits. For
instance, read the description of ulimit -n in the bash manual page.) That's useful sometimes:

Maybe you have a few data files that you want to keep reading from or writing to. Instead of
giving their names, you can use the file descriptor numbers.
Once you open a file, the kernel remembers what place in the file you last read from or wrote to.
Each time you use that file descriptor number while the file is open, you'll be at the same place
in the file. That's especially nice when you want to read from or write to the same file with more
than one program. For example, the line command on some Unix systems reads one line from a
file — you can call line over and over, whenever you want to read the next line from a file.
Once the file has been opened, you can remove its link (name) from the directory; the process
can access the file through its descriptor without using the name.
 When Unix starts a new subprocess (Section 24.3), the open file descriptors are given to that
process. A subprocess can read or write from file descriptors opened by its parent process. A
redirected-I/O loop, as discussed in Section 43.6, takes advantage of this.

— JP

n>&m: Swap Standard Output and Standard Error

By default, a command's standard error goes to your terminal. The standard output goes to the
terminal or is redirected somewhere (to a file, down a pipe, into backquotes).

Sometimes you want the opposite. For instance, you may need to send a command's standard output to
the screen and grab the error messages (standard error) with backquotes. Or you might want to send a
command's standard output to a file and the standard error down a pipe to an error-processing
command. Here's how to do that in the Bourne shell. (The C shell can't do this, although tcsh can.)

File descriptors 0, 1, and 2 are, respectively, the standard input, standard output, and standard error
(Section 36.15 explains). Without redirection, they're all associated with the terminal file /dev/tty
(Section 36.15). It's easy to redirect any descriptor to any file — if you know the filename. For
instance, to redirect file descriptor 2 to errfile, type:
$ command
 2>errfile

You know that a pipe and backquotes also redirect the standard output:
$ command
 | ...
$ var=`
 command
 `

But there's no filename associated with the pipe or backquotes, so you can't use the 2> redirection.
You need to rearrange the file descriptors without knowing the file (or whatever) that they're
associated with. Here's how. You may find it useful to run this short Perl script, which simply prints
"stdout" to standard output, and "stderr" to standard error:
#!/usr/bin/perl

print STDOUT "stdout\n";
print STDERR "stderr\n";

Let's start slowly. We will combine both standard output and standard error, sending them both as
output, to be used as the input to a pipe or as the output of backquotes. The Bourne shell operator n >&
m rearranges the files and file descriptors. It says, "Make file descriptor n point to the same file as
file descriptor m." Let's use that operator on the previous example. We'll send standard error to the
same place standard output is going:
$ command
 2>&1 | ...
$ var=`
 command
 2>&1`

In both those examples, 2>&1 means "send standard error (file descriptor 2) to the same place
standard output (file descriptor 1) is going." Simple, eh?

You can use more than one n >& m operator. The shell reads them left-to-right before it executes the
command.

"Oh!" you might say. "To swap standard output and standard error — make stderr go down a pipe
and stdout go to the screen — I could do this!"
$ command
 2>&1 1>&2 | ...
 wrong...

Sorry, Charlie. When the shell sees 2>&1 1>&2, the shell first does 2>&1. You've seen that before —
it makes file descriptor 2 (stderr) go the same place as file descriptor 1 (stdout). Then the shell does
1>&2. It makes stdout (1) go the same place as stderr (2)... but stderr is already going the same place
as stdout, down the pipe.

This is one place the other file descriptors, 3 through 9 (and higher in bash), come in handy. They
normally aren't used. You can use one of them as a "holding place," to remember where another file
descriptor "pointed." For example, one way to read the operator 3>&2 is "make 3 point the same
place as 2." After you use 3>&2 to grab the location of 2, you can make 2 point somewhere else. Then
make 1 point where 2 used to (where 3 points now).

We'll take that step-by-step below. The command line you want is one of these:
$ command
 3>&2 2>&1 1>&3 | ...
$ var=`
 command
 3>&2 2>&1 1>&3`

How does it work? Figure 36-3 through Figure 36-6 break the second command line (with the
backquotes) into the same steps the shell follows as it rearranges the file descriptors. You can try
these on your terminal, if you'd like. Each figure adds another n >& m operator and shows the location
of each file descriptor after that operator.

Figure 36-3. File descriptors before redirection

Figure 36-4. File descriptors after 3>&2 redirection

The figures use a grep command reading two files. afone is readable, and grep finds one matching
line in it; the line is written to the standard output. bfoen is misspelled and so is not readable; grep
writes an error message to the standard error. In each figure, you'll see the terminal output (if any) just

after the variable-setting command with the backquotes. The text grabbed by the backquotes goes into
the shell variable; the echo command shows that text.

Figure 36-5. File descriptors after 3>&2 2>&1 redirection

By Figure 36-6 the redirection is correct. Standard output goes to the screen, and standard error is
captured by the backquotes.

Figure 36-6. File descriptors after 3>&2 2>&1 1>&3 redirection

Open files are automatically closed when a process exits, but it's safer to close the files yourself as
soon as you're done with them. That way, if you forget and use the same descriptor later for something
else (for instance, use F.D. 3 to redirect some other command, or a subprocess uses F.D. 3), you
won't run into conflicts. Use m <&- to close input file descriptor m and m >&- to close output file
descriptor m. If you need to, you can close standard input with <&- and standard output with >&-.

A Shell Can Read a Script from Its Standard Input, but...

Q: What is the difference between sh < file and sh file?

A:The first way keeps the script from reading anything else from its input. Consider the stdin-demo
script:
while read word
do
 echo $word | sed s/foo/bar/
done

If run as sh stdin-demo, it will read from your terminal, replacing foo with bar. If run as sh <
stdin-demo, it will exit right away, since after reading the script, there's no input left.

— CT

Shell Scripts On-the-Fly from Standard Input

 Section 36.17

The shell can read commands from its standard input or from a file. To run a series of commands that
can change, you may want to use one program to create the command lines automatically — and pipe
that program's output to a shell, which will run those "automatic" commands.

Here's an example.[1] You want to copy files from a subdirectory and all its subdirectories into a
single directory. The filenames in the destination directory can't conflict; no two files can have the
same name. An easy way to name the copies is to replace each slash (/) in the file's relative pathname
with a minus sign (-).[2] For instance, the file named lib/glob/aprog.c would be copied to a file
named lib-glob-aprog.c. You can use sed (Section 34.2) to convert the filenames and output cp
commands like these:
cp from/lib/glob/aprog.c to/lib-glob-aprog.c
cp from/lib/glob/aprog.h to/lib-glob-aprog.h
 ...

However, an even better solution can be developed using nawk (Section 20.11). The following
example uses find (Section 9.1) to make a list of pathnames, one per line, in and below the copyfrom
directory. Next it runs nawk to create the destination file pathnames (like to /lib-glob-aprog.c)
and write the completed command lines to the standard output. The shell reads the command lines
from its standard input, through the pipe.

This example is in a script file because it's a little long to type at a prompt. But you can type
commands like these at a prompt, too, if you want to:
#!/bin/sh
find copyfrom -type f -print |
awk '{
 out = $0
 gsub("/", "-", out)
 sub("^copyfrom-", "copyto/", out)
 print "cp", $0, out
}' |
sh

If you change the last line to sh -v, the shell's verbose option (Section 37.1) will show each
command line before executing it. If the last line has sh -e , the shell will quit immediately after any
command returns a nonzero exit status (Section 35.12) — that might happen, for instance, if the disk
fills up and cp can't make the copy. Finally, you may need to use nawk rather than awk, depending on
your system.

— JP

[1] This isn't recommended for systems with a 14-character filename limit. You may also want to
watch out on Darwin, which, although it has the typical UNIX filename limits, only displays 31
characters on the Finder Desktop (munging the last few chars or inserting...to provide a unique <32-
character filename).
[2] A replacement like CTRL-a would make unique filenames (legal, but also harder to type).

Quoted hereis Document Terminators: sh Versus csh

When you need to quote your hereis document (Section 27.16) terminators, there's an annoying
problem: sh and csh demand different conventions. If you are using sh, you must not quote the
terminator. For example,
#! /bin/sh
cat << 'eof'
Hi there.
eof

If you are using csh, however, you must quote the terminator. The following script prints three lines,
not one:
#! /bin/csh
cat << \eof
Hi. You might expect this to be the only line, but it's not.
eof
'e'of
\eof

— CT

Turn Off echo for "Secret" Answers

When you type your password, Unix turns off echoing so what you type won't show on the screen.
You can do the same thing in shell scripts with stty -echo.

stty Section 5.7, read Section 35.18
#!/bin/sh
 ...
trap 'stty echo; exit' 0 1 2 3 15
use the right echo for your Unix:
echo "Enter code name: \c"
#echo -n "Enter code name: "
stty -echo
read ans
stty echo
 ...

The response is stored in $ans. The trap (Section 35.17) helps to make sure that, if the user presses
CTRL-c to abort the script, characters will be echoed again.

— JP

Quick Reference: expr

expr is a very handy tool in shell programming, since it provides the ability to evaluate a wide range
of arithmetic, logical, and relational expressions. It evaluates its arguments as expressions and prints
the result.

Syntax

Here's the syntax. The [brackets] mean "optional"; don't type the brackets:
expr arg1 operator arg2 [operator arg3 ...]

Arguments and operators must be separated by spaces. In many cases, an argument is an integer, typed
literally or represented by a shell variable. There are three types of operators: arithmetic, relational,
and logical.

Exit status (Section 35.12) values for expr are 0 if the expression evaluates nonzero and non-null, 1
if the expression evaluates to 0 or null, and 2 if the expression is invalid.
Arithmetic operators

Use these to produce mathematical expressions whose results are printed:
+

Add arg2 to arg1.
-

Subtract arg2 from arg1.
*

Multiply the arguments.
/

Divide arg1 by arg2.
%

Take the remainder when arg1 is divided by arg2 (modulus).
Addition and subtraction are evaluated last, unless they are grouped inside parentheses. The
symbols *, (, and) have meaning to the shell, so they must be escaped (preceded by a backslash
or enclosed in quotes).

Relational operators
Use these to compare two arguments. Arguments can also be words, in which case comparisons
assume a < z and A < Z. If the comparison statement is true, expr writes 1 to standard output
(Section 43.1); if false, it writes 0. The symbols > and < must be escaped.

=
Are the arguments equal?

!=
Are the arguments different?

>
Is arg1 greater than arg2?

>=
Is arg1 greater than or equal to arg2?

<
Is arg1 less than arg2?

<=
Is arg1 less than or equal to arg2?

Logical operators
Use these to compare two arguments. Depending on the values, the result written to standard
output can be arg1 (or some portion of it), arg2, or 0. The symbols | and & must be escaped.

|
Logical OR; if arg1 has a nonzero (and non-null) value, the output is arg1; otherwise,
the output is arg2.

&

Logical AND; if both arg1 and arg2 have a nonzero (and non-null) value, the output
is arg1; otherwise, the output is 0.

:
Sort of like grep (Section 13.1); arg2 is a regular expression (Section 32.4) to
search for in arg1. If the arg2 pattern is enclosed in \(\), the output is the portion of
arg1 that matches; otherwise, the output is simply the number of characters that match.
A pattern match always applies to the beginning of the argument (the ^ symbol
(Section 32.5) is assumed by default).

Examples

Division happens first; output is 10:
$ expr 5 + 10 / 2

Addition happens first; output is 7 (truncated from 7.5):
$ expr \(5 + 10 \) / 2

Add 1 to variable i; this is how variables are incremented in Bourne shell scripts:
 i=`expr "$i" + 1`

Output 1 (true) if variable a is the string "hello":
$ expr "$a" = hello

Output 1 (true) if variable b plus 5 equals 10 or more:
$ expr "$b" + 5 \>= 10

In the examples below, variable p is the string "version.100". This command returns the number of
characters in p:
$ expr "$p" : '.*'
 Output is 11

Match all characters and print them:
$ expr "$p" : '\(.*\)'
 Output is "version.100"

Output the number of lowercase letters matched:
$ expr "$p" : '[a-z]*'
 Output is 7

Match a string of lowercase letters:
$ expr "$p" : '\([a-z]*\)'
 Output is "version"

Truncate $x if it contains five or more characters; if not, just output $x. (Logical OR uses the second
argument when the first one is 0 or null, i.e., when the match fails.)
$ expr "$x" : '\(.....\)' \| "$x"

— DG

Testing Characters in a String with expr

The expr (Section 36.21) command does a lot of different things with expressions. One expression it
handles has three arguments: first, a string; second, a colon (:); third, a regular expression (Section
32.4). The string and regular expression usually need quotes.

expr can count the number of characters that match the regular expression. The regular expression is
automatically anchored to the start of the string you're matching, as if you'd typed a ^ at the start of it
in grep, sed, and so on. expr is usually run with backquotes (Section 28.14) to save its output:
$ part="resistor 321-1234-00"
$ name="Ellen Smith"
 ...
$ expr "$part" : '[a-z]*[0-9]'
 ...character position of first number
10
$ len=`expr "$name" : '[a-zA-Z]*'`
$ echo first name has $len characters
first name has 5 characters

When a regular expression matches some character(s), expr returns a zero ("true") exit status
(Section 35.12). If you want a true/false test like this, throw away the number that expr prints and test
its exit status:

/dev/null Section 43.12
$ if expr "$part" : '.*[0-9]' > /dev/null
> then echo \$part has a number in it.
> else echo "it doesn't"
> fi
$part has a number in it.

— JP

Grabbing Parts of a String

How can you parse (split, search) a string of text to find the last word, the second column, and so on?
There are a lot of different ways. Pick the one that works best for you — or invent another one! (Unix
has lots of ways to work with strings of text.)

Matching with expr

The expr command (Section 36.21) can grab part of a string with a regular expression. The example
below is from a shell script whose last command-line argument is a filename. The two commands
below use expr to grab the last argument and all arguments except the last one. The "$*" gives expr a
list of all command-line arguments in a single word. (Using "$@" (Section 35.20) here wouldn't
work because it gives individually quoted arguments. expr needs all arguments in one word.)
last=`expr "$*" : '.* \(.*\)'` # LAST ARGUMENT
first=`expr "$*" : '\(.*\) .*'` # ALL BUT LAST ARGUMENT

Let's look at the regular expression that gets the last word. The leading part of the expression, .* ,
matches as many characters as it can, followed by a space. This includes all words up to and
including the last space. After that, the end of the expression, \(.*\), matches the last word.

The regular expression that grabs the first words is the same as the previous one — but I've moved
the \(\) pair. Now it grabs all words up to but not including the last space. The end of the regular
expression, .*, matches the last space and last word — and expr ignores them. So the final .* really
isn't needed here (though the space is). I've included the final .* because it follows from the first
example.

expr is great when you want to split a string into just two parts. The .* also makes expr good for
skipping a variable number of words when you don't know how many words a string will have. But
expr is poor at getting, say, the fourth word in a string. And it's almost useless for handling more than
one line of text at a time.

Using echo with awk or cut

awk can split lines into words, but it has a lot of overhead and can take some time to execute,
especially on a busy system. The cut (Section 21.14) command starts more quickly than awk but it
can't do as much.

Both those utilities are designed to handle multiple lines of text. You can tell awk to handle a single
line with its pattern-matching operators and its NR variable. You can also run those utilities with a
single line of text, fed to the standard input through a pipe from echo. For example, to get the third
field from a colon-separated string:
string="this:is:just:a:dummy:string"
field3_awk=`echo "$string" | awk -F: '{print $3}'`
field3_cut=`echo "$string" | cut -d: -f3`

Let's combine two echo commands. One sends text to awk or cut through a pipe; the utility ignores all
the text from columns 1-24, then prints columns 25 to the end of the variable text. The outer echo
prints The answer is and that answer. Notice that the inner double quotes are escaped with
backslashes to keep the Bourne shell from interpreting them before the inner echo runs:
echo "The answer is `echo \"$text\" | awk '{print substr($0,25)}'`"
echo "The answer is `echo \"$text\" | cut -c25-`"

Using set and IFS

The Bourne shell set (Section 35.25) command can be used to parse a single-line string and store it in
the command-line parameters (Section 35.20) "$@", $*, $1, $2, and so on. Then you can also loop
through the words with a for loop (Section 35.21) and use everything else the shell has for dealing
with command-line parameters. Also, you can set the Bourne shell's IFS variable to control how the
shell splits the string.

Note
The formats used by stty and the behavior of IFS may vary from platform to platform.

By default, the IFS (internal field separator) shell variable holds three characters: SPACE, TAB, and
NEWLINE. These are the places that the shell parses command lines.

If you have a line of text — say, from a database — and you want to split it into fields, you can put the
field separator into IFS temporarily, use the shell's set (Section 35.25) command to store the fields in
command-line parameters, then restore the old IFS.

For example, the chunk of a shell script below gets current terminal settings from stty -g , which
looks like this:
2506:5:bf:8a3b:3:1c:8:15:4:0:0:0:11:13:1a:19:12:f:17:16:0:0

In the next example, the shell parses the line returned from stty by the backquotes (Section 28.14). It
stores x in $1, which stops errors if stty fails for some reason. (Without the x, if stty made no
standard output, the shell's set command would print a list of all shell variables.) Then 2506 goes into
$2, 5 into $3, and so on. The original Bourne shell can handle only nine parameters (through $9); if
your input lines may have more than nine fields, this isn't a good technique. But this script uses the
Korn shell, which (along with most other Bourne-type shells) doesn't have that limit.
#!/bin/ksh
oldifs="$IFS"
Change IFS to a colon:
IFS=:
Put x in $1, stty -g output in $2 thru ${23}:
set x `stty -g`
IFS="$oldifs"
Window size is in 16th field (not counting the first "x"):
echo "Your window has ${17} rows."

Because you don't need a subprocess to parse the output of stty, this can be faster than using an
external command like cut (Section 21.14) or awk (Section 20.10).

There are places where IFS can't be used because the shell separates command lines at spaces before
it splits at IFS. It doesn't split the results of variable substitution or command substitution (Section
28.14) at spaces, though. Here's an example — three different ways to parse a line from /etc/passwd:
% cat splitter
#!/bin/sh
IFS=:
line='larry:Vk9skS323kd4q:985:100:Larry Smith:/u/larry:/bin/tcsh'
set x $line
echo "case 1: \$6 is '$6'"
set x `grep larry /etc/passwd`
echo "case 2: \$6 is '$6'"
set x larry:Vk9skS323kd4q:985:100:Larry Smith:/u/larry:/bin/tcsh

echo "case 3: \$6 is '$6'"

% ./splitter
case 1: $6 is 'Larry Smith'
case 2: $6 is 'Larry Smith'
case 3: $6 is 'Larry'

Case 1 used variable substitution and case 2 used command substitution; the sixth field contained the
space. In case 3, though, with the colons on the command line, the sixth field was split: $6 became
Larry and $7 was Smith. Another problem would have come up if any of the fields had been empty
(as in larry::985:100:etc...) — the shell would "eat" the empty field and $6 would contain
/u/larry. Using sed with its escaped parentheses (Section 34.11) to do the searching and the parsing
could solve the last two problems.

Using sed

The Unix sed (Section 34.1) utility is good at parsing input that you may or may not otherwise be able
to split into words, at finding a single line of text in a group and outputting it, and many other things.
In this example, I want to get the percentage-used of the filesystem mounted on /home. That
information is buried in the output of the df (Section 15.8) command. On my system,[3] df output looks
like:
+% df
Filesystem kbytes used avail capacity Mounted on
 ...
/dev/sd3c 1294854 914230 251139 78% /work
/dev/sd4c 597759 534123 3861 99% /home
 ...

I want the number 99 from the line ending with /home. The sed address / \/home$/ will find that
line (including a space before the /home makes sure the address doesn't match a line ending with
/something/home). The -n option keeps sed from printing any lines except the line we ask it to print
(with its p command). I know that the "capacity" is the only word on the line that ends with a percent
sign (%). A space after the first .* makes sure that .* doesn't "eat" the first digit of the number that we
want to match by [0-9]. The sed escaped-parenthesis operators (Section 34.11) grab that number:
usage=`df | sed -n '/ \/home$/s/.* \([0-9][0-9]*\)%.*/\1/p'`

Combining sed with eval (Section 27.8) lets you set several shell variables at once from parts of the
same line. Here's a command line that sets two shell variables from the df output:
eval `df |
sed -n '/ \/home$/s/^[^]* *\([0-9]*\) *\([0-9]*\).*/kb=\1 u=\2/p'`

The left-hand side of that substitution command has a regular expression that uses sed's escaped
parenthesis operators. They grab the "kbytes" and "used" columns from the df output. The right-hand
side outputs the two df values with Bourne shell variable-assignment commands to set the kb and u
variables. After sed finishes, the resulting command line looks like this:
eval kb=597759 u=534123

Now $kb gives you 597759, and $u contains 534123.

[3] If you are using something other than GNU df, you may need to use the -k switch.

Nested Command Substitution

Section 28.14 introduced command substitution with a pair of backquotes (''). Let's review. The
shell runs a backquoted string as a command, then replaces the string with its output. Sometimes —
though not as often — you'll want to use the results from one backquoted string as arguments to
another command, itself also inside backquotes. To do that, you need to nest the backquotes to tell the
shell which command (which set of backquotes) should be done first, with its output given to the
second command. This is tricky with backquotes; the Korn shell introduced an easier way that you'll
see below. Here's a simple example — the first command line uses nested backquotes, and the next
two commands show its parts:[4]

$ echo "Next year will be 200`expr \`date +%y\` + 1`."
Next year will be 2002.
$ date +%y
01
$ expr 01 + 1
2

The command to run first has escaped backquotes (\'\') around it. In the example above, that's the
date +%y command. date +%y outputs the year — in this case, 01 — and that value is passed to the
expr command. expr adds 01 and 1 to get 2. Then that result (from the outer backquotes) is passed to
echo, on its command line, and echo prints the message.

Why does the inner command, inside the escaped backquotes (\'\'), run first? It's because the
backslash before the backquote turns off the special meaning (Section 27.12) of the backquote.
When the shell first evaluates the command line, which backquotes does it see? It sees the unescaped
backquotes, the ones around the expr command, and the shell runs the command:
expr `date +%y` + 1

But when the shell evaluates that command line, it sees the backquotes in it (now unescaped) and runs
that command — date +%y. The date +%y command outputs 01. Next, the shell can finish the
command expr 01 + 1. It outputs 2. Then the echo command can print its message.

Whew. Most newer Bourne-type shells have an easier way: the $(command) operators. Use $(
before the command, where you would use an opening backquote. Put the) after the command, in
place of a closing backquote. You don't have to escape these operators when you nest them.

Here's the previous example with $(), then a more real-life example:

2>&1 Section 36.16
$ echo "Next year will be 200$(expr $(date +%y) + 1)."
Next year will be 2002.

$ tarout=$(tar cf /dev/rst1 $(find . -type f -mtime -1 -print) 2>&1)
 time passes...
$ echo "$tarout"
tar: ./files/145923: Permission denied

The inner command — in this case, the find (Section 9.1) — is run first. Its output, a list of filenames,
is put on the command line of the tar (Section 38.2) command. Finally, the output of tar (in this case,
an error message) is stored in the tarout shell variable.

Beginners (and some long-time programmers too) might argue that you should never nest command
substitution because it's too confusing. I think there are times nesting is clearer. It's more compact and

doesn't need temporary storage. And it's not that hard to understand once you see what's happening.
There's another nice example in Section 24.16.

— JP

[4] True, this won't work after 2008. Also true, most shells have built-in arithmetic, and some can
zero-pad results. But this is a simple example!

Testing Two Strings with One case Statement

The shell's case statement (Section 35.10) has some advantages over the test command (Section
35.26) — for instance, case can do pattern matching. But test has the -a and -o "and" and "or"
operators; those don't seem easy to do with case. And test isn't built in to some older shells, so using
case may be faster.

Here's a way to test two things with one case statement. It won't solve all your problems. If you think
carefully about the possible values the variables you're testing can have, though, this might do the
trick. Use a separator (delimiter) character between the two variables.

In the example below, I've picked a slash (/). You could use almost any character that isn't used in
case pattern matching (Section 35.11) and that won't be stored in either $# or $1. The case below
tests the command-line arguments of a script:
case "$#/$1" in
1/-f) redodb=yes ;;
0/) ;;
*) echo "Usage: $0 [-f]" 1>&2; exit 1 ;;
esac

If there's one argument ($# is 1) and the argument ($1) is exactly -f, the first pattern matches, and the
redodb variable is set. If there's no argument, $# will be 0 and $1 will be empty, so the second
pattern matches. Otherwise, something is wrong; the third pattern matches, the script prints an error
and exits.

Of course, you can do a lot more this way than just testing command-line arguments.

— JP

Outputting Text to an X Window

Unix has a lot of ways to output text from the command line into the terminal (or window) where a
script is running. But there are times you'd like to pop open a new window (under the X Window
System (Section 1.22)), give the user a message — and maybe let the user reply too. X comes with a
standard client named xmessage that does this. It pops open a window like Figure 36-7 with a
message, then waits for the user to click a button (possibly one of many) or press RETURN. For
details, you can read the xmessage manual page. I'll show how I integrated xmessage into a shell
script.

Figure 36-7. An xmessage window from xwrist

 Go to http://examples.oreilly.com/upt3 for more information on: xwrist

A good way to prevent wrist injuries (from too much typing) is by taking periodic breaks. The xwrist
script uses xmessage to remind me (every 10 minutes) to take a break — and prints a fortune for me
to read while I do.

Let's look at two parts of the script. First, the script checks to see if the X Window System
DISPLAY environment variable (Section 35.5) is set; if not, it complains (with a message like
xwrist: DISPLAY: unset? I only work under the X Window System) and exits:

: Section 36.6, ${..?..} Section 36.7
: ${DISPLAY?"unset? I only work under the X Window System"}

After checking the command-line arguments and setting some shell variables, the script does its main
work with an endless loop:

`...`Section 28.14
while sleep $delay
do
 if xmessage -nearmouse -geometry $geometry -title "$title" \
 -buttons okay:1,quit:0 -default okay \
 "`/usr/games/fortune | fmt $fmtarg`"
 then exit 0
 fi
done

The while loop (Section 35.15) is endless because sleep normally returns 0 (Section 35.12). As
long as the user keeps clicking the okay button, a new xmessage window will pop up again $delay

http://examples.oreilly.com/upt3

seconds after the previous one. The xmessage command line is split into three pieces. It's run by an if
statement (Section 35.13). On the second line, -buttons okay:1,quit:0 tells xmessage to make
the two buttons. If the user clicks the quit button, xmessage returns 0 status and the if runs exit 0 to
end the script. Otherwise, xmessage returns 1 (because the user clicked okay or pressed RETURN;
the -default okay sets this up) and the loop repeats.

(Here's a fun enhancement, left as an exercise for you. Add a third button labeled mail this that uses
mail(1) to send you ($USER) an email copy of the current fortune. You'll need to change the if to a
case statement (Section 35.10) that tests $? (Section 35.12).)

The last xmessage argument is the text to put on the screen. fmt (Section 21.2) reformats the output of
fortune roughly to fit the window. (There's no fancy coding here to be sure that the text fits the
window exactly; I just tweak the output width, set in the fmtarg variable, to match the window
geometry, which is set in the geometry variable.) If you set the geometry to make a fairly wide
window, you may not need fmt at all.

— JP

Shell Lockfile

Here's an efficient and portable way to create a lockfile from a shell script.[5] It's also an interesting
demonstration of the way that Unix umasks and file permissions (Section 50.2) are handled.

A lockfile can be used when a particular program might be run more than once at the same time and
you need to be sure that only one instance of the program can do something (modify some file, access
a printer, etc.). To really do this right, the program needs to both test for the lockfile and create it (if it
doesn't exist) in one atomic operation. If the test-and-set operation isn't atomic — for instance, if a
program tests for the lock file in one command and then creates the lock file in the next command —
there's a chance that another user's program could do its test at the precise moment between the first
program's (non-atomic) test and set operations. The technique in this article lets you make a lockfile
atomically from a shell script.

Note
This technique doesn't work for scripts run as the superuser (root). It depends on the fact that a standard user can't write a file without write permisson. But root can write any file, whether it has write permission or not. If there's a chance that
root might run y our script, y ou might want to add a test of the UID — by running the id command, for instance — and be sure that the UID isn't 0 (the superuser's).

Let's say you have a script called edmaster; it edits a master configuration file named config. To be
sure that two users can't modify the config file at the same time, the first edmaster checks whether the
lockfile exists. If the lockfile doesn't exist, edmaster creates it and modifies the config file. When it's
done editing, it removes the lockfile. If someone tries to run a second edmaster process, it sees the
lockfile from the first edmaster, waits, and checks every few seconds to see if the lockfile is gone.
Once the first edmaster removes the lockfile, the second edmaster can create the lockfile and do its
editing of config. (Note that some editors — for instance, nvi-1.79 under Linux — automatically get a
write and/or read lock before you to edit a file.)

Here are pieces of a script that check the lock, create it, and (later) remove it:

2> Section 36.16, /dev/null Section 43.12, set Section 35.25
set name of this program's lockfile:
myname=`basename $0`
LOCKFILE=/tmp/lock.$myname
 ...
Loop until we get a lock:
until (umask 222; echo $$ >$LOCKFILE) 2>/dev/null # test & set

do
 # Optional message - show lockfile owner and creation time:
 set x `ls -l $LOCKFILE`
 echo "Waiting for user $4 (working since $7 $8 $9)..."

 sleep 5
done

Do whatever we need exclusive access to do...
 ...
rm -f $LOCKFILE # unlock

If another user tried to run edmaster, and jpeek had run edmaster first, she might see:
% edmaster
Waiting for user jpeek (working since Aug 23 14:05)...
 ...a 5-second pause

Waiting for user jpeek (working since Aug 23 14:05)...
 another 5-second pause...
 ...then jpeek finishes and she can edit the file.

How does it work? Almost all the action is in the first line of the loop. A umask of 222 creates files
that are read-only (mode r--r--r--). Because the umask 222 command is run in a subshell (Section
24.4), it affects only the lockfile that's created in the subshell at the top of the loop. The rest of the
shell script keeps its normal umask. And if the redirection fails (because the lock file exists), only the
subshell will abort — not the parent shell running the script.

If the lockfile already exists (because another process has created it), the loop executes sleep 5; five
seconds later, it tries to create the lock. If the lockfile exists, it will be read-only — so the command
echo $$ >$LOCKFILE will return a nonzero status. A nonzero status is what keeps an until loop (
Section 35.15) running. Once the other process (which has the lock) removes the lockfile, the echo
command in the subshell writes the shell's process ID number into the lockfile, and the until loop
terminates.

But if the lockfile is read-only, how can it ever be created? That's the other interesting part of this
technique. The umask applies to the file only as it's created; if the file doesn't exist, the umask doesn't
apply to it (yet) and the file can be created. In fact, you can create a file with mode 000 by typing:
$ (umask 666; echo hi > afile)
$ ls -l afile
---------- 1 jpeek wheel 3 Aug 23 14:08 afile

— JP

[5] Greg Ubben sent this idea.

Chapter 37. Shell Script Debugging and Gotchas

Tips for Debugging Shell Scripts

Depending on the Bourne shell version you have, the error messages it gives can be downright
useless. For instance, it might say just End of file unexpected. Here are a few tricks to use to get a
little more information about what's going on. Remember, it's probably best for you to use one of
shells derived from the Bourne shell, rather than the C shell, for scripting.

Use -xv

Start your script like this:
#!/bin/sh -xv

(If your Unix can't handle #!, use the command set -xv (Section 35.25)). The -xv shows you what's
happening as the shell reads your script. The lines of the script will be shown as the shell reads them.
The shell shows each command it executes with a plus sign (+) before the command.

Note that the shell reads an entire loop (for, while, etc.) before it executes any commands in the loop.

If you want to run a script with debugging but you don't want to edit the script file, you can also start
the shell explicitly from the command line and give the options there:
% sh -xv
 scrfile

Debugging output is usually pretty long, more than a screenful, so I pipe it to a pager like less. But the
shell sends its debugging output to stderr, so I pipe both stdout and stderr (Section 43.4) to the
pager.
$ scrfile
 2>&1 | less

Do you want to save the debugging output in a file and see it on your screen, too? Use tee (Section
43.8) to copy the scrfile stdout and stderr; add tee to the pipeline before the pager.
$ scrfile
 | tee
 outfile
 2>&1 |
 less

If the script is slow, you can run it in the background. Redirect the shell's output and errors
(Section 43.5, Section 27.11) into a temporary file. Use tail -f (Section 12.10) to "watch" the log file.
If you want to do something else while the script runs, just kill the tail command (with CTRL-c or
your interrupt key), do something else, then start another tail -f when you want to watch again.

Finally, if the script normally writes something to its standard output, you can split the normal and
debugging outputs into two files (Section 43.1).

Unmatched Operators

If the shell says End of file unexpected , look for a line in your script that has an opening quote
but no closing quote. The shell is probably searching for but never finding the matching quote.
Missing parentheses and braces ({}) can cause the same error.

Exit Early

If you're getting an End of file unexpected error, put these two lines near the middle of the
script:
echo "DEBUG: quitting early..." 1>&2
exit

Then run your script. Those lines will print a message and stop the shell where you put them. If you
don't get the End of file unexpected error anymore, you know that the problem is somewhere
after the exit line, and you can move those two lines farther down and try again. Otherwise, move
them up.

Missing or Extra esac, ;;, fi, etc.

A message like line 23: ;; unexpected means that you have an unmatched piece of code
somewhere before line 23. You'll also see fi unexpected. Look at all nested if and case statements,
and statements like them, to be sure that they end in the right places.

Line Numbers Reset Inside Redirected Loops

The shell may give you an error that mentions "line 1" or another line number that seems way too
small, when there's no error close to the top of your script. Look at any loops or other structures with
redirected inputs or outputs (Section 43.6). Some Bourne shells start a separate shell to run these
loops and lose track of the line numbers.

—JP and SJC

Bourne Shell Debugger Shows a Shell Variable

If you have a shell script that sets several variables and you want to show the value of one of them,
you can add a loop that asks you for variable names and displays their values (Section 36.14):
% cat myscript
#!/bin/sh
 ...
while echo "Pick a variable; just RETURN quits: \c"
 read var
do
 case "$var" in
 "") break ;;
 *) eval echo \$$var ;;
 esac
done

The loop prompts Pick a variable:, then reads a value; if you type an empty answer, the loop
quits. Otherwise, the value of that variable is displayed; the eval (Section 27.8) command scans the
echo command line twice.

This tip isn't just good for debugging. It's good in any shell script where you need to show the value of
a variable by typing its name.

— JP

Stop Syntax Errors in Numeric Tests

The test and [(square bracket) commands (Section 35.26) can compare two numbers. But it's an
error if one of the numbers you test is stored in a shell variable that's empty or doesn't exist. For
example, an empty num variable here will give you a Syntax error:
if ["$num" -gt 0]
then ...

To stop syntax errors, add a leading zero, like this:
if ["0$num" -gt 0]
then ...

In that case, if $num is empty, the test will compare 0 to 0. If $num is 1, the test will be true (because
01 is greater than 0) — and so on, just as it should be.

The zero trick doesn't work with negative numbers, though, so if you expect ever to need to deal with
negative numbers, you may want to look into other methods of checking to see if a variable has a
value, such as this method from the bash shell, which displays an error if the variable is null or unset,
or the following method, which assigns a default value:
#!/bin/sh
 ...

check $num first, fail with error
tmp=${num:?"num not set"}

use a default
default=0
if [${num:-default} -gt 0]
then
 ...

—JP and SJC

Stop Syntax Errors in String Tests

Using the test or [(square bracket) command (Section 35.26) for a string test can cause errors if
the variable starts with a dash (-). For example:
if ["$var" = something]
then ...

If $var starts with -r, the test command may think that you want to test for a readable file.

One common fix (that doesn't always work; see below) is to put an extra character at the start of each
side of the test. This means the first argument will never start with a dash; it won't look like an option:
if ["X$var" = Xsomething]
then ...

That trick doesn't work if you want the test to fail when the variable is empty or not set. Here's a
Bourne shell test that handles empty variables:
case "${var+X}" in
X) ...do this if variable is set...
 ;;

*) ...do this if variable is not set...
 ;;
esac

If $var is set (even if it has an empty string), the shell replaces ${var+X} (Section 36.7) with just X
and the first part of the case succeeds. Otherwise the default case, *), is used.

See also Section 37.3 for a brief example of bash parameter expansion and dealing with unset or null
values by reporting an error or by assigning default values.

— JP

Quoting and Command-Line Parameters

Q: I need to pass a shell script some arguments with multiple words. I thought that putting quotes
(Section 27.12) around command-line arguments would group them. The shell script seems to
ignore the quoting, somehow. Here's a simple example:
$ cat script
 ...
for arg in $*
do
 echo "Argument is $arg"
done
$ script '1 2 3' 4
 ...
Argument is 1
Argument is 2
Argument is 3
Argument is 4

A: This is the way $* is defined to work. $* expands to:
$1 $2

[not "$1" "$2;" — JP] if there are two arguments. Hence the for loop reads:
for arg in 1 2 3 4

Note that the quotes are gone. What you wanted the shell to see was:
for arg in '1 2 3' 4

You can't get that, but you can get something that is good enough:

"$@" Section 35.20
for arg in "$@"

In effect, $@ expands to:
$1" "$2

Putting ""s around $@, the effect is:
for arg in "$1" "$2"

Shell quoting is unnecessarily complex. The C shell actually has the right idea (variables can be set to
"word lists"; argv is such a list), but its defaults and syntax for suppressing them make for an artless
programming language:
foreach arg ($argv:q) # colon q ?!?

For the special case of iterating a shell variable over the argument list as it stands at the beginning of
the iteration, the Bourne shell provides the construct for arg do [i.e., no in list — JP]:
for arg
do echo "Argument is $arg"
done

The example produces:
Argument is 1 2 3
Argument is 4

"$@" is still needed for passing argument lists to other programs. Unfortunately, since $@ is defined as
expanding to:
$1" "$2...$n-1" "$n

(where n is the number of arguments), when there are no arguments, "$@" expands to "", and ""
produces a single argument. [Many Unix vendors considered this a bug and changed it so that it
produces no arguments. — JP] The best solution for this is to use, for example:

% cat bin/okeeffe
#! /bin/sh
exec rsh okeeffe.berkeley.edu -l torek ${1+"$@"}
%

The construct ${1+"$@"} means "expand $1, but if $1 is defined, use "$@" instead." [You don't need
this on Bourne shells with the "bug fix" I mentioned, or on bash et al. — JP] Hence, if there are no
arguments, we get $1 (which is nothing and produces no arguments); otherwise, we get "$@" (which
expands as above). ${ var + instead } is one of several sh "expansion shortcuts" (Section 36.7).
Another more generally useful one is ${ var-default }, which expands to $ var, but if var is not
set, to default instead. All of these can be found in the manual for sh, which is worth reading
several times, experimenting as you go.

bash has a variety of similar but expanded mechanisms as well, involving a colon before the
modifier:
foo=${bar:-baz} if bar set and non-null, substitute value, else substitute baz...
fum=${fee:=foe} if fee unset or is null, set it to foe, value then substituted...
fiend=${jeckyll::=hyde} set jeckyll to hyde, then substitute value... (zsh only)
${required?"error"} if required set or non-null, substitute its value,
 else return "error" and exit...
man=${fullmoon:+wolfman} if fullmoon set and non-null, substitute wolfman,
 else substitute nothing...

See the bash manual page's section on parameter expansion. ksh, pdksh, and zsh also have support for
the same syntax; zsh has an entire manual page devoted to just parameter expansions: zshexpn(1).
Poke around; there's lots of good stuff to explore.

—CT and SJC

How Unix Keeps Time

Like all other operating systems, Unix has a concept of the time. And virtually all Unix systems, even
the smallest, include a clock with some sort of battery backup built in.

All Unix systems keep time by counting the number of microseconds since midnight, January 1, 1970,
Greenwich Mean Time. This date is commonly called the epoch , and it has folk-significance as the
begining of the Unix era. Although the first work on Unix began in the late '60s, the first versions of
Unix were available (within Bell Laboratories) in the early '70s.

This count gets updated roughly 60 times per second. The exact rate depends on your particular Unix
system and is determined by the constant, HZ, defined in the header file /usr/include/sys/param.h:[1]

#define HZ 60

This is the time's "resolution," often referred to as the clock's "tick." Note that it has nothing to do
with your system's CPU clock rate. Time measurements are normally no more precise than your
system's clock resolution, although some systems have added facilities for more precise timing.

If your Unix system belongs to a network, it is important to keep all the clocks on the network "in
sync." [2] Strange things happen if you copy a file from one system to another and its date appears to
be some time in the future. Many Unix systems run a time daemon (one of those mysterious helper
programs (Section 1.10)) to take care of this.[3]

Unix automatically keeps track of daylight savings time (summer time), leap years, and other
chronological trivia. When the system is installed, you have to tell it your time zone and the style of
daylight savings time you want to observe. As Unix has become an international standard, the number
of time zones (and obscure ways of handling daylight savings time) it can handle correctly has
proliferated. In a few cases, you still have to handle these things by hand; for example, in Europe, as
of this writing, the beginning and end of Summer Time were set periodically by the European
Parliament, and so may change. Care for Libyan Standard Time?

Unix's internal routines compute time in relation to the epoch, but there is no reason for you to worry
about it unless you're a C programmer. A library of time routines can convert between this internal
representation and more usable representations; see the Unix manual page for ctime (3).

— ML

[1] It may be in a file included thereby; on Linux, a bit of hunting shows it in
/usr/include/asm/param.h. The value may vary from system to system, as well.
[2] This is particularly true if your system runs public services such as mail or HTTP.
[3] A popular choice for network time synchronization is ntp, available from
http://www.eecis.udel.edu/~ntp/.

http://www.eecis.udel.edu/~ntp/

Copy What You Do with script

Are you typing a complicated set of commands that you need to show someone else or keep "on file"
for documentation? Are you debugging a program that goes wrong somewhere — but the error
message flashes by so fast that you can't see it? Do you want to show a "prerecorded" demonstration
of an interactive program? The script program can help with all of these problems.

Note
Versions of script on Unix sy stems without ptys aren't as flexible as the version I'm explaining here. For instance, those versions won't let y ou use job control (Section 23.3) during the script.

To copy everything you do into a file, just type:
% script
Script started, file is typescript
%

Now you can type any Unix command that you'd use at a shell prompt. Everything you do is copied
into a file named typescript in the current directory. (To use a different filename, type its pathname
(Section 1.16) on the command line, like script scriptfile.) When you're done, type CTRL-d or
exit (Section 24.4) at a shell prompt.

One thing that surprises people is that everything will be copied into the script file. That includes
escape sequences that programs send to your terminal. This is both good and bad.

The good part is that you can "play back" whatever happened by catting (Section 12.2) the script to
your screen. When things get boring, you can run an interactive program like vi inside the script —
then quit the script and play it back with cat typescript. The cursor will fly across the screen and your
file will be re-edited before your eyes. (This is easier to see if the terminal is set to a slow data rate.)

The bad part is that errors you correct and other terminal-control sequences will be in the file, too. If
you edit or print the script file, it may be full of "junk" such as ^M (carriage return) and ^H
(backspace) characters. (A command like cat -v or od -c (Section 12.4) will show you these
characters.) If the file has just a few of these characters, you can clean it up by hand with your text
editor's global substitution commands. You can also automate your "script cleaning" with techniques
such as the ones in Section 21.11 and Section 37.8.

If you're using xterm , it may have a built-in logger. Check its menus (Section 5.17).

— JP

Cleaning script Files

As Section 37.7 explains, the files made by the script program can have stray control characters in
them. The shell script called script.tidy can clean them up. Dan Bernstein wrote it and posted it to
Usenet; I made a few changes. It reads from files or standard input and writes to standard output.

 Go to http://examples.oreilly.com/upt3 for more information on: script.tidy

script.tidy uses the sed (Section 34.1) substitute command to remove CTRL-m (RETURN) characters
from the ends of lines. It uses the sed test command (Section 34.21) to repeat a series of commands
that delete a character followed by CTRL-h (BACKSPACE). If you use DELETE as your erase
character (Section 5.8), change the script to eat DELETE instead of BACKSPACE. script.tidy uses
a trick with echo and tr to store the control characters in shell variables. Because the sed script has
doublequotes (Section 27.12) around it, the shell variables are substituted in the right places before
the shell starts sed.

eval Section 27.8, exec Section 36.5
#!/bin/sh

Public domain.

Put CTRL-M in $m and CTRL-H in $b.
Change \010 to \177 if you use DEL for erasing.
eval `echo m=M b=H | tr 'MH' '\015\010'`
exec sed "s/$m\$//
:x
s/[^$b]$b//
t x" $*

You can also hack the sed script in script.tidy to delete some of your terminal's escape sequences. (A
really automated script.tidy would read your termcap or terminfo entry and look for all those escape
sequences in the script file.)

Bear in mind that script was designed to emulate a paper terminal; if you've modified your prompt,
especially if you are using multiple-line prompts, your script output is going to be full of far worse
junk than script.tidy can fix. If you find that script simply doesn't do it for you, you should consider
whether you want a complete record of all terminal input and output or just a record of what you
typed. If the latter is more to your liking, you should look into the various history editing and printing
capabilities provided by modern shells.

—JP and SJC

http://examples.oreilly.com/upt3

Making an Arbitrary-Size File for Testing

The yes command (Section 14.5) outputs text over and over.[4] If you need a file of some size for
testing, make it with yes and head (Section 12.12). For example, to make a file 100k (102,400)
characters long, with 12,800 8-character lines (7 digits and a newline), type:
% yes 1234567 | head -12800 > 100k-file

Note
On some Unix sy stems, the command may "hang" and need to be killed with CTRL-c because head keeps reading input from the pipe. If it hangs on y our sy stem, replace head -12800 with sed 12800q.

You might just want to use perl, instead:
$ perl -e 'print "1234567\n" x 12800' > file

For the Unix admin who has everything, here's one more way, this time using the venerated dd
command:
$ yes | dd of=file count=25

There are many variations on this theme. The preceding example simply copies 25 blocks of 512
bytes each from standard input (the output of the yes command) to the file file. You could also specify
a number of bytes to read at a time, using the ibs option, and then specify the number of records to
write out, using count :
$ yes | dd ibs=1 of=file count=12800

There's More Than One Way To Do It. Be careful, though — you can fill up a disk pretty quickly
playing around with the dd command!

[4] Believe it or not, it does have a purpose; it was originally designed to pipe "y" answers into
interactive programs such as fsck before those programs provided the option to proceed with implicit
approval. The FreeBSD 4.4 manual says of yes(1) that it "outputs expletive, or, by default, `y'",
forever.

Part VII. Extending and Managing Your Environment

Part VII contains the following chapters:

Chapter 38

Chapter 39

Chapter 40

Chapter 41

Chapter 42

Chapter 38. Backing Up Files

What Is This "Backup" Thing?

Making copies of critical files in case the originals become inaccessible is called backing them up or
making backups. Backups are insurance. They are time and effort you spend protecting yourself from
things that might never happen. Your hard drive might never crash, but what vital things would you
lose if it did?

Exactly what "making a backup" means varies depending on your circumstances. All of the following
examples are ways to make backups applicable to some specific environment:

Copying some files onto another disk on the same machine, so that if one hard drive dies you
still have a copy. (A more sophisticated and automatic way of doing this, which you may have
heard about, is called Redundant Array of Inexpensive Disks or RAID.)
Making a compressed tar file and copying it to another machine, so that if one machine crashes
you still have a copy.
Writing copies of your files to a Zip drive, CD-RW, or DVD-RW.
tarring (Section 38.2) files to a tape.
Nightly automatic backups of everything that's changed that day (called an incremental backup)
to multiple tapes, with copies of the tapes stored in offsite secure storage.

If you are just trying to protect your files on your personal machine, simply making sure that critical
files have copies on multiple physical disks or occasionally copying files onto another machine or
removable storage is probably sufficient. If you're administering a machine that has multiple users,
regular backups are almost certainly a necessity. If those users are doing business-critical tasks, very
regular backups and off-site copies are a requirement to protect the investment of time involved.

— DJPH

tar in a Nutshell

When many Unix users think of file archives, on tape or in an archive file, they think of the tar utility.
There are other ways to make archives and handle tapes — including dump and dd. This article
summarizes articles about tar in this chapter and others.

Although tar is a tape archiver, one of its common uses is making an archive file on disk
(Section 39.2). Because tar "pads" its archives with NUL characters, on-disk tar archive files
can be much bigger than the size of the individual files put together. Both to fix that and generally
to save space, tar files are often compressed. The GNU tar (Section 39.3) can compress files
while storing them and uncompress them while reading them, automatically. If you don't have
GNU tar, you may need to uncompress an archive manually. Note that a compressed tar archive
can take less disk space (Section 15.7) than compressing individual small files.
Because tar keeps most of a file's inode information, it can make a more complete copy
(Section 10.13) of a file or directory tree than utilities such as cp.
Yes, we do have articles about archives on tape. Section 38.3 has enough information to make
your own archive, although you might need the details from Section 38.5, too. After you've made
an archive, you'll probably want to restore it, at least as a test to be sure your archive is okay.
Section 38.6 explains how.
If there isn't a tape drive on your computer, read Section 38.7 about using a drive on another
computer.
tar copies a directory tree, recursively, from top to bottom. What if you don't want to archive
everything? You can back up just some files by combining ls -lt and find. Some versions of tar
have options for including or excluding certain files and directories (Section 39.3).

— JP

Make Your Own Backups

As someone who has been an end user and a system administrator, I strongly believe that every user
should understand the importance of backups.

Note
If y ou have data that is important to y ou, y ou should have a known backup.

Accidents and oversights happen. Tapes can be damaged, lost, or mislabeled. Assume that your
system administrator is top-notch. The best administrator can recover your lost data 99 percent of the
time. There is still a small chance that the files you need might not be recovered. Can you afford to
duplicate months of effort 1 percent of the time? No.

An experienced user learns to be pessimistic. Typically, this important perspective is learned the
hard way. Perhaps a few hours are lost. Perhaps days. Sometimes months are lost.

Here are some common situations:

A user works on a file all day. At the end of the day, the file is deleted by accident. The system
manager cannot recover the file. A day's work has been lost.
A programmer tries to clean up a project directory. Instead of typing rm *.o the programmer
types rm * .o and the entire directory is lost.
A user deletes a file by accident. After a few days, the user asks the system administrator to
recover the file. The incremental backup system has reused the only tape the missing file was on.
A large project is archived on a magnetic tape and deleted from the disk. A year later, some of
the information is needed. The tape has a bad block at the beginning. The system manager must
learn how to recover data from a bad tape. The attempt is often unsuccessful. The information is
lost forever, and must be re-created at the cost of months of effort.
Someone breaks into a computer and alters or deletes crucial information.
A fire breaks out in the computer room. The disks and all of the backup tapes are lost.

Gulp! I scared myself. Excuse me for a few minutes while I load a tape...

Ah! I feel better now. As I was saying, being pessimistic has its advantages.

Making a backup is easy. Get a blank tape and put a label on it. Learn how to load it into the tape
drive. Then do the following:
% cd
% tar c .

Take the tape out. Write-protect the tape (usually, just slide the tab). That's all.

[Well, okay, not exactly. That would back up only your home directory to the default tape device
(usually something like /dev/rmt0). You may want to back up more than just your home directory, the
tape drive may not be at the default device, and you may not have permission to write to the tape
drive by default. The rest of the chapter talks about variations on the theme. — DJPH]

— BB

More Ways to Back Up

Section 38.3 explains the minimal basics of using tar to make backups, but there are lots of variations
that can be very useful.

To create a tar archive for copying to another disk or another machine:
% tar cvf 20020214-book.tar ./book

tar 's c option stands for create, v for verbose, and the f option for file. 20020214-book.tar is the
new archive file to create, and ./book says to archive the directory book in the current directory. Once
you have an archive, you might want to compress it to save space. gzip and bzip2 are your best bets.
(I use bzip2 here largely because it tends to give better compression, but be aware that gzip is more
widely available and thus may be safer for backups.) You can compress it once you've made it:
% ls -l 20020214-book.tar
-rw-r--r-- 1 deb deb 19415040 Feb 14 23:15 20020214-book.tar
% bzip2 20020214-book.tar
% ls -l 20020214-book.tar.bz2
-rw-r--r-- 1 deb deb 4033775 Feb 14 23:15 20020214-book.tar.bz2

Or you can compress it as you make it. GNU tar supports gzip compression on the fly with the z or -
-gzip options and bzip2 compression on the fly with the - -bzip2 option, or you can pipe into gzip
or bzip2:
% tar czvf 20020214-book.tar.gz ./book

% tar cvf 20020214-book.tar.bz2 --bzip2 ./book

% tar cvf - ./book | bzip2 > 20020214-book.tar.bz2

Section 39.2 and Section 39.3 have more information on using tar.

You can get more protection from certain kinds of mishaps by using a version control system like
RCS (Section 39.5) or CVS (Section 39.7) to save every version of a file you are updating
frequently. While it doesn't protect you from disk crashes, a version control system provides the
ability to back up to a previous version if something gets changed or deleted incorrectly.

— DJPH

How to Make Backups to a Local Device

This article was written for Linux systems, but the advice applies everywhere. You may need to make
some adjustments — in the names of the tape drive devices and some filesystem directories, for
instance. If you're making personal backups (of the files on your account, for instance), you can
substitute your directory names for the system directories covered here, but the command names and
techniques won't change.

What to Back Up

As Section 38.3 says, the simplest way to make a backup is to use tar to archive all the files on the
system or only those files in a set of specific directories. Before you do this, however, you need to
decide what files to back up. Do you need to back up every file on the system? This is rarely
necessary, especially if you have your original installation disks or CD-ROM. If you have made
specific, important changes to the system, but everything else could simply be reinstalled in case of a
problem, you could get by archiving only those files you have made changes to. Over time, however,
it is difficult to keep track of such changes.

In general, you will be making changes to the system configuration files in /etc. There are other
configuration files as well, and it can't hurt to archive directories such as /usr/local (where various
packages generally get installed) and /usr/X11R6/lib/X11 (which contains the X Window System
configuration files). You may want to do filtering on these directories and back up only the
configuration files, since binaries in /usr/local and things like fonts in the X11 distribution can be
reinstalled from their original packages easily enough.

You should also back up your kernel sources (if you have patched your kernel sources); these are
found in /usr/src/linux (/usr/src/sys on *BSD). At the very least, you'll want to back up your kernel
configuration file if you've built your own kernel; it's in /usr/src/linux/.config (or /usr/src/sys/
platform/conf/KERNELNAME on *BSD).

It's a good idea to keep notes on what features of the system you've changed so you can make
intelligent choices when making backups. If you're truly paranoid, go ahead and back up the whole
system: that can't hurt, but the cost of backup media might.

Of course, you should also back up the home directories for each user on the system; these are
generally found in /home. If you have your system configured to receive electronic mail, you might
want to back up the incoming mail files for each user. Many people tend to keep old and "important"
electronic mail in their incoming mail spool, and it's not difficult to accidentally corrupt one of these
files through a mailer error or other mistake. These files are usually found in /var/spool/mail.

Backing Up to Tape

Assuming you know what files or directories to back up, you're ready to roll. The tar command can
be used directly, as we saw in Section 39.2, to make a backup. For example, the command:
tar cvf /dev/rft0 /usr/src /etc /home

archives all of the files from /usr/src, /etc, and /home to /dev/rft0. /dev/rft0 is the first "floppy-tape"
device — that is, for the type of tape drive that hangs off of the floppy controller. Many popular tape
drives for the PC use this interface. If you have a SCSI tape drive, the device names are /dev/st0,
/dev/st1, and so on, based on the drive number. Those tape drives with another type of interface have
their own device names; you can determine these by looking at the documentation for the device
driver in the kernel.

You can then read the archive back from the tape using a command such as:
tar xvf /dev/rft0

This is exactly as if you were dealing with a tar file on disk, as in Section 39.2.

When you use the tape drive, the tape is seen as a stream that may be read from or written to in one
direction only. Once tar is done, the tape device will be closed, and the tape will rewind (if you're
using the default tape device; see below on how to prevent this). You don't create a filesystem on a
tape, nor do you mount it or attempt to access the data on it as files. You simply treat the tape device
itself as a single "file" to create or extract archives from.

Be sure your tapes are formatted before you use them if you are using a tape drive that needs it. This
ensures that the beginning-of-tape marker and bad-blocks information has been written to the tape. At
the time of this writing, no tools exist for formatting QIC-80 tapes (those used with floppy tape
drivers) under Linux; you'll have to format tapes under MS-DOS or use preformatted tapes.

Creating one tar file per tape might be wasteful if the archive requires a fraction of the capacity of the
tape. To place more than one file on a tape, you must first prevent the tape from rewinding after each
use, and you must have a way to position the tape to the next "file marker," both for tar file creation
and for extraction.

The way to do this is to use the nonrewinding tape devices, which are named /dev/nrft0, /dev/nrft1,
and so on for floppy-tape drivers, and /dev/nrst0, /dev/nrst1, and so on for SCSI tapes. When this
device is used for reading or writing, the tape will not be rewound when the device is closed (that is,
once tar has completed). You can then use tar again to add another archive to the tape. The two tar
files on the tape won't have anything to do with each other. Of course, if you later overwrite the first
tar file, you may overwrite the second file or leave an undesirable gap between the first and second
files (which may be interpreted as garbage). In general, don't attempt to replace just one file on a tape
that has multiple files on it.

Using the nonrewinding tape device, you can add as many files to the tape as space permits. To
rewind the tape after use, use the mt command. mt is a general-purpose command that performs a
number of functions with the tape drive. For example, the command:
mt /dev/nrft0 rewind

rewinds the tape in the first floppy-tape device. (In this case, you can use the corresponding
rewinding tape device as well; however, the tape will rewind just as a side effect of the tape device
being closed.)

Similarly, the command:
mt /dev/nrft0 reten

retensions the tape by winding it to the end and then rewinding it.

When reading files on a multiple-file tape, you must use the nonrewinding tape device with tar and
the mt command to position the tape to the appropriate file.

For example, to skip to the next file on the tape, use the command:
mt /dev/nrft0 fsf 1

This skips over one file on the tape. Similarly, to skip over two files, use:
mt /dev/nrft0 fsf 2

Be sure to use the appropriate nonrewinding tape device with mt. Note that this command does not
move to "file number two" on the tape; it skips over the next two files based on the current tape
position. Just use mt to rewind the tape if you're not sure where the tape is currently positioned. You
can also skip back; see the mt manual page for a complete list of options.

You need to use mt every time you read a multifile tape. Using tar twice in succession to read two
archive files usually won't work; this is because tar doesn't recognize the file marker placed on the
tape between files. Once the first tar finishes, the tape is positioned at the beginning of the file
marker. Using tar immediately will give you an error message, because tar will attempt to read the
file marker. After reading one file from a tape, just use:
mt device fsf 1

to move to the next file.

Backing Up to Floppies or Zip Disks

Just as we saw in the last section, the command:
tar cvf /dev/fd0 /usr/src /etc /home

makes a backup of /usr/src, /etc, and /home to /dev/fd0, the first floppy device. You can then read the
backup using a command such as:
tar xvf /dev/fd0

If we use /dev/hdd instead of /dev/fd0 (and our Zip drive is the slave drive on the second IDE
controller), we'll be writing to and reading from a Zip disk instead of a floppy. (Your device name
may vary depending on your OS.) Because floppies and Zip disks have a rather limited storage
capacity, GNU tar allows you to create a "multivolume" archive. (This feature applies to tapes as
well, but it is far more useful in the case of smaller media.) With this feature, tar prompts you to
insert a new volume after reading or writing each disk. To use this feature, simply provide the M
option to tar, as in:
tar cvMf /dev/fd0 /usr/src /etc /home

Be sure to label your disks well, and don't get them out of order when attempting to restore the
archive.

One caveat of this feature is that it doesn't support the automatic gzip compression provided by the z
option. However, there are various reasons why you may not want to compress your backups created
with tar, as discussed later. At any rate, you can create your own multivolume backups using tar and
gzip in conjunction with a program that reads and writes data to a sequence of disks (or tapes),
prompting for each in succession. One such program is backflops, available on several Linux
distributions and on the FTP archive sites. A do-it-yourself way to accomplish the same thing would
be to write the backup archive to a disk file and use dd or a similar command to write the archive as
individual chunks to each disk. If you're brave enough to try this, you can figure it out for yourself.
[Aw, come on, guys, have a heart! (Psst, readers: look at the end of Section 21.9.) — JP]

To gzip, or Not to gzip?

There are good arguments both for and against compression of tar archives when making backups.
The overall problem is that neither tar nor gzip is particularly fault-tolerant, no matter how
convenient they are. Although compression using gzip can greatly reduce the amount of backup media
required to store an archive, compressing entire tar files as they are written to floppy or tape makes
the backup prone to complete loss if one block of the archive is corrupted, say, through a media error
(not uncommon in the case of floppies and tapes). Most compression algorithms, gzip included,
depend on the coherency of data across many bytes to achieve compression. If any data within a
compressed archive is corrupt, gunzip may not be able to uncompress the file at all, making it
completely unreadable to tar. The same applies to bzip2. It may compress things better than gzip, but
it has the same lack of fault-tolerance.

This is much worse than if the tar file were uncompressed on the tape. Although tar doesn't provide
much protection against data corruption within an archive, if there is minimal corruption within a tar
file, you can usually recover most of the archived files with little trouble, or at least those files up
until the corruption occurs. Although far from perfect, it's better than losing your entire backup.

A better solution would be to use an archiving tool other than tar to make backups. There are several
options available. cpio (Section 38.13) is an archiving utility that packs files together, much like tar.
However, because of the simpler storage method used by cpio, it recovers cleanly from data
corruption in an archive. (It still doesn't handle errors well on gzipped files.)

The best solution may be to use a tool such as afio. afio supports multivolume backups and is similar
in some respects to cpio. However, afio includes compression and is more reliable because each
individual file is compressed. This means that if data on an archive is corrupted, the damage can be
isolated to individual files, instead of to the entire backup.

These tools should be available with your Linux distribution, as well as from all of the Internet-based
Linux archives. A number of other backup utilities, with varying degrees of popularity and usability,
have been developed or ported for Linux. If you're serious about backups, you should look into
them.[1]

—MW, MKD, and LK

[1] Of course, this section was written after the author took the first backup of his Linux system in
nearly four years of use!

Restoring Files from Tape with tar

When you create an archive, there are several ways to specify the directory. If the directory is under
the current directory, you could type:
% tar c project

A similar way to specify the same directory is:
% tar c ./project

If you are currently in the directory you want archived, you can type:
% tar c .

Another way to archive the current directory is to type:
% tar c *

Here, the shell expands the asterisk (*) to the files in the current directory. However, it does not
match files starting with a dot (.), which is why the previous technique is preferred.

This causes a problem when restoring a directory from a tar archive. You may not know whether an
archive was created using . or the directory name.

I always check the names of the files before restoring an archive:
% tar t

If the archive loads the files into the current directory, I create a new directory, change to it, and
extract the files.

If the archive restores the directory by name, then I restore the files into the current directory.

Restoring a Few Files

If you want to restore a single file, get the pathname of the file as tar knows it, using the t flag. You
must specify the exact filename, because filename and ./filename are not the same to tar. You can
combine these two steps into one command by using:
% tar xvf /dev/rst0 `tar tf /dev/rst0 | grep
 filename`

Note that this may run very slowly, though, as the entire tar file has to be read once (and the tape
rewound) before any restoration can happen. Be careful: you may also get a lot more than you
expected; for example, if you're looking for README using this technique, you'd also get
README.Solaris and everything in the doc/READMEs directory, possibly overwriting files you
wanted to keep.

Whenever you use tar to restore a directory, you must always specify some filename. If none is
specified, no files are restored.

There is still the problem of restoring a directory whose pathname starts with a slash (/). Because tar
restores a file to the pathname specified in the archive, you cannot change where the file will be
restored. The danger is that either you may overwrite some existing files or you will not be able to
restore the files because you don't have permission.

You can ask the system administrator to rename a directory and temporarily create a symbolic link
pointing to a directory where you can restore the files. Other solutions exist, including editing the tar
archive and creating a new directory structure with a C program executing the chroot(2) system call.
Another solution is to use GNU tar (Section 39.3), which allows you to remap pathnames starting
with slash (/). It also allows you to create archives that are too large for a single tape, incremental
archives, and a dozen other advantages.

But the best solution is never to create an archive of a directory that starts with slash (/) or tilde (~)
(Section 31.11) (since the shell will expand ~ into an absolute path that starts with a /).

Remote Restoring

To restore a directory from a remote host, use the following command:

rsh Section 1.21
% rsh -n
 host
 dd if=/dev/rst0 bs=20b | tar xvBfb - 20
 files

This runs dd on the remote host, reading from /dev/rst0 with a blocksize of twenty blocks, and pipes
it to a local tar. It is difficult to read fixed-size blocks over a network. This is why tar uses the B flag
to force it to read from the pipe until a block is completely filled. Some versions of tar, including
GNU tar, handle remote drives automatically (Section 38.8).

— BB

Using tar to a Remote Tape Drive

If your computer doesn't have a tape drive connected, creating tar (Section 38.2) backup files is
slightly more complicated. If you have an account on a machine with a tape drive, and the directory is
mounted via NFS (Section 1.21), you can just rlogin (Section 1.21) to the other machine and use tar
to back up your directory.

If the directory is not NFS mounted, or it is mounted but you have permission problems accessing
your own files, you can use tar, rsh (Section 1.21), and dd (Section 21.6) to solve this dilemma. The
syntax is confusing, but if you forget, you can use man tar (Section 2.1) to refresh your memory. The
command to dump the current directory to a tape in a remote machine called zephyrus is:
% tar cvfb - 20 . | rsh zephyrus dd of=/dev/rmt0 obs=20b

Here, the output file of tar is -, which tar interprets as standard input if tar is reading an archive or
standard output if tar is creating an archive.

The dd command copies data from standard input to the device /dev/rmt0.

This example assumes you can use rsh without requiring a password. You can add your current
machine's name to the remote .rhosts file (Section 1.21) if you get a Password: prompt when you use
rlogin to access this machine. You also can use ssh , which is generally more secure than rsh, and the
ssh-agent utility to allow logins without a password.

— BB

Using GNU tar with a Remote Tape Drive

If you're using GNU tar, you can probably ignore the tips in Section 38.7 about using a tape drive on
a remote system. GNU tar makes it easy to access a remote drive via rsh or a similar command like
ssh.

When referring to a local host, the GNU tar f option takes a plain filename like foo.tar or a device
name like /dev/rmt0. If you put a colon (:) before that name, though, you can prepend a remote
hostname — and, optionally, a username. For example, to get a table of contents of the tape on the
drive /dev/rmt8 on the remote host server2, logging into server2 as yourself, type:
% tar tf server2:/dev/rmt8

To specify a different username than the one on your local host, add it with an @ before the hostname.
(This assumes you're allowed to connect to the remote host without a password — because there's a
.rhosts file on the remote system, for instance.) For example, to connect to server2 as heather and
extract the files reports/products.sgml and reports/services.sgml from /dev/rmt8:

{ } Section 28.4
% tar xf
 heather@server2:/dev/rmt8 reports/{products,services}.sgml

By default, GNU tar uses rsh, remsh, or nsh to access the remote machine, though that can be changed
when tar is built and installed on your host. If you want another access command, like ssh, you can
set that with the - -rsh-command option. The next example gets the contents of the archive on the
drive /dev/rmt8 from the host capannole.it using ssh. Note that tar doesn't check your search path
(Section 27.6) for the rsh-command; you have to give its absolute pathname (which you can get with
a command like which (Section 2.6)):
% tar -x --file=capannole.it:/dev/rmt8
 --rsh-command=/usr/bin/ssh

On the other hand, if you need to use a local filename with a colon in it, add the - -force-local
option.

— JP

On-Demand Incremental Backups of a Project

As I was working on this book, I was constantly editing lots of random files all through a directory
tree. I archived some of the files in a revision control system (Section 39.4), but those archives, as
well as the nonarchived files, still would be vulnerable if my disk crashed. (And naturally, close to a
deadline, one hard disk started making whining noises...)

The answer I came up with was easy to use and simple to set up. It's a script named ptbk , and this
article explains it. To run the script, I just type its name. It searches my directory tree for files that
have been modified since the last time I ran ptbk. Those files are copied into a dated compressed tar
archive and copied to a remote system using scp. The process looks like this:
$ ptbk
upt/upt3_changes.html
upt/BOOKFILES
upt/art/0548.sgm
upt/art/1420.sgm
upt/art/1430.sgm
upt/art/0524.sgm
upt/BOOKIDS
upt/ulpt3_table
Now copying this file to bserver:
-rw-rw-r-- 1 jpeek 323740 Jan 3 23:08 /tmp/upt-200101032308.tgz
upt-200101032308.tgz | 316 KB | 63.2 kB/s | ETA: 00:00:00 | 100%

The script actually doesn't copy all of the files in my directory tree. I've set up a tar exclude file that
makes the script skip some files that don't need backing up. For instance, it skips any filename that
starts with a comma (,). Here's the file, named ptbk.exclude:
upt/ptbk.exclude
upt/tarfiles
upt/gmatlogs
upt/drv-jpeek-jpeek.ps
upt/drv-jpeek.3l
upt/BOOKFILES~
upt/ch*.ps.gz
upt/ch*.ps
upt/,*
upt/art/,*

After the script makes the tar file, it touches a timestamp file named ptbk.last. The next time the script
runs, it uses find -newer (Section 9.8) to get only the files that have been modified since the
timestamp file was touched.

The script uses scp and ssh-agent to copy the archive without asking for a password. You could hack
it to use another method. For instance, it could copy using rcp (Section 1.21) or simply copy the file
to another system with cp via an NFS-mounted filesystem (Section 1.21).

This doesn't take the place of regular backups, if only because re-creating days' worth of work from
the little individual archives would be tedious. But this system makes it painless to take snapshots, as
often as I want, by typing a four-letter command. Here's the ptbk script:

|| Section 35.14, '...' Section 28.14
#!/bin/sh
ptbk - back up latest UPT changes, scp to $remhost

dirbase=upt
dir=$HOME/$dirbase
timestamp=$dir/ptbk.last # the last time this script was run
exclude=$dir/ptbk.exclude # file with (wildcard) pathnames to skip

remhost=bserver # hostname to copy the files to
remdir=tmp/upt_bak/. # remote directory (relative to $HOME)
cd $dir/.. || exit # Go to parent directory of $dir
datestr=`date '+%Y%m%d%H%M'`
outfile=/tmp/upt-$datestr.tgz

Don't send vim recovery files (.*.swp):
tar czvlf $outfile -X $exclude \
 `find $dirbase -type f -newer $timestamp ! -name '.*.swp' -print`
mv -f $timestamp $dir/,ptbk.last
echo "Timestamp file for $0. Don't modify." > $timestamp
echo "Now copying this file to $remhost:"
ls -l $outfile
scp $outfile ${remhost}:${remdir}

If the copy fails (because the remote machine is down, for instance), I have to either copy the archive
somewhere else or wait and remember to copy the archive later. If you have an unreliable connection,
you might want to modify the script to touch the timestamp file only if the copy succeeds — at the
possible cost of losing a data file that was modified while the previous archive was (not?) being
transferred to the remote host.

— JP

Using Wildcards with tar

When extracting files from a tar archive, it's handy to be able to use wildcards. You have to protect
them (Section 27.12) from the shell, so that they are passed directly to tar.

Without GNU tar

In general, tar can't do wildcard matching on the filenames within an archive. There's a terribly ugly
hack that you can use to select the files you want anyway. Try a command like this:

'...' Section 28.14
% tar xvf /dev/rst0 `tar tf /dev/rst0 | egrep 'lib/(foo|bar)'`

What you're doing here is using tar twice. tar t will print the names of all the files on the tape. The
pattern supplied to egrep (Section 13.4) selects the pathnames containg lib/foo or lib/bar, and the
resulting filenames are passed to the first tar command, which actually extracts the files from the
archive. Note that these patterns are regular expressions, not wildcards (Section 32.2).

Here's another subtle but important point. Because the regular expression patterns in the example
above are not anchored with ^ or $ characters (Section 32.4), they can match anywhere in the file
pathnames. So lib/(foo|bar) would match a pathname like lib/foo as well as a pathname like
/usr/lib/glib/foo.h.

With GNU tar

 Go to http://examples.oreilly.com/upt3 for more information on: GNU tar

One of the many improvements in GNU tar is that it understands wildcards in the names of files
within an archive. (Remember that because you want tar, not the shell, to see these wildcards, you
have to quote (Section 27.12) the filename arguments that have wildcards.)

Unlike the examples in the previous section, GNU tar uses wildcards, not regular expressions
(Section 32.2). Unlike shells, the wildcard expressions in GNU tar can match across slashes (/) in
pathnames.

Here's a demonstration of using wildcards: we want to extract all subdirectories named editor.
Command 1 shows how you'd do it in non-GNU tar: list the exact pathnames of the subdirectories.
Notice that tar extracts the directory and any subdirectories too. Command 2 shows the easy way to
do the job with GNU tar: make a wildcard expression that ends with a slash and the directory name.
As before, tar extracts the directory and any subdirectories. What if you want to extract anything with
the string editor in its name — including individual files? Make a wildcard pattern without the slash
and a filename surrounded by stars, as in command 3. Finally, command 4 shows an example of how
(different than in shells) a wildcard can match across the / characters in pathnames. Command 4
extracts only directories named editor somewhere (possibly several layers) underneath a directory
named skin:

> Section 28.12
1$ tar xvf mozilla.tar package/chrome/en-US/locale/en-US/editor \
> package/chrome/classic/skin/classic/content/editor \
> ...
package/chrome/en-US/locale/en-US/editor/
package/chrome/en-US/locale/en-US/editor/contents.rdf
package/chrome/en-US/locale/en-US/editor/editor.dtd
 ...
package/chrome/classic/skin/classic/editor/
package/chrome/classic/skin/classic/editor/EditModeTabs.css
 ...
package/chrome/classic/skin/classic/editor/images/
package/chrome/classic/skin/classic/editor/images/Map_Copy.gif
 ...
2$ tar xvf mozilla.tar '*/editor'
package/chrome/en-US/locale/en-US/editor/
package/chrome/en-US/locale/en-US/editor/contents.rdf
package/chrome/en-US/locale/en-US/editor/editor.dtd
 ...
package/chrome/classic/skin/classic/editor/
package/chrome/classic/skin/classic/editor/EditModeTabs.css
 ...
package/chrome/classic/skin/classic/editor/images/
package/chrome/classic/skin/classic/editor/images/Map_Copy.gif
 ...
3$ tar xvf mozilla.tar '*editor*'
package/defaults/pref/editor.js
package/components/editor.xpt
 ...
package/chrome/en-US/locale/en-US/editor/
package/chrome/en-US/locale/en-US/editor/contents.rdf
package/chrome/en-US/locale/en-US/editor/editor.dtd
 ...
package/chrome/comm/content/communicator/editorBindings.xul
package/chrome/comm/content/communicator/search/search-editor.js

http://examples.oreilly.com/upt3

 ...
4$ tar xvf mozilla.tar '*/skin/*/editor'
package/chrome/classic/skin/classic/editor/
package/chrome/classic/skin/classic/editor/EditModeTabs.css
 ...
package/chrome/classic/skin/classic/editor/images/
package/chrome/classic/skin/classic/editor/images/Map_Copy.gif
 ...
package/chrome/blue/skin/blue/editor/
package/chrome/blue/skin/blue/editor/contents.rdf
 ...
package/chrome/blue/skin/blue/editor/images/
package/chrome/blue/skin/blue/editor/images/Map_Copy.gif
 ...
package/chrome/modern/skin/modern/editor/
package/chrome/modern/skin/modern/editor/contents.rdf
 ...

There's more about wildcard matching in the GNU tar info page (but not its manpage).

Wildcard Gotchas in GNU tar

One subtle (but sometimes important!) difference between GNU tar and other versions comes when
you're trying to extract a file whose name contains a wildcard character. You'll probably have to type
a backslash (\) before that name. Also, because the shell may also try to interpret that wildcard
character — or at least the backslash — you also may need to quote the backslashed expression!
(Section 27.18 shows a situation like this one, with multiple layers of backslash interpretation.)

Here's an example. We're archiving the system binary file named [(or test) (Section 35.26):
5$ which [
/usr/bin/[
6$ cd /tmp
7$ tar cvf tartest.tar /usr/bin/[
tar: Removing leading `/' from member names
usr/bin/[
8$ tar xvf tartest.tar usr/bin/[
tar: usr/bin/[: Not found in archive
tar: Error exit delayed from previous errors
9$ tar xvf tartest.tar usr/bin/\[
tar: usr/bin/[: Not found in archive
tar: Error exit delayed from previous errors
10$ tar xvf tartest.tar 'usr/bin/\['
usr/bin/[

Storing the file in the archive, in command 7, is simple. The shell doesn't have anything to expand; tar
simply stores the name as-is because wildcards make sense only when tar is extracting from an
archive. In command 8, though, when we try to extract the file into the current directory, tar says it
isn't there — because it's now treating [as a wildcard pattern. Adding a single backslash in command
9 doesn't help because the shell strips it off before tar sees it. We need to put quotes around the
backslash, as in command 10, to make tar match the actual name.

Avoid Absolute Paths with tar

One problem with most versions of tar: they can't change a file's pathname when restoring. Let's say
that you put your home directory in an archive (tape or otherwise) with a command like this:
% tar c /home/mike

What will these files be named when you restore them, either on your own system or on some other
system? They will have exactly the same pathnames they had originally. So if /home/mike already
exists, it will be destroyed. There's no way to tell tar that it should be careful about overwriting files;
there's no way to tell tar to put the files in some other directory when it takes them off the tape, etc. If
you use absolute pathnames (Section 31.2) when you create a tape, you're stuck. If you use relative
paths (Section 31.2) (for example, tar c .), you can restore the files in any directory you want.

This means that you should:

Avoid using absolute paths when you create an archive (see below).
Use tar t to see what files are on the tape before restoring the archive.
Use GNU tar. It strips the leading / by default when creating archives. (You can give it the -P
option to make it store absolute pathnames.)

Rather than giving a command like tar c /home/mike, do something like:
% cd /
% tar c home/mike

Or, even more elegant, use -C on the tar command line:
% tar c -C /home/mike .

This command tells tar to cd to the directory /home/mike before creating an archive of . (the current
directory). If you want to archive several directories, you can use several -C options:
% tar c -C /home/mike ./docs -C /home/susan ./test

This command archives mike's docs directory and susan's test directory. [Note that it uses the
subdirectory names, as we did in the second-previous example. When the files are extracted, they'll
be restored to separate subdirectories, instead of all being mixed into the same . (current) directory.
— JP]

— ML

Getting tar's Arguments in the Right Order

tar's command line is one of Unix's little mysteries. It's difficult to associate arguments with options.
Let's say you want to specify the block size (b), the output file (f), and an "exclude" file (X). Where
do you put all this information? It's easy enough to stick the option letters into a lump and put them
into a command (tar cXbf). But where do you put the block size, the name of the exclude file, and so
on?

List any arguments that you need after the block of key letters. You must place the arguments in the
same order as the key letters, as shown in Figure 38-1.

Figure 38-1. tar options and arguments

In this command, keepout goes with the X option, 20 goes with the b option, and archive.shar goes
with the f option. If we put the options in a different order, we also have to put the arguments in a
different order (see Figure 38-2).

Figure 38-2. The same command, rearranged

Note that the files you want to put on the tape (or the files you want to extract from the tape) always
go at the end of the command. These are not arguments to c or X; they are part of the command itself.

The dump command and a few others work the same way.

GNU tar understands this traditional syntax as well as two syntaxes with separate options. For
instance, the command line above could also be written in either of the following ways with GNU
tar:
% tar -c -b 20 -X keepout -f archive.tar *.txt
% tar --create --block-size=20 --exclude-from=keepout \
 --file=archive.tar *.txt

— ML

The cpio Tape Archiver

There was a time when people used to debate whether BSD tar (Section 38.2, Section 39.2) (tape
archiver) or System V cpio (copy in/out) was the better file archive and backup program. At this
point, though, no one ships out cpio archives over the Net (Section 1.21). tar is widespread, and
there are free versions available, including GNU tar (Section 39.3).

There's still a good reason to use cpio: it's better at recovering backups from partially damaged
media. If a block of your tape or disk archive goes bad, cpio can probably recover all files except the
one with the bad block. A tar archive may not fare as well. Though we don't give it much air time in
this book, here are a few cpio basics:

To write out an archive, use the -o option and redirect output either to a tape device or to an
archive file. The list of files to be archived is often specified with find (Section 9.1), but it can
be generated in other ways — cpio expects a list of filenames on its standard input. For
example:
% find . -name "*.old" -print | cpio -ocBv > /dev/rst8

or:
% find . -print | cpio -ocBv > mydir.cpio

To read an archive in, use the -i option and redirect input from the file or tape drive containing
the archive. The -d option is often important; it tells cpio to create directories as needed when
copying files in. You can restore all files from the archive or specify a filename pattern (with
wildcards quoted to protect them from the shell) to select only some of the files. For example,
the following command restores from a tape drive all C source files:
% cpio -icdv "*.c" < /dev/rst8

Subdirectories are created if needed (-d), and cpio will be verbose (-v), announcing the name
of each file that it successfully reads in.
To copy an archive to another directory, use the -p option, followed by the name of the
destination directory. (On some versions of cpio, this top-level destination directory must
already exist.) For example, you could use the following command to copy the contents of the
current directory (including all subdirectories) to another directory:
% find . -depth -print | cpio -pd newdir

There are lots of other options for things like resetting file access times or ownership or changing the
blocking factor on the tape. See your friendly neighborhood manual page for details. Notice that
options are typically "squashed together" into an option string rather than written out as separate
options.

—TOR and JP

Industrial Strength Backups

This book mostly focuses on tools like tar, because that's what we expect most of you to use most of
the time. However, there are other tools that are very important for large-scale backups that it's good
to know at least a little about.

dump is an old Unix standby and a complete if somewhat arcane tool for backing up file systems. It is
extremely useful for system administrators and personal machines, and it is available as part of the
operating system on nearly any Unix. For industrial-strength backups, no simple solution beats dump
— it is the most reliable tool for ensuring data consistency and stability. It's also a pain to use, so
generally system administrators end up writing scripts around it to make it easier, or using a system
like Amanda (see below).

The Advanced Maryland Automatic Network Disk Archiver, known as Amanda, is a free system for
performing regular backups of one or more network-connected machines. Information on Amanda is
generally available at http://www.amanda.org. Amanda uses tar or dump to do the actual work of
backing up files; its job is to coordinate backups of multiple filesystems to one or more network-
accessible tape drives on a regular basis.

Note also that full-scale backup processes need to address things such as tape lifetimes, electronic
and physical security of backed-up data, off-site storage, incremental backup schemes and the like.
Should you be in a position to need to set up such a process, read one of the good books on the
subject — we might recommend O'Reilly's Unix Backup and Recovery.

http://www.amanda.org

Chapter 39. Creating and Reading Archives

Packing Up and Moving

The worst part of living in a nice big house is the headache of moving. The more stuff you've got
room for, the more trouble it is to pack it up and take it with you.

The Unix operating system is a little bit like that. One of its real advantages is a filesystem that lets
you organize your personal files into a hierarchical directory tree just like the much bigger tree that
encompasses the entire filesystem. You can squirrel away all kinds of useful information into neat
pigeonholes.

While your personal directory hierarchy is usually only two or three levels deep, for all practical
purposes it can have as many levels as you like. And, as is true of any powerful and flexible tool,
problems lie in wait for the sorcerer's apprentice. Directories and files grow increasingly complex
the longer you use the system, with more forgotten files and more detailed organization.

This chapter will tackle the problems that can arise when you want to move a block of files (in one or
many directories) from one place to another.

Maybe you're writing the files to a tape for safety (Section 38.3). In many cases though, this is a
"backup and restore" problem. For example, if you were moving your account to another system, you
might just ask the system administrator (if there is one) to archive your files to tape or floppy and
restore them in the new location. Many new users are less aware that you can use the backup program
tar (Section 38.2) to create online archives that you can move from one place to another.

This situation is most likely to arise in a networked environment. You might be packaging files to ship
as a package to another user. The files might be going to Usenet or an archive site on the Internet, for
distribution to many users. Whether you're distributing an archive to lots of people or using it for
yourself, though, most of the topics we cover in this chapter will apply.

— TOR

Using tar to Create and Unpack Archives

tar (Section 38.2) is a general-purpose archiving utility capable of packing many files into a single
archive file, retaining information such as file permissions and ownership. The name tar stands for
tape archive, because the tool was originally used to archive files as backups on tape. However, use
of tar is not at all restricted to making tape backups, as we'll see.

The format of the tar command is:
tar functionoptions
 files...

where function is a single letter indicating the operation to perform, options is a list of (single-
letter) options to that function, and files is the list of files to pack or unpack in an archive. (Note that
function is not separated from options by any space.)

function can be one of:
c

Create a new archive.
x

Extract files from an archive.
t

List the contents of an archive.
r

Append files to the end of an archive.
u

Update files that are newer than those in the archive.
d

Compare files in the archive to those in the filesystem.

The most commonly used functions are c reate, extract, and table-of-contents.

The most common options are:
v

Prints verbose information when packing or unpacking archives. This makes tar show the files it
is archiving or restoring. It is good practice to use this option so that you can see what actually
happens, though if you're using tar in a shell script you might skip it so as to avoid spamming the
user of your script.

k
Keeps any existing files when extracting — that is, prevents overwriting any existing files
contained within the tar file.

f filename
Specifies that the tar file to be read or written is filename.

z
Specifies that the data to be written to the tar file should be compressed or that the data in the tar
file is compressed with gzip. (Not available on all tars.)

There are other options, which we cover in Section 38.5. Section 38.12 has more information about
the order of tar options, and Section 39.3 has a lot more about GNU tar.

Although the tar syntax might appear complex at first, in practice it's quite simple. For example, say
we have a directory named mt, containing these files:
rutabaga% ls -l mt
total 37
-rw-r--r-- 1 root root 24 Sep 21 1993 Makefile
-rw-r--r-- 1 root root 847 Sep 21 1993 README
-rwxr-xr-x 1 root root 9220 Nov 16 19:03 mt
-rw-r--r-- 1 root root 2775 Aug 7 1993 mt.1
-rw-r--r-- 1 root root 6421 Aug 7 1993 mt.c
-rw-r--r-- 1 root root 3948 Nov 16 19:02 mt.o
-rw-r--r-- 1 root root 11204 Sep 5 1993 st_info.txt

We wish to pack the contents of this directory into a single tar archive. To do this, we use the
following command:
tar cf mt.tar mt

The first argument to tar is the function (here, c, for create) followed by any options. Here, we use
the one option f mt.tar, to specify that the resulting tar archive be named mt.tar. The last argument is
the name of the file or files to archive; in this case, we give the name of a directory, so tar packs all
files in that directory into the archive.

Note that the first argument to tar must be a function letter followed by a list of options. Because of
this, there's no reason to use a hyphen (-) to precede the options as many Unix commands require. tar
allows you to use a hyphen, as in:
tar -cf mt.tar mt

but it's really not necessary. In some versions of tar, the first letter must be the function, as in c, t, or
x. In other versions, the order of letters does not matter as long as there is one and only one function
given.

The function letters as described here follow the so-called "old option style." There is also a newer
"short option style," in which you precede the function options with a hyphen. On some versions of
tar, a "long option style" is available, in which you use long option names with two hyphens. See the
manpage or info page (Section 2.9) for tar for more details if you are interested.

It is often a good idea to use the v option with tar to list each file as it is archived. For example:
rutabaga% tar cvf mt.tar mt
mt/
mt/st_info.txt
mt/README
mt/mt.1
mt/Makefile
mt/mt.c
mt/mt.o
mt/mt

On some tars, if you use v multiple times, additional information will be printed, as in:
rutabaga% tar cvvf mt.tar mt
drwxr-xr-x root/root 0 Nov 16 19:03 1994 mt/
-rw-r--r-- root/root 11204 Sep 5 13:10 1993 mt/st_info.txt
-rw-r--r-- root/root 847 Sep 21 16:37 1993 mt/README
-rw-r--r-- root/root 2775 Aug 7 09:50 1993 mt/mt.1
-rw-r--r-- root/root 24 Sep 21 16:03 1993 mt/Makefile
-rw-r--r-- root/root 6421 Aug 7 09:50 1993 mt/mt.c
-rw-r--r-- root/root 3948 Nov 16 19:02 1994 mt/mt.o
-rwxr-xr-x root/root 9220 Nov 16 19:03 1994 mt/mt

This is especially useful as it lets you verify that tar is doing the right thing.

In some versions of tar, f must be the last letter in the list of options. This is because tar expects the

f option to be followed by a filename — the name of the tar file to read from or write to. If you don't
specify f filename at all, tar uses a default tape device (some versions of tar use /dev/rmt0 for
historical reasons regardless of the OS; some have a slightly more specific default). Section 38.5
talks about using tar in conjunction with a tape drive to make backups.

Now we can give the file mt.tar to other people, and they can extract it on their own system. To do
this, they would use the command:
tar xvf mt.tar

This creates the subdirectory mt and places all the original files into it, with the same permissions as
found on the original system. The new files will be owned by the user running tar xvf (you) unless
you are running as root, in which case the original owner is generally preserved. Some versions
require the o option to set ownership. The x option stands for "extract." The v option is used again
here to list each file as it is extracted. This produces:
courgette% tar xvf mt.tar
mt/
mt/st_info.txt
mt/README
mt/mt.1
mt/Makefile
mt/mt.c
mt/mt.o
mt/mt

We can see that tar saves the pathname of each file relative to the location where the tar file was
originally created. That is, when we created the archive using tar cf mt.tar mt, the only input
filename we specified was mt, the name of the directory containing the files. Therefore, tar stores the
directory itself and all of the files below that directory in the tar file. When we extract the tar file, the
directory mt is created and the files are placed into it, which is the exact inverse of what was done to
create the archive.

If you were to pack up the contents of your /bin directory with the command:
tar cvf bin.tar /bin

you can cause terrible mistakes when extracting the tar file. Extracting a tar file packed as /bin could
trash the contents of your /bin directory when you extract it. If you want to archive /bin, you should
create the archive from the root directory, /, using the relative pathname (Section 1.16) bin (with no
leading slash) — and if you really want to overwrite /bin, extract the tar file by cding to / first.
Section 38.11 explains and lists workarounds.

Another way to create the tar file mt.tar would be to cd into the mt directory itself, and use a
command such as:
tar cvf mt.tar *

This way the mt subdirectory would not be stored in the tar file; when extracted, the files would be
placed directly in your current working directory. One fine point of tar etiquette is always to pack tar
files so that they contain a subdirectory, as we did in the first example with tar cvf mt.tar mt.
Therefore, when the archive is extracted, the subdirectory is also created and any files placed there.
This way you can ensure that the files won't be placed directly in your current working directory; they
will be tucked out of the way and prevent confusion. This also saves the person doing the extraction
the trouble of having to create a separate directory (should they wish to do so) to unpack the tar file.
Of course, there are plenty of situations where you wouldn't want to do this. So much for etiquette.

When creating archives, you can, of course, give tar a list of files or directories to pack into the

archive. In the first example, we have given tar the single directory mt, but in the previous paragraph
we used the wildcard *, which the shell expands into the list of filenames in the current directory.

Before extracting a tar file, it's usually a good idea to take a look at its table of contents to determine
how it was packed. This way you can determine whether you do need to create a subdirectory
yourself where you can unpack the archive. A command such as:
tar tvf tarfile

lists the table of contents for the named tarfile. Note that when using the t function, only one v is
required to get the long file listing, as in this example:
courgette% tar tvf mt.tar
drwxr-xr-x root/root 0 Nov 16 19:03 1994 mt/
-rw-r--r-- root/root 11204 Sep 5 13:10 1993 mt/st_info.txt
-rw-r--r-- root/root 847 Sep 21 16:37 1993 mt/README
-rw-r--r-- root/root 2775 Aug 7 09:50 1993 mt/mt.1
-rw-r--r-- root/root 24 Sep 21 16:03 1993 mt/Makefile
-rw-r--r-- root/root 6421 Aug 7 09:50 1993 mt/mt.c
-rw-r--r-- root/root 3948 Nov 16 19:02 1994 mt/mt.o
-rwxr-xr-x root/root 9220 Nov 16 19:03 1994 mt/mt

No extraction is being done here; we're just displaying the archive's table of contents. We can see
from the filenames that this file was packed with all files in the subdirectory mt, so that when we
extract the tar file, the directory mt will be created, and the files placed there.

You can also extract individual files from a tar archive. To do this, use the command:
tar xvf tarfile
 files

where files is the list of files to extract. As we've seen, if you don't specify any files, tar extracts
the entire archive.

When specifying individual files to extract, you must give the full pathname as it is stored in the tar
file. For example, if we wanted to grab just the file mt.c from the previous archive mt.tar, we'd use
the command:
tar xvf mt.tar mt/mt.c

This would create the subdirectory mt and place the file mt.c within it.

tar has many more options than those mentioned here. These are the features that you're likely to use
most of the time, but GNU tar, in particular, has extensions that make it ideal for creating backups and
the like. See the tar manpage or info page (Section 2.9) and the following chapter for more
information.

MW, MKD, and LK

GNU tar Sampler

 Go to http://examples.oreilly.com/upt3 for more information on: tar

GNU tar has plenty of features; some people would say "too many." I don't agree. GNU tar has
features I wish I'd had for years in more "standard" versions. This article lists my favorites. For a
complete list, check the info documentation for tar.

Section 15.7 describes how to compress an archive file you've created. If you're using GNU tar,
this is even easier, since tar itself can do the compression. Simply use the z option when writing
or reading archives. For example, to make the gzipped tar archive progs.tar.gz from all ".c" and
".h" files:
% tar cvzf progs.tar.gz *.c *.h

You can also use the long option - -gzip to get gzip compression, and the long option - -
bzip2 to get bzip2 compression.
 I've made the classic mistake of archiving files with their absolute pathnames (Section
38.11). GNU tar saves you from that goof. It always stores absolute pathnames as relative paths
unless you add the - -absolute-names option.
Often I want to make a tape backup of my most recent work on a big project, but not all the
thousands of files in a directory tree. The clumsy way to do that is by using find -mtime to make
an include-file for the standard tar -I option. GNU tar to the rescue: its - -after-date option lets
me tell it what directories to look in and how recently the files should have been changed.
When I extract an archive, I may be writing into a directory that has other files. The - -keep-old-
files option tells GNU tar not to overwrite existing files.

One caution about GNU tar: it creates ANSI-format tar archives. Extracting one of these archives
with the old V7 tar can cause warning messages like "tar: unexpected EOF." But, of course, GNU tar
has an option to create old-format archives: - -old-archive.

—JP and TOR

http://examples.oreilly.com/upt3

Managing and Sharing Files with RCS and CVS

How many times have you wished that you could get a copy of a file the way it looked an hour ago, or
yesterday, or last year? That includes times when you just deleted the file — and, especially, when
the file is too new for your computer's backup system to have made any copies of it. (You do have
regular backups of your system, don't you? ;-)) RCS (Revision Control System) and CVS
(Concurrent Version System) let you recover a previous version of a file from an archive. Many
systems come with either RCS, CVS, or both installed already; if they don't appear to be on your
system either install the appropriate package or grab the most current versions from FSF's website
(http://www.fsf.org).

How does the archive get there? As you work, you periodically put a "snapshot" of the file into the
archive. (The archive systems save the changes — not the whole file — so this doesn't take as much
disk space as it might.) The archive remembers the date and time you store each version. You can
enter a log message to describe what's changed since the last time you archived the file. You can do
much more, but those are the basics.

When you need a previous version of the file, you read the archive log to decide which version is
best (by date and time or by the log message). Then you use one command to get back that version.
You don't have to wait for the system manager to load a tape.

Of course, these tools can't protect you from a disk crash or another disaster; that's what reliable
backups are for. RCS and CVS are best for protecting you from accidentally deleting or corrupting
files. But they're also great for group development projects: controlling who's working on a file, who
did what when, and so on. That's especially true of CVS, which was designed to handle software
developers from around the world collaborating on a project over a network — as well as a group of
developers in the same office. One of my favorite features is the ability to see diff (Section 11.1)
listings of what's changed between versions.

Once you get started with these tools, you'll wonder how you ever did without them. Section 39.5
explains how to protect your files with RCS. See Section 39.7 for an introduction to CVS.

— JP

http://www.fsf.org

RCS Basics

The Revision Control System (RCS) is a straightforward, file-based source-control system. It allows
you to keep track of multiple snapshots or revisions of a file, so that you can back up to any previous
version. It also allows you to note particular versions, so that you can do things such as reproduce the
version of a file that you gave to someone else or released as part of a software release. Of course,
it's useful for more than just software development; any time you want to change a file or set of files,
revision control can be useful. To place a file under revision control using RCS:
% ci
 filename

The ci (checkin) program will prompt you for a short description of the file and commit your changes.
It will by default also delete the working copy; if you want to keep a read-only copy, use the -u
(unlocked) option.

To then get a working copy of the file from scratch:
% co
 filename
% co -l
 filename

The co (checkout) command will get a read-only copy of the file from RCS. If you want to edit the
file, use the co -l command (the option is a lowercase L and stands for lock). While you have the file
checked out and locked, no one else can edit it. When you're done, return the file to RCS (check it in)
using ci again. If you use the -l option to ci, it checks in your changes and checks out a new working
copy, as if you did co -l again. When you check in the file, ci asks for a brief description of your
changes. These can be very useful, later, to learn the history of revisions and to find a particular
revision you might want to recover; the command rlog filename gives all of the stored change
descriptions.

If you create a subdirectory called RCS in the directory where you keep the code or other text files
you want to protect, the RCS files will be put there for you, rather than cluttering up your main
directory.

It's a good idea (but not required) to add the characters $Id $ somewhere in the file you want to
place under RCS. Put this in a comment field. That is, use /* $Id $ */ in a C program and # $Id $
in a shell or Perl script. RCS will substitute the revision of the file and other useful information
wherever you put Id any time you check the file out; this allows you to look at a file later and know
what revision it was.

If you check out a file for editing and later on decide you didn't want to change it, unlock the file
using:
% rcs -u
 filename
% rm
 filename

If you want a list of all files currently checked out, use:
% rlog -L -R RCS/*

(If you don't use RCS often, you may want to store those command lines in aliases or shell functions
(Section 29.1) with names like Checkout, Checkedout, and so on.) That's all there is to it!

If you are not using RCS or CVS, you should. They are an easy, ongoing way to protect yourself and
do not require dozens of tapes. It is much easier just to type:
% co -r1.12
 filename

than it is to try to restore that version from backup tapes after you've deleted it. With one command,
version 1.12 is restored. If it's not the right one, restore the version before or after the one you just
grabbed. (If you would just like to see the file rather than get a copy, you can add the -p option to
send the file to standard output. Don't forget to pipe the co -p output to less or something similar,
unless it is really short.)

If you are worried that you are keeping 12 versions of the file on the disk and that this will use up a
lot of disk space, don't be. RCS stores the differences between versions, not 12 separate copies of the
file. It recovers earlier versions of the file on request by starting from a known point and applying
patches, rather than just keeping every single revision.

Suppose you delete a file by accident. If the file is just checked out with co, it will be retrieved and
marked read-only, so trying to delete the file will cause rm to ask you for confirmation. If you do
delete it, you can just recover it with another co command. Suppose, however, you checked out a file
with co -l, because you planned to change it. If this file gets deleted accidentally, you would lose the
most recent changes. This is why you should check your files back into RCS frequently — several
times a day or even more. Checking in a version whenever you make significant changes to the file, or
if you make changes that would be difficult to remember, is the best insurance. Making hundreds of
changes to a file without checking it back into the system is just begging for trouble.

This brief overview left out a lot of features and helpful information. For example, RCS can:

Merge two or more peoples' work into one with rcsmerge and co -j.
Build a tree of revisions with multiple branches and sub-branches. This lets you make and store
multiple independent revisions.
Assign an arbitrary "state" to certain revisions — for example, alpha, released, stable.
Name some or all revisions and refer to revisions by name instead of number. This is
particularly good for naming files that went into a release.
Keep a list of users who are allowed to manipulate a particular RCS file.

To find out more, see the RCS manual pages. rcsintro(1) gives a more complete overview; manpages
like ci(1) have details on the many other useful features. Finally, O'Reilly & Associates' Applying
RCS and SCCS is packed with tips and techniques for using revision control in group projects (where
you'll need it even more). Section 13.7 and Section 39.6 explain tools for searching RCS files.

If you're doing a larger project, take a look at Section 39.7, which discusses CVS. CVS is much better
at large project coordination and provides a whole suite of useful features beyond the simple source
control RCS provides.

—DJPH and BB

List RCS Revision Numbers with rcsrevs

 Go to http://examples.oreilly.com/upt3 for more information on: rcsrevs

The rcsrevs script tells you all the revision numbers that are stored in an RCS (Section 39.5) file. For
instance:
% rcsrevs myprog
1.3
1.2
1.1
1.2.1.1

What good is that? Here are two examples.

1. rcsgrep -a (Section 13.7) uses rcsrevs when it's searching all revisions of an RCS file. If you
want to print all revisions, run a program across all revisions to do some kind of check, and so
on, rcsrevs can give you the revision numbers to use in a loop (Section 28.9). The shell loop
below gets all the revision numbers and stores them in the revnum shell variable one by one; it
runs co -p (Section 39.5) to send each revision to the pr -h (Section 45.6) command for
formatting with a custom header; the output of the commands in the loop goes to the printer.
'...' Section 28.14, > Section 27.12
$ for revnum in `rcsrevs
 somefile
 `
> do
> co -p -r$revnum
 | pr -h "
 somefile
 revision #$revnum"
> done | lpr

2. You'd like to compare the two most recent revisions of several RCS files to see what the last
change was, but the revision numbers in each file are different. (One file's latest revision might
be 2.4, another file could be at 1.7, etc.) Use head (Section 12.12) to grab the two highest
revision numbers from the rcsrevs output, tail -r (Section 12.9) to reverse the order (put the
older revision number first), and sed to make the revision numbers into a pair of -r options (like
-r1.6' -r1.7). Then run rcsdiff to do the comparisons and email (Section 1.21) them to
bigboss:
? Section 28.12
% foreach file (*.cc *.h Makefile)
? set revs=`rcsrevs $f | head -2 | tail -r | sed 's/^/-r/'`
? rcsdiff $revs $f | mail -s "changes to $file" bigboss
? end

rcsrevs accepts rlog options to control what revisions are shown. So rcsrevs -r2 somefile would list
only revisions 2.0 and above, rcsrevs -sbeta would list the revisions in beta state, and so on.

— JP

http://examples.oreilly.com/upt3

CVS Basics

The Concurrent Version System, or CVS, is a version control system designed to support complex
project structures or groups of people who are working together on a common set of files. Where
RCS (Section 39.5) deals only with individual files, CVS allows you to work with entire projects as
a whole. As we have mentioned before, while source control systems were originally developed
primarily for use in developing software, they make a great deal of sense any time you want to keep
track of changes to files. CVS is good for keeping track of changes to source files for a book or
configuration files for qmail or apache, or for any number of other day-to-day tasks.

CVS stores its archives in a directory called a cvsroot. You tell CVS where to find the repository you
want to use by setting the CVSROOT environment variable or using the -d option:
% setenv CVSROOT /home/cvsroot
% cvs checkout conf

% cvs -d /home/deb/cvs checkout book

Within a cvsroot are one or more repositories . Each repository is associated with a particular
project (or in the case of a very complex project, a piece of a project). To work on a project, you
much check out its repository to create a working area using cvs checkout, as in the example above.
CVS is helpful and remembers which cvsroot you used for a particular checkout; future commands
within that working area automatically use the right repository. For the record, the working area's
cvsroot overrides the CVSROOT environment variable; the -d option overrides them both.

Once you have a working area, you have a writable copy of every file in that project. Edit to your
heart's content. To incorporate changes made by other people, or see what you've changed, use cvs
update:
% cd book
% cvs update
cvs update: Updating .
U ch18.sgm
M ch39.sgm

CVS update tells you a bit of information about each file that it touched or needs to touch. A U means
that it updated your working copy from the repository; if you had also changed that file, it means that
CVS successfully merged their changes with yours. A M means that you've modified that file in your
working area.

To push your modifications into the repository, you use cvs commit. As the name suggests, this
commits your changes. Generally you'll want to do this often, so that you aren't set back very far if you
delete a file accidentally or make a change you later decide you don't want.

CVS does more, of course. For example, cvs log lets you read the log that shows differences between
two revisions. cvs diff lets you see the differences between two revisions by comparing them with
diff (Section 11.1). cvs add (followed by cvs commit) adds a new file or directory to the repository.
cvs remove removes a file or directory; be sure to remove any local copy first, or use cvs remove -f
to have CVS remove your local copy for you. cvs init initializes a new cvsroot, and cvs import
creates a new repository. Notifications can be emailed automatically when a file is changed. Part or
all of the repository can be made read-only for all but a few users — so you can share files freely but
prevent unauthorized changes. O'Reilly's CVS Pocket Reference gives a summary of all this and much
more about CVS.

— DJPH

More CVS

Here's a slightly more complex example of how to use CVS. I'm working on this book, via CVS, with
my two main coauthors (who are on the east and west coasts of the United States). The repository,
which has almost 1,000 files, is on a computer in the O'Reilly office in Massachusetts.

1. From the command line or in a shell setup file (Section 3.3), I need to set an environment
variable (Section 35.3) named CVSROOT that tells CVS where the repository is and what my
username is on that machine. In the C shell, for instance, I'd execute a command that sets my
username to jpeek, the server hostname to bserver.east.oreilly.com, and the repository to
/books/cvs. I'm also using ssh for secure access to the server, so I need to set the CVS_RSH
environment variable and tell CVS to use the "ext" connection method:
setenv CVSROOT :ext:jpeek@bserver.east.oreilly.com:/books/cvs
setenv CVS_RSH ssh

2. I have a directory where I keep my local copies of the book files. To start, I check out my copy
of the ulpt3 repository from the server:
!$ Section 30.3
% cd books
% cvs checkout ulpt3
cvs checkout: updating ulpt3
U ulpt3/0001.sgm
U ulpt3/0007.sgm
U ulpt3/0023.sgm
 ...more...
% cd !$
cd ulpt3

3. Now my ulpt3 subdirectory has the same files that the repository does. I can edit any of them,
just as I'd edit files that aren't in CVS — but my changes don't make it back to the repository until
I use the CVS command to do that.
Let's say I edit the file 0123.sgm. I'd like to write it back to the repository, where the other
authors can grab it in case they're printing that part of the book. First I should update my
workspace. This brings in any changes by other authors. If another author has updated 0123.sgm
and put it in the archive before I do, CVS will merge the two files and expect me to resolve the
differences:
% vi 0123.sgm
 ...edit the file...
% cvs update
cvs update: updating .
U ulpt/0075.sgm
RCS file: /books/cvs/ulpt3/0123.sgm,v
retrieving revision 3.6
retrieving revision 3.7
Merging differences between 3.6 and 3.7 into 0123.sgm
rcsmerge: warning: conflicts during merge
cvs update: conflicts found in 0123.sgm
C 0123.sgm
%

The U line shows that another author changed file 0075.sgm; CVS is updating my copy of it. As it
happens, another author edited 0123.sgm while I did — and committed his changes to the
repository before I got there. CVS sees that the copy in the repository is newer than the one I
fetched a while ago, so it merges the two versions. If the changes had been to different parts of

the file, CVS wouldn't have complained, just warned me that 0123.sgm had been merged. As
luck would have it (something to do with this being an example, I think ;-)) both changes were
in the same place and CVS warned me that the merge failed; there was a conflict.

4. This step only applies if there was a conflict during the update. Edit the file and search for a
string of less-than signs (<<<<). You'll see something like this:
 <para>
 <indexterm><primary>serial line modes</primary></indexterm>
<<<<<<< 0123.sgm
 But there is some overlap. For example, a terminal can be unusable
 because a program has left either the serial line modes or the
 terminal itself in an unexpected state. For this reason,
 <link linkend="UPT-ART-0079">terminal initialization</link>,
 as performed by the <command>tset</command> and
=======
 But there is some overlap. For example, a terminal can be unusable
 because a program has left the terminal in an "wedged"
 or unexpected state. The serial modes may be wrong too. This is why
 <link linkend="UPT-ART-0079">terminal initialization</link>,
 as performed by the <command>tset</command> and
>>>>>>> 3.7
 <command>tput</command> programs,
 initializes both the terminal and the serial line interface.

The text from your working file is at the top, after the <<<< characters. The conflicting text is
after the ==== characters. You decide that your text is better written, so you simply delete the
markers and the second chunk of text. [In a slightly less contrived example, there would
probably be a process for this. You might use cvs log to look at the log message on the
conflicting change, talk to the author of the conflicting change or both. Sometimes you might have
to look at cvs log to figure out who checked in the conflicting change, because there may have
been several changes. — DJPH]

5. Things look good. Now tell CVS to put all your changes from your local workspace into the
repository by committing. You should give a message that describes the changes you made. You
can give the message either as an argument to the -m option or by typing it into your text editor,
like this:
% cvs commit
cvs commit: Examining .
 ...your text editor runs...
Checking in 0123.sgm;
/books/cvs/ulpt3/0123.sgm,v <-- 0123.sgm
new revision: 3.8; previous revision: 3.7
done

Chapter 40. Software Installation

/usr/bin and Other Software Directories

The location for certain types of installed files is very important. For instance, on many Unix systems,
binary files accessible by users are located in the subdirectory /usr/bin or /usr/local/bin . If the
applications aren't in these places, they may not be in the PATH environment variable and not easily
accessible from the command line.

On my FreeBSD system, I've installed a utility called dos2unix , a file-formatting application that
converts DOS newline character combinations to the Unix newline character. I used the FreeBSD
Ports system to install the application, which automatically placed the program in my application
directory, in my case /usr/local/bin. When I want to execute the application, I can run it from the
command line without having to provide the location of the file:
dos2unix some.txt > new.txt

This command reformats the newline character of the contents of some.txt, converting DOS
linebreaks to Unix ones.

The /usr/bin subdirectory differs from the /bin directory located directly off of the main root
directory. The /bin directory has basic installed binaries built into the Unix operating system, with
commands such as cd to change directory and so on. When you install an optional software
application, it should not install software in the top-level binary subdirectory, but in /usr/bin, instead.

According to the Filesystem Hierarchy Standard (FHS), subdirectories (Linux- and BSD-specific)
shown in Table 40-1 are located directly off the root directory within a standardized directory
hierarchy.

Table 40-1. FHS root subdirectories

Subdirectory Contents

bin Application binaries

boot Boot loader static files

dev Device files

etc System configuration files

lib Shared libraries and kernel modules

mnt Temporary mounting point for filesystems such as CD-ROMs

opt Larger static software packages

sbin System binaries

tmp Temporary files

User hierarchy, which has its own subdirectory with the following entries:

bin

usr

doc
etc
games
include
kerberos
lib
libexec
local
man
sbin
share
src
X11R6

var Variable data

If you install an application and the binaries aren't placed into the bin directory, you'll need to add the
binary location to your PATH environment variable to access the application from the command line.

Note
For more information about FHS, see the home page at http://www.pathname.com/fhs/. Many Unix sy stems support this hierarchy , including the BSD sy stems such as FreeBSD and NetBSD, as well as Red Hat Linux and others. However, y our
own Unix admin may adjust this hierarchy to fit the needs of y our enterprise, so y ou'll want to check subdirectory locations before proceeding with manual software installation.

— SP

http://www.pathname.com/fhs/

The Challenges of Software Installation on Unix

If you've worked with multiple operating systems such as the Mac OS or Windows along with Unix,
then you're aware that software installation on a Unix system — Solaris, Linux, Darwin, and so on —
isn't necessarily as easy a task as it is on some of the other systems. The process can be difficult if
you're installing open source code that you download from the Internet; many times open source code
isn't packaged for ease in installation.

I've worked with Unix for years but still look at the process of installing a new piece of software as
one would look at climbing a mountain: be prepared, be brave, and don't look back.

— SP

Which make?

Many applications and utilities within the Unix environment come as source code that needs to be
compiled and installed on your system. Because of this, the make utility is probably the most
important utility you have within your Unix toolkit. However, the make utility installed on your system
may not necessarily be compatible with the make utility used when the creators tested the software
installation.

In fact, one of the problems that can cause the most problems with software installation is that the
software compiles cleanly with GNU make but not with other versions of make, because different
features of the installation process are supported with GNU make. This happens but not some of the
older, more system-specific makes.

For instance, BSD operating systems such as FreeBSD and Darwin, as well as Solaris, have their
own version of make in addition to accessibility to GNU make. In some of the systems, such as
Darwin, GNU make is installed as the default. In others, such as FreeBSD, BSD make is the default.
GNU make is installed but is usually called gmake. This typically isn't a problem because if the
compilation fails, try gmake instead:
% gmake install

— SP

Simplifying the make Process

One of the problems associated with building and installing software within a Unix environment is
ensuring that all the necessary libraries are present, the makefile is modified to fit the environment,
and so on. The general building process is simplified by two GNU utilities: autoconf and automake.

The autoconf utility takes an input file called configure.in containing macros that determine how a
configure file is built. The configure file, usually called Makefile.in , is then used by automake to
create a Makefile that can be used to compile the application.

A README file should provide instructions on building an application, but if one is absent, you
know that the application supports autoconf if you see a configure.in file, or see a script file called
configure. If the package creator built a configure script manually, instructions will most likely be
included within the README.

As a demonstration, I downloaded a GNU library called plotutils that provides graphics capability.
After running gunzip and tar on the package to decompress the files, I looked at the topmost directory
and found a configure file. I ran this using the following command:
> ./configure

The application can actually take a bit of time, and when finished, Makefiles have been generated for
the application directories. All that's required at this point is to run make install as root:
> make install

Once the build was finished, I cleaned up by typing:
> make clean
> make distclean

The first make cleans up any in-process installation files; the second cleans up the distribution files.

The autoconf and automake utilities have greatly simplified installation of GNU and open source
functionality.

— SP

Using Debian's dselect

The dselect tool provides an easy-to-use, character-based graphical frontend for accessing dpkg (the
traditional Debian installation package utility). To launch dselect, issue the command:
dselect

Figure 40-1 shows the screen that appears. The screen presents a simple menu with six items:
Access

Lets you choose the method used to access package files.
Update

Lets you update the list of available packages.
Select

Lets you choose packages for installation or removal.
Install

Initiates installation of selected packages.
Config

Initiates configuration of installed packages.
Remove

Initiates removal of packages selection for removal.
Quit

Exits dselect.
The menu items are generally used in the order in which they are presented.

Figure 40-1. The dselect screen

Choosing the Access Method

To choose the access method, use the arrow keys to highlight the Access menu item and press Enter.
The screen shown in Figure 40-2 appears.

Figure 40-2. Choosing the access method

The most flexible access method — and the method that's generally recommended — is apt. Other
available options include:
cdrom

Lets you install packages from a CD-ROM. This access method has been deprecated; you should
use multi_cd instead.

multi_cd
Lets you install packages from a multivolume set of CD-ROMs.

nfs
Lets you install packages residing on an NFS server. This access method has been deprecated;
you should use multi_nfs instead.

multi_nfs
Lets you install packages residing on an NFS server that has access to a multivolume set of
packages.

harddisk
Lets you install packages residing on a hard disk partition that is not currently mounted. This
access method has been deprecated; you should use apt or multi_mount instead.

mounted
Lets you install packages residing on a currently mounted filesystem. This access method has
been deprecated; you should use apt or multi_mount instead.

multi_mount
Lets you install packages from a multivolume set, one volume of which is currently mounted.

floppy
Lets you install packages from a set of floppy diskettes.

ftp
Lets you install packages residing on an FTP server.

To choose an access method, use the arrow keys to highlight the appropriate menu item and press
Enter.

If you selected the apt access method, you'll be asked if you want to change the sources.list file. If
you've previously configured the file, you should respond No. If you've not configured the file, you

can respond Yes, which initiates a dialog that builds a simple configuration. Here's a sample dialog
that shows the responses you should give to install packages :
I see you already have a source list.

source list displayed here: contents vary

Do you wish to change it?[y/N] y
 Set up a list of distribution source locations

 Please give the base URL of the debian distribution.
 The access schemes I know about are: http ftp file

 For example:
 file:/mnt/debian,
 ftp://ftp.debian.org/debian,
 http://ftp.de.debian.org/debian,

 URL [http://http.us.debian.org/debian]: file:/cdrom

 Please give the distribution tag to get or a path to the
 package file ending in a /. The distribution
 tags are typically something like: stable unstable frozen non-US

 Distribution [stable]: stable

 Please give the components to get
 The components are typically something like: main contrib non-free

 Components [main contrib non-free]: main contrib

 Would you like to add another source?[y/N] N

The sample dialog assumes that your CD-ROM has been mounted as /cdrom. If your CD-ROM is
mounted differently, you'll need to revise the dialog.

After dselect records your choice of access method, the main menu screen re- appears.

Updating Information on Available Packages

After selecting the access method, you should instruct dselect to update information on available
packages. To do so, use the arrow keys to highlight the Update menu item and press Enter. After a
short time, the main menu will re-appear.

Choosing Packages for Installation or Removal

Once you've updated the information on available packages, you're ready to select packages for
installation or removal. To do so, use the arrow keys to highlight the Select menu item and press
Enter. The screen shown in Figure 40-3 appears.

Figure 40-3. The introduction screen

This screen provides an overview of the package selection screens. When you've read its contents,
press Space to go to the package selection screen, which is shown in Figure 40-4.

This screen provides an overview of the package selection screens. When you've read its contents,
press Space to go to the package selection screen, whih is shown in Figure 40-4.

Figure 40-4. The package selection screen

To use the package selection screen, use the arrow keys to highlight a package in the upper part of the
screen. The lower part of the screen will display information about the highlighted package. To select
the package for installation, press +; to select an installed package for removal, press -.
You can search the package database by typing a slash (/) followed by the string for which you wish
to search. To find successive instances of the same string, type a backslash (\). For example, to find
the first package that contains the string gnome in its name or description, type /gnome and press
Enter.

If you select for installation a package that requires one or more other packages that are not installed,
a dependency conflict results. Similarly, a dependency conflict results if you mark for removal a
package required by an installed package or if you mark for installation a package that conflicts with
an installed package. When dselect detects a dependency conflict, it presents the screen shown in
Figure 40-5.

Figure 40-5. The dependency help screen

The same screen appears if you select for installation a package that specifies recommended or
suggested packages to be installed with it. A recommended package is one that most users install with
the recommending package. A suggested package is one that is related to the suggesting package;
suggested packages often extend or complement the functionality of the suggesting package.

When you press Space, you're presented with the conflict resolution screen, shown in Figure 40-6.
This screen lets you quickly select for installation or removal the packages involved in a dependency
conflict. The screen also presents default choices for recommended and suggested packages.

Figure 40-6. The dependency resolution screen

Using the arrow keys to highlight an entry lets you view a list of dependencies related to the entry. By
pressing + or -, you can select packages for installation or removal, just as on the selection screen.
When you're done working out dependencies, you can press Space to return to the selection screen.

Exiting the Select Function

You can select the Select function in any of several ways. Pressing Space returns you to the main
menu, where you can initiate installation or removal of packages. Pressing x cancels your selections
and returns you to the main menu. This feature is useful if you change your mind about installing a
package, possibly owing to conflicts associated with the package.

Installing Packages

To begin installing the selected packages, use the arrow keys to highlight the Install menu item and
press Enter. As packages are downloaded or installed, you'll see messages on the screen.

If you're using the apt access method, selecting Install actually initiates installation, removal, and
configuration of packages. You can exit dselect after the installation process completes.

If you're using some other access method, dselect may not install every selected package in a single
operation. When the installation process completes, you should select Install and see if more
packages are installed. When you select Install and no more packages are installed, you can proceed
to the subsequent steps: configuration and removal.

When the installation process is complete, dselect prompts you to press Enter to return to the main
menu.

Configuring Packages

To begin configuring the installed packages, use the arrow keys to highlight the Configure menu item
and press Enter. Packages that require configuration will prompt you for configuration choices. When
the configuration process is complete, dselect prompts you to press Enter to return to the main menu.

Removing Packages

To begin removing the packages selected for removal, use the arrow keys to highlight the Remove
menu item and press Enter. When the removal process is complete, dselect prompts you to press
Enter to return to the main menu.

Exiting dselect

To exit dselect, use the arrow keys to highlight the Quit menu item and press Enter.

— SP

Installing Software with Debian's Apt-Get

The dselect program is useful, because it lets you browse a list of available packages, viewing their
descriptions and dependencies, and selecting desired packages for installation. However, if you
know the name of a package you want to install, apt-get is often the easiest way to install it. Before
using apt-get, you must configure the sources.list file. This same file is used when you choose the apt
access method of dselect. Even if you don't plan on using apt-get, you'll find the information in the
following subsection useful.

Configuring the sources.list File

The sources.list file resides in the /etc/apt directory. Like most other Linux configuration files, it can
be revised by using an ordinary text editor, such as ae.

The file contains a series of lines, each specifying a source for packages. The lines are consulted
serially, so it's usually advantageous to place lines that specify local sources — such as a CD-ROM
— ahead of lines that specify remote sources. Doing so can save many minutes of download time.

Each line has the form:
deb uri distribution components

The uri is a universal resource identifier (URI) that specifies the computer on which the packages
reside, the location of the packages, and the protocol used for accessing the packages. It has the
following form:
protocol://host/path

Four protocols — sometimes called URI types — are recognized:
cdrom

A local CD-ROM drive
file

A directory of the local filesystem
http

A web server
ftp

An FTP server

The host part of the URI and the preceding pair of slashes (//) are used only for the http and ftp
protocols. There, the host part of the URI gives the name of the host that contains the packages.

The path part of the URI always appears, with the preceding slash (/). It specifies the absolute path of
the directory that contains the packages.

Here are some examples of typical URIs:
cdrom:/cdrom
cdrom:/mnt/cdrom
file:/mnt
file:/debian
http://www.us.debian.org/debian
http://non-us.debian.org/debian-non-US
ftp://ftp.debian.org/debian
ftp://nonus.debian.org/debian-non-US

The distribution part of a sources.list line specifies the distribution release that contains the
packages. Typical values include:
stable

The latest stable release; that is, one that is commonly regarded as having sufficiently few
serious bugs for everyday use.

unstable
The latest unstable release. This release sometimes contains serious bugs and should not be
installed by users who require high levels of system availability or reliability.

The components part of a sources.list line specifies the parts of the distribution that will be accessed.

Typical values include:
main

The main set of packages.
contrib

Packages not an integral part of the distribution, but which may be useful.
non-free

Packages that contain software distributed under terms too restrictive to allow inclusion in the
distribution, but which may be useful.

A typical sources.list file might contain the following entries:
deb file:/cdrom stable main contrib
deb http://www.us.debian.org/debian stable main contrib non-free
deb http://non-us.debian.org/debian-non-US stable non-US

This configuration allows rapid access to the distribution packages contained on the local CD-ROM.
It also allows convenient access via the network to other packages and more recent package versions
stored on web servers.

Using apt-get

Once you've configured sources.list, you can use apt-get to update information on available packages,
install a package, or upgrade installed packages.

Updating information on available packages

To update information on available packages, issue the following command:
apt-get update

Installing a package

To install a specified package, issue the following command:
apt-get install package

where package specifies the name of the package to be installed.

Upgrading installed packages

To automatically upgrade all installed packages to the latest available version, issue the following
command:
apt-get upgrade

—

Interruptable gets with wget

The GNU utility wget can be used to access files through the Internet using HTTP, HTTPS, or FTP.
The best thing about the utility is that if the process is interrupted and started again, it continues from
where it left off.

 Go to http://examples.oreilly.com/upt3 for more information on: wget

The wget utility is installed by default in a lot of systems, but if you can't find it, it can be downloaded
from GNU, at http://www.gnu.org/software/wget/wget.html.

The basic syntax for wget is very simple: type wget followed by the URL of the file or files you're
trying to download:
wget http://www.somefile.com/somefile.htm
wget ftp://www.somefile.com/somefile

The file is downloaded and saved and a status is printed out to the screen:
--16:51:58-- http://dynamicearth.com:80/index.htm
 => `index.htm'
Connecting to dynamicearth.com:80... connected!
HTTP request sent, awaiting response... 200 OK
Length: 9,144 [text/html]

 0K -> [100%]

16:51:58 (496.09 KB/s) - `index.htm' saved [9144/9144]

The default use of wget downloads the file into your current location. If the download is interrupted,
by default wget does not resume at the point of interruption. You need to specify an option for this
behavior. The wget options can be found in Table 40-2. Short and long forms of each option are
specified, and options that don't require input can be grouped together:
> wget -drc URL

For those options that do require an input, you don't have to separate the option and the input with
whitespace:
> wget -ooutput.file URL

Table 40-2. wget options

Option Purpose Examples

-V Get version of wget wget -V

-h or --help Get listing of wget options wget -help

-b or --background Got to background after start wget -b url

-e or --execute= COMMAND Execute command wget -e COMMAND url

-o or --output-file= file Log messages to file wget -o filename url

-a or --append-output=
file

Appends to log file wget -a filename url

-d or --debug Turn on debug output wget -d url

http://examples.oreilly.com/upt3
http://www.gnu.org/software/wget/wget.html

-q or --quiet Turn off wget's output wget -q url

-v or --verbose Turn on verbose output wget -v url

-nv or -non-verbose Turn off verbose output wget -nv url

-i or --input-file= file Read urls from file wget -I inputfile

-F or --force-html Force input to be treated as
HTML

wget -F url

-t or --tries= number Number of re-tries to get file wget -t 3 url

-O or --output-document=
file

Output all documents to the
named file

wget -O savedfile -i
inputfile

-nc or --no-clobber Don't clobber existing file wget -nc url

-c or --continue Continue getting file wget -c url

--dot-style= style Retrieval indicator wget -dot-style=binary url

-N or --timestamping Turn on time-stamping wget -N url

-S or --server-response Print HTTP headers, FTP
responses

wget -S url

--spider
Wget behaves as a web spider,
doesn't download

wget --spider url

-T or --timeout= seconds Set the time out -wget -T 30 url

-w or --wait= seconds Wait specified number of
seconds

wget -w 20 url

-Y or --proxy= on/off Turn proxy on or off wget -Y on url

-Q or --quota= quota Specify download quota size wget -Q2M url

-nd or --no-directories Do not create directories in
recursive download

wget -nd url

-x or -- force-directories Opposite of -nd wget -x url

-nh or --no-host-
directories

Disable host-prefixed
directories

wget -nh url

--cut-dirs= number Ignore number directories wget -cur-dirs=3 url

-P or --directory-prefix=
prefix

Set directory to prefix wget -P test url

--http-user= user --http-
passwd= passwd Set username and password

wget --http-user=user --http-
passwd=password

 url

The curl Application and One-Step GNU-Darwin Auto-Installer
for OS X

 Go to http://examples.oreilly.com/upt3 for more information on: curl

The cURL, or curl, application acts similar to wget, except that it works with more protocols,
including FTPS, GOPHER, DICT, TELNET, FILE, and LDAP, as well as HTTP, HTTPS, and
FTP (Section 40.8). It also supports kerberos, cookies, user authentication, file transfer resume and
so on. You can access the application at http://curl.haxx.se, though curl is installed by default on
some systems, including Mac OS X Darwin.

In particular, curl is used to download and install the GNU-Darwin auto-installer for OS X,
otherwise known as One-Step.

The following command starts the process of installing the basefiles for One-Step. Note that the One-
Step installation can take a considerable length of time, and you might get messages about needing to
modify certain aspects of the installation, such as adding a font path and so on. Still, the instructions
are very clear and once the installation is finished, you'll then be able to use One-Step.
curl http://gnu-darwin.sourceforge.net/one_stop | csh

You can CTRL-c at any time during the download portion, and continue the installation at a later time.
Use caution, though, with interrupting the installation during the final build portion. You can view the
installation script for One-Step at http://gnu-darwin.sourceforge.net/one_stop/.

One of the applications installed during the process is pkg_add, which you can use to add additional
packages at a later time by specifying the command followed by the URL of the package:
pkg_add url

— SP

http://examples.oreilly.com/upt3
http://curl.haxx.se
http://gnu-darwin.sourceforge.net/one_stop/

Installation with FreeBSD Ports

The FreeBSD operating system has a terrific software installation system known as the FreePSD
Ports. You can download the entire distribution collection as root giving a specific command within
the /usr/ports directory:
/stand/sysinstall

Once the Ports collection is installed, you can then easily install software by changing directory to the
specific application and typing make install:
cd /usr/ports
cd lang
cd ruby
make install
make clean
make distclean

Not only will the Ports application install the application — in this case support for the Ruby
programming language — it also pulls in any dependent files that might not exist on the system.

You may have problems downloading the distribution file because your system setup may not allow
you to write to the /usr/ports/distfiles subdirectory for some reason. To install the distribution to a
different location, set the DISTDIR environment variable to a different location:
make DISTDIR=/local/dir/with/write/permission install

To removed an installed application, again change to the ports subdirectory of the application and
type:
make deinstall

— SP

Installing with FreeBSD Packages

Instead of using the Ports you can install applications individually as packages, using the pkg_add
utility, similar to that shown in (40.08).

To install using pkg_add, download the package by ftp'ing to the FreeBSD FTP server at
ftp://ftp2.FreeBSD.org, and then change to the /pub/ports/packages directory. At that point, the
directory at the FTP server should be similar to the Ports collection directory organization. Change
directory to the category (such as "lang"). Get the gzipped tar (Section 15.7) file of the package for
your application, using binary transfer. For instance, the Ruby scripting language interpretor is ruby-
1.7.2.2002.05.23.tgz, which is then downloaded:
ftp > get /pub/ports/packages/lang/ruby-1.7.2.2002.05.23.tgz

Once the file is downloaded, type pkg_add and the package name:
pkg_add ruby-1.7.2.2002.05.23.tgz

Instead of downloading the file manually, you can use the -r option to have the pkg_add application
look for the latest build of an application and automatically download necessary dependent files and
the target application itself:
pkg_add -r ruby-1.7.2.2002.05.23.tgz

Note, though, that the newest versions of an application may not be in the stable build directory. If you
want an application not on this tree, you'll have to download the application file manually.

— SP

ftp://ftp2.FreeBSD.org

Finding and Installing RPM Packaged Software

 Go to http://examples.oreilly.com/upt3 for more information on: rpm

A popular tool used to find and install software packages — particularly in Linux — is RPM (at
http://www.rpm.org/). In addition to working with Linux, RPM also works with Solaris, HP-UX,
FreeBSD, NetBSD, and other systems.

To use RPM to install software, just type the following command:
rpm -i application.rpm

The -i option flags RPM to install the package. To uninstall the application, use:
rpm -e application.rpm

To upgrade a package, use the -U option:
rpm -U application.rpm

http://examples.oreilly.com/upt3
http://www.rpm.org/

Chapter 41. Perl

High-Octane Shell Scripting

Perl[1] is an ecclectic, interpreted language with deep roots in Unix. It was originally written by Larry
Wall, creator of other Unix staples such as patch and rn, to help with system administration tasks.
Because many of its variables are prefixed with $, Perl often looks like an awk program or even a
Bourne shell script. Like all appearances, this too can be deceiving. Perl is a complete programming
language that supports both structured and object oriented programming. Getting started with Perl is
easy, since many of the Bourne shell tricks you've seen will work (after a fashion) under Perl. As
your knowledge grows, you'll find that Perl will help you scratch increasingly obscure itches.
Because Perl has been ported to many different platforms, it brings a Unix-like API to whichever
operating system is hosting it. Perl makes cross-platform programming a reality.

The complete guide to Perl is O'Reilly's Programming Perl, a book that weighs in at over 1500
pages. Therefore, only the barest of essentials can be presented here to help you identify your Perl
installation, tinker with existing scripts, and install new modules. Luckily, Perl always comes with
documentation that can be accessed through the perldoc (Section 41.10) system.

— JJ

[1] A word on casing: "Perl" refers to the language as an abstract concept; "perl" refers to the program
installed on your machine.

Checking your Perl Installation

 Go to http://examples.oreilly.com/upt3 for more information on: perl

Before presenting the details of Perl syntax, it would be prudent to check whether or not Perl is on
your system and learn how to install it if it isn't. Perl is an interpreted language whose interpreter is
called perl. It is this program that reads, compiles and runs Perl source code. Normally, perl will be
in your shell's path. It can often be found lurking in /usr/bin or /usr/local/bin. Use your system's find
or locate command to track down perl if it doesn't appear in your command path. To see what version
of Perl you have, use the -v flag like this:
$ perl -v

This is perl, v5.6.1 built for i686-linux

Copyright 1987-2001, Larry Wall

Perl may be copied only under the terms of either the Artistic License or the
GNU General Public License, which may be found in the Perl 5 source kit.

Complete documentation for Perl, including FAQ lists, should be found on
this system using `man perl' or `perldoc perl'. If you have access to the
Internet, point your browser at http://www.perl.com/, the Perl Home Page.

This Perl is the latest stable version, 5.6.1. Perl is under very active development and newer versions
may soon be available. As with all software projects, there is an unstable, developer's version of
Perl that currently is 5.7.3. The version number scheme follows the pattern:
Revision number

These change only when the language is substantially redefined.
Version number

Even numbers indicate a stable, production-quality release. Odd numbers should only be used by
Perl developers and the curious. Version numbers indicate an important change in the language
that may affect scripts written to run under a previous version of Perl. Be sure to check out the
perldelta manpage for details.

Subversion level
This number is better thought of as the patch level for a given version. Only bug fixes will
appear with each new patch level release. of perl.

Local configuration information about perl can be obtained with the -V flag. A slightly abbreviated
version of that command's output appears below.
$ perl -V
Summary of my perl5 (revision 5.0 version 6 subversion 1) configuration:
 Platform:
 osname=linux, osvers=2.4.2-2, archname=i686-linux
 uname='linux marian 2.4.2-2 #1 sun apr 8 20:41:30 edt 2001 i686 unknown '
 config_args=''
 hint=recommended, useposix=true, d_sigaction=define
 ...

 Compiler:
 cc='cc', ccflags ='-fno-strict-aliasing ...'
 optimize='-O2',
 cppflags='-fno-strict-aliasing'
 intsize=4, longsize=4, ptrsize=4, doublesize=8, byteorder=1234
 ...

Characteristics of this binary (from libperl):

http://examples.oreilly.com/upt3

 Compile-time options: USE_LARGE_FILES
 Built under linux
 Compiled at Oct 1 2001 16:15:45
 @INC:
 /usr/local/lib/perl5/5.6.1/i686-linux
 /usr/local/lib/perl5/5.6.1
 /usr/local/lib/perl5/site_perl/5.6.1/i686-linux
 /usr/local/lib/perl5/site_perl/5.6.1
 /usr/local/lib/perl5/site_perl
 .

The sections followed by ellipses have been truncated. What's important to note here is that the
configuration, compiler, and linker options are available (and are used by the perlbug program if you
need to file a bug report about Perl). Of more practical use is the section beginning with @INC . This
lists the directories in which perl will look for library modules, described later in Section 41.11.

— JJ

Compiling Perl from Scratch

If you don't have Perl already or you'd like to install the latest version, you have a few options. The
first is to get a precompiled version for your platform. This is an option of last resort, since you lose
the opportunity to configure Perl for your system. Most Unix systems will compile the Perl source
code cleanly.

To compile Perl, you will need to fetch the latest Perl source for the Comprehensive Perl Archive
Network (CPAN) (Section 41.11). You can find the gzipped tar archive of the source code at
http://www.cpan.org/src/stable.tar.gz. The archive is several megabytes, so those on a slow modem
link need to plan accordingly. Unpack the archive with the following command:
$ gzip -dc stable.tar.gz | tar xvf -

You should now have a new subdirectory called perl-X.Y.Z (whatever the current version of Perl is).
Change into this directory and you will be be ready to configure the build process for perl.
Like many Unix utilities, compiling Perl requires configuring a Makefile and then executing make .
The Perl source comes with a robust Configure shell script that will prompt you to confirm
information it finds about your system. Often, all the defaults are fine so you can tell the Configure
not to prompt you for confirmation by passing the -de flag. If all goes well with the configuration
stage, you'll want to start compiling the source with make. These steps can be effectively combined
into to following idiom:
$./Configure -de && make test

Recall that the double ampersand is a kind of flow control operator in the shell that allows the make
to happen only if the Configure succeeds. The Perl source comes with a test suite that attempts to
verify that the build went according to plan. Since the test suite needs perl to be built, this command
is similiar to typing:
$./Configure -de && make && make test

The configuration stage may report missing libraries (like those needed to make NDBM files or read
shadowed password files). Generally, these messages are harmless. If an important dependency is
missing, the Configure script will halt. You will need to read the error message to figure out what's
missing from your system that Perl requires. Generally, Perl will configure and compile without much
intervention from you.

If the make test command succeeds, you are ready to install your new Perl. Typically, installation
requires administrative privileges since you'll be writing files in /usr/local (the default installation
root). One way to do this is to use the su command like this:
$ su -c 'make install'

This will prompt you for root's password. During the installation process, you will be asked if you
want Perl installed as /usr/bin/perl. On a system that didn't have Perl to begin with, you can safely
answer yes to this question. On a system that already had Perl, you might wish to answer no here. The
new Perl interpreter will still be installed in /usr/local/bin/perl. You should now have the latest
version of Perl on your system. Use /path/to/newly_installed/perl -v to verify this.

— JJ

http://www.cpan.org/src/stable.tar.gz

Perl Boot Camp, Part 1: Typical Script Anatomy

It is impossible to present a complete guide to programming Perl in this one small section, but you
can glean enough information here to be able to modify existing Perl scripts and evaluate whether
you'd like to learn more about this incredibly handy language.

Perl scripts bare a passing resemblence to Bourne shell scripts. Example 41-1 a script called
writewav.pl that comes with the Perl module Audio::SoundFile. It converts a given sound file into
WAV format. The details of what it's doing aren't important, but it does demonstrate some common
Perl structures that you should understand at a high level.

Example 41-1. A sample Perl script
#!/usr/bin/perl -w

=head1 NAME

 writewav - Converts any sound file into .wav format

=cut

use Audio::SoundFile;
use Audio::SoundFile::Header;

my ($buffer, $length, $header, $reader, $writer);
my $BUFFSIZE = 16384;
my $ifile = shift @ARGV || usage();
my $ofile = shift @ARGV || usage();

$reader = Audio::SoundFile::Reader->new($ifile, \$header);
$header->{format} = SF_FORMAT_WAV | SF_FORMAT_PCM;
$writer = Audio::SoundFile::Writer->new($ofile, $header);

while ($length = $reader->bread_pdl(\$buffer, $BUFFSIZE)) {
 $writer->bwrite_pdl($buffer);
}

$reader->close;
$writer->close;

sub usage {
 print "usage: $0 <infile> <outfile>\n";
 exit(1);
}

The first line of Example 41-1 should be familiar to shell hackers; it's the shebang line. When the first
two bytes of a file are the characters #!, the shell uses the rest of that file's first line to determine
which program should be used to interpret the rest of the file. In this case, the path to the Perl
interpreter is given. Command line arguments can be given to the interpreter. Here -w instructs Perl to
print warning messages when it finds code that is likely to be incorrect. This includes such common
gaffes as trying to write to a read-only file handle, subroutines that recurse more than 100 times, and
attempts to get the value of a scalar variable that hasn't been assigned a value yet. This flag is a new
Perl programmer's best friend and should be used in all programs.

All lines that start with = in the left margin are part of Perl's Plain Old Documentation (POD) system.
Everything between the directives =head1 and =cut are documentation and do not affect how the
script runs. There are Perl tools like pod2text and pod2man that will format the POD found in a
script into the particular output format given in the command's name. There's even a pod2man

program used during the Perl installation procedure that creates all the Perl manpages on the target
system.

The next two lines begin with actual Perl code. To use Perl library files called modules (Section
41.10), scripts invoke the use module statement. Perl searches the paths listed in the global variable
@INC (Section 41.2) for these modules, which typically have the extension .pm.

In Perl, variables don't need to be declared before being used. Although this behavior is convenient
for small scripts, larger scripts can benefit from the disciplined approach of declaring variables. Perl
5 — that is, Perl revision 5 — introduced the my operator as a way of declaring a variable. Declaring
variables allows the -w flag to help catch misspelled variable names, which are a common source of
bugs in Perl scripts.

A variable that holds a single value is called a scalar and is always prefixed with a $ (even in
assignments), unlike variables in the Bourne shell. The = is the assignment operator (when it's not
appearing as a POD directive). Another kind of variable, called an array, can be used to hold many
scalar values. Array variables begin with @ . One example of a global array variable is @ARGV ,
which holds the list of command-line arguments passed into the Perl script.

Continuing with Example 41-1, the two variables $ifile and $ofile get values from the command
line. The shift operator removes values from the beginning of the @ARGV array. If there aren't enough
values on the command line, the user defined subroutine usage() is called.

Perl supports object oriented programming (OOP). The hallmark of OOP is that both the data and the
subroutines (called methods in OOP jargon) for processing that data are accessed through an object.
In traditional procedural programming, data structures are stored separately from functions that
manipulate them. Fortunately, using object oriented Perl modules is often straightforward. In Example
41-1, the scalar $reader is a new Audio::SoundFile::Reader object. Unlike other OOP languages,
Perl's objects are not opaque: the user can set or get values internal to the object. This is what is
happening on the next line. The -> dereferencing operator is used both to get at values that are pointed
to by references (Section 41.5.4) and to make method calls. Here, the key format is set to a value
that is created by the bitwise or of the values returned by the subroutines SF_FORMAT_WAV and
SF_FORMAT_PCM. Another object, $writer, is created on the following line.

The heart of the program is the while loop which, in English, reads, "While reading more chunks of
the source file, translate that chunk into WAV data and write it to the outfile." When the loop finishes,
those objects are no longer needed, so the close() method is called on each of them to release any
resources used by those objects. This is the end of the program's execution, but there's a bit more to
this script.

Perl allows for user defined subroutines. Although they can be anywhere in the file, subroutine
definitions typically come after the main block of code. Here, a subroutine called usage() is
defined that simply prints some help to the user and quits. Inside of double quoted strings, Perl
interpolates scalar and array values. This is a fancy way of saying that Perl replaces variables with
their values. Because Perl tries to do the right thing with interpolation, there may be occasions when
Perl's rules surprise you. Take a look at the perldata manpage for the definitive rules governing
variable interpolation and a peek at the perltrap manpage for common interpolation mistakes. You
can prevent interpolation by putting a backslash in front of the variable name (e.g. \$foo is $foo)
or use single quotes, which never interpolate variables. Finally, the exit(1) function halts the script

before the subroutine can return to the caller and returns the value 1 to the operating system.

That's the 50,000-foot view of a Perl script. To confidently modify existing Perl scripts, it is
necessary to understand some of the basic components of Perl better.

— JJ

Perl Boot Camp, Part 2: Variables and Data Types

Data types are the kinds of values Perl supports. Common data types include arbitrarily long strings
(e.g., "hi, bob"), intergers (e.g., 42) and floating point numbers (e.g., 3.14). Perl is a loosely typed
language, which means that Perl works hard to let you forget about what kind of data you're dealing
with. For the most part, you will be dealing with strings, which plays to Perl's strengths. To
manipulate data, variables are employed. Table 41-1 lists the most common variable types in Perl.
For the full story on Perl data types, read the perldata manpage.

Table 41-1. Common Perl variables

Name Example Description

scalar $lastname, $PI Holds single values

array @people, $peple[0] Holds an ordered sequence of scalar values

hash %cgi_params, $cgi_params{'action'} Holds a set of key-value pairs

Scalars

When you want to store single values, like any of those given in the previous paragraph, you will use
a scalar variable. Scalars are labeled with a $ followed by a letter and any sequence of letters,
numbers, and underscores. Scalars defined at the top of scripts are often used as constants. You may
need to tweak some of them, particularly those containing filesystem paths, to get third-party scripts to
run on your system.

Of course, values can be compared to each other or added together. Perl has relational operators that
treat values as numbers and other relational operators that treat values as strings. Although Perl has
different operators for numbers and strings, Perl makes scalar values do the right thing most of the
time. For example, you want to create a series of filenames like mail_num. The following code does
this.
foreach my $num (1..10) {
 print "mail_" . $num . "\n";
}

Even though $num is a number, the string concatenation operator is able to use it as a string. Table 40-
2 shows string operators, and Table 41-3 shows the numerical ones. See the perlop manpage for the
full story.

Table 41-2. String operators

Operator Example Description

. $saluation .
" Jones" String concatenation

eq $foo eq $bar String equality test

ne $bar ne $baz String inequality test

gt $name gt
"Bob" True if left string comes after right in ASCII

lt $name lt
"Xavier" True if left string comes before right in ASCII

cmp $name cmp
"Wilson"

Return -1 if left operand ASCII-sorts before the right; 0 if right and left
are equal; 1 if right sorts before left

lc lc "Bob" Return an all-lowercase copy of the given string

uc uc "lorrie" Return an all-uppercase copy of the given string

Table 41-3. Numerical operators

Operator Example Description

+ $a + 1 Numerical addition

- $c - 2 Numerical subtraction

* 3 * $b Numerical multiplication

* 3 * $b Numerical multiplication

/ 4/$non_zero Numerical division

++ $a++ Autoincrement; adds one to a number

== $a == $b Numeric equality test

!= $p != $q Numeric inequality test

< $diff < 32 Numeric less-than test

> $sum > 64 Numeric greater-than test

<=> $sum <=> 64
Return -1 if left is numerically less than right; 0 if left equals right; 1 if
right is less than left

<= $sum <= 64 True if left operand is numerically less than or equal to right

>= $sum >= 64 True if left is numerally greater than or equal to right

You may have noticed that some of the operators in the previous tables were described as returning
true or false values. A true value in Perl is any value that isn't false, and there are only 4 kinds of
false values in Perl:

values that are numerically zero
values that are empty strings
values that are undef
empty lists

Like many other languages, Perl supports Boolean operators (see Table 41-3) that return true or false
values. Typically, you encounter these in if statements like the following:
if ($temp < 30 && $is_rainy) {
 print "I'm telecommuting today\n";
}

Another common use of Boolean operators is to short-circuit two expressions. This is a way to
prevent the right operand from executing unless the left operand returns a desired truth value.
Consider the very ordinary case of opening a filehandle for reading. A common idiom to do this is:
open (FH, "filename") || die "Can't open file";

This short-cut operation depends on the open function returning a true value if it can open the
requested file. Only if it cannot is the right side of the || operator executed (die prints whatever
message you provide and halts the program).

Table 41-4. Boolean operators

Operator Example Description

&& $a && $b True if both $a and $b are true

|| $a || $b True if either $a or $b is true

! !$a True if $a is false

! !$a True if $a is false

and $a and $b Same as &&, but with a lower precedence

or $a or $b Same as ||, but with a lower precedence

not not $a Same as !, but with a lower precedence

Looking at Table 41-4, you will notice that there appear to be redundant operators. The operators that
are English words have a lower precedence that the symbolic ones. Precedence is simply the order in
which Perl executes expressions. You are probably familiar with precedence rules from mathematics:
1 + 2 * 3 + 4 = 11
(1 + 2) * (3 + 4) = 21

Similarly, Perl's operators have precedence as well, as shown in Example 41-2.

Example 41-2. Precedence
lc $a || "BB" # like (lc $a) || ("BB")
lc ($a || "BB")

Because || has a lower precedence that the lc operator, the first line of Example 41-2 is a Boolean
test between two expressions. In the second line, the Boolean || operator is used to create a default
argument to lc should $a be a false value.

Because Perl doesn't require parentheses around built-in operators and functions, you will often see
code like:
open FH, "> " . "filename" or die "Can't open file";
print FH "[info]: disk write error\n";

Precedence ambiguities can be resolved by using parentheses where doubt occurs.

Although Perl has many special variables, the one you'll encounter most is $_ . Many operators and
functions, such as lc and print , will operate on $_ in the absence of an explicit parameter, as in
Example 41-3.

Example 41-3. Simple echo loop
while(<>){
 print
}

In this example, every line read from standard input with the <> operator is available inside the while
(Section 41.7) loop through $_. The print function, in the absence of an explicit argument, echoes the
value of $_. Note that $_ can be assigned to (e.g., $_ = "Hello, Perl") just like any other scalar.

Arrays

When you want to collect more than one value into a variable, you have two ways to go in Perl. If you
need an ordered set of values, you will choose to use a Perl array. These variables start with @ and
are followed by a label that follows the same convention as a scalar. Two global arrays have already
been mentioned: @INC and @ARGV. Since arrays hold multiple values, getting and setting values is a
little different from scalars. Here's an example of creating an array with values, looking at one, and
assigning a new value to that array index.
@things = ('phone', 'cat', 'hard drive');
print "The second element is: ", $things[1], "\n";

$things[1] = 'dog';
print "The second element is now: ", $things[1], "\n";

In the first line, the array @things is initialized with a list of three scalar values. Array indexes begin
with zero, so the second element is accessed through the index value of 1. Arrays will grow as
needed, so you could have added a fourth element like this:
$things[3] = 'DVD player';

Why is a $ used here and not @? Use @ only when referring to the whole array variable. Each element
is a scalar whose name is $things[index]. This rule comes up again when dealing with hashes.

Typically you will want to iterate through all the values in an array, which is done with loops (
Section 41.7). Although there are several looping constructs, the most common idiom to examine all
the values in an array sequentially is shown in Example 41-4.

Example 41-4. Using foreach to loop through an array
print "Paths Perl checks for modules\n";
foreach my $el (@INC) {
 print $el, "\n";
}

Lists are a data type that is closely related to arrays. Lists are sequences of scalar values enclosed in
parentheses that are not associated with an array variable. They are used to initialize a new array
variable. Common array operators are listed in Table 41-5.
my @primes = (1,3,5,7,9,11);
my @empty_list = ();

Table 41-5. Common array operators

Name Example Description

pop $last = pop @array; Return last element of array; remove that element from array

push
push @array, @
new_elements ; Add the contents of @new_elements to the end of target array

shift $first = shift
@array;

Return the first element of array; shift all elements one index
lower (removing the first element)

unshift
unshift @array, @
new_elements ; Add @new_elements to the beginning of target array

Hashes

Associative arrays, or hashes, are a collection of scalar values that are arranged in key-value pairs.
Instead of using integers to retrieve values in a hash, strings are used. Hashes begin with %. Example
41-5 shows a hash variable in action.

Example 41-5. Using hashes
my %birthdays = (
 'mom' => 'JUN 14',
 'archie' => 'JUN 12',
 'jay' => 'JUL 11',
);

print "Archie's birthday is: ", $birthdays{'archie'}, "\n";
$birthday{'joe'} = 'DEC 12';
print "My birthday is: ", $birthdays{'joe'}, "\n";

Hashes are a funny kind of list. When initializing a hash with values, it is common to arrange the list
in key-value pairs. The strange-looking => operator is often called a "fat comma" because these two
lines of Perl do the same thing:
%birthdays = ('jay' => 'JUL 11');
%birthdays = ('jay', 'JUL 11');

Use the fat comma when initializing hashes since it conveys the association between the values better.
As an added bonus, the fat comma makes unquoted barewords on its left into quoted strings.

Example 41-6 shows some quoting styles for hash keys.

Example 41-6. Various quoting styles for hash keys
my %baz = (foo => 1,
 'bar', 2,
 'boz' => 3);

Unlike arrays, hashes use strings to index into the list. So to retrieve the birthday of "jay", put the key
inside curly braces, like this:
print "Jay's birthday is: ", $birthdays{'jay'}, "\n";

Because Perl assumes that barewords used as a key when retrieving a hash value are autoquoted, you
may omit quotes between the curly braces (e.g., $birthday{jay}). Like arrays, hashes will grow as
you need them to. Whenever you need to model a set or record the number of event occurrences,
hashes are the variable to use.

Like arrays, you will often need to iterate over the set of key-value pairs in a hash. Two common
techniques for doing this are shown in Example 41-7. Table 41-6 lists common Perl hash functions.

Example 41-7. Iterating over a hash
my %example = (foo => 1, bar => 2, baz => 3);

while (my ($key, $value) = %example) {
 print "$key has a value of $value\n";
}

foreach my $key (keys %example) {
 print "$key has a value of $example{$key}\n";
}

Table 41-6. Common Perl hash functions

Name Example Description

delete delete $hash{{ key"} Delete the key-value pair from hash that is indexed on key

each ($key, $value) = each
%hash

Return the next key-value pair in hash; the pairs aren't
usefully ordered

exists
print "key found" if
exists $hash{" key"}

Return true if hash has key, even if that key's value if
undefined

keys @keys = keys %hash Return the list of keys in the hash; not ordered

values @values = values %hash
Return the list of values in the hash; values will be in the
same order as keys fetched by keys %hash

References

As odd as it may first seem, it is sometimes necessary to have variables for variables. A funny kind of
scalar, a reference is a sort of IOU that promises where the original variable's data can be found.
References are primarily used in cases. First, because hashes and arrays store only scalar values, the
only way to store one multivalued data type in another is to store a reference instead (see the perldsc
manpage for more details). Second, when the size of a data structure makes a variable inefficient to
pass into subroutines, a reference is passed instead. Third, because arguments passed into subroutines
are really just copies of the original, there's no way to change the original values of the arguments
back in the calling context. If you give a subroutine a reference as an argument, it can change that
value in the caller. Consult the perlref and perlreftut manpages for more details on references.

Taking a reference to a variable is straightforward. Simply use the reference operator, \, to create a
reference. For example:
$scalar_ref = \$bob;
$array_ref = \@things;
$hash_ref = \%grades;

You can even create references without variables:
$anonymous_array = ['Mojo Jo-Jo', 'Fuzzy Lumpkins', 'Him'];
$anonymous_hash = { 'pink' => 'Blossom',
 'green' => 'Buttercup',
 'blue' => 'Bubbles',
 };

The square brackets return a reference to the list that they surround. The curly braces create a
reference to a hash. Arrays and hashes created in this way are called anonymous because there is no
named variable to which these references refer.

There are two ways of dereferencing references (that is, getting back the original values). The first
way is to use {} . For instance:
print "Your name is: ", ${$scalar_ref};

foreach my $el (@{$anonymous_array}) {
 print "Villian: $el\n";
}

while (my ($key, $value) = each %{$anonymous_hash}) {
 print "$key is associated with $value\n";
}

The second way, using ->, is useful only for references to collection types.
print "$anonymous_hash->{'pink'} likes the color pink\n"; # 'Blossom'
print "The scariest villian of all is $anonymous_array->[2]\n"; # 'Him'

Perl Boot Camp, Part 3: Branching and Looping

To do any interesting stuff with data, Perl needs to be able to branch and loop. Perl supports the C-
like if -then-else construct, as the following shows:
if ($password eq 'secret') {
 print "Come on in\n";
} else {
 print "Incorrect password\n";
}

You can also invert simple tests that only have one statement in the then block.
print "Don't I know you?\n" if $user eq 'joe';

You can invert the logic of if by using unless :
print "Please supply command line arguments\n" unless @ARGV;

The print happens only if @ARGV is empty.

Sometimes you need to iterate through each element of a list. This can be done with the foreach
loop:
foreach my $thing (@my_room) {
 print "dusting $thing\n";
 dust($thing);
}

A synonym for foreach is for . Bourne shell hackers (or those who don't like typing) may feel more
comfortable using for rather than then foreach.

Each time through the loop, $thing is aliased to the next element in @my_room. Any change to $thing
will change that element in the array, so be careful. If you don't supply a scalar variable like $thing,
Perl will set $_ for you each time through the loop. The previous example could also be written:
foreach (@my_room) {
 print "dusting $_\n";
 dust($_);
}

Sometimes you need to continue looping while an event is happening, like reading input from standard
input:
while (my $line = <STDIN>) {
 print "I got: $line";
}

Each line of input a user provides is stored in $line, including the newline at the end. When the user
hits the end-of-file control key (CTRL-D), the loop exits. Like the foreach loop, you can leave off
the scalar variable while reading from a filehandle,[2] and $_ will be set to the next line of input each
time through the loop.
while (<>) {
 print "I got: $_";
}

Sometimes you need to interrupt the execute flow of your loop. Perl gives you three operators to do
that (see Table 41-7).

Table 41-7. Loop flow-control operators

Operator Example Description
while(<>){
 next if $_ ne "continue\n";

next } Jump to the top of the loop and iterate normally

last

while(<>){
 last if $_ eq "quit\n"
}

Jump out of the loop to the next line of the
program

redo

for $url (@urls){
 unless($content = get($url)){
 print "couldn't fetch page -
retrying\n";
 redo;
 }
}

Jump to the top of the loop, but don't evaluate
the loop condition

[2] STDIN is normally assumed here.

Perl Boot Camp, Part 4: Pattern Matching

Perl is excellent at finding patterns in text. It does this with regular expressions, similar to the ones
used by grep and awk. Any scalar can be matched against a regular expression with the matching
binding operator, =~. For example:
if($user =~ /jjohn/){
 print "I know you";
}

Without the matching binding operator, regular expressions match against the current value of $_. For
example:
while (<>) {
 if (/quit/i) {
 print "Looks like you want out.\n";
 last;
 }
}

In this code, each line of input is examined for the character sequence quit. The /i modifier at the
end of the regular expression makes the matching case-insensitive (i.e., Quit matches as well as
qUIT).

As with regular expressions in other utilities, Perl attempts to find the leftmost and longest match for
your pattern against a given string. Patterns are made up of characters (which normally match
themselves) and special metacharacters, including those found in Table 41-8.

Table 41-8. Common Perl regular expression metacharacters

Operator Description

^ Pattern must match at the beginning of the line.

$ Pattern must match at the end of the line.

. Match any character (expect the newline).

pat1 |
pat2

Alternation: match the pattern on either the left or right.

(
pattern
)

Group this pattern together as one (good for quantifiers and capturing).

[
synbols
]

Define a new character class: any of the symbols given can match one character of input
(e.g. /[aeiou]/ matches a string with at least one regular vowel).

\w Match a letter, number and underscore.

\d Match a number.

\s Match a whitespace character: space, tab, \n, \r.

pattern
* Match 0 or more consecutive occurences of pattern.

pattern
+ Match 1 or more consecutive occurrences of pattern.

pattern
? Optionally match pattern.

A very common task for which regular expressions are used is extracting specific information from a
line of text. Suppose you wanted to get the first dotted quad that appears in this ifconfig command:
$ ifconfig eth0
eth0 Link encap:Ethernet HWaddr 00:A0:76:C0:1A:E1
 inet addr:192.168.1.50 Bcast:192.168.1.255 Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:365079 errors:0 dropped:0 overruns:0 frame:0
 TX packets:426050 errors:0 dropped:0 overruns:0 carrier:0
 collisions:3844 txqueuelen:100
 Interrupt:9 Base address:0x300

The output of a command can be captured into an array using the backtick operator. Each line of the
command's output will be an element of the array. One way to extract the IP address from that line is
with the following code:
my @ifconfig = `/sbin/ifconfig eth0`;
for (@ifconfig) {
 if (/(\d+\.\d+\.\d+\.\d+)/) {
 print "Quad: $1\n";
 last;
 }
}

This regular expression looks for one or more digits (\d+) followed by a literal dot (rather than the
regular expression metacharacter), followed by two more digit/dot pairs, followed by one or more
digits. If this pattern is found in the current line, the part that was matched is captured (thanks to the
parentheses) into the special variable $1. You can capture more patterns in a regular expression with
more parentheses. Each captured text appears in a sequential higher scalar (i.e., the next paren-
captured match will be $2).

Sometimes, you need to find all the matches for your pattern in a given string. This can be done with
the /g regular expression modifier. If you wanted to find all the dotted quads in the ifconfig output,
you could use the following code:
my @ifconfig = `/sbin/ifconfig eth0`;
for (@ifconfig) {
 while(/(\d+\.\d+\.\d+\.\d+)/g){
 print "Quad: $1\n";
 }
}

Here, the if block is replaced with a while loop. This is important for /g to work as expected. If the
current line has something that looks like a dotted quad, that value is capture in $1, just as before.
However, the /g modifier remembers where in the string it made the last match and looks after that
point for another one.

Perl's regular expression support has set the standard for other langauges. As such, it is impossible to
give a comprehensive guide to Perl regular expressions here, but see O'Reilly's Mastering Regular
Expressions or the perlre manpage.

Perl Boot Camp, Part 5: Perl Knows Unix

There are many built-in Perl operators that mimic Unix system calls and standard utilities, as are
partially listed in Table 41-9. Those that aren't hardcoded into the language are often available
through modules (Section 41.9). In fact, there are too many Unix-like operators to describe here, but
this sampling should give you a good start.

Table 41-9. Perl filesystem functions

Function Example Description

chmod
chmod 0775,
filenames

Change file permission on given file or list of files; same as the
system command.

chown chown UID , GID ,
filenames

Change owner and group on given list of filenames; same as the
system command.

rename rename oldname ,
newname

Change a file's name; similiar to mv.

unlink unlink filenames Unlink given filenames; deletes files that aren't hard linked
elsewhere.

system
system(
executable)

Create a subshell to execute an external command whose ouput isn't
accessible to Perl.

qx()
@output = qc(
executable)

Create a subshell to execute external command and return lines of
output as an array to Perl; same as ''.

One advantage Perl has over shell scripting is that Perl has filehandles. In Perl, files can only be
created, edited, or read through special variables called filehandles. These variables have no funny
punctuation prefixing them. It is customary to make filehandles all uppercase. The code below shows
a typical way to read an existing file and echo its contents to the screen:
my $file = "your_filename";
open (IN, $file) || die "can't open $file: $!";
while (<IN>) {
 print;
}
close (IN);

In this simple code, the open function is used to associate the filehandle IN with whatever filename
you choose. If the open fails, the expression to the right of the logical OR will execute. The die
function halts the program with the string provided. Here, that string includes the special variable $!,
which contains the error message from the last failed system call (which here is open). If the open
succeeds, IN can be read from with the <> operator. As noted earlier, this operator populates $_ with
the next line of input each time through the loop until there are no more lines to read. The print
function will use $_ if no other argument is passed to it. Although Perl will free all filehandles when
the script exits, it's a good habit to close all filehandles you open.

Writing to files is almost as easy as reading from them. Consider this code:
my $file = "your_filename";

open (OUT, "> ". $file) || die "can't make $file: $!";
print OUT "<html><body><h1>hello, world</h1></body></html>\n";
close(OUT);

This snippet starts in a familiar way, but the open call is a little different. To tell Perl you want to
create a new file or overwrite an existing one, simply prefix the filename with a >. If you wanted to
append to an existing file, use >> instead. Now you can print to that file by passing the filehandle to
print (notice there's no comma after the filehandle). Here, a simple HTML file is being created.

You can also read directories in Perl. The following code looks in the current directory and
describes each file as a directory, symbolic link, or regular file.
opendir (DIR, ".") || die "error: $!";

while (my $file = readdir(DIR)) {
 print "$file -> ";

 if (-d $file) {
 print "directory\n";

 } elsif (-l $file) {
 print "symlink\n";

 } else{
 print "file\n"
 }
}
closedir (DIR);

To read directories, use the opendir function, which has a similiar interface to open's. Unfortunately,
the <> operator won't work on directory handles, so use the readdir command to iterate over each
file in the directory. Perl provides file test operators, like those in the Bourne shell, to determine
what kind of file its argument is. The -d operator tests whether a file is a directory, while the -l
operator tests whether a file is symbolic link. Perl doesn't have a switch operator like C, but you can
tack on as many elsif blocks as you need. What's not shown here is how to create a directory. Just
as you would at the shell prompt, Perl provides a mkdir function that takes an octal number (which
must start with zero!) and the name of the directory to create. Pretty simple.

In /etc/passwd and in password files for CVS and Apache, user passwords are stored as a string that
has been passed through a one-way hashing algorithm (such as DES), usually using the system's
crypt(3) system call. Perl provides access to this system call with a function of the same name. The
following code prompts users for a new password for a fictional program and creates its own
password file.
print "Username: \n";
my $user = <>;
print "Password: \n";
my $pass = <>;

chomp($user, $pass);
my $crypt = crypt($pass, substr($user, 0, 2));
open (OUT, ">>passwd") || die "error: $_";
print OUT "$user;$crypt;". localtime() . "\n";
close (OUT);

After collecting the username and password from the user, the chomp function removes the trailing
newline from the input just collected. The crypt function expects the string to be hashed and a
random two-character salt. Here, the first two characters of the username are used, via the substr
function. The line written to the password file consists of a semicolon-separated list of the username,
the hashed password, and a date stamp of when the account was added. Here, the localtime function

call is used in scalar context because of the concatenation operator. This produces a human-readable
string like Sat Mar 16 21:17:44 2002. Used in list context, localtime returns a nine element list
that's not easily consumed by human eyes (see Programming Perl, published by O'Reilly, for more
details on scalar versus list context).

This section hardly scratched the surface of using Perl as a system administration tool. Many books
have been written on this very topic, including O'Reilly's Perl for System Administration.

— JJ

Perl Boot Camp, Part 6: Modules

Modules are Perl's way of extending functionality, in the same way C has library files. Modules can
be used to encapsulate a set of related function calls (the way Data::Dumper does), implement
pragmas (like use strict), or create object classes (like HTML::TokeParser). Whatever a module
does, it must first be installed on your system (Section 41.11) before you can use it.

Using a module in Perl is often straightforward. For example, the Data::Dumper module has a
function called Dumper that takes a reference to a variable and deconstructs the entire structure into a
printable string. This is an invaluable debugging tool. The following code shows Data::Dumper in
action:
use Data::Dumper;
print "The current environment is: ", Dumper(\%ENV), "\n";

An abbreviated version of the output from this code is this:
The current enviroment is: $VAR1 = {
 'DISPLAY' => ':0',
 'COLORTERM' => 'gnome-terminal',
 'QTDIR' => '/usr/lib/qt-2.3.0',
 'PVM_RSH' => '/usr/bin/rsh',
 'OSTYPE' => 'linux-gnu',
 'PWD' => '/home/jjohn/docs/unix_powertools/upt',
 'EDITOR' => 'emacs -nw',
 'LOGNAME' => 'jjohn',
 'MACHTYPE' => 'i386-redhat-linux-gnu',
 'SHELL' => '/bin/bash',
 'MAIL' => '/var/spool/mail/jjohn',
 '_' => '/usr/local/bin/perl',
 'HISTSIZE' => '1000',
 'CVS_RSH' => 'ssh1',
 'HOSTNAME' => 'marian',
 'TERM' => 'xterm',
 ...
 };

In this code, the Data::Dumper is made available to your script with the use statement. You should be
aware that use happens at the script's compile time, meaning that you can't use this statement to
dynamically load modules at runtime (but this is possible; see Programming Perl for details).
Data::Dumper automatically makes the function Dumper available to your script. Here the global hash
%ENV, which contains all your shell's environment variables, is deconstructed. Dumper can take
multiple variables, so when looking at a hash or array, be sure to prefix the variable with the
reference operator (Section 41.5.4) \. Without a passed reference, the output of Dumper won't
exactly what you expect.

Many Perl modules are object oriented. Although writing object classes may not be trivial, using them
is. Here, the CGI module is used to create a very simple HTML page.
use CGI;
$q = CGI->new;
print
 $q->header,
 $q->start_html,
 $q->h1("hello, world!"),
 $q->end_html;

There's no difference in how object classes are brought into your script with use. New objects are
created through a method traditionally called new (new is not an operator, as it is in other languages).
Sometimes, new will require arguments. Once the object ($q) is created, all method access must be

made through it, using the -> operator. That's all there is too it. Of course every module is different,
so you will need to use perldoc modulename (Section 41.10) to the module's documentation.

Infrequently, you may need to find the module files on your system. Modules are usually files that
have the extension .pm and are found in one of the directories listed in the @INC array. Every module
should declare its own namespace, so that its variables and functions don't overwrite the ones you
define in the scripts that use the modules. These namespaces are hierarchical, so so that the module
Data::Dumper belongs to the Data module group.[3] When the Data::Dumper module is installed on
your system, it is placed somewhere with the rest of your Perl modules in a directory called Data, in
which a file called Dumper.pm will be copied. Generally, :: in a module name translates to a / on
the filesystem. You can also use perldoc -l modulename to list the module's filesystem path.

There are many good reasons to learn Perl, but the ace up a Perl programmer's sleeve is the
Comprehensive Perl Archive Network (Section 41.11) (CPAN), which is the central repository for
Perl modules. There are hundreds of modules on CPAN, ranging from the essential (IO::Socket) to the
useful (LWP, DBI, mod_perl), to the frivolous (Acme::Buffy). The main CPAN server is accessible
on the web at http://www.cpan.org. CPAN is mirrored all over the world, so look for a mirror near
you.

— JJ

[3] Well, that's the theory anyway. In practice, modules that aren't written by the same group of people
often have somewhat arbitrary top-level namespaces.

http://www.cpan.org

Perl Boot Camp, Part 7: perldoc

We all need a little help sometimes, and it's at those times that perldoc comes in handy. Normally,
core Perl and module documentation is accessible through your system's manpage system, but you can
also use the perldoc program, which has a few convenient features that you should be aware of. Like
man, perldoc takes the name of a module or core Perl document as an argument.

Your system's perl comes bundled with hundreds of pages of very readable documentation. The top of
the document tree can be accessed with either perldoc perl or man perl. This page is little more than
a table of contents[4] for the rest of the perl documentation. There are over 40 documents listed there,
but there are a couple that will be immediately useful to novice Perl programmers, as Table 41-10
shows.

Table 41-10. Frequently used Perl manpages

Name Description

perlsyn The complete guide to Perl syntax

perldata Perl's data types explained

perlop Perl's operators and their precedence

perlfunc The complete guide to all of Perl's built-in functions

perlre The complete guide to Perl's regular expressions

In many cases (such as the ones above), perldoc doesn't do anything man can't. However with
perldoc, you can easily look up built-in Perl functions with the -f flag (-t formats any POD elements
for a text console). For instance, to see the entry on print, try this:
$ perldoc -tf print

You'll get back something like the following (which has been abbreviated):
print FILEHANDLE LIST
print LIST
print Prints a string or a list of strings. Returns
 true if successful. FILEHANDLE may be a scalar
 variable name, in which case the variable contains
 the name of or a reference to the filehandle, thus
 introducing one level of indirection.
 ...

Perl has quite a large FAQ. You can read each of the nine sections (perlfaq1 through perlfaq9) to
find the answer to your question or you can use the -q flag to keyword search all of the FAQ.
$ perldoc -q fork
Found in /usr/local/lib/perl5/5.6.1/pod/perlfaq8.pod
 How do I fork a daemon process?

 If by daemon process you mean one that's detached (disas-
 sociated from its tty), then the following process is
 reported to work on most Unixish systems. Non-Unix users
 should check their Your_OS::Process module for other solu-
 tions.
 ...

Do take advantage of the copious documentation already on your system: you will be reward many

times over.

— JJ

[4] There's actually a more complete table of contents available: man perltoc.

CPAN

The Comprehensive Perl Archive Network (CPAN), whose URL is http://www.cpan.org, is the place
to get modules, scripts, and the Perl source code. This system is mirrored all over the world, so
consult http://www.cpan.org/SITES.html or http://mirror.cpan.org for the server nearest you. There is
a really complete CPAN FAQ that can be found at http://www.cpan.org/misc/cpan-faq.html.

This section covers obtaining and installing modules from CPAN. If your installation of Perl is up to
date, module installation is trivial. If you've got a "unique" system, you may need to take matters into
your own hands.

http://www.cpan.org
http://www.cpan.org/SITES.html
http://mirror.cpan.org
http://www.cpan.org/misc/cpan-faq.html

Installing Modules the Easy Way

In a fit of inspired genius (or madness), the CPAN module was created to automate the task of
fetching and installing modules. If you want to install the Text::AutoFormat suite, it's as easy as
becoming superuser on your system and typing:
perl -MCPAN -e 'install Text::AutoFormat'

Perl has many command-line switches. Here, -M (equivalent to use module) and -e (execute the next
argument as perl code) are used. If you've never run the CPAN module before, be prepared to answer
a lot of questions about your network setup and where certain system binaries are. Luckily, you can
usually accept the defaults safely. Once that's done, the CPAN module will go to the CPAN mirror
you specified; find the latest version of the module you asked for; and download, unpack, configure,
and install it for you with no additional typing. Now that's twenty-first-century library management! If
your module depends on other modules not installed on your system, CPAN will attempt to fetch and
install the missing modules. In fact, you can update the CPAN module itself with:
perl -MCPAN -e 'install Bundle::CPAN'

The CPAN module also has an interactive shell you can access like this:
$ perl -MCPAN -e shell

Why bother with the interactive shell? Sometimes you want to install several unrelated modules at
once. This is done more conveniently in the CPAN shell. Alternately, you may want only to download
module archives without actualling installing them. The entire range of shell options can be found
with the h command inside the shell. One of the most useful shell functions, the search function, can
be used to look up available CPAN modules. For instance:
$ sudo perl -MCPAN -e shell

cpan shell -- CPAN exploration and modules installation (v1.59)
ReadLine support enabled

cpan> i /Text/
CPAN: Storable loaded ok
Going to read /usr/local/cpan/Metadata
Module AddressBook::DB::Text (D/DL/DLEIGH/AddressBook-0.16.tar.gz)
Module AnyData::Format::Text (J/JZ/JZUCKER/AnyData-0.05.tar.gz)
Module Apache::PrettyText (C/CH/CHTHORMAN/Apache-PrettyText-1.03...
...

401 items found
cpan> quit

Here, we use the i command to search for the regular expression /Text/ in all the module names.

When you first run the CPAN module, you will be asked a series of configuration questions. The first
question you'll be asked when configuring CPAN is to name a CPAN build and cache directory
(where CPAN unpacks fetched module archives and builds them). Put this in a sensible place where
you and other users can can get to it, such as /usr/local/cpan. You'll be asked to name the maximum
size for the cache directory (the default is 10MB). The next question will ask when to perform size
checks on the cache, atstart or never. Unless you have a compelling reason not to remove old
module builds, accept the default of atstart. You then be asked whether CPAN metadata should be
cached, and again, accept the default of yes.

The next question asks about what character set your terminal expects. Again, you should accept the
default of yes. The configuration then asks what it should do when unfulfilled dependencies are

encountered during a module installation. CPAN can automatically fetch the missing modules
(follow), ask for confirmation before downloading them (ask), or do nothing (ignore). If you are on
a fast Internet connection, you may want to set the policy to follow. The safest policy, and one that
guards against runaway module fetching sessions, is ask.

The next several questions ask for the location of certain binaries (like lynx, make, gzip, etc.).
Answer these appropriately. The next set of questions ask for additional make parameters. Again,
accept the defaults. You will then be asked about your network setup. If you are behind a firewall that
uses SOCKs or proxy servers for FTP and HTTP, you will need to enter those server names. CPAN
will ask you to pick a CPAN mirror closest to you, by asking you for continent and country
information. You'll be presented with a list of CPAN mirrors, and you can enter the numbers of the
URLs in which you are interested. Generally, you'll only need to give one or two mirrors. The last
question is about the WAIT system, to which you can safely accept the default. This concludes the
CPAN configuration.

Installing Modules the Hard Way

Most modules on CPAN are gzipped tar archives that have some common files in them that makes
installing them fairly simple. To install a CPAN module, unpack your archive and cd to the new
directory that was just created. Now type:
$ perl Makefile.PL && make test

This is a similiar configure and compile idiom to the one shown in Section 41.3. If the tests all
succeed, change to root and install the module with:
make install

The module is now available to your system.

Browsing the CPAN Web Site

There's something to be said for browsing the CPAN archive with a web browser. In fact, there are
all kinds of ancillary tidbits that are available only on the web site. However, CPAN's main purpose
is to store and serve modules.

Modules on CPAN are arranged by author name, module name, category, and recentness. Of these,
module name and category are perhaps the most useful for CPAN newbies. The full Perl
documentation is linked to from CPAN, but you should have this on your system already. Of course,
no serious web site these days is missing a search engine, and CPAN is no exception. In fact, the
search engine has its own URL: http://search.cpan.org. This is an excellent resource for quickly
finding modules that may solve your problem.

CPAN is an ocean of code that awaits your exploration.

— JJ

http://search.cpan.org

Make Custom grep Commands (etc.) with Perl

All of the various grep-like utilities perform pretty much the same function, with minor differences —
they search for a specified pattern in some or all of a file and display that pattern with varying
amounts of surrounding context.

As you use Unix more and more, you will find yourself wanting to do an increasing number of grep-
like tasks, but no particular Unix utility will quite suit them all (hence the need for the various grep
utilities discussed earlier). You'll start accumulating C programs, awk scripts, and shell scripts to do
these different tasks, and you'll be craving one utility that can easily encompass them all so you don't
have to waste the disk space for all of those binaries. That utility is Perl (Section 41.1), the
"Practical Extraction and Report Language" developed by Larry Wall. According to the
documentation accompanying Perl, it is "an interpreted language optimized for scanning arbitrary text
files, extracting information from those text files, and printing reports based on that information."

For example, to search for a pattern in the header of a Usenet message:
perl -ne 'exit if (/^$/); print if (/pattern/);' filename

[This works because mail and Usenet (Section 1.21) messages always use a blank line — indicated
by ^$ in regular expression syntax — to separate the header from the body of the message. — TOR]

[The -n flag tells perl to wrap the contents of -e into the body of a while(<>){ ... } loop. — JJ]

To do a search for a pattern and print the paragraphs in which it appears:
perl -ne '$/ = "\n\n"; print if (/pattern/);' filename

[This assumes that paragraphs are delimited by a double linefeed — that is, a blank line. You'd have
to adjust this script for a troff or TEX document where paragraphs are separated by special codes. —
TOR]

Searching through files is one of Perl's strengths, but certainly not its only strength. Perl encompasses
all the functionality of sed, awk, grep, find, and other Unix utilities. Furthermore, a Perl program to
do something originally done with one or more of these utilities is usually faster and easier to read
than the non-Perl solution.

— JIK

Perl and the Internet

Because Perl supports Berkeley sockets, all kinds of networking tasks can be automated with Perl.
Below are some common idioms to show you what is possible with Perl and a little elbow grease.

Be Your Own Web Browser with LWP

The suite of classes that handle all the aspects of HTTP are collectively known as LWP (for
libwww-perl library). If your Perl installation doesn't currently have LWP, you can easily install it
with the CPAN module (Section 41.11) like this:
perl -MCPAN -e 'install Bundle::LWP'

If you also included an X widget library such as Tk, you could create a graphic web browser in Perl
(an example of this comes with the Perl Tk library). However, you don't need all of that if you simply
want to grab a file from a web server:
use LWP::Simple;
my $url = "http://slashdot.org/slashdot.rdf";
getstore($url, "s.rdf");

This example grabs the Rich Site Summary file from the popular tech news portal, Slashdot, and
saves it to a local file called s.rdf. In fact, you don't even need to bother with a full-fledged script:
$ perl -MLWP::Simple -e 'getstore("http://slashdot.org/slashdot.rdf", "s.rdf")'

Sometimes you want to process a web page to extract information from it. Here, the title of the page
given by the URL given on the command line is extracted and reported:
use LWP::Simple;
use HTML::TokeParser;

$url = $ARGV[0] || 'http://www.oreilly.com';
$content = get($url);
die "Can't fetch page: halting\n" unless $content;

$parser = HTML::TokeParser->new(\$content);
$parser->get_tag("title");
$title = $parser->get_token;
print $title->[1], "\n" if $title;

After bringing in the library to fetch the web page (LWP::Simple) and the one that can parse HTML
(HTML::TokeParser), the command line is inspected for a user-supplied URL. If one isn't there, a
default URL is used. The get function, imported implicitly from LWP::Simple, attempts to fetch the
URL. If it succeeds, the whole page is kept in memory in the scalar $content. If the fetch fails,
$content will be empty, and the script halts. If there's something to parse, a reference to the content
is passed into the HTML::TokeParser object constructor. HTML::TokeParser deconstructs a page
into individual HTML elements. Although this isn't the way most people think of HTML, it does make
it easier for both computers and programmers to process web pages. Since nearly every web page has
only one <title> tag, the parser is instructed to ignore all tokens until it finds the opening <title>
tag. The actual title string is a text string and fetching that piece requires getting the next token. The
method get_token returns an array reference of various sizes depending on the kind of token returned
(see the HTML::TokeParse manpage for details). In this case, the desired element is the second one.

One important word of caution: these scripts are very simple web crawlers, and if you plan to be
grabbing a lot of pages from a web server you don't own, you should do more research into how to
build polite web robots. See O'Reilly's Perl & LWP.

Sending Mail with Mail::Sendmail

Often, you may find it necessary to send an email reminder from a Perl script. You could do this with
sockets only, handling the whole SMTP protocol in your code, but why bother? Someone has already
done this for you. In fact, there are several SMTP modules on CPAN, but the easiest one to use for
simple text messages is Mail::Sendmail. Here's an example:
use Mail::Sendmail;

my %mail = (
 Subject => "About your disk quota"
 To => "jane@hostname.com, fred@hostname.com"
 From => "admin@hostname.com",
 Message => "You've exceeded your disk quotas",
 smtp => "smtp-mailhost.hostname.com",
);

sendmail(%mail) or die "error: $Mail::Sendmail::error";
print "done\a\n";

Since most readers will be familiar with the way email works, this module should be fairly easy to
adapt to your own use. The one field that may not be immediately clear is smtp. This field should be
set to the hostname or IP address of a machine that will accept SMTP relay requests from the machine
on which your script is running. With the proliferation of email viruses of mass destruction, mail
administrators don't usually allow their machines to be used by unknown parties. Talk to your local
system administrator to find a suitable SMTP host for your needs.

CGI Teaser

What Perl chapter would be complete without some mention of CGI? The Common Gateway Interface
is a standard by which web servers, like Apache, allow external programs to interact with web
clients. The details of CGI can be found in O'Reilly's CGI Programming with Perl, but the code
below uses the venerable CGI module to create a simple form and display the results after the user
has hit the submit button. You will need look through your local web server's configuration files to
see where such a script needs to be in order for it to work. Unfortunately, that information is very
system-dependent.
use CGI;

$cgi = CGI->new;
$name = $cgi->param("usrname");

print
 $cgi->header, $cgi->start_html,
 $cgi->h1("My First CGI Program");

if($name){
 print $cgi->p("Hello, $name");
}

print
 $cgi->start_form,
 $cgi->p("What's your name: "), $cgi->textfield(-name => "usrname"),
 $cgi->submit, $cgi->end_form,
 $cgi->end_html;

CGI scripts are unlike other scripts with which you are probably more familiar, because these
programs have a notion of programming state. In other words, when the user first accesses this page,
$name will be empty and a blank form with a text box will be displayed. When the user enters
something into that textbox and submits the form, the user's input will be stored under the key
usrname. After the user presses the form's submit button, the values of that form are available through
the CGI method param. Here, the desired value is stored under the key usrname. If this value is
populated, a simple message is displayed before showing the form again.

Now you have nearly all the tools necessary to create your own Internet search engine. I leave the
details of creating a massive data storage and retrieval system needed to catalog millions of web
pages as an exercise for the reader.

— JJ

Chapter 42. Python

What Is Python?

Python is an interpreted scripting language, much like Perl or Tcl. Python's primary focus is on clear,
concise code, and it has a feature set and wide variety of available modules designed to support this
goal. In many ways, Python is an extremely scalable language; complex systems can be relatively
easily built in Python without losing maintainability. From the Python home page
(http://www.python.org):

Python is an interpreted, interactive, object-oriented programming language. It is often compared to Tcl, Perl, Scheme or Java.
Python combines remarkable power with very clear syntax. It has modules, classes, exceptions, very high level dynamic data types,
and dynamic typing. There are interfaces to many system calls and libraries, as well as to various windowing systems (X11, Motif,
Tk, Mac, MFC). New built-in modules are easily written in C or C++. Python is also usable as an extension language for
applications that need a programmable interface.
The Python implementation is portable: it runs on many brands of UNIX, on Windows, DOS, OS/2, Mac, Amiga... If your favorite
system isn't listed here, it may still be supported, if there's a C compiler for it. Ask around on comp.lang.python — or just try
compiling Python yourself.
Python is copyrighted but freely usable and distributable, even for commercial use.

— DJPH

http://www.python.org

Installation and Distutils

 Go to http://examples.oreilly.com/upt3 for more information on: python

Installing Python is generally very simple. Either install the appropriate binary package for your
platform, or download the latest source from http://www.python.org. (Note that some Linux
distributions include Python by default.) A source install is as simple as untarring the distribution,
then running:
% ./configure
% make
% make install

You can run the Python interpreter interactively and find out what version you have and details about
its compilation. As an example, on my laptop (which runs Windows but also has a Cygwin Unix-like
environment installed), Python reports:
% python
Python 2.2 (#1, Dec 31 2001, 15:21:18)
[GCC 2.95.3-5 (cygwin special)] on cygwin
Type "help", "copyright", "credits" or "license" for more information.
>>>

To see which modules are compiled into your version of Python, examine
sys.builtin_module_names:
>>> import sys
>>> print sys.builtin_module_names
('_ _builtin_ _', '_ _main_ _', '_socket', '_sre', '_symtable', 'exceptions',
 'gc', 'imp', 'marshal', 'new', 'posix', 'signal', 'sys', 'xxsubtype')

These are just the modules that are an integral part of your version of the interpreter. For a complete
list of modules installed in your Python, look in all of the directories listed in sys.path:
>>> print sys.path
['', '/usr/lib/python2.2', '/usr/lib/python2.2/plat-cygwin',
 '/usr/lib/python2.2/lib-tk', '/usr/lib/python2.2/lib-dynload',
 '/usr/lib/python2.2/site-packages']

Generally, checking the documentation for the version of Python you have will tell you which
modules are normally installed; the site-packages directory is where further packages installed on
your machine will likely have been installed.

There is a large repository of modules (and other Python code resources) for Python available at the
Vaults of Parnassus (http://www.vex.net/parnassus/), which includes a search mechanism for finding
what you're looking for. Most modules will use Distutils to package their distributions.

If you download a module source distribution, you can tell pretty quickly if it was packaged and
distributed with Distutils. First, the distribution's name and version number will be featured
prominently in the name of the downloaded archive, for example, foo-1.0.tar.gz or widget-0.9.7.zip.
Next, the archive will unpack into a similarly-named directory: foo-1.0 or widget-0.9.7.
Additionally, the distribution will contain a setup script, setup.py, and a README, which should
explain that building and installing the module distribution is a simple matter of running:
% python setup.py install

Modules that are not packaged using the standard Distutils will generally include detailed instructions
for installing them.

http://examples.oreilly.com/upt3
http://www.python.org
http://www.vex.net/parnassus/

— DJPH

Python Basics

If you've written code in a procedural or functional language before, many parts of Python will seem
familiar. Here's a quick overview of the flavor of the language. There is a lot of both reference and
tutorial information available on the web (start at http://www.python.org) as well as in books like
O'Reilly's Programming Python. In fact, much of the information in this chapter was gleaned or
paraphrased from the official Python reference documentation.

http://www.python.org

Indentation

The number one complaint of Python detractors is almost always its use of indentation as a significant
part of its syntax. Most languages use begin/end tags or curly braces ({}) to mark blocks of code and
have line termination punctuation (many use the semicolon (;) as a line termination marker). In
Python, indentation is used to define blocks of code, and lines are terminated with a return. The actual
amount of indentation within a block is arbitrary, but it must be consistent:
if a:
 statement1
 statement2 # Consistent indentation
else:
 statement3
 statement4 # Inconsistent indentation (error)

Python assumes eight-space tab characters. If you have your editor set to four-space tabs, for
example, this can bite you if there are mixed spaces and tabs. Either use eight-space tabs, or stick to
spaces.

Long statements can span multiple lines by using the backslash (\) to continue the line:
>>> a = math.cos(3 * (x - n)) + \
... math.sin(3 * (y - n))

Lines that are already grouped within triple-quotes, parentheses (...), brackets [...], or braces {...}
can span multiple lines without needing to use the backslash.

Python's indentation requirements take a little getting used to, but they guarantee a certain level of
readability, and editors like vim and emacs can keep track of the details for you trivially. (vim has a
syntax configuration for editing Python, and emacs and xemacs both have a python-mode specifically
for dealing with Python.)

Functions

Both procedural and functional languages organize programs by dividing them into smaller units
called functions. Python's approach to functions is inspired by functional languages like Lisp and
Scheme, where anonymous functions (lambdas) and operations like eval, apply, map, and reduce are
fundamentals of the language.

Functions are defined with the def statement. To define an add function that adds together two
arguments and returns the result:
>>> def add(a, b):
... return a + b

This defines a function and attaches it to the name add in the current namespace; anything with access
to this namespace can call this function by simply passing arguments to it:
>>> print add(3, 5)
8

Function arguments can be defined with default values, and variable-length argument lists and
keyword arguments are also supported.

Procedural programming languages like Perl and C generally leave functions at that. Functional
languages like Lisp, Scheme, and Python take functions to the next level; functions are first-class
objects and can be directly manipulated and stored.

Anonymous functions, which are not automatically attached to the current namespace, are created with
the lambda statement:
>>> add = lambda a, b: a + b

Lambdas are very useful for traditional functional programming tricks such as using map() . map()
takes its first argument (which should be a function or lambda) and runs it over and over, passing
each element of the list to the function in turn, generating a new list of the results:
>>> def timesThree(a):
... return 3 * a
>>> def sum(x, y):
... return x + y

>>> ints = [1, 2, 3, 4, 5]
>>> multiples = map(timesThree, ints)
>>> print multiples
[3, 6, 9, 12, 15]
>>> print reduce(sum, multiples)
45

If you use functions like map() and its cousins apply(), reduce(), and filter() a lot, your
code can get pretty messy before long. Using a lambda allows you to use these functions without
having to define a named function with def; instead you can just put the lambda right into the function
call as an argument:
>>> ints = [1, 2, 3, 4, 5]
>>> multiples = map(lambda a: 3 * a, ints)
>>> print multiples
[3, 6, 9, 12, 15]
>>> print reduce(lambda x, y: x + y, multiples)
45

Lambdas are limited to a single expression, though that expression may be complex. Multiple
statements and nonexpression statements like print and while can't be used in a lambda.

Everything's an Object

Everything in Python is an object. Each object has an identity , a type, and a value. For example, a =
42 creates an object of type integer with the value 42. You can think of the identity of an object as its
address in memory; in this case, we've given the name a to that identity. Python's built-in types
include fundamental building blocks such as numbers, strings, lists, dictionaries, and files, as well as
structuring types like functions, modules, lambdas, and metaclasses. (Yes, a function is an object; it's
just an object that implements the "function call" operator.)

Python allows the creation of new types of objects via the class statement. User-defined classes can
have class variables and methods, which are shared across all instances of that class. In Python,
methods are just functions that happen to be associated with a class (and generally take an instance of
that class as the first argument). Instances can also have their own instance variables , specific to
each instance.

Instances are created by calling the class object as if it were a function, which creates a new object
and calls the _ _init_ _() method of the class (if one is defined):
class Account:
 "A simple example class"
 kind = "Checking"
 def _ _init_ _(self, accountHolder, startingBalance):
 self.accountHolder = accountHolder;
 self.balance = startingBalance;

>>> account = Account("Deb", 86753.09)

This creates a new Account object and sets the accountHolder instance variable to Deb and the
balance instance variable to $86,753.09. Now, in order to be able to do anything with our Account,
we need to define methods to allow manipulation of the balance:
class Account:
 ...
 def deposit(self, depositAmount):
 "Deposit money"
 self.balance = self.balance + depositAmount
 def withdraw(self, withdrawalAmount):
 "Withdraw money"
 self.balance = self.balance - withdrawalAmount
 def inquireBalance(self):
 "Balance inquiry"
 return self.balance

>>> account.deposit(1504.36)
>>> account.withdraw(40.00)
>>> print "Account balance is now $%.2f" % account.inquireBalance()
Account balance is now $88217.45

Modules and Packages

Modules and packages allow you to organize your code more effectively. Generally, software for
Python is also distributed as a module or a package. A module groups a set of functions and classes; a
package is a collection of modules and subpackages.

Any Python source file is a module, if you load it using the import statement. Importing a module
creates an isolated namespace for the symbols within that file and attaches that namespace to the name
of the module. It also executes the code within that module, defining variables, functions, and classes.
For example, we might put our Account class in a file account.py, and then, in another file:
import account

checking = account.Account("Deb", 86753.09)

Note that we can't refer to Account directly; we have to refer to it through its imported name,
account.Account. If, for convenience, we'd like to access the Account class directly, we can tell
Python to import the class into our current namespace as well:
from account import Account

checking = Account("Deb", 86753.09)

Modules are compiled into bytecodes the first time they are imported, allowing them to run faster and
be more compact.

Given that a Python module is just a file, it will probably come as no surprise that a Python package
is simply a directory with modules in it. To tag a directory as a package rather than just any directory,
create a file called _ _init_ _.py (the same name as the method to initialize an object) within that
directory. Code within _ _init_ _.py will get run whenever any part of its package is imported.
Subpackages are, of course, just subdirectories with their own _ _init_ _.py files.

I/O and Formatting

Dealing with input and output in Python is fairly straightforward; files are objects, and there is a set
of methods for dealing with file objects that will be familiar to anyone who's ever done any Unix I/O.
Files are opened with open(), closed with close(), and read with methods such as read() and
readline().

Unix standard input, standard output and standard error are represented by file objects in the sys
module: sys.stdin , sys.stdout, and sys.stderr, respectively.

The print statement prints its arguments to standard output. print can print any object by printing its
string representation. Nicely formatted strings are generated using the string formatting (%) operator. %
works a lot like C's sprintf() routine; you provide a string with special keywords in it and the
objects to format and you get back a formatted string:
>>> print "Account balance is now $%.2f" % account.inquireBalance()
Account balance is now $86753.09
>>> print "Error: %s(%s)." % (error, error.number)
Error: File not found(2)

% takes a string and a list of arguments. (If there's only one argument, it can be any object instead of a
list.) Any place that you might want to use a string, you can use the string formatting operator. For
example:
>>> obj.name = "MyObject: %s" % name
>>> url = urlopen("%s://%s:%d/%s" % (protocol, host, port, path))

wxPython

Python has a couple of ways to build graphical user interfaces. The first was to use Tk, the GUI
toolkit from Tcl. More recently, a Python interface to the wxWindows toolkit has been developed and
has become very popular.

Extensive information about wxPython is available at http://wxpython.org including documentation
and the wxPython distribution itself.

— DJPH

http://wxpython.org

Python and the Web

Python has a number of core modules designed to deal with interacting with the web. Python can act
as a web client, pulling down web resources and POSTing form results. Python has support for SSL
connections in a reasonably transparent fashion. CGI scripts are easy to write in Python, and there is
also an Apache module for running Python scripts within the webserver itself.

urllib (Section 42.5) provides basic functions for opening and retrieving web resources via
their URLs.
urllib2 (Section 42.6) provides an extended, extensible interface for accessing web resources.
htmllib and HTMLParser (Section 42.7) provide the ability to parse HTML.
cgi (Section 42.8) provides functions for writing CGI scripts.
mod_python (Section 42.9) is an Apache module for running Python within the Apache
webserver, rather than seperately as with CGI scripts.

— DJPH

urllib

The application-level access to most web client activities is through modules called urllib and
urllib2 (Section 42.6). urllib is the simple web interface; it provides basic functions for opening
and retrieving web resources via their URLs.

The primary functions in urllib are urlopen(), which opens an URL and returns a file-like object,
and urlretrieve(), which retrieves the entire web resource at the given URL. The file-like object
returned by urlopen supports the following methods: read(), readline(), readlines(),
fileno(), close(), info(), and geturl(). The first five methods work just like their file
counterparts. info() returns a mimetools.Message object, which for HTTP requests contains the
HTTP headers associated with the URL. geturl() returns the real URL of the resource, since the
client may have been redirected by the web server before getting the actual content.

urlretrieve() returns a tuple (filename, info), where filename is the local file to which the
web resource was copied and info is the same as the return value from urlopen's info() method.

If the result from either urlopen() or urlretrieve() is HTML, you can use htmllib to parse it.

urllib also provides a function urlencode(), which converts standard tuples or dictionaries into
properly URL-encoded queries. Here is an example session that uses the GET method to retrieve a
URL containing parameters:
>>> import urllib
>>> params = urllib.urlencode({'spam': 1, 'eggs': 2, 'bacon': 0})
>>> f = urllib.urlopen("http://www.musi-cal.com/cgi-bin/query?%s" % params)
>>> print f.read()

The following example performs the same query but uses the POST method instead:
>>> import urllib
>>> params = urllib.urlencode({'spam': 1, 'eggs': 2, 'bacon': 0})
>>> f = urllib.urlopen("http://www.musi-cal.com/cgi-bin/query", params)
>>> print f.read()

— DJPH

urllib2

urllib2 provides an extended, extensible interface to web resources. urllib2's application-level
interface is essentially identical to urllib's urlopen() function (Section 42.5). Underneath, however,
urllib2 explicitly supports proxies, caching, basic and digest authentication, and so forth.

urllib2 uses an Opener, made up of a series of Handlers, to open a URL; if you know you want to
use a particular set of features, you tell urllib2 which Handlers to use before you call urlopen(
). urllib2 is extensible largely because if you need to deal with some odd set of interactions, you
can write a Handler object to deal with just those interactions and incorporate it into an Opener with
existing Handlers. This allows you to deal with complex behavior by just combining very simple
sets of code.

For example, to retrieve a web resource that requires basic authentication over a secure socket
connection:
>>> import urllib2
>>> authHandler = urllib2.HTTPBasicAuthHandler()
>>> authHandler.add_password("private, "https://www.domain.com/private",
... "user", "password")
>>> opener = urllib2.build_opener(authHandler)
>>> urllib2.install_opener(opener)
>>> resource = urllib2.urlopen("https://www.domain.com/private/foo.html")
>>> print resource.read()

To implement a new Handler, you simply subclass from urllib2.BaseHandler and implement the
methods appropriate to the behavior you want to handle.

— DJPH

htmllib and HTMLParser

Python provides the htmllib module for parsing HTML content, which is often useful when dealing
with web resources. Python also has an HTMLParser module, which handles both XHTML and
HTML and provides a slightly lower-level view of the content. HTMLParser is also slightly simpler
to use, since htmllib uses sgmllib and thus understands many of the complexities of SGML.

HTMLParser provides a class that the user subclasses from, defining methods that are called as tags
are found in the input. The example below is a very basic HTML parser that uses the
HTMLParser.HTMLParser class to print out tags as they are encountered:
from HTMLParser import HTMLParser

class MyHTMLParser(HTMLParser):
 def handle_starttag(self, tag, attrs):
 print "Encountered the beginning of a %s tag" % tag
 def handle_endtag(self, tag):
 print "Encountered the end of a %s tag" % tag

— DJPH

cgi

Python provides the cgi module for writing CGI scripts. Much of the grunt work of writing a CGI
script is in dealing with parsing the parameters handed to the script by the web server. The cgi
module deals with all of those details and more.

Note
To use the cgi module, use import cgi rather than from cgi import*. The cgi module defines a lot of sy mbols (many for backwards compatibility) that y ou don't want polluting y our namespace.

When you write a new script, consider adding the line:
import cgitb; cgitb.enable()

This activates a special exception handler that will display detailed reports in the web browser if any
errors occur. If you'd rather not show the guts of your program to users of your script, you can have
the reports saved to files instead, with a line like this:
import cgitb; cgitb.enable(display=0, logdir="/tmp")

It's very helpful to use this feature during script development. The reports produced by cgitb provide
information that can save you a lot of time tracking down bugs. You can always remove the cgitb
line later when you have tested your script and are confident that it works correctly.

To get to information submitted to the CGI script, instantiate a FieldStorage object:
form = cgi.FieldStorage()

The FieldStorage object acts much like a dictionary of CGI information; it implements the methods
has_key() and keys() and can be accessed using the [] operator. For instance, the following
code (which assumes that the Content-Type: header and blank line have already been printed)
checks that the fields name and addr are both set to a non-empty string:
form = cgi.FieldStorage()
if not (form.has_key("name") and form.has_key("addr")):
 print "<H1>Error</H1>"
 print "Please fill in the Name and Address fields."
 return
print "<p>Name: %s</p>" % form["name"].value
print "<p>Address: %s</p>" % form["addr"].value
...further form processing here...

The cgi module also supports ways to deal with multiple-selection form elements and uploaded files.

— DJPH

mod_python

mod_python is an Apache module for running Python within the Apache webserver. It's much faster
than CGI scripts and generally uses less resources overall. mod_python also allows advanced
functionality such as maintaining persistent database connections across web requests and access to
internal Apache APIs. Information on mod_python and distributions are available at
http://www.modpython.org.

Apache's basic methodology for handling web requests is to deal with them in phases. There is a
phase for each significant element of handling the request, including authentication, content
generation, and logging. Apache modules can provide a seperate handler for each phase; mod_python
simply allows you to write those handlers in Python. This allows complete control over everything
Apache does to process a request.

A mod_python handler is a function that takes the Request object as an argument; a Request
represents a single web request and contains all the information Apache knows about that request
(requested URL, method, headers, and so forth).

Each phase's handler has a specific name that Apache recognizes (and uses in its configuration file):
PythonHandler, PythonAuthenHandler, PythonLogHandler and so forth. Most mod_python
scripts need to implement only the main handler, PythonHandler.

mod_python finds the appropriate function to call by dropping the leading Python from the handler
name, and using an all-lowercase function name. Thus, most mod_python scripts will look something
like this:
from mod_python import apache

def handler(request):
 request.content_type = "text/plain"
 request.send_http_header()
 request.write("Hello World!")
 return apache.OK

This handler simply imports the apache API and then responds to every request with a plain text
Hello World!. It returns apache.OK to tell Apache that the request was successful.

For more information on dealing with mod_python, read the documentation.

Note
One gotcha: mod_python's way of installing a mod_python handler is a little counterintuitive due to the way Apache handlers work. Make sure y ou understand how mod_python finds which module to import.

— DJPH

http://www.modpython.org

What About Perl?

Comparing languages can generate a lot of heat and very little light. However, "Why not just use
Perl?" is such a common question that I'll try to provide at least a basic understanding of the relative
strengths and weaknesses of Python versus Perl. Remember that you can write good code or bad code
in pretty much any language, but understanding whether your tool is best at driving nails or screws is
always useful.

Perl's driving motto is "There's more than one way to do it." Because of this priority and the huge
archive of Perl modules on CPAN, Perl is an incredibly useful tool for building quick one-off scripts
or hacking together tools in a very short time. However, it also means that it's very easy to write Perl
code that will be impenetrable six months down the road. Perl provides very little assistance to
someone who wants to write complex systems clearly. Features like perl -w (warnings), use
strict, and Perl's module support help maintainability, but it still requires a great deal of care and
discipline.

Python's support for maintainability, on the other hand, is excellent. Python's rich collection of
modules and the fact that it's an interpreted language allow relatively fast development, if not quite as
fast as in Perl. Generally, the more complex the system you're trying to build and the longer you
expect to use it, the more potential there is for gain in using Python over Perl.

Personally, when tossing together quick one-offs or scripts that are very regular expression-heavy, I
use Perl. Perl's regular expression support is so fundamental to the language that it's worth it, and its
Swiss-Army-knife nature is perfect for things I don't expect to need again later. I also tend to use Perl
when I want to write a very portable script, as most Unixes include Perl as part of the base system
these days, whereas Python, while just as portable, tends to need to be installed seperately. When I
want to build more complex scripts or larger systems, and maintainability is thus a higher priority, I
use Python. I often use Python even for smaller things if I intend to keep them around for a while.

In the end, of course, it comes down to a matter of personal taste and judgment. Personally, I value
being able to understand my code six months (or six years!) down the road far more than having every
tool imaginable at my fingertips, so I tend to lean towards languages that help you write clear,
readable code, like Python.

— DJPH

Part VIII. Communication and Connectivity

Part VIII contains the following chapters:

Chapter 43

Chapter 44

Chapter 45

Chapter 46

Chapter 47

Chapter 43. Redirecting Input and Output

Using Standard Input and Output

There is basically no difference between reading data from a file and reading data from a terminal.[1]

Likewise, if a program's output consists entirely of alphanumeric characters and punctuation, there is
no difference between writing to a file, writing to a terminal, and writing to the input of another
program (as in a pipe).

The standard I/O facility provides some simple defaults for managing input/output. There are three
default I/O streams: standard input, standard output, and standard error. By convention, standard
output (abbreviated stdout) consists of all "normal" output from your program, while standard error
(stderr) consists of error messages. It is often a convenience to be able to handle error messages and
standard output separately. If you don't do anything special, programs will read standard input from
your keyboard, and they will send standard output and standard error to your terminal's display.

Standard input (stdin) normally comes from your keyboard. Many programs ignore stdin; you name
files directly on their command line — for instance, the command cat file1 file2 never reads its
standard input; it reads the files directly. But without filenames on the command line, Unix commands
that need input will usually read stdin. Standard input normally comes from your keyboard, but the
shell can redirect stdin from a file. This is handy for Unix commands that can't open files directly —
for instance, mail (Section 1.21). To mail a file to joan, use < filename — to tell the shell to attach
the file, instead of your keyboard, to mail's standard input:
% mail joan < myfile

The real virtue of standard I/O is that it allows you to redirect input or output away from your
terminal to a file. As we said, Unix is file-based (Section 1.19). Because terminals and other I/O
devices are treated as files, a program doesn't even need to know[2] if it is sending its output to a
terminal or to a file. For example, if you want to run the command cat file1 file2, but you want to
place the output in file3 rather than sending it to your terminal, give the command:
% cat file1 file2 > file3

This is called redirecting standard output to file3. If you give this command and look at file3
afterward, you will find the contents of file1, followed by the contents of file2 — exactly what you
would have seen on your screen if you omitted the > file3 modifier. (The Z shell takes this further
with multiple-file redirection.)

One of the best-known forms of redirection in Unix is the pipe. The shell's vertical bar (|) operator
makes a pipe. For example, to send both file1 and file2 together in a mail message for joan, type:
% cat file1 file2 | mail joan

The pipe says, "Connect the standard output of the process at the left (cat) to the standard input of the
process at the right (mail)."

Section 36.15 has diagrams and more information about standard I/O and redirection. Table 43-1
shows the most common ways of redirecting standard I/O, for both the C shell and the Bourne shell,
which also apply to derivatives like tcsh and bash.

Table 43-1. Common standard I/O redirections

Function csh sh

Send stdout to file prog > file prog > file

Send stdout to file prog > file prog > file

Send stderr to file prog 2 > file

Send stdout and stderr to file prog >& file prog > file 2>&1

Take stdin from file prog < file prog < file

Send stdout to end of file prog >> file prog >> file

Send stderr to end of file prog 2 >> file

Send stdout and stderr to end of file prog >>& file prog >> file 2>&1

Read stdin from keyboard until c (see Section 27.16) prog << c prog << c

Pipe stdout to prog2 prog | prog2 prog | prog2

Pipe stdout and stderr to prog2 prog |& prog2 prog 2>&1 | prog2

Be aware that:

While standard I/O is a basic feature of Unix, the syntax used to redirect standard I/O depends
on the shell you are using. Bourne shell syntax and C shell syntax differ, particularly when you
get into the less commonly used features. The Korn shell and bash are the same as the Bourne
shell, but with a few twists of their own. The Z shell generally understands both syntaxes (and,
in its usual manner, adds even more).
You can redirect standard input and standard output in the same command line. For example, to
read from the file input and write to the file output, give the command:
% prog < input > output

The Bourne shell will let you go further and write stderr to a third file:
$ prog < input > output 2> errors

The C shell doesn't give you an easy way to redirect standard output without redirecting standard
error. A simple trick will help you do this. To put standard output and standard error in different
files, give a command like:
% (prog > output) >& errors

We'll discuss commands like this in Section 43.3 and Section 43.5.
Many implementations of both shells don't care what order the redirections appear in, or even
where they appear on the command line. For example, SunOS lets you type < input > output
prog. However, clarity is a virtue that computer users have never appreciated enough. It will be
easiest to understand what you are doing if you type the command name first — then redirect
standard input, followed by standard output, followed by standard error.

There are some more complex forms of standard I/O redirection, particularly for the Bourne shell
(Section 36.16).

Of course, programs aren't restricted to standard I/O. They can open other files, define their own
special-purpose pipes, and write directly to the terminal. But standard I/O is the glue that allows you
to make big programs out of smaller ones, and it is therefore a crucial part of the operating system.
Most Unix utilities read their data from standard input and write their output to standard output,

allowing you to combine them easily. A program that creates its own special-purpose pipe may be
very useful, but it cannot be used in combination with standard utilities.

Many Unix systems, and utilities such as gawk (Section 20.11), support special filenames like
/dev/stdin, /dev/stdout, and /dev/stderr.[3] You can use these just as you'd use other files. For
instance, to have any ordinary command read from the file afile, then standard input (from the
keyboard, for example), then the file bfile:
% somecmd
 afile /dev/stdin bfile

In the same way, a process can write to its standard output through /dev/stdout and the standard error
via /dev/stderr.

Because reading from standard input and standard output is so common, there is a more general
convention for redirecting to these two devices: using - where a program expects a filename. If the
program was expecting the name of an input file, it will read from standard input instead. If it was
expecting an output file, it will write to standard output. A very common place this is seen is in the
unpacking of tar gzipped archives:
$ gzip -dc filename.tar.gz | tar -xvf -

Here, the -c flag tells gzip to stream the uncompressed file to standard output, which is then piped to
tar. The -f flag of tar is used to specify the source tar file, which, because of the -, is standard input.

—ML and JP

[1] If a program's input consists entirely of alphanumeric characters and punctuation (i.e., ASCII data
or international (non-English) characters).
[2] But it can find out.
[3] On Linux, at least, those are symbolic links (Section 10.4) to /proc/self/fd/0, /proc/self/fd/1, and
/proc/self/fd/2, respectively.

One Argument with a cat Isn't Enough

What's wrong with this command line?

cat Section 12.2
% cat filename | tr -d '\015' > newfile

As Tom Christiansen wrote in a Usenet article:
A wise man once said: if you find yourself calling cat with just one argument, then you're probably doing something you shouldn't.

The command line above only uses cat to feed the file to the standard input of tr. It's a lot more
efficient to have the shell do the redirection for you with its < character (Section 43.1):
% tr -d '\015' < filename > newfile

—JP and TC

Send (Only) Standard Error Down a Pipe

A vertical bar character (|) on a command line pipes the standard output of a process to another
process. How can you pipe the standard error but not the standard output? You might want to put a
long-running cruncher command in the background, save the output to a file, and mail yourself a copy
of the errors. In the C shell, run the command in a subshell (Section 43.7). The standard output of the
command is redirected inside the subshell. All that's left outside the subshell is the standard error; the
|& operator (Section 43.5) redirects it (along with the empty standard output) to the mail (Section
1.21) program:
% (cruncher >
 outputfile
) |& mail
 yourname &
[1] 12345

Of course, you don't need to put that job in the background. If you want the standard output to go to
your terminal instead of a text file, use /dev/tty (Section 36.15) as the outputfile.

The Bourne shell gives you a lot more flexibility and lets you do just what you need. The
disadvantage is the more complicated syntax (Section 36.16). Here's how to run your cruncher
program, route the stderr through a pipe to the mail program, and leave stdout going to your screen:
$ (cruncher 3>&1 1>&2 2>&3 3>&-) | mail
 yourname
 &
12345

If this example makes your head hurt a little, you're not alone. The key to understanding this arcana is
to know that programs don't refer to files by name like users do. Instead, when a program wants to
read or write to a file, it must ask the operating system for a file stream that has an integer file
descriptor associated with it. Every program has three file streams opened by default: standard input,
standard output, and standard error. The file descriptors associated with standard input and standard
error are 1 and 2, respectively. These file streams may be duplicated; that is, the data stream pointed
by the file descriptor on the left will now go to data stream pointed to by the file descriptor on the
right. If you wanted to redirect both standard error and standard output to more, you might do this:
$ command
 2>&1 | more

To redirect stdout to an output file and send stderr down a pipe, try this:
$ (cruncher 3>&1 >
 outputfile
 2>&3 3>&-) | mail
 yourname
 &
12345

— JP

Problems Piping to a Pager

If your window onto Unix (terminal, X window, communications program, whatever) doesn't have a
way to show you the previous screenful, using a pager program like more , pg, or less (Section 12.3)
can be mighty handy. But piping to a pager doesn't always work the way you want it to.

Here's a grep command line that searches several files. What's wrong with it?
% grep "^set" */.cshrc | more

That wasn't a fair question because you can't tell what's wrong. The problem (it turns out) is that the
files named barney/.cshrc, edie/.cshrc, and gail/.cshrc are read-protected (Section 50.2). But as the
first part of Figure 43-1 shows, the error messages scroll off your screen and the pager doesn't stop
them.

Figure 43-1. Standard error bypassing pipe, going through pipe

Unless your display is reallllly sloooowww, the error messages are lost, and you never know they
were there, or the errors are jumbled up with the "good" grep output. That's because you've told the
shell to send only the standard output of grep to the pager program. And grep writes its errors to the
standard error (Section 36.15)! But both stdout and stderr go to the screen at once. The errors on
stderr scroll away with the output from the pager. The pager can't count the lines of errors, so it
outputs a complete screenful of stdout (the "good stuff"). If grep's standard output (from the files it
could read) is at least a screenful, as it is here, there are too many lines to fit on the screen — and
some lines will scroll off.

The better way to do this is to combine grep's stdout and stderr and give them both to the pager.
These command lines (in csh and sh) both do that:
% grep "^set" */.cshrc |& more
$ grep "^set" */.cshrc 2>&1 | more

(The Z shell understands both.) The second part of Figure 43-1 shows how this works. Any time I
pipe a command's output to a pager, I usually combine the stdout and stderr this way.

— JP

Redirection in C Shell: Capture Errors, Too?

The > (right angle bracket) operator redirects the standard output of a process to a file. It doesn't
affect the standard error. If you're logged in and can see any messages written to standard error, that's
okay:
% nroff -ms report.ms > report.out &
[1] 10316
 ...Later...
nroff: can't open file /hoem/jpeek/report.data

But if you log out and leave the job running, you'll never see those errors unless you use the csh
operator >& . It redirects both standard output and standard error to a file. For example:

make Section 11.10
% make >& make.output &
[1] 10329
% logout
 ...Later...
% cat make.output
 cc -O -c random.c
 cc -O -c output.c
"output.c", line 46: syntax error
"output.c", line 50: time_e undefined
"output.c", line 50: syntax error
 ...

You might also use the >& operator while you're logged in and watch the output file with tail -f (
Section 12.10). If you don't want the errors mixed with other output, you can split them to two files;
see Section 43.1.

The C shell also has a pipe operator, |&, that redirects both standard output and standard error. It's
great for running a job in the background or on another computer and mailing (Section 1.21) any
output to me:
% make |& mailx -s "'make bigprog' output" jpeek@jpeek.com &
[1] 29182 29183

If I'd used plain | instead of |&, any text on the standard error wouldn't go into the mail message.

— JP

Safe I/O Redirection with noclobber

Have you ever destroyed a file accidentally? If you set the noclobber C shell variable or the
noclobber option in bash, zsh, and ksh, it can help you avoid these mistakes. Setting noclobber
prevents you from destroying a file when you are redirecting standard output (Section 43.1).

Consider the following situation:
% anycommand
 > outputfile

The command above overwrites the old outputfile. If you have misspelled the name of your output
file, or if you have forgotten that the file already exists and contains important data, or (most common)
if you really meant to type >> instead of > (i.e., if you really meant to append to the end of outputfile,
rather than start a new one), tough luck; your old data is gone.

Setting noclobber prevents this problem. If noclobber is set, the shell will not allow I/O redirection
to destroy an existing file, unless you explicitly tell it to by adding an exclamation point (!) after the
C shell redirect symbol or by adding a vertical bar (|) in ksh and bash. (The Z shell understands
both.) Here are examples. The left column shows csh and tcsh; the right column is for bash (ksh is
similar):
% set noclobber $ set -o noclobber
% ls $ ls
filea fileb filea fileb
% anyprogram > fileb $ anyprogram > fileb
fileb: File exists. bash: fileb: Cannot clobber existing file
% anyprogram >! fileb $ anyprogram >| fileb
% $

Be sure to put space after the !. If you don't, the C shell thinks you're making a history reference and it
(usually) prints an error like fileb: Event not found.

Remember that noclobber is not an environment variable, so any new shells you create won't inherit
it (Section 35.9). Therefore, if you want this feature, put the set command (above) in your shell's
setup file (Section 3.3).

Note
In some shells, noclobber will prevent y ou from redirecting standard output to /dev/null (Section 43.12) or to a terminal unless y ou add the !.

The noclobber variable has one other feature that's worth noting. Normally, shells let you append to a
file that doesn't exist. If noclobber is set under csh, tcsh, and zsh, it won't; you can append only to
files that already exist unless you use an exclamation point:
% ls
filea fileb
% anyprogram
 >> filec
filec: No such file or directory
% anyprogram
 >>! filec
%

—ML and JP

The () Subshell Operators

A useful shell trick is to use parentheses, (), to group commands.

Combining Several Commands

The parentheses start a subshell (Section 24.4) that, in effect, "collects" the output of all the
commands inside. (It does the same thing for the standard input and standard error.) The output of the
entire group can be passed together into a single pipeline. For example:

echo Section 27.5
$ (cat file1; echo .bp; cat file2) | nroff

This will interpose the nroff .bp (break page) request between two files to be formatted.[4]

Parentheses are also useful in the Bourne shell if you want to put an entire sequence of commands
separated by semicolons (;) (Section 28.16) into the background. In the C shell, the command line
below will go immediately into the background.
% nroff -ms file1; nroff -ms file2 &

But in the Bourne shell, the background request (&) will apply only to the second command, forcing
you to wait for completion of the first job before you get back the system prompt. To get right back to
work, you can type:
$ (nroff -ms file1; nroff -ms file2) &

Temporary Change of Directory and Environment

Commands that run between the parentheses won't affect the parent shell's environment. For instance,
to run a command in another directory without changing your active shell's current directory
(Section 24.3):
% pwd
/home/trent
% (cd
 somewhere-else
 ; nroff -ms file1 > file.out) &
[1] 22670
% pwd
/home/trent

The file file.out will be created in the somewhere-else directory.

—TOR and JP

[4] If you're using only cat and a single echo, you can use this command instead:

Send Output Two or More Places

 Go to http://examples.oreilly.com/upt3 for more information on: tee

If you're running a program and you want to send its output to a file — but you want to see the output
on your screen, too, so you can stop the program if something goes wrong — you can use tee. The tee
program reads its standard input and writes it to one or more files. (The web site has the GNU
version.)

Note
A pipe may buffer the output of a program, collecting it in chunks and spitting it out every so often. If the program's output comes slowly and feeds tee through a pipe, there might be long delay s before y ou see any output. In that case, it's better
to use > to redirect output to a file, put the program into the background, and watch the output with tail -f (Section 12.10). Or use a program like script (Section 37.7).

Use tee for saving results in the middle of a long pipeline of commands. That's especially good for
debugging. For example, you could type:
% prog
 | tee prog.out | sed -f sedscr | tee sed.out | ...

to save the output of prog in the file prog.out and also pipe it to the sed command, save sed's output
in sed.out and also pipe it, and so on.

Here are two other notes about tee. If you want to add to a file that already exists, use the -a option.
tee can write to more than one file if you give all of the filenames as arguments

Z shell users usually don't need tee because they have the zsh MULTIOS option. For instance, here's
how to write the pipeline above:
zsh% setopt multios
zsh% prog

 > prog.out | sed -f sedscr > sed.out | ...

— JP

http://examples.oreilly.com/upt3

How to tee Several Commands into One Place

The tee (Section 43.8) command writes its standard input to a file and writes the same text to its
standard output. You might want to collect several commands' output and tee them all to the same file,
one after another. The obvious way to do that is with the -a option:
$ some-command
 | tee teefile
$ another-command
 | tee -a teefile
$ a-third--command
 | tee -a teefile

A more efficient way is:

> Section 28.12
$ (
 some-command
> another-command
> a-third-command
) | tee teefile

The subshell operators (Section 43.7) collect the standard output of the three commands. The output
all goes to one tee command. This has two differences from the first method. First, you need two
fewer pipes, two fewer tees, and one more subshell. Second, you can pipe the output of the single tee
command to another process — for example, to print it.

Unfortunately, the C shell doesn't make this quite as easy. If you can type all the commands on one
line, you can do it this way (the same thing works in the Bourne shell):
% (
 command1; command2; command3
) | tee teefile

Otherwise, use a semicolon and backslash (;\) at the end of each line:
% (
 ;\

 ;\

) | tee teefile

In all these examples, remember that if you don't need to see the output of the commands, you don't
need tee. Use the subshell as above, but replace | tee teefile with > outfile or |
somecommand.

— JP

Redirecting Output to More Than One Place

What if you want to use the output of a program more than once, and you don't want to deal with an
intermediary file? For example, suppose I have some large, compressed PostScript files. I want to
print the files, but I also want to know how many pages they are. I know that the number of pages
appears on a line following %%Pages: at the end of the file. Using bzcat (Section 15.6) to uncompress
the file to standard output, I can type the following commands into a for loop (Section 28.9) (or put
them into a shell script). This loop sends each file to the printer and uses sed to capture the correct
line:

-n Section 34.3
for f
do
 bzcat $f | lpr
 bzcat $f | sed -n "s/^%%Pages: \([0-9][0-9]*\)/$f: \1 pages/p"
done

But this ends up running bzcat twice, which takes some time. I can expand the file with bunzip2 first,
but frankly I'm not sure I have the disk space for that.

Using process substitution and tee (Section 43.8), I can do it in one line, without wasting processes
and without eating disk space:
for f
do
 bzcat $f | tee >(lpr) | sed -n "s/^%%Pages: \([0-9][0-9]*\)/$f: \1 pages/p"
done

From running this script, as each file is sent to the printer I receive the following messages on my
screen:
ch01.ps.gz: 44 pages
ch02.ps.gz: 51 pages
ch03.ps.gz: 23 pages
 ...

Because tee can write to more than one file, it can write to more than one process with process
substitution. For instance, maybe you want to send the file to both a black-and-white printer and a
color printer at the same time:
bzcat $f | tee >(lpr -Pbw) >(lpr -Pcolor) | \
 sed -n "s/^%%Pages: \([0-9][0-9]*\)/$f: \1 pages/p"

 Go to http://examples.oreilly.com/upt3 for more information on: tpipe

If your shell doesn't have process substitution, maybe you have a shell like bash or zsh that does.
(Write a shell script. Or type the shell's name at your shell prompt, then type exit when you're done
with the temporary shell.) Otherwise, you can use tpipe; it's available online [see
http://examples.oreilly.com/upt3]. tpipe is similar to tee (Section 43.8), but instead of putting a copy
of standard input in a file, it passes the input to a new pipe. Give tpipe the name of the command
(here, lpr) that will read the text from its standard input:
bzcat $f | tpipe lpr | sed -n "s/^%%Pages: \([0-9][0-9]*\)/$f: \1 pages/p"

You can also simulate tpipe by using awk (Section 20.10). Write a little awk script that reads each
input line and writes the text both to a command and to awk's standard output:
bzcat $f | awk "{ print | \"lpr\" ; print }" | \
 sed -n "s/^%%Pages: \([0-9][0-9]*\)/$f: \1 pages/p"

http://examples.oreilly.com/upt3
http://examples.oreilly.com/upt3

This is much slower and only works on text files, but it does the job.

—LM and JP

Named Pipes: FIFOs

When you type a pipe symbol (|) on a command line, the two processes that communicate through the
pipe must both have been started from that same shell. Newer versions of Unix have a way to let two
unrelated processes (processes not started from the same parent process) communicate: a named pipe
or FIFO (First In First Out).

A FIFO works like a pipe, but its interface looks like a file. It has a filename and permissions
(Section 1.17), and it's in a directory. Once you make the FIFO, one process can write to it (with the
shell's > operator, or directly) and another process can read from it (the shell's < operator, or
directly). Unlike a regular file, though, a FIFO doesn't "fill up" with data as a process writes to it: if
there's no process waiting to read the data, the data is lost. So, when you use a FIFO between two
processes, the processes still need to coordinate with each other. There are times that temporary files
are better.

 Go to http://examples.oreilly.com/upt3 for more information on: mkfifo

The command to make a FIFO is mkfifo . Like other files, the default permission is set by your umask.
There's also a -m option that sets the permissions — with a numeric or symbolic mode like chmod
(Section 50.5) uses. To remove a FIFO, use — you guessed it — rm.

Let's look at an example that, although it's made up, shows some important things to know about
FIFOs. If you're using a window system, you'll use two terminal windows (like xterm (Section
24.20)); you'll write to the FIFO from one window and read it from the other. Or if you have two
terminals, you can use both of them. Otherwise, with a single terminal, you can put the writing
process in the background (Section 23.2) and run the reading process in the foreground.[5]

Start by making the FIFO. You can make it from any window. (The FIFO stays in the filesystem until
you remove it. You can use it over and over again, though only one pair of processes can use it at any
one time.) Then have a look with ls; the FIFO has zero size, it has a p type in the -l output and a |
symbol from -F:

-F Section 8.10
$ mkfifo /tmp/fifo
$ ls -l /tmp/fifo
prw-rw-r-- 1 jpeek jpeek 0 Dec 30 00:25 /tmp/fifo
$ ls -F /tmp/fifo
/tmp/fifo|

Next, start the process that reads from the FIFO. Like a program that's reading from a regular
(anonymous) pipe, the process will block (sit there doing nothing) until there's something to read. For
now, plain cat (Section 12.2) is a good choice:
$ cat /tmp/fifo
 ...nothing (yet)...

To write to the FIFO, here's a little shell script (Section 35.1) that sends the current date and time to
its standard output every three seconds. You could name it dater:

while Section 35.15, sleep Section 24.9
#!/bin/sh

while sleep 3

http://examples.oreilly.com/upt3

do date
done

In the other window or terminal, start dater and redirect its output to the FIFO. The process will run,
writing data to the FIFO periodically:
$ dater > /tmp/fifo

In your window running cat, the dates should start to appear. When you kill the writing process (or it
finishes by itself), the reader should terminate.

Also try reading from the FIFO with any other Unix program, like the pr (Section 45.6) formatter with
its -l15 option (to make output pages 15 lines long, so you don't have to wait too long to see the next
page header). This makes a nice illustration of the way that standard pipes, as well as named pipes,
work: dribbling output to the reading process as the writing process makes it. (Standard pipes may be
buffered, though, passing output in larger chunks.)

If you have a third terminal or window, and you start another reading process (like cat /tmp/fifo)
there, it will block until you kill the first reading process (the previous cat /tmp/fifo).

This can be good food for thought. For instance, what output do you see when tail (Section 12.8)
reads from a pipe or FIFO? (Answer: nothing until the writing process dies.)

To review, though, a FIFO is useful anytime two processes need to communicate but those processes
weren't started from the same parent process, so a traditional pipe can't work (because the second
process can't access the open file descriptor from the first process).

— JP

[5] This may take some juggling because your system may require you to start the reading process
before the writing process. If it does, and if your system has job control (Section 23.3), do this: start
the reading process, stop it with CTRL-z, start the writing process in the background, then bring the
reading process to the foreground.

What Can You Do with an Empty File?

It isn't a file, actually, though you can use it like one. /dev/null is a Unix device.[6] It's not a physical
device. /dev/null is a special device that "eats" any text written to it and returns "end-of-file" (a file
of length 0) when you read from it. So what the heck can you use it for?

Empty another file. Just copy /dev/null "on top of" the other file (Section 15.2).
Make another program "quiet" by redirecting its output there. For instance, if you're putting a
program into the background and you don't want it to bother you, type:

% progname
 > /dev/null &

That redirects (Section 43.1) standard output but leaves standard error hooked to your terminal,
in case there is an error.
Answer a program that asks a lot of questions — you know you'll just press RETURN at each
prompt. In a lot of cases, you can redirect the program's standard input from /dev/null:
% progname
 < /dev/null
Want the default setup? If yes, press RETURN:
Enter filename or press RETURN for default:
 ...

You should test that with each program, though, before you assume this trick will work. (If it
doesn't work, try yes (Section 14.5).)
Where a program needs an extra filename but you don't want it to read or write an actual file.
For instance, the grep (Section 13.1) programs won't give the name of the file where they find a
match unless there are at least two filenames on the command line. When you use a wildcard in a
directory where maybe only one file will match, use /dev/null to be sure that grep will always
see more than one (Section 9.21):

% grep "
 outputfile
 " * /dev/null

You're guaranteed that grep won't match its regular expression in /dev/null.
Section 15.3 shows even more uses for /dev/null.

Another interesting device (mostly for programmers) is /dev/zero. When you read it, you'll get ASCII
zeros (NUL characters) forever. There are no newlines either. For both of those reasons, many Unix
commands have trouble reading it. If you want to play, the command below will give you a start (and
head (Section 12.12) will give you a stop!):[7]

od Section 12.4
% fold -20 /dev/zero | od -c | head

— JP

[6] Well, okay. It's a device file.

[7] On some Unix versions, the head program may not terminate after it has printed the first 10 lines. In
that case, use sed 10q instead of head.

Chapter 44. Devices

Quick Introduction to Hardware

Your Unix machine can likely talk to a wide collection of hardware: disk controllers and disks
(Section 44.4, Section 44.5), CD-ROMs (Section 44.6), ethernet cards (Section 44.8), modems
(Section 44.10), sound cards (Section 44.13), and so on. Each device needs its own little piece of
software within the kernel, called a device driver. Some device drivers are simple, and some are
very complex; some cover multiple devices, and some are specific to one particular piece of
hardware.

Many modern Unix platforms use loadable kernel modules for most device drivers, so that drivers
can be loaded at run time rather than compiled into the kernel.

Many devices also have user-space tools to configure them, like ifconfig (Section 44.8) for network
devices (Section 44.6, Section 44.7), mount (Section 44.9) for disks and so forth.

In this chapter we'll give you the whirlwind overview of devices on Unix. Since there are so many
devices and so many platforms, we'll gloss over a lot of details, but hopefully this will give you
enough to get started with and a few hints as to where to find more information.

— DJPH

Reading Kernel Boot Output

As your Unix machine boots up, it will display a message for each device driver as it initializes. This
is a good way to tell what devices your kernel was able to find. The exact output varies, but here is
the output for hard drive controllers, hard drives, and network cards from a FreeBSD machine and a
Debian Linux machine:
FreeBSD
atapci0: <Intel ICH ATA66 controller> port 0xffa0-0xffaf at device 31.1 on pci0
ata0: at 0x1f0 irq 14 on atapci0
ata1: at 0x170 irq 15 on atapci0
ad0: 19569MB <ST320430A> [39761/16/63] at ata0- master UDMA66
afd0: 239MB <IOMEGA ZIP 250 ATAPI> [239/64/32] at ata0-slave using PIO3
acd0: CDROM <ATAPI CDROM> at ata1-master using PIO4
rl0: <D-Link DFE-530TX+ 10/100BaseTX> port 0xbc 00-0xbcff
 mem 0xefdfff00-0xefdfffff irq 11 at device 4.0 on pci1

Linux
PIIX4: IDE controller on PCI bus 00 dev 39
PIIX4: not 100% native mode: will probe irqs later
 ide0: BM-DMA at 0xf000-0xf007, BIOS settings: hda:DMA, hdb:pio
 ide1: BM-DMA at 0xf008-0xf00f, BIOS settings: hdc:pio, hdd:pio
hda: WDC WD307AA-32BAA0, ATA DISK drive
ide0 at 0x1f0-0x1f7,0x3f6 on irq 14
hda: WDC WD307AA-32BAA0, 29333MB w/2048kB Cache, CHS=3739/255/63, UDMA
Partition check:
 hda: hda1 hda2 hda3
rtl8139.c:v1.07 5/6/99 Donald Becker
 http://cesdis.gsfc.nasa.gov/linux/drivers/rtl8139.html
eth0: RealTek RTL8139 Fast Ethernet at 0xd400, IRQ 11, 00:50:ba:d3:9e:14.

More specifically, in the line:
atapci0: <Intel ICH ATA66 controller> port 0xffa0-0xffaf at device 31.1 on pci0

atapci is the name of the device; 0 is the number of the device (devices are generally numbered
sequentially with the first one probed getting the number 0); <Intel ICH ATA66 controller> is the
name of the specific driver that successfully attached to this device; port 0xffa0-0xffaf at
device 31.1 is physical address information about where this particular device is located; and
finally, on pci0 tells us this device is attached to the first PCI bus (since pci is the device name of a
PCI bus and 0 is the number assigned to the first PCI bus probed).

Note that in both FreeBSD and Linux, each line gives information about which driver is being used,
hardware addresses, and options. Other platforms give similar information during boot. Often if you
have a device that's not being recognized, you will see a line in the boot output telling you that a
device was found but no driver for it could be found. If you would like more information, you may be
able to boot your machine with boot -v from the bootstrap prompt — the BSDs and Solaris support -
v. This enables verbose booting, which prints out a lot more information during device probing and
may help you understand why a device driver couldn't be found. Linux doesn't have any
straightforward way to get verbose information like this, but you can use lspci to show every device
on the PCI bus, whether there's an active driver for that device or not.

— DJPH

Basic Kernel Configuration

Generally a Unix kernel is made up of some core, which handles fundamental functionality like virtual
memory, and a lot of modules for various devices. A kernel configuration file is used to build a
kernel and, on some platforms, a set of loadable kernel modules.

A kernel configuration file has a list of kernel options and then a list of devices and device options.
The kernel build process uses this file to determine exactly what to build; this way you can have a
kernel that supports exactly the hardware you have in your machine but isn't using any extra resources
to support hardware you don't have.

Some example device lines from various kernel configuration files:
#
FreeBSD samples
#
maxusers 128
options INCLUDE_CONFIG_FILE
options INET #InterNETworking
device isa
device pci
device ata0 at isa? port IO_WD1 irq 14
device ata
device atadisk # ATA disk drives
device atapicd # ATAPI CDROM drives
device atapifd # ATAPI floppy drives
device atapist # ATAPI tape drives
options ATA_STATIC_ID #Static device numbering

#
Linux samples
#
Loadable module support
CONFIG_MODULES=y
CONFIG_MODVERSIONS=y
CONFIG_KMOD is not set

General setup
CONFIG_NET=y
CONFIG_PCI=y

Block devices
CONFIG_BLK_DEV_FD=m
CONFIG_BLK_DEV_IDE=y
CONFIG_BLK_DEV_HD_IDE is not set
CONFIG_BLK_DEV_IDEDISK=y
CONFIG_BLK_DEV_IDECD=m
CONFIG_BLK_DEV_IDETAPE=m
CONFIG_BLK_DEV_IDEFLOPPY=m
CONFIG_BLK_DEV_IDESCSI is not set
CONFIG_BLK_DEV_IDEPCI=y
CONFIG_BLK_DEV_IDEDMA=y
CONFIG_IDEDMA_AUTO=y

The kernel build process involves setting up an appropriate configuration file for your platform and
then using a tool (generally config(8); check the manpage) to create a kernel build setup from the
configuration file. Then you simply run make within the kernel build setup and you have a new kernel.
Once the new kernel is installed, you reboot the machine, and poof, you're running on a sleek new
customized kernel.

To understand how to configure the kernel on your platform, consult the documentation for that
platform. Note that many platforms have tools or even GUIs for helping you configure your kernel.

For the free Unixes, search the Web. There are extensive HOWTOs available describing how to
configure your kernel in excruciating detail.

Linux has a very detailed HOWTO for kernel configuration at http://www.tldp.org/HOWTO/Kernel-
HOWTO.html. The short version is that the configuration file mentioned above is stored in the .config
file at the top of the kernel source tree (usually /usr/src/linux). Generally you don't have to edit it
directly; instead you'd use make menuconfig or make xconfig, again at the top of the kernel source
tree, to use the fancy kernel configuration tools.

— DJPH

http://www.tldp.org/HOWTO/Kernel-HOWTO.html

Disk Partitioning

A physical disk can be divided into smaller blocks, called partitions. Unix disk devices operate on
partitions, where each device is a single partition. The simplest configuration is one big partition for
the entire disk.

The advantage to having filesystems on separate partitions is that different parts of your operating
system are somewhat protected from each other. If your users have filled up /home, programs writing
log files in /var aren't affected if /home and /var are separate partitions. If your disk gets corrupted,
only the corrupted partition is damaged. The disadvantage is that, in most cases, if you mistakenly
allocated too little disk space for a partition, you can't steal space from your /var to give you more
room on /home once your system is set up.

On non-PC hardware, partitioning is generally simple enough; use format or disklabel to write a
partition table onto the disk. Traditionally, partitions are named with a letter following the device
name, for example, /dev/ad0a, /dev/ad0c and so forth. By convention, partition a is for a root
filesystem (/), b is for swap space, c represents the whole disk, and so forth. Of course, every current
platform changes this in some way. Check the manpages for the various tools mentioned for more
details on what to do for your specific platform.

Solaris's disk device naming scheme is /dev/dsk/c?t?d?s?, where each ? is a number. The c is for
controller, the t for target (a physical address on the controller), the d for disk, and the s for slice,
another concept like partition. In this case, rather than partition c representing the whole disk, slice 2
does. This set of four numbers uniquely identifies a specific partition (slice) on a specific disk.
Solaris uses format to manipulate partition tables.

On PC hardware, it's a bit more complicated, because the PC BIOS has a concept of partitions built
into its understanding of disks. Unixes like Linux and FreeBSD that run on this hardware need to
coexist with this partition table, especially if you want a machine that can dual-boot Unix and
Windows. The BIOS understands no more than four primary partitions on each disk, due to the way
it addresses partitions. To get around this limitation, one primary partition can be set to be an
extended partition , which can then serve as a container for a different partition addressing scheme.
Partitions within an extended partition are called logical partitions and have a few restrictions, but
they aren't limited to four. The BIOS requires a primary partition to boot; it can't boot from a logical
partition.

Linux names the IDE hard drives /dev/hda through /dev/hdd and the SCSI drives /dev/sda through
/dev/sdg. Higher letters are possible with extra controllers. The device name itself represents the
whole disk, as partition c and slice 2 did above. Linux uses the BIOS nomenclature and uses primary
partitions, extended partitions and logical partitions. Primary partitions get partition numbers one
through four, and thus partition two on the second IDE disk would be /dev/hdb2. Logical partitions
get numbers higher than four. Linux uses fdisk to manipulate partition tables.

FreeBSD calls the BIOS primary partitions slices and doesn't use extended or logical partitions. Its
own partitions within a slice are then just called partitions. This has the advantage of allowing a
fairly traditional a through h partitioning, which just lives in a particular slice. So the swap partition
within the second BIOS slice of the first IDE drive would be /dev/ad0s2b. FreeBSD uses fdisk to
deal with slices and disklabel to manipulate partition tables.

As you can see, each platform has its own idiosyncrasies, but each unambiguously defines a scheme
for uniquely referring to a particular partition on a particular disk. This lets us decide where we want
our filesystems and refer to them in mount commands and in /etc/fstab (Section 44.5).

— DJPH

Filesystem Types and /etc/fstab

A filesystem is the scheme used to organize files on the disk. In the Windows world, FAT, FAT32,
and NTFS are all filesystems. Various Unixes have their own filesystems with a forest of names: ufs,
ext2fs, vxfs, ffs, nfs, mfs, ISO9660 (which most CD-ROMs use) and special filesystems like tmpfs,
procfs, and devfs.

Filesystems like ufs (Unix File System), ffs (Fast File System), vxfs (Veritas Extended File System),
and ext2fs (Extended File System, Version 2) are simply ways of organizing inodes and bytes with
various strengths and weaknesses. nfs (Network File System) is a filesystem for making remote files
appear to be available locally. mfs (Memory File System) is a filesystem for ramdisks, that is, file
storage in memory instead of on disk. tmpfs (Temporary File System) is a file system often used for
/tmp which shares filespace and swap space dynamically. procfs (Process File System) simulates a
filesystem, but with process information in it instead of files. (procfs on Linux is different from
procfs on the BSDs; FreeBSD has a linprocfs to simulate part of Linux's procfs.) devfs is similar, but
for devices instead of processes.

Standard mounts are configured using /etc/fstab (or, on some platforms, /etc/vfstab). fstab is just a
list of filesystems that should be mounted, along with where they should get mounted, what type of
filesystem each device contains, and any options. My FreeBSD fstab looks like this:
Device Mountpoint FStype Options Dump Pass#
/dev/ad0s1b none swap sw 0 0
/dev/ad2s1b none swap sw 0 0
/dev/ad0s1a / ufs rw 1 1
/dev/ad2s1e /home ufs rw 2 2
/dev/ad0s1f /usr ufs rw 2 2
/dev/ad0s1e /var ufs rw 2 2
/dev/acd0c /cdrom cd9660 ro,noauto 0 0
proc /proc procfs rw 0 0

I have two swap partitions, /dev/ad0s1b and /dev/ad2s1b. My /, /home, /usr, and /var are all
separate ufs filesystems, and I have a CD-ROM that can be mounted on /cdrom (but must be manually
mounted (Section 44.6)) and a standard procfs. The last two columns determine priority for backups
and for being consistency checked by fsck. The ufs filesystems are all fscked, with / first; the rest of
my filesystems are types that don't need to be fscked.

On other platforms, the options may be different, and the device names will certainly be different, but
the basic gist of fstab will be the same.

Some filesystem types support "soft updates," which changes slightly the way the filesystem writes
files out to the disk and can dramatically increase your effective disk speed. Consider looking at the
documentation for your platform and turning on soft updates (generally this is done via tunefs).

— DJPH

Mounting and Unmounting Removable Filesystems

Removable disks are prevalent in Unix machines; CD-ROMs, DVD-ROMs, Zip disks, and floppies
are all removable disks. When a Unix system boots, normal filesystems are all mounted
automatically. By definition, removable filesystems may not even be in the machine at boot time, and
you certainly don't want to have to reboot your machine just to change CDs.

To do this, you use mount and umount . The -t option allows you to specify the type of filesystem.
On my FreeBSD machine, I can mount a FAT-formatted Zip disk with:
mount -t msdos /dev/afd0s4 /zip

If I've formatted the Zip disk with a BSD ufs filesystem instead, I don't need the -t option, since ufs
is the default on FreeBSD, and I would use the BSD partitioning scheme (/dev/afd0c) instead of the
BIOS partitions (/dev/afd0s4).

If you use your removable disk regularly, you can add it to your fstab and make this simpler:
/dev/acd0c /cdrom cd9660 ro,noauto 0 0
/dev/afd0c /zip ufs rw,noauto 0 0
/dev/afd0s4 /mszip msdos rw,noauto 0 0

Note that I've set up my fstab for both ufs-formatted and FAT-formatted Zip disks, and that the Zip
drive and the CD-ROM are both set noauto to keep them from being automatically mounted. Having
these in my fstab means I can just type mount /zip or mount /cdrom to mount a Zip disk or CD-ROM.
Don't forget to create the directories /cdrom, /zip, and /mszip!

Generally the mount and umount commands must be run as root. However, you'd often like normal
users to be able to mount and unmount removable disks. Linux has an easy way to do this: just add
user to the options field in /etc/fstab and normal users will be able to mount and unmount that
device. (Incidentally, Linux also has an auto filesystem type, which is very handy for removable
devices, because it does its best to dynamically figure out what filesystem is on the removable
media.) On other platforms, it can be a little more complex. Generally, the trick is to set the
permissions on the device file properly. On FreeBSD you also need to use sysctl to set
vfs.usermount, which will allow users to mount properly chmoded devices on directories they
own; similar tricks may be needed on other platforms. To set the floppy drive to allow anyone to
mount it and the CD-ROM to allow anyone in the cdrom group to mount it, you'd do something like
this:
chmod 666 /dev/fd0

chgrp cdrom /dev/acd0c
chmod 640 /dev/acd0c

Then, as a normal user in group cdrom, you could:
% mkdir ~/cdrom
% mount -t cd9660 /dev/acd0c ~/cdrom

Solaris has a daemon, vold, which handles all of the messy details of removable media for you. At the
time of this writing, very current versions of Linux have automount daemons and devfsd to handle
such things; check your platform's current documentation.

— DJPH

Loopback Mounts

Some platforms provide the capability to mount a file as if it were a block device (like a disk
partition (Section 44.4)). This allows mounting a file as if it were a hard disk, CD-ROM, or any
other physical media. The primary advantage to this is that it's a simple way to create or work with a
floppy, Zip, or CD-ROM image without needing the physical device. You can mount a CD image
without having to burn an actual CD or manipulate a floppy boot image. Of course, different platforms
call it different things and use different tools.

Mounting file images on Linux uses the loop device and is called a loop mount or a loopback mount.
To mount an existing image as a filesystem, use the loop option to mount:
% mount -t iso9660 -o loop image.iso /mnt
% ls /mnt

To create a new image, you first create an empty file of the correct size (this is effectively creating a
partition (Section 44.4) — in this case, a 100 megabyte image. You then attach the image to one of
the available loop device and use mkfs to create a new filesystem in the image. Then you can mount
the image normally. In this example, we'll release the loop device we had to allocate specifically and
let the mount find an available loop device automatically.
% dd if=/dev/zero of=
 image.file
 bs=1k count=100000
% losetup /dev/loop
 image.file
% mkfs -c /dev/loop
 100000
% losetup -d /dev/loop
% mount -o loop
 image.file /mnt

FreeBSD has a similar capability, called vnode disks, with very similar syntax, but you use /dev/vn
instead of /dev/loop and vnconfig instead of losetup. See FreeBSD's vnconfig(8) manpage.

Solaris also has loop devices as of Solaris 8. The device is /dev/lofi instead of /dev/loop, and you
use lofiadm to configure it. See Solaris's lofiadm(1M) and lofi(7D) manpages.

FreeBSD and Solaris don't provide an equivalent to the loop option to mount; instead you just use
vnconfig or lofiadm to explicitly associate a particular block device with the file and mount the
specific block device just like any other device.

— DJPH

Network Devices — ifconfig

ifconfig is used to configure network devices such as Ethernet cards. While booting, the kernel will
find a device driver for the actual device, but it will still need to be assigned an IP address, and any
protocol options need to be configured. Various platforms have different ways to store this
configuration information, but most use ifconfig somewhere in the startup scripts to do the actual
work.

The primary use of ifconfig is to set up a network device to use a particular IP address. ifconfig can
also be used to set network options and aliases. To bring up an interface (in this case, rl0) on
192.168.1.1 with normal settings for a /24 network:
ifconfig rl0 inet 192.168.1.1 netmask 255.255.255.0 broadcast 192.168.1.255 up

To temporarily bring a network interface down and then back up later, something that can be useful
for maintenance:
ifconfig rl0 down
...maintenance operations...
ifconfig rl0 up

— DJPH

Mounting Network Filesystems — NFS, SMBFS

Network filesystems provide the illusion that files on a remote host are on your disk. Except for
mounting and unmounting such a filesystem and but for a few low-level details, they can be treated
like any local filesystem, albeit on a very slow disk. The two most common network filesystems
available on Unix platforms are the Network File System (NFS) and Server Message Block File
System (SMBFS).

NFS has been around for a long time and is available on every Unix system I've seen in the past ten
years. Its interface is simple: an NFS server has a set of exported filesystems (usually listed in
/etc/exports), and any permitted client can mount those filesystems using a straightforward mount
invocation. Simply specify host:/filesystem as the device, and tell mount that the filesystem is of
type nfs:
mount -t nfs orange:/home /orange

For more details on NFS on your platform, take a look at the manpages for exports(5) and
mount_nfs(8) or nfs(5).

NFS mounts can hang up entirely if the NFS server goes down or if you lose your net connection to it.
Often this can require rebooting your machine to fix. To avoid this, use the soft option when
mounting NFS filesystems. soft tells the NFS client system to use timeouts, so that losing touch with
the NFS server just causes I/O requests to time out instead of hanging your machine.

Note
NFS by itself is extremely insecure. Be aware that running NFS without any other precautions on a publicly accessible network opens y ou up to a wide variety of attacks. http://nfs.sourceforge.net/nfs-howto/security .html addresses some of the
issues involved and has links to other good information on the subject.

SMB is the primary file and printer sharing protocol used by Windows. Chapter 47 details Samba,
the primary tool used to deal with SMB on Unix systems. smbfs is the tool used to mount SMB-shared
filesystems (including Windows shared drives and the like) as if they were Unix filesystems. Much
like NFS, smbfs allows you to use mount; in this case, you provide the share name as the device:
mount -t smbfs //yellow/Public /yellow

smbfs is only supported on some platforms; check your installation of Samba for details.

Note that both filesystem types can be included in /etc/fstab , just like any other filesystem:
Device Mountpoint FStype Options Dump Pass#
/dev/ad0s1b none swap sw 0 0
/dev/ad0s1a / ufs rw 1 1
/dev/acd0c /cdrom cd9660 ro,noauto 0 0
orange:/home /orange nfs rw 0 0
//yellow/Public /yellow smbfs rw 0 0

— DJPH

http://nfs.sourceforge.net/nfs-howto/security.html

Win Is a Modem Not a Modem?

The word "modem" is a contraction of "modulator-demodulator." The fundamental job of a modem is
to turn a digital signal into an analog signal and send that analog signal across a phone line
(modulation) and to receive an analog signal from a phone line and turn it back into the original
digital signal (demodulation).

Controller-based modems do all of the digital signal processing, D/A and A/D conversion, and
phone-line interfacing in hardware. Generally, these modems either are external modems that plug
into a serial port or have a serial port chip included and thus just look like an extra serial port to the
CPU. Configuring these modems under Unix is easy; just set up whatever program uses the serial port
to use the port speed and serial options you want.

Host-based modems, often called "Winmodems," provide some level of hardware support (at a
minimum, the physical phone line interface) and then emulate some or all of the hardware modulation
and demodulation in software. There are a variety of specifications related to "soft" modems, and
current information on things like available drivers, issues, standards, and whether a modem is a hard
or soft modem are available at http://www.idir.net/~gromitkc/winmodem.html and
http://www.linmodems.org.

The problem that soft modems present to Unix is that the software that makes up the fundamental
functionality of the modem is almost always Windows software. These modems are widely available
and cheap and do have some advantages, though, so there are efforts to provide Unix software for
some set of them. Unix soft-modem software is highly in flux at the time of this writing. Before you
buy a modem, be sure that you check the current information on that modem and available drivers for
the Unix platform you want to use before you buy. Or spend a bit more and buy a modem that doesn't
have these issues.

— DJPH

http://www.idir.net/~gromitkc/winmodem.html
http://www.linmodems.org

Setting Up a Dialup PPP Session

Point-to-Point Protocol (PPP) is the way ISPs usually provide dialup access (largely because this is
the default protocol Windows dialup uses). Unixes that can do dialup provide a PPP client, which
you configure to call the ISP and set up a PPP connection. An established connection functions as a
network connection — you can use ifconfig (Section 44.8, Section 46.3) to examine it and packets
will be routed to the PPP connection by default, and tools like traceroute (Section 46.4) can be used
across it.

Unixes provide two ways to run PPP: kernel PPP, where the PPP code resides in the kernel and is
therefore very fast but limited in features, and user PPP, where packets have to be copied back and
forth between kernel space and user space, but a wide feature set can be provided. We'll give a quick
overview of both.

Kernel PPP uses pppd and a fairly simple set of configuration commands. You provide pppd with the
information needed to dial your modem appropriately and with whatever login information your ISP
has provided you, and it connects. Generally you then have to set up /etc/resolv.conf to point to your
ISP's DNS (Section 46.9) server. Some implementations of pppd don't even know how to dial the
phone, and you'll have to use something like kermit to dial the phone first. pppd must also be run as
root. Look at your platform's documentation for pppd for details on setting up kernel PPP on that
platform.

Platforms that provide a user-space PPP client are a little easier to work with. User-space PPP
clients can be run by users other than root (usually limited to a specific group); they tend to configure
default routes, /etc/resolv.conf, and other details automatically; and they generally deal with PAP or
CHAP authentication (which many ISPs use) a little more easily. Usually the user-space PPP client is
just called ppp; look for its manpage to see what it requires to configure it.

— DJPH

USB Configuration

Many PCs support the Universal Serial Bus (USB). USB is a hot-swappable standard; devices can be
plugged in and unplugged while the machine is running, and the system is supposed to recognize the
new device or no longer recognize the now disconnected device.

Unixes deal with this requirement with low-level device drivers to actually interface with the devices
and with a daemon, usbd, to monitor for changes on the fly or, on Linux, the hotplug facility
(http://linux-hotplug.sourceforge.net).

Generally, there is very little configuration required for supported USB devices. If you have the
correct kernel modules (Section 44.3) loaded (and on many platforms they're loaded by default),
just plug in the device. Check your platform's supported hardware before buying a USB device, as
such devices are changing rapidly at the time of this writing and may or may not have Unix drivers
implemented yet.

Specific issues you might run into include that USB disks may need to use a special filesystem type
(usbdevfs) and that specific devices may require tools to actually use the device. Webcams and
scanners are a good example, as the device driver provides only low-level access to the device; you
still need a tool that can pull images off of the device and do something useful with them. Extensive
information is available on the Web about using many USB devices on the free Unixes
(http://www.linux-usb.org for Linux and the USB chapter in the FreeBSD handbook are places to
start), and it stays fairly up to date.

— DJPH

http://linux-hotplug.sourceforge.net
http://www.linux-usb.org

Dealing with Sound Cards and Other Annoying Hardware

There are a lot of devices available for PCs that were never designed for an operating system like
Unix to use. Often these devices' manufacturers simply provide Windows drivers and never expect
you to need anything else. Luckily, there is a large community of developers for the various free
Unixes, and they implement device drivers for many of these devices. Availability of a driver for a
particular piece of hardware, however, depends entirely on whether someone happened to write a
driver for it.

Sound cards are one bit of hardware that commonly has this problem. Most free Unixes have a set of
drivers that support a selection of sound cards and one or two other drivers that support a lowest
common denominator to get minimal functionality out of most sound cards. If you want real support
for your sound card, look at the supported devices list for the OS you want to install before you buy a
card, and pick one that someone's written a full driver for.

On Linux, take a look at the sndconfig utility, which can probably configure your sound card for you.
Take a peek at http://www.linuxheadquarters.com/howto/basic/sndconfig.shtml for details.

Other hardware that falls into the "check your supported hardware list before buying" includes frame
grabbers, multi-serial boards, AD/DA converters, X-10 controllers and any hardware that's brand
new (and thus may not have had time for someone to create a Unix driver). All of the free Unixes have
extensive supported hardware lists — check before you buy.

— DJPH

http://www.linuxheadquarters.com/howto/basic/sndconfig.shtml

Decapitating Your Machine — Serial Consoles

Often server machines are placed in a rack in a colocation facility, in some back closet, or in some
other out of the way place. This can make it really inconvenient to access the server's console should
something go wrong or need diagnosing; hauling a monitor and keyboard into your server storage area
is a real pain. If you've got your server mounted in a rack, there are devices that are essentially a flat
screen monitor, keyboard, and mouse mounted in a sliding rack shelf, which work well, but they're
expensive.

A simple and cheap solution is to change the console from the normal monitor/keyboard/mouse to one
of the serial ports. The serial port can be hooked via null modem to a terminal server or another
machine, allowing controlled access, or you can just plug your laptop into it with a null modem when
you need to diagnose problems or reboot.

Linux has a howto describing details of dealing with serial consoles at
http://www.linuxdoc.org/HOWTO/Remote-Serial-Console-HOWTO/. Essentially, you provide
options to the boot loader and kernel to tell them to use your serial port as a console, and then
configure getty to accept logins on that serial port. The HOWTO shows various potential
configurations and demonstrates proper setup on each.

FreeBSD's handbook has a chapter on setting up serial consoles. Again, you have to tell the boot
loader and the kernel to use the serial port, and then edit /etc/ttys to enable getty on that serial port.
FreeBSD can also be configured to decide whether to use a normal console or serial console based
on whether or not a keyboard is plugged in. NetBSD and OpenBSD are configured similarly.

Solaris is even easier: just unplug the keyboard before you boot the machine. Solaris uses a serial
console by default if no keyboard is plugged in at boot time. If you want to set it explicitly to use a
serial console even if the keyboard is plugged in, just set input-device and output-device to
ttya (or ttyb if you want it on the second serial port) in the boot eeprom.

— DJPH

http://www.linuxdoc.org/HOWTO/Remote-Serial-Console-HOWTO/

Chapter 45. Printing

Introduction to Printing

This chapter discusses printing, which is a surprisingly complicated subject. To understand why
printing is so complicated, though, let's think a little bit about what you might want to print.

First, in the "olden days," we had line printers and their relatives: daisy-wheel printers, dot-matrix
printers, and other pieces of equipment that generated typewriter-like output. Printing a simple text
file was easy: you didn't need any special processing; you only needed some software to shove the
file into the printer. If you wanted, you might add a banner page and do a little simple formatting, but
that was really pretty trivial.

The one area of complexity in the printing system was the " spooling system," which had to do several
things in addition to force-feeding the printer. Most printers were (and still are) shared devices. This
means that many people can send jobs to the printer at the same time. There may also be several
printers on which your file gets printed; you may care which one is used, or you may not. The
spooling system needs to manage all this: receiving data from users, figuring out whether or not an
appropriate printer is in use, and sending the file to the printer (if it's free) or storing the file
somewhere (if the printer isn't free).

Historical note: why is this called the "spooling system"? Dave Birnbaum, a Principal Scientist at
Xerox, says:

"SPOOL (Simultaneous Printing Off and On Line)" It was written for the early IBM mainframes (of the 3-digit, i.e., 709 kind) and
extended to the early 1401 machines. Output for the printer was sent to the spool system, which either printed it directly or queued it
(on tape) for later printing (hence the on/off line). There was also a 2nd generation version where the 1401 would act as the printer
controller for the (by then) 7094. The two were usually connected by a switchable tape drive that could be driven by either
machine." [There's some controversy about exactly what the acronym means, but Dave's is as good as any I've heard. — JP]

The first few articles in this chapter, Section 45.2, Section 45.3, Section 45.4, and Section 45.5,
discuss the basic Unix spooling system and how to work with it as a user.

The next few articles talk about how to format articles for printing — not the kind of fancy formatting
people think of nowadays, but simpler things like pagination, margins, and so on, for text files that are
to be sent to a line printer or a printer in line-printer emulation mode. Section 45.6 describes this kind
of simple formatting, and Section 45.7 gets a little more complicated on the same subject.

Historical note number two: why is the print spooler called lp or lpr? It typically spooled text to a
line printer, a fast printer that used a wide head to print an entire line at a time. These printers are
still common in data processing applications, and they can really fly!

In the mid-1970s, lots of Unix people got excited about typesetting. Some typesetters were available
that could be connected to computers, most notably the C/A/T phototypesetter. Programs like troff
and TEX were developed to format texts for phototypesetters. Typesetting tools are still with us, and
still very valuable, though these days they generally work with laser printers via languages like
PostScript. They're discussed in Section 45.10 through Section 45.17, along with the ramifications of
fancy printing on Unix.

Finally, Section 45.19 is about the netpbm package. It's a useful tool for people who deal with
graphics files. netpbm converts between different graphics formats.

— ML

Introduction to Printing on Unix

Unix used a print spooler to allow many users to share a single printer long before Windows came
along. A user can make a printing request at any time, even if the printer is currently busy. Requests
are queued and processed in order as the printer becomes available.

Unix permits multiple printers to be connected to the same system. If there is more than one printer,
one printer is set up as the default printer, and print jobs are sent there if no printer is specified.

lpr-Style Printing Commands

Many systems use the lpr command to queue a print job. When you use lpr, it spools the file for
printing.
$ lpr notes

The lpq command tells you the status of your print jobs by showing you the print queue for a given
printer.
$ lpq
lp is ready and printing
Rank Owner Job Files Total Size
active fred 876 notes 7122 bytes
1st alice 877 standard input 28372 bytes
2nd john 878 afile bfile ... 985733 bytes

The word active in the Rank column shows the job that's currently printing. If your job does not
appear at all on the listing, it means your job has finished printing or has been completely written into
the printer's input buffer (or perhaps that you accidentally printed it to a different queue). If a job is
not active, it's still in the queue.

You can remove a job with the lprm command. (Run lpq first to get the job number.)
$ lprm 877
dfA877host dequeued
cfA877host dequeued

The command lpc status (Section 45.3) can be used to determine which printers are connected to
your system and their names. If there is more than one printer, you can then use the -P option with lpr,
lpq and lprm to specify a printer destination other than the default. For instance, if a laser printer is
configured as laserp, you can enter:
$ lpr -Plaserp myfile

If you'll be using a certain printer often, put its name in the PRINTER environment variable
(Section 45.4).

If you're using an older system that has only lp (see below), or if you'd like a fancier lpr that supports
all sorts of handy features, take a peek at LPRng (available at http://www.lprng.com). It supports
everything standard lpr does and more, including a GUI for detailed configuration.

http://www.lprng.com

lp-Style Printing Commands

The System V-style print system, which Solaris uses by default, has the lp command to queue a print
job. (Solaris also optionally includes lpr-style printing commands, if you install the BSD
compatibility package.) When you use lp, it spools the file for printing and returns the request id of
your print job. The request id can later be used to cancel the print job, if you decide to do so.
$ lp notes
request-id is lp-2354 (1 file)

The lpstat command can be used to check on the status of your print jobs. Like lpq, it will tell
whether your job is in the queue or fully sent to the printer. Unlike lpq, it shows you only your own
jobs by default:
$ lpstat
lp-2354 14519 fred on lp

The message on lp indicates that the job is currently printing. If your job does not appear at all on
the listing, it means your job has either finished printing or has been completely written into the
printer's input buffer (or you accidentally printed it to a different queue). If the job is listed, but the on
lp message does not appear, the job is still in the queue. You can see the status of all jobs in the
queue with the -u option. You can cancel a job with the cancel command.
$ lpstat -u
lp-2354 14519 fred on lp
lp-2355 21321 alice
lp-2356 9065 john
$ cancel lp-2356
lp-2356: cancelled

The lpstat command can be used to determine what printers are connected to your system and their
names. If there is more than one printer, you can then use the -d option with lp to specify a printer
destination other than the default. For instance, if a laser printer is configured as laserp, then you can
enter:
$ lp -dlaserp myfile

If you'll be using a certain printer often, put its name in the LPDEST environment variable (Section
45.4).

— DD, TOR, and JP

Printer Control with lpc

The lpc (8) command, for lpr-style printing setups, is mostly for the superuser. (You may find it in a
system directory, like /usr/sbin/lpc.) Everyone can use a few of its commands; this article covers
those.

You can type lpc commands at the lpc> prompt; when you're done, type exit (or CTRL-d):
% lpc
lpc> help status
status show status of daemon and queue
lpc> ...
lpc> exit
%

Or you can type a single lpc command from the shell prompt:
% lpc status imagen
imagen:
 queuing is enabled
 printing is enabled
 no entries
 no daemon present
%

The printer daemon (Section 1.10) watches the queue for jobs that people submit with lpr (Section
45.2). If queueing is disabled (usually by the system administrator), lpr won't accept new jobs.

lpc controls only printers on your local host. lpc won't control printers connected to other hosts,
though you can check the queue of jobs (if any) waiting on your local computer for the remote printer.

The commands anyone can use are:
restart [printer]

This tries to start a new printer daemon. Do this if something makes the daemon die while there
are still jobs in the queue (lpq or lpc status will tell you this). It's worth trying when the system
administrator is gone and the printer doesn't seem to be working. The printer name can be all to
restart all printers. The printer name doesn't need an extra P. For example, to specify the foobar
printer to lpr, you'd type lpr -Pfoobar. With lpc, use a command like restart foobar.

status [printer]
Shows the status of daemons and queues on the local computer (see the preceding example). The
printer name can be all to show all printers.

help [command]
By default, gives a list of lpc commands, including ones for the superuser only. Give it a
command name and it explains that command.

exit
Quits from lpc.

— JP

Using Different Printers

Each printer on your system should have a name. By default, commands that send a file to a printer
assume that the printer is named lp (a historical artifact; it stands for "Line Printer"). If you're using a
single-user workstation and have a printer connected directly to your workstation, you can name your
printer lp and forget about it.

In many environments, there are more options available: e.g., there are several printers in different
locations that you can choose from. Often, only one printer will be able to print your normal
documents: you may need to send your print jobs to a PostScript printer, not the line printer that the
accounting department uses for billing.

There are two ways to choose a printer:

Printing commands in the lpr family accept the option -P printer. This includes lpr (Section
45.2), various scripts to format typeset documents, etc. For example, lpr -Pps file.ps sends the
file file.ps to the printer named ps.
Commands in the lpr family recognize the PRINTER environment variable (Section 35.3); if
PRINTER is defined, the command will read its value and choose a printer accordingly. So the
command:
% setenv PRINTER ps
 — or
$ PRINTER=ps ; export PRINTER

ensures that the lpr-style print commands will send your documents to the printer named ps. The
-P option overrides this environment variable, in case you need to send a particular print job to
a different printer.
Commands in the lp family use the -d option to select a printer. So lp -d prfile.ps sends
file.ps to the printer named pr; it's equivalent to the previous lpr example.
Commands in the lp family look for an environment variable named LPDEST, rather than
PRINTER. So:
% setenv LPDEST ps
 — or
$ LPDEST=ps ; export LPDEST

ensures that the lp-style print commands will send your documents to the printer named ps. The -
d option overrides this environment variable.

Note that Solaris and others that use lp can include both the lp and lpr print commands. This can make
things confusing, particularly if you're using a script to process documents, and that script
automatically sends your documents to the printer. Unless you know how the script works, you won't
know which variable to set. I'd suggest setting both PRINTER and LPDEST for these systems.

By the way, if you have only one printer, but you've given it some name other than lp, the same
solution works: just set PRINTER or LPDEST to the appropriate name.

— ML

Using Symbolic Links for Spooling

When you print a file, the file is copied to a "spooling directory." This can be a problem if you want
to print a very large file: the copy operation might take a long time, or the act of copying might fill the
spooling directory's filesystem.

Systems with the lpr family of commands provide a workaround for this problem. The -s option
makes a symbolic link (Section 10.4) to your file from the spooling directory.

Here's such a command:
% lpr -s directions

Rather than copying directions, lpr creates a symbolic link to directions. The symbolic link is much
faster, and you're unlikely to get a "filesystem full" error.

Using a symbolic link has one important side effect. Because the file isn't hidden away in a special
spooling directory, you can delete or modify it after you give the lpr command and before the printer
is finished with it. This can have interesting side effects; be careful not to do it.

Of course, this warning applies only to the file that actually goes to the printer. For example, when
you format a troff file (Section 45.16) for a PostScript printer and then print using -s, you can
continue to modify the troff file, because it's the resulting PostScript file that actually goes to the
printer (thus the PostScript file, not the troff file, is symbolically linked).

— ML

Formatting Plain Text: pr

The line printer spooler (Section 45.2) prints what you send it. If you send it a continuous stream of
text (and the printer is set up to print text files rather than PostScript), that's probably just what you'll
get: no page breaks, indenting, or other formatting features.

That's where pr comes in. It's a simple formatter that breaks its input into "pages" that will fit onto a
66-line page. (You can change that length.) It adds a header that automatically includes the date and
time, the filename, and a page number. It also adds a footer that ensures that text doesn't run off the
bottom of the page.

This is just what you want if you are sending program source code or other streams of unbroken text
to a printer. For that matter, pr is often very handy for sending text to your screen. In addition to its
default behavior, it has quite a few useful options. Here are a few common options:
-f

Separate pages using formfeed character (^L) instead of a series of blank lines. (This is handy if
your pages "creep" down because the printer folds some single lines onto two or three printed
lines.)

-h str
Replace default header with string str. See Section 21.15.

-l n
Set page length to n (default is 66).

-m
Merge files, printing one in each column (can't be used with -num and -a). Text is chopped to
fit. See Section 21.15. This is a poor man's paste (Section 21.18).

-s c
Separate columns with c (default is a tab).

-t
Omit the page header and trailing blank lines.

-w num
Set line width for output made into columns to num (default is 72).

+ num
Begin printing at page num (default is 1).

-n
Produce output having n columns (default is 1). See Section 21.15.

Some versions of pr also support these options:
-a

Multicolumn format; list items in rows going across.
-d

Double-spaced format.
-e cn

Set input tabs to every nth position (default is 8), and use c as field delimiter (default is a tab).
-F

Fold input lines (avoids truncation by -a or -m).
-i cn

For output, replace whitespace with field delimiter c (default is a tab) every nth position

(default is 8).
-n cn

Number lines with numbers n digits in length (default is 5), followed by field separator c
(default is a tab). See also nl (Section 12.13).

-o n
Offset each line n spaces (default is 0).

-p
Pause before each page. (pr rings the bell by writing an ALERT character to standard error and
waits for a carriage-return character to be read from /dev/tty (Section 36.15).)

-r
Suppress messages for files that can't be found.

Let's put this all together with a couple of examples:

Print a side-by-side list, omitting heading and extra lines:
 pr -m -t list.1 list.2 list.3

Alphabetize a list of states; number the lines in five columns.
 sort states_50 | pr -n -5

If you have an old pr that doesn't support -n, you can use cat -n (Section 12.13) to supply the
line numbers:
 sort states_50 | cat -n | pr -5

Formatting Plain Text: enscript

enscript is a handy program that takes your text files and turns them into PostScript. enscript comes
with a wide variety of formatting options. There is a GNU version available, and a few Unixes
include a version by default. enscript is particularly useful when your main printer speaks primarily
PostScript.

Detailed information on everything enscript can do is available in its manpage, but here are a few
examples:
% enscript -G stuff.txt
 Fancy ("Gaudy") headers
% enscript -2r stuff.txt
 Two-up printing -- two pages side-by-side on each page of paper
% enscript -2Gr stuff.txt
 Two-up with fancy headers
% enscript -P otherps stuff.txt
 Print to the
 otherps
 printer instead of the default
% enscript -d otherps stuff.txt
 Ditto
% enscript -i 4 stuff.txt
 Indent every line four spaces
% enscript --pretty-print=cpp Object.cc
 Pretty print C++ source code
% enscript -E doit.pl
 Pretty print doit.pl (and automagically figure out that it's Perl from the .pl suffix)

One thing to watch for: enscript's default page size is A4, and in the United States most printers want
letter-sized pages. You can set the default page size to letter when installing enscript (many U.S. pre-
built binary packages do this for you), or you can use the -M letter or - -media=letter option
when you call enscript.
If you want a default set of flags to be passed to enscript, set the ENSCRIPT environment variable.
Anything you pass on the command line will override values in ENSCRIPT.

— DJPH

Printing Over a Network

Sometimes you'd like to be able to print to a printer that's physically attached to another Unix
machine. lpd , the print spool daemon, supports this easily.

lpd is configured using the printcap printer capabilities database, generally stored in /etc/printcap.
Generally, a local printer is given a line that looks something like this:
lp|local line printer:\
 :lp=/dev/lpt0:\
 :sd=/var/spool/output/lpd:lf=/var/log/lpd-errs:

The first line sets the printer name, in this case lp, and gives it a more descriptive name (local
line printer) as well. The rest of the lines define various parameters for this printer using a
parameter=value format. lp specifies the printer device — in this case, /dev/lpt0. sd specifies the
local spool directory, that is, where lpd will store spooled files while it's working with them. lf
specifies the log file, where lpd will write error messages and the like for this printer.

To set up a remote printer, all you have to do is provide a remote machine (rm) and a remote printer
(rp) instead of a printer device:
rlp|printhost|remote line printer:\
 :rm=printhost.domain.com:rp=lp:\
 :sd=/var/spool/output/printhost:lf=/var/log/lpd-errs:

Note that we added another name; since this is the default printer for the host printhost, either rlp or
printhost will work as printer names. We also used a different spool directory, to keep files
spooled for printhost separate from local files; this isn't strictly necessary, but it's handy. Don't forget
to create this spool directory before trying to spool anything to this printer!

Some network connected printers have lpd-compatible spoolers built in. Talking to one of these
printers is just as easy; just provide the printer's hostname for rm. Generally you won't have to
provide rp unless the printer supports different printing modes by using different remote printer
names, since the default name lp is almost always supported by these sorts of printers.

— DJPH

Printing Over Samba

Samba provides SMB networking to Unix boxes; in English, that means it allows Unix machines to
share disks and printers with Windows machines and vice versa. Chapter 49 details Samba; here
we'll talk a bit about tricks for printing over Samba, since it's so useful and parts of it are fairly
arcane.

Printing to Unix Printers from Windows

This is the easy one. Simply configure your printer normally using printcap, then set this in your
smb.conf:
 load printers = yes

This tells Samba to read the printcap file and allow printing to any printer defined there. The default
[printers] section automatically advertises all printers found and allows anyone with a valid login
to print to them. You may want to make them browsable or printable by guest if you're not particularly
worried about security on your network. Some Windows configurations will need guest access to
browse, since they use a guest login to browse rather than your normal one; if you can't browse your
Samba printers from your Windows client, try setting up guest access and see if that fixes it.

If you want to get really fancy, current versions of Samba can support downloading printer drivers to
clients, just like Windows printer servers do. Take a look at the PRINTER_DRIVER2.txt file in the
Samba distribution for more about how to do this.

Printing to Windows Printers from Unix

This one's a little more tricky. lpd doesn't know how to print to a Windows printer directly, or how to
talk to Samba. However, lpd does know how to run files through a filter (Section 45.17). So what
we'll do is provide a filter that hands the file to Samba, and then send the print job right to /dev/null:
laserjet:remote SMB laserjet via Samba\
 :lp=/dev/null:\
 :sd=/var/spool/lpd/laser:\
 :if=/usr/local/samba/bin/smbprint:

Samba comes with a sample filter called smbprint ; it's often installed in an examples directory and
will need to be moved to somewhere useful before setting this up. smbprint does exactly what we
want; it takes the file and uses smbclient to send it to the right printer.

How does smbprint know which printer to send it to? It uses a file called .config in the given spool
directory, which looks something like this:
server=WINDOWS_SERVER
service=PRINTER_SHARENAME
password="password"

The smbprint script is reasonably well documented in its comments. Look through it and tweak it to
fit your own needs.

— DJPH

Introduction to Typesetting

Once upon a time, printers were simple. You hooked them up to your machine and dumped text out to
them, and they printed the text. Nothing fancy, and not very pretty either. As printers got smarter, they
became capable of more things, printing in a different font, perhaps. Printing got a bit more complex.
If you wanted to use fancy features, you had to embed special characters in your text, specific to the
printer.

Printers got even smarter, and could draw pictures, print images, and use all sorts of fonts. They
started using complex languages (Section 45.14) to print, which made dealing with them more
complex but at least somewhat more consistent. People wrote tools to convert text (Section 45.7) so
it could be printed.

Webster defines typesetting as "the process of setting material in type or into a form to be used in
printing," literally, the setting of type into a printing press. As computers have gotten more
sophisticated, it has come to include the formatting of text and images to send to typesetting machines
and then, later, smart printers. These days, your average printer is pretty smart and can handle
everything the typesetters of old could do and more. Windows systems provide What You See Is
What You Get (WYSIWYG, pronounced whiz-ee-wig) editors as a matter of course, most of which
do all of their typesetting without any user intervention (and often badly, to boot).

On Unix, typesetting generally involves describing the formatting you want using a formatting
language and then processing the source file to generate something that a printer can understand.
There are a variety of tools and languages that do this, with various purposes, strengths, and
weaknesses. Many formatting languages are markup languages, that is, they introduce formatting
information by "marking up" the text you want formatted.

There is an entire science (and art) of typography that we won't try to get into here. My personal
favorite books on the subject are Robert Bringhurst's The Elements of Typographic Style for general
typography and Donald Knuth's Digital Typography for issues of typesetting with computers.

What we will try to cover are formatting languages (Section 45.12 and Section 45.13), printer
languages (Section 45.14), and ways to use Unix to get those formatting languages out to your printer
usefully (Section 45.15 through Section 45.17).

Relatively recently, open source WYSIWYG tools have become available for Unix. OpenOffice,
available at http://www.openoffice.org, is a good example. OpenOffice does its own typesetting
behind the scenes and dumps out PostScript. If you don't have a PostScript printer and you're
interested in using something like OpenOffice, Section 45.18 might help.

— DJPH

http://www.openoffice.org

A Bit of Unix Typesetting History

Unix was one of the first operating systems to provide the capability to drive a typesetter. troff is both
a markup language and a tool for generating typesetter output.

Originally, troff was designed to drive a device called a C/A/T phototypesetter, and thus it generated
a truly frightening collection of idiosyncratic commands. For a while, there were several version of
troff and troff-related tools, including tools to translate C/A/T output into something useful, versions
of troff that output slightly saner things than C/A/T, and so forth. It was all very confusing.

Most systems these days still have a version of troff, often GNU's groff, which outputs PostScript and
other device-independent formats. Unix manpages are still written in nroff, a related tool that takes
the same input and spits out ASCII-formatted text, using the man macro package. However, most
people don't use troff and its related tools for general text formatting much any more.

So why do we care about troff? The Jargon Dictionary (Version 4.2.2) has this to say:
troff /T'rof/ or /trof/ n.
The gray eminence of Unix text processing; a formatting and phototypesetting program, written originally in PDP-11 assembler and
then in barely-structured early C by the late Joseph Ossanna, modeled after the earlier ROFF which was in turn modeled after the
Multics and CTSS program RUNOFF by Jerome Saltzer (that name came from the expression "to run off a copy"). A companion
program, nroff, formats output for terminals and line printers.
In 1979, Brian Kernighan modified troff so that it could drive phototypesetters other than the Graphic Systems CAT. His paper
describing that work ("A Typesetter-independent troff," AT&T CSTR #97) explains troff's durability. After discussing the
program's "obvious deficiencies — a rebarbative input syntax, mysterious and undocumented properties in some areas, and a
voracious appetite for computer resources" and noting the ugliness and extreme hairiness of the code and internals, Kernighan
concludes:
"None of these remarks should be taken as denigrating Ossanna's accomplishment with TROFF. It has proven a
remarkably robust tool, taking unbelievable abuse from a variety of preprocessors and being forced into uses that were
never conceived of in the original design, all with considerable grace under fire."
The success of TEX and desktop publishing systems have reduced troff's relative importance, but this tribute perfectly captures the
strengths that secured troff a place in hacker folklore; indeed, it could be taken more generally as an indication of those qualities of
good programs that, in the long run, hackers most admire.

— DJPH

Typesetting Manpages: nroff

The definitive documentation system for every Unix is manpages. (Much GNU software is
documented fully in info pages instead, but manpages are so foundational that even those packages
generally provide some sort of manpage.) What is a manpage, then?

A manpage is a text file, marked up with nroff commands, specifically using the man macro package.
(Well, technically, using the tmac.an standard macro package — t/nroff takes a -m option to specify
which tmac.* macro package to use. Thus, man uses nroff -man.) A simple manpage (in this case, the
yes(1) manpage from FreeBSD) looks something like this:
.Dd June 6, 1993
.Dt YES 1
.Os BSD 4
.Sh NAME
.Nm yes
.Nd be repetitively affirmative
.Sh SYNOPSIS
.Nm
.Op Ar expletive
.Sh DESCRIPTION
.Nm Yes
outputs
.Ar expletive ,
or, by default,
.Dq y ,
forever.
.Sh HISTORY
The
.Nm
command appeared in
.At 32v .

This collection of difficult-to-read nroff commands, when formatted by nroff via the man command
on my FreeBSD machine, looks something like this:
YES(1) FreeBSD General Commands Manual YES(1)

NAME
 yes - be repetitively affirmative

SYNOPSIS
 yes [expletive]

DESCRIPTION
 Yes outputs expletive, or, by default, "y", forever.

HISTORY
 The yes command appeared in Version 32V AT&T UNIX.

4th Berkeley Distribution June 6, 1993 1

The various nroff/man macros allow you to define things such as the name of the command, the short
description of what it does, the list of arguments, and so forth, and formats it all into the standard look
of a manpage. To write your own manpages, take a look at existing manpages for examples, and read
the man(1) and man(7) manpages.

— DJPH

Formatting Markup Languages — troff, LATEX, HTML, and So
On

Section 45.12 shows an example of a simple formatting markup language; the one used by man via
nroff. Don't laugh — it may seem arcane, but it is fairly simple. Like all markup languages, it attempts
to abstract out certain things, to allow you to describe what you'd like the end result to look like.
Manpages are simple to describe, so the markup language for them is relatively simple.

Full troff is somewhat more complex, both because it allows expressing far more complex ideas, and
because it allows definition of macros to extend the core markup language. Similarly, TEX
(pronounced "tek") is essentially a programming language for typesetting. It provides a very thorough
model of typesetting and the ability to, essentially, write programs that generate the output you want.

Available on top of TEX is LATEX (pronounced "lah-tek" or "lay-tek"), a complex macro package
focused on general document writing. It allows you to describe the general structure of your document
and let LATEX (and underneath, TEX) sort out the "proper" way to typeset that structure. This sort of
markup is very different to deal with than working in a WYSIWYG word processor, where you have
to do all of the formatting yourself. As an example, a simple LATEX document looks something like
this (taken from The Not So Short Introduction to LATEX2e):
\documentclass[a4paper,11pt]{article}
% define the title
\author{H.~Partl}
\title{Minimalism}
\begin{document}
% generates the title
\maketitle
% insert the table of contents
\tableofcontents
\section{Start}
Well, and here begins my lovely article.
\section{End}
\ldots{} and here it ends.
\end{document}

Much like the nroff input earlier, this describes the structure of the document by inserting commands
into the text at appropriate places. The LyX editor (http://www.lyx.org) provides what they call What
You See Is What You Mean (WYSIWYM, or whiz-ee-whim) editing by sitting on top of LATEX. Lots
of information about TEX and LATEX is available at the TEX Users' Group web site,
http://www.tug.org. TEX software is available via the Comprehensive TEX Archive Network, or
CTAN, at http://www.ctan.org. I strongly recommend the teTEX distribution as a simple way to get a
complete installation of everything you need in one swell foop.

In contrast, while HTML is also a markup language, its markup is focused primarily on display and
hypertext references rather than internal document structure. HTML is an application of SGML; you
probably know about it already because it is the primary display markup language used on the web.
The following is essentially the same as the sample LATEX document, but marked up using HTML
formatting:
<html>

http://www.lyx.org
http://www.tug.org
http://www.ctan.org

<head>
<title>Minimalism</title>
</head>
<body>
<h1>Minimalism</h1>
...table of contents...
<h2>Start</h2>
<p>Well, and here begins my lovely article.</p>
<h2>End</h2>
<p>… and here it ends.</p>
</body>
</html>

Other markup languages common on Unixes include DocBook, which is also an application of SGML
or XML, and in which a lot of Linux documentation is written, and texinfo, the source language of info
pages, in which most GNU documentation is written. The manuscript for this edition of Unix Power
Tools is written in a variant of SGML-based DocBook, in fact.

— DJPH

Printing Languages — PostScript, PCL, DVI, PDF

Printing languages, also sometimes called page description languages, are representations of exactly
what needs to be on the screen or printed page. They are generally a collection of drawing commands
that programs can generate, often with extra features to make drawing complex pictures or doing
fancy things with text easier.

PostScript was developed by Adobe in the early 1980s to provide some sort of generic page
description language. It is a fairly complete language; I've written complex PostScript programs by
hand. This makes it much easier to write software that can generate PostScript output. Modern troffs
can generate PostScript, and ghostscript can be used to process PostScript into printer-specific
output for certain non-PostScript printers, so PostScript is a very useful output form.

Printer Command Language, or PCL, was originally developed by Hewlett-Packard, also in the early
1980s, to provide a generic printer language for their entire range of printers. Early versions were
very simple, but PCL 3 was sophisticated enough that other printer manufacturers started to emulate
it, and it became a de facto standard. PCL's more current incarnations are quite flexible and capable.
Incidentally, ghostscript can turn PostScript into PCL, and most printers that can't speak PostScript
can speak some form of PCL these days. My primary printer these days speaks PCL 5E, and I use it
from both Windows machines and Unix machines.

DVI stands for "device independent" and is the primary output from TEX (and thus LATEX). Like
PostScript, it's a generic language for describing the printed page. There are converters that convert
DVI into PostScript, PCL and PDF.

PDF is Adobe's successor to PostScript. PDF has a special place on the web, because it's been
promoted as a way to distribute documents on the web and have them displayed consistently in a
wide variety of environments, something not possible in HTML. This consistency is possible for the
same reasons any page description language can provide it: the focus of such a language is on
describing exactly what the page should look like rather than being human readable or editable, like
most markup languages. However, Adobe has provided Acrobat Reader free for multiple platforms
and promoted PDF extensively, so it is the de facto standard for page description languages on the
web these days.

— DJPH

Converting Text Files into a Printing Language

Section 45.7 introduced one tool that can convert plain text into PostScript for printing. In general, if
your printer isn't an old text-only printer and you want to be able to print text files, you'll need some
sort of filter (or filters) to convert the text into something useful.

If your printer supports PostScript, tools like a2ps and enscript (Section 45.7) can do what you need.
If your printer supports PCL or another printer language, you may want to add ghostscript to the mix.
ghostscript can read PostScript and PDF and output correct representations to a variety of printers.
Incidentally, ghostscript can also do a host of other useful things, like create PDFs from PostScript
and the like.

Here's an example of using enscript, ghostscript, and lpr to print the background.txt file to my
printer (an HP LaserJet 6L):
% enscript -2Gr background.txt -o background.ps
% gs -q -dNOPAUSE -sDEVICE=ljet4 -sOutputFile=background.lj4 background.ps -c quit
% lpr background.lj4
% rm background.lj4 background.ps

-2Gr tells enscript that I want two-up pages with fancy headers, and -o sends the output to
background.ps (remember that enscript generates PostScript). -q tells gs to run quietly. -dNOPAUSE
disables ghostscript's usual behaviour of pausing and prompting at the end of each page. -
sDEVICE=ljet4 says to create output for a ljet4 device. -sOutputFile=background.lj4
redirects the output of ghostscript to background.lj4, and -c quit says to quit once background.ps
is done. Then we use lpr to spool the now-ready output file, delete the temporary files, and we're all
done.

Seems like sort of a pain, but it does show all of the steps needed to get that output to go to the printer
properly. Section 45.17 shows how to arrange for most of that to be done for you by the spooler
automatically.

— DJPH

Converting Typeset Files into a Printing Language

Section 45.15 showed the steps necessary to convert plain text into something printable. Generally the
steps involved are similar for a typeset source file, with perhaps an extra step or two.

troff generates PostScript by default in most installations these days, or it can be made to easily
enough. GNU troff (groff) can also generate PCL, DVI, and HTML by using the appropriate -T
option.

TEX generates DVI; the teTEX package includes dvips to convert DVI into PostScript, dvilj4 to
convert it into PCL, dvipdf to convert it into PDF, and several others.

HTML can be converted into PostScript using html2ps.

An example of using LATEX, dvilj4, and lpr to print the article.tex file to my printer (an HP LaserJet
6L):
% latex article.tex
% dvilj4 article.dvi
% lpr article.lj
% rm article.lj article.dvi

This time it's slightly simpler than the example in Section 45.15, because the default options all do
what we want. Even so, it can be made even simpler; Section 45.17 shows how.

— DJPH

Converting Source Files Automagically Within the Spooler

Section 45.15 and Section 45.16 showed what sorts of steps are required to get files into a printable
form. They seem tedious, however, and computers are really quite good at tedium, so how can we
make the spooler do all this for us automatically?

There are a couple of options. One of the more well-known is apsfilter , which is a set of filter
scripts designed to work with lpd to automatically convert incoming source files to an appropriate
output format before dumping them to the printer. Extensive information is available at
http://www.apsfilter.org, and apsfilter has its own automatic setup scripts, but I'll give a quick
overview to give you an idea of what configuring lpd's filters looks like.

In Section 45.9, we used an input filter trick to print to a Samba printer by putting a if entry in the
printcap for that printer. if stands for "input filter," and there are several other kinds of filters
available in standard lpd, including a ditroff filter, a Fortran filter (!), and an output filter.

apsfilter installs itself as the input filter for any printer it manages, and looks at the source file. It
decides based on a number of pieces of information what kind of source file it is, automatically
processes it with the right set of programs, and poof, you have correct output coming out of your
printer. There's a reason this kind of tool is called a "magic filter" (and why the title of this chapter
says "Automagically"). Having a magic filter installed makes life so much easier.

If you look at your printcap once apsfilter is installed, you'll notice this entry (or something much like
it):
lp|local line printer:\
 ...
 :if=/usr/local/sbin/apsfilter:\
 ...

That's all it takes to hook into lpd and tell the spooler to give apsfilter a shot at the text on the way
through. apsfilter looks at the incoming file and its configuration for the printer queue and converts
the source into the appropriate printer language using whatever filter or set of filters are needed.

Other magic filters include LPD-O-Matic and magicfilter. http://www.linuxprinting.org has all sorts
of information about this and other printing subjects. Don't be fooled by the name — much of the
information it provides can help you with printing on any Unix system, not just Linux.

— DJPH

http://www.apsfilter.org
http://www.linuxprinting.org

The Common Unix Printing System (CUPS)

The Common Unix Printing System (CUPS) is a full network-capable printing package available for a
wide variety of Unix platforms. From their web page:

CUPS is available at:
http://www.cups.org/

CUPS provides a portable printing layer for UNIX-based operating systems. It has been developed by Easy Software Products to
promote a standard printing solution for all UNIX vendors and users. CUPS provides the System V and Berkeley command-line
interfaces.
CUPS uses the Internet Printing Protocol ("IPP") as the basis for managing print jobs and queues. The Line Printer Daemon
("LPD") Server Message Block ("SMB"), and AppSocket (a.k.a. JetDirect) protocols are also supported with reduced functionality.
CUPS adds network printer browsing and PostScript Printer Description ("PPD") based printing options to support real-world
printing under UNIX.

CUPS is headed towards becoming the Linux standard for printing, and it is an easy way to configure
all your printing tools at once regardless of your platform. Visit their web page for extensive
information.

— DJPH

http://www.cups.org/

The Portable Bitmap Package

There are dozens of formats used for graphics files across the computer industry. There are tiff files,
PICT files, and gif files. There are different formats for displaying on different hardware, different
formats for printing on different printers, and then there are the internal formats used by graphics
programs. This means that importing a graphics file from one platform to another (or from one
program to another) can be a large undertaking, requiring a filter written specifically to convert from
one format to the next.

 Go to http://examples.oreilly.com/upt3 for more information on: netpbm

The netpbm package can be used to convert between a wide variety of graphics formats. netpbm
evolved from the original Portable Bitmap Package, pbmplus, written by Jef Poskanzer. A group of
pbmplus users on the Internet cooperated to upgrade pbmplus; the result was netpbm. netpbm has
relatively recently seen some active development again on SourceForge, and its current home page is
http://netpbm.sourceforge.net.

The idea behind pbm is to use a set of very basic graphics formats that (almost) all formats can be
converted into and then converted back from. This is much simpler than having converters to and from
each individual format. These formats are known as pbm, pgm, and ppm: the portable bitmap,
graymap, and pixmap formats. (A bitmap is a two-dimensional representation of an image; a graymap
has additional information encoded that gives grayscale information for each bit; a pixmap encodes
color information for each bit.) The name pnm is a generic name for all three portable interchange
formats (with the n standing for "any"), and programs that work with all three are said to be "anymap"
programs.

The netpbm package contains well over a hundred conversion programs. There are three basic kinds
of programs:

Programs that convert a graphics file to one of the pnm formats. For example, if I had a tiff file
and wanted to convert it to PostScript, I might start the process by using tifftopnm:
% tifftopnm Hobbes.tiff > Hobbes.pnm

Programs that convert from one of the pnm formats to another format. For example, if I wanted to
convert the Hobbes.pnm file directly to PostScript, I could use pnmtops:
% pnmtops Hobbes.pnm > Hobbes.ps

Programs used to manipulate the image in pnm format. For example, if I wanted to crop the
image, I could use pnmcut before I converted the file to PostScript and printed it:
% tifftopnm Hobbes.tiff > Hobbes.pnm
% pnmcut 10 10 200 200 Hobbes.pnm > Hobbes.cut
% pnmtops Hobbes.cut > Hobbes.ps
% lpr Hobbes.ps

Or, on one command line (and without cluttering your disk with intermediary files):
% tifftopnm Hobbes.tiff | pnmcut 10 10 200 200 | pnmtops | lpr

I frequently like to create X11 (Section 1.22) bitmaps out of pictures in newspapers or magazines.
The way I do this is first to scan the picture in on a Macintosh and save it as tiff or PICT format. Then
I ftp (Section 1.21) the file to our Unix system and convert it to pnm format, and then use pbmtoxbm

http://examples.oreilly.com/upt3
http://netpbm.sourceforge.net

to convert it to X bitmap format. If the picture is too big, I use pnmscale on the intermediary pnm file.
If the picture isn't right-side-up, I can use pnmrotate and sometimes pnmflip before converting the
pnm file to X11 bitmap format.

There are far too many programs provided with the netpbm package to discuss in detail, and some of
these formats are ones that you've probably never even heard of. However, if you need to fiddle with
image files (or, now, video files!), netpbm almost certainly has a converter for it. Take a peek
through the documentation sometime.

—LM and JP

Chapter 46. Connectivity

TCP/IP — IP Addresses and Ports

TCP/IP networking is a part of the Open Systems Interconnection (OSI) Model. Much like you can
string together lots of little single-purpose Unix tools to do complex tasks, the OSI Model is made up
of specific single-purpose layers that work together. Each layer builds on the layers below. Layers 1
and 2 are concerned with hardware; physical standards such as required voltages and low-level
protocols like Ethernet reside there. Layers 3 and 4 are networking layers, which this article
introduces. Layers 5 through 7 are application layers, where networking interfaces such as BSD
sockets and applications such as web browsers, telnet clients, and diagnostic tools live.

For most Unixes, the fundamentals of networking (once you get past the network device drivers) are
the Layer 3 Internet Protocol (IP) and a Layer 4 protocol on top of it, either the Transport Control
Protocol (TCP), the User Datagram Protocol (UDP), or the IP Control Message Protocol (ICMP).
These four protocols are so commonly treated as one unit that you'll often see them referred to
together as TCP/IP.

Internet Protocol (IP)

IP's job is to get small chunks of data, called packets, from one machine to another. It is a "best effort"
protocol; that is, it makes its best effort to deliver each packet to the right host, and if it can't, it
simply drops the packet on the floor. It may seem like losing bits of your data would be a bad thing,
but it turns out that this feature is part of what allows the Internet to route traffic around problems;
higher-level protocols and applications notice that packets are being dropped and resend them,
sometimes through better routes.

IP identifies machines through IP addresses . Every machine that wants to communicate with another
machine via TCP/IP must have a unique IP address, unless it's using Network Address Translation
(NAT) (Section 46.1). When you dial up your ISP with a modem, your ISP assigns you a dynamic IP
address, good for that modem session. When you have a dedicated broadband connection, often your
ISP will assign you a small block of static IP addresses to use as you like. Each ISP is in turn
assigned large blocks of IP addresses for them to dole out to their users, and traffic on the Internet
travels from ISP to ISP based on the addresses they hold.

The current standard version of IP is Version 4 (IPv4), which uses 32-bit addresses. With the
explosion of the Internet, addresses are being used up at quite an impressive rate; remember that
normally every single machine connected to the Internet needs its own IP address. Version 6 (IPv6)
is, at the time of this writing, a proposed standard that uses 128-bit addresses. For the purposes of
this book, we'll gloss over the differences, since they mostly don't matter at this level. Our examples
will use IPv4 addresses, since that's what you're most likely to be dealing with for a little while yet.

Layer 4 Protocols: TCP, UDP, and ICMP

TCP, UDP, and ICMP all "sit on top" of IP; that is, they use IP to actually deliver the packets.

TCP's job is to provide ordered and guaranteed delivery. Ordered delivery means that the application
at the other end of the TCP connection reads data in the same order as it was sent. Guaranteed
delivery means that TCP keeps track of which packets arrived at the other end and resends packets
that were dropped. Together, these two characteristics provide a network communication mechanism
that acts very much like a Unix pipe from an application's point of view; you simply write bytes in
one end and they come out the other. Many common network applications sit on top of TCP and use
these services, including telnet, HTTP servers and web browsers, SSH (Section 46.6), and email
(Section 46.8).

UDP provides application access to the basic delivery mechanism of IP and adds port addressing
(see below). Some applications don't need guaranteed delivery and want the lower overhead of UDP,
or want the low-level control of network error recovery UDP can provide, or need to be able to do
certain kinds of broadcast. Services like DNS (Section 46.9) and DHCP (Section 46.10) use UDP
rather than TCP, as do many Internet games.

Both TCP and UDP provide addressing of their own above and beyond IP addresses; these addresses
are called ports . Generally, simply getting a packet to a machine isn't quite enough; if you want two
programs to communicate, they need a rendezvous point; there can be a lot of programs running on the
destination machine, and TCP and UDP need to know to which program packets should be delivered.
An IP address and a port provide the means for two programs to hook up and start talking. Every
communication needs a port on each machine; one side "listens" on a well-known port and the other
side "connects" to that port, generating a random port of its own.

Ports are represented by an integer number. Ports below 1024 are usually accessible only by
programs running as root and are thus mostly reserved for system services and the like. /etc/services
(Section 46.2) lists most of the well-known ports used by the main system services.

Finally, ICMP provides diagnostic and traffic control messages. ICMP is primarily used by
applications such as ping and traceroute (Section 46.4) to diagnose problems, check network status,
and the like. Routers can also use ICMP to control traffic.

/etc/services Is Your Friend

After you've been dealing with Internet services for a while, you come to remember certain well-
known port numbers off of the top of your head. SMTP (Section 46.8) is port 25, HTTP is port 80,
and so on. However, unless your memory is far better than mine, you won't remember them all.

Luckily, that's part of what /etc/services is for. It's a database of well-known ports with symbolic
names; any program that can take a port number should be able to take the appropriate symbolic name
instead. If you want to make sure your SMTP server is up, the following two commands are
equivalent:
% telnet localhost 25
% telnet localhost smtp

The definitive database of well-known ports is currently available at
http://www.iana.org/assignments/port-numbers. On most Unixes, /etc/services is just a snapshot taken
at the time that version of that Unix was released. When installing new services, often you'll want to
tweak your local copy of /etc/services to reflect the new service, if it's not already there, even if only
as a reminder.

The format of the /etc/services is simple:
 service name
 port/protocol
 aliases

Comments within the file start with a pound sign (#). As an example, a few common entries from
/etc/services:
ftp-data 20/tcp #File Transfer [Default Data]
ftp-data 20/udp #File Transfer [Default Data]
ftp 21/tcp #File Transfer [Control]
ftp 21/udp #File Transfer [Control]
ssh 22/tcp #Secure Shell Login
ssh 22/udp #Secure Shell Login
telnet 23/tcp
telnet 23/udp
smtp 25/tcp mail #Simple Mail Transfer
smtp 25/udp mail #Simple Mail Transfer

— DJPH

http://www.iana.org/assignments/port-numbers

Status and Troubleshooting

ifconfig can be used to configure network devices (Section 44.8), but it also can be used to see the
current network device configuration. ifconfig -a is very useful for this. Here's some sample output on
a FreeBSD machine:
% ifconfig -a
rl0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
 inet 192.168.1.1 netmask 0xffffffc0 broadcast 192.168.1.255
 inet 192.168.1.5 netmask 0xffffffff broadcast 192.168.1.255
 inet 192.168.1.6 netmask 0xffffffff broadcast 192.168.1.255
 inet 192.168.1.7 netmask 0xffffffff broadcast 192.168.1.255
 ether 0a:5c:da:a3:53:11
 media: autoselect (100baseTX <full-duplex>) status: active
 supported media: autoselect 100baseTX <full-duplex> 100baseTX 10baseT/UTP
 <full-duplex> 10baseT/UTP 100baseTX <hw-loopback>
lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> mtu 16384
 inet 127.0.0.1 netmask 0xff000000

This shows two network devices: rl0, which is an Ethernet card, and lo0, which is the loopback
device. rl0's primary IP address is 192.168.1.1, and it has aliases (that is, it also answers to)
192.168.1.5 through 192.168.1.6. This also shows me that both network devices believe that they're
actively sending and receiving packets (UP) and shows various options set on each device.

The output on Linux is slightly different, but similar enough to easily find the same information. Linux
also adds a few statistics to its ifconfig output that otherwise require a netstat to see. Especially
useful are packets received and transmitted:
eth0 Link encap:Ethernet HWaddr 0a:5c:da:a3:53:11
 inet addr:192.168.1.1 Bcast:192.168.1.255 Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:18999386 errors:28965 dropped:0 overruns:0 frame:28965
 TX packets:33955631 errors:0 dropped:0 overruns:0 carrier:0
 collisions:29132 txqueuelen:100
 RX bytes:1496731954 (1.3 GiB) TX bytes:2477239809 (2.3 GiB)
 Interrupt:10 Base address:0xda00

lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 UP LOOPBACK RUNNING MTU:3924 Metric:1
 RX packets:107211318 errors:0 dropped:0 overruns:0 frame:0
 TX packets:107211318 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:2880669120 (2.6 GiB) TX bytes:2880669120 (2.6 GiB)

Note that on Linux 2.4 kernels, ipconfig and route (see below) are being phased out in favor of
iproute2. See the manpage for iproute2 if you're on a 2.4 machine and want to be up to date.

netstat can be used to get a variety of useful information. By default, netstat displays a list of active
sockets, thus showing you what is currently connected to your machine (and what your machine is
currently connected to). netstat -r can show your routing tables, which is particularly useful when
trying to understand why your machine can't seem to talk to anything. If the interface appears to be up,
and you can ping (Section 46.4) other machines on your local network, but you can't get out, check
your routing tables. It's quite possible that you don't have a default route, or your default route doesn't
point to your gateway (Section 46.11). For a private LAN running NAT (Section 46.11), your routing
table might look something like this (the -n option says to show IP addresses instead of attempting to
resolve them into hostnames):
% netstat -rn
Routing tables

Internet:
Destination Gateway Flags Refs Use Netif Expire
default 192.168.1.1 UGSc 17 543792 rl0
127.0.0.1 127.0.0.1 UH 2 2869882 lo0
192.168.1.0/24 link#1 UC 0 0 rl0 =>

Again, on Linux the output is slightly different but similar to interpret. The only thing to note is that
0.0.0.0 represents the default route when we use -n:
Kernel IP routing table
Destination Gateway Genmask Flags MSS Window irtt Iface
192.168.1.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0
0.0.0.0 192.168.1.1 0.0.0.0 UG 0 0 0 eth0

route lets you manipulate the routing table. If, for example, you didn't see the default route when you
used netstat -rn, you could add it with:
% route add default 192.168.1.1

route allows a variety of ways to manipulate the routing table; see its manpage for details. Note that
Linux's route has a syntax for some commands that's slightly different than any other route.

Finally, dig allows you to easily make very specific DNS (Section 46.9) queries. For example, to
find out information about www.oreilly.com:
% dig www.oreilly.com
...
;; ANSWER SECTION:
www.oreilly.com. 6H IN A 209.204.146.22

;; AUTHORITY SECTION:
oreilly.com. 6H IN NS ns.oreilly.com.
oreilly.com. 6H IN NS ns1.sonic.net.
...

This shows us the address (A) record and the nameservers (NS) that have authority over this particular
address. If we want to find out the hostname for that IP address, we can do this:
% dig -x 209.204.146.22
;; ANSWER SECTION:
...
22.146.204.209.in-addr.arpa. 6H IN PTR www.oreilly.com.

;; AUTHORITY SECTION:
146.204.209.in-addr.arpa. 6H IN NS ns.oreilly.com.
146.204.209.in-addr.arpa. 6H IN NS ns1.sonic.net.
...

This automatically deals with the details of reverse DNS lookups for us and shows us the pointer
(PTR) record for that IP address, which tells us the canonical hostname. If we want to find out where
mail should go:
% dig oreilly.com mx
...
;; ANSWER SECTION:
oreilly.com. 6H IN MX 20 smtp2.oreilly.com.

;; AUTHORITY SECTION:
oreilly.com. 6H IN NS ns.oreilly.com.
oreilly.com. 6H IN NS ns1.sonic.net.
...

This shows us the mail exchanger (MX) record, which is where we ought to be sending mail. Any
information stored in DNS can be found out with the right dig query; browse the manpage to get an
idea.

DJPH

Where, Oh Where Did That Packet Go?

ping is a very simple tool and often the first used to diagnose a network problem. ping sends one or
more ICMP (Section 46.1) Echo Request messages to a particular IP address. If there is a machine at
that IP address listening for ICMP messages (and no firewall filtering out packets in the middle), ping
gets back Echo Reply messages, thus telling you that basic IP communication is functional between
the two machines. If you can't ping something close by and you know you don't have a firewall
(Section 46.12) filtering out your packets, it's generally not worth trying anything more complex; start
looking for interfaces down or routing problems (Section 46.3) or, possibly, unplugged cables or
the like.

traceroute does what you might expect from the name: it traces the route between your machine and
another machine, using ICMP messages, and shows you each step of the way. Sometimes, when you
can't get to another machine that's far away, you can use traceroute to see what's going on.

mtr stands for Matt's traceroute and is a more sophisticated traceroute. Not only does it show you
each hop along the way, but it also sends multiple messages and gives you an ongoing display of
latency at each hop. I use mtr instead of traceroute pretty exclusively. It's available at
http://www.bitwizard.nl/mtr/, or your Unix may have a binary package of it available.

For serious network debugging, take a look at tcpdump and ethereal. tcpdump can take apart packets
as they go by and show you what's going on in excruciating detail, and ethereal provides a nice GUI
on top of tcpdump.

— DJPH

http://www.bitwizard.nl/mtr/

The Director of Operations: inetd

inetd is the primary manager of Internet services on most Unix installations. Its job is to listen on a
selection of ports (Section 46.1) and start up the appropriate server when a connection comes in.
This frees servers that run under inetd from having to deal directly with networking issues and
sockets.

inetd is configured via /etc/inetd.conf , which lists all the ports inetd should manage, the server
associated with each port, and any special options for that server. For specific details, read the
manpage, inetd.conf(5). As an example, here are a few fairly standard entries from inetd.conf on my
FreeBSD system:
ftp stream tcp nowait root /usr/libexec/ftpd ftpd -l
telnet stream tcp nowait root /usr/libexec/telnetd telnetd
finger stream tcp nowait/3/10 nobody /usr/libexec/fingerd fingerd -s
tftp dgram udp wait nobody /usr/libexec/tftpd tftpd /tftpboot

A common package included in many inetd distributions (and easily added to others) is called
tcp_wrappers . tcp_wrappers allows you to create access rules to control incoming connections
(generally stored in /etc/hosts.allow) and deny connections from unauthorized hosts. This can be
very handy even for machines behind a firewall (Section 46.12), as it provides extra security by
guaranteeing that certain kind of connections will not be allowed into your machine. As an example,
my home firewall allows SMTP (Section 46.8) and SSH (Section 46.6) connections in, but my
hosts.allow denies connections from hosts that cannot be reverse resolved (Section 46.9), thus
requiring a certain level of legitimacy before my machine will talk to a host.

— DJPH

Secure Shell (SSH)

telnet was the original application for connecting to a remote machine via the Internet. (rsh was
developed as a quick hack because telnet wasn't quite ready, and so became popular enough to be
included in distributions going forward, but telnet was always supposed to be the "real" application.)
In its normal mode, telnet connects to an inetd (Section 46.5)-managed daemon called telnetd, which
manages the login process.

Unfortunately, the login process happens entirely in cleartext, as does all interaction with the remote
shell program. Anyone tapping into the connection could get access to the user's password and thus
gain illicit access to the remote system. To prevent this, Secure Shell (SSH) was developed. SSH
uses Secure Sockets Layer (SSL), the same security mechanism that web browsers use. All
interactions between your machine and the remote machine are encrypted, thus protecting your
passwords and any other sensitive information. Its syntax is much like rsh's:
% ssh gabriel
 Logs into gabriel using your local username.
% ssh deb@bits.oreilly.com
 Logs into bits.oreilly.com using the login name deb.
% ssh michael ls /tmp
 Runs ls /tmp on michael.
% ssh deb@eli grep deb /etc/passwd
 Runs grep deb /etc/passwd on eli, using the login name deb.

SSL uses public key encryption, which means that connections are protected with operations based on
a public/private key pair. Information encrypted with the public key can be decoded with the private
key and vice versa. A server runs sshd , which, much like telnetd, accepts connections and manages
the login process. (Unlike telnetd, sshd is generally not managed by inetd, because sshd's startup is
complex and thus too slow to do every single time a connection is created. Because of this limitation,
sshd has access rules much like tcp_wrappers' built in — generally by just linking with
tcp_wrappers.) Each server has its own public/private key pair, allowing a user connecting to that
server to verify its identity. This allows you to be sure that someone hasn't managed to redirect your
connection to their machine instead (where they could collect your password, for example).

You can also set up your own keypair using ssh-keygen , which will create an identity for you.
Usually this identity is stored in $HOME/.ssh/identity (for the private key) and
$HOME/.ssh/identity.pub (for the public key). Some newer versions of SSH have different keytypes
and so use id_rsa/id_rsa.pub, and id_dsa/id_dsa.pub instead. The advantage to having an identity set
up is that you can then allow that identity to log in to other machines without a password, much like
.rhosts allowed with rsh, only more securely. Simply add your public key to the
$HOME/.ssh/authorized_keys file on the remote host.

SSH also provides a simple file copy mechanism, scp. Login is the same as with ssh; identities are
used if available, or password exchanges are encrypted. scp's syntax is much like cp's, except that an
account specification can be prepended to a filename:
% scp gabriel:buffoon.txt .
% scp frobnitz deb@michael:/tmp

The first command copies buffoon.txt from my home directory on gabriel into the current directory.
The second copies frobnitz in the current directory into michael's /tmp directory, logging in as deb.

I configure my machines to disallow telnet and rsh access, and I use SSH exclusively.

— DJPH

Configuring an Anonymous FTP Server

Providing an anonymous FTP server allows anyone to anonymously download (and possibly upload)
files. Normally, logging into an FTP server requires an account. Anonymous FTP creates an
anonymous account and carefully limits its capabilities, so that you don't have to create a full account
for everyone you might want to allow access to.

An anonymous FTP connection operates within a chroot , that is, an isolated area (see the manpage
for chroot(8) and chroot(2) for more details on what a chroot is). A few basic things need to be
provided within the chroot: a copy of ls, minimal versions of /etc/passwd (sans passwords) and
/etc/group to allow ls to display files properly, and so forth.

Some platforms provide a simple anonymous FTP setup. RedHat has an RPM called anonftp-* that
installs a proper chroot. FreeBSD's install tool can set up an anonymous FTP chroot for you. Check
your platform documentation to see if it has a simple setup for you. Failing that, refer to CERT's guide
on safely setting up anonymous FTP at http://www.cert.org/tech_tips/anonymous_ftp_config.html.

— DJPH

http://www.cert.org/tech_tips/anonymous_ftp_config.html

Mail — SMTP, POP, and IMAP

Email is one of the most well-known and commonly used Internet services. The core of Internet email
is the Simple Message Transfer Protocol (SMTP), which defines a simple, extensible mechanism by
which hosts can exchange mail messages. SMTP is spoken by programs known as Message Transfer
Agents (MTAs); sendmail is the most well known of these and is included with the vast majority of
Unixes. qmail , postfix, and exim are other common MTAs (I use qmail on all of my systems).
Configuring an MTA generally involves telling it your default domain name for outgoing email,
setting up whether it allows relaying and if so, under what limits (see below), possibly setting up
spam filtering, and the like. It may also involve setting up MX records (Section 46.9) for your
domain(s).

Relaying is when an MTA allows someone to connect and send an email to an email address not
served by that MTA. If you want to allow someone on your local machine or local subnet to send
outgoing email via your MTA, this is a very good thing. An open relay allows anyone to send
outgoing email, and this allows spammers to use your machine to send their spam. As you might
guess, this is a Very Bad Thing. All MTAs have ways of limiting relaying so that local users can send
email but spammers can't use your machine. Check your MTA's documentation, or take a peek at
http://www.mail-abuse.org for more information.

Mail User Agents (MUAs or just UAs) provide the interface between users and MTAs. On Unix,
these include programs such as mail, mailx, elm, and mutt, all of which work directly with the
filesystem. Webmail clients are also MUAs, but they run under a webserver to provide networked
access to mail. Often, though, you want to be able to use a MUA on another workstation that may or
may not be a Unix machine, in which case you need some sort of MUA proxy to manage the mail and
communicate with the remote MUA.

Post Office Protocol (POP or POP3) and Internet Message Access Protocol (IMAP) are two different
ways of providing access to remote MUAs. POP is focused on retrieving messages from a mail
server and having the MUA store them, where IMAP is focused on managing mail on a mail server
remotely rather than copying it to the client machine. Freely available POP servers include qmail-
pop3d (which comes with qmail) and qpopper (the Berkeley POP3 server, now maintained by
Qualcomm), along with a wide variety of others, depending what you're looking for. Freely available
IMAP servers include courier-imap and the University of Washington IMAP server (imap-uw).

— DJPH

Domain Name Service (DNS)

Usually, when you want to refer to a machine, you want to use its hostname, rather than having to
remember its IP address (Section 46.1). However, IP only understands IP addresses, not hostnames,
so some mapping from hostname to IP address is necessary. /etc/hosts provides a simple mapping
from hostname to IP address, but it has the disadvantage of being local to your machine. It would be
impossible to maintain an /etc/hosts file that actually reflected the constantly changing reality of the
Internet. (In fact, historically, /etc/hosts was a list of every single machine on the Internet,
downloaded regularly from a central source. This system broke down when the number of hosts on
the Internet surpassed a few hundred.)

The Domain Name Service (DNS) is a specification for a loosely coordinated, distributed database
mapping host names to IP addresses. Generally, it's implemented by the Berkeley Internet Name
Daemon (bind), running on hundreds of hosts. Each DNS server has authority over a small piece of
the database, and coordination is accomplished through delegation. The root servers know which
DNS servers have authority over the top-level domains (TLDs), such as .com, .net, .org, and so
forth. Each of those DNS servers knows which DNS server has authority over each subdomain, and
so on. DNS servers also cache information, so that a full, time-intensive search through the large
distributed database isn't necessary every time you want to access a host's IP address.

DNS also stores other records, including Mail Exchanger (MX) records for routing mail (Section
46.8). MTAs use MX records when resolving where to send an email by looking up MX records on
the domain for which the email is destined. Typically a DNS administrator creates an address record
for mail. domain.com, points it at a machine configured to catch mail for domain.com, and then
adds an MX record pointing to mail.domain.com on each host within domain.com.

DNS can affect you in a few obvious ways. The first is that you might need to diagnose problems if
for some reason your machine can't look up hostnames. host is a simple tool for making DNS queries.
host hostname.domain.com will return the IP address for hostname.domain.com. While host can do
slightly more complicated queries, I recommend dig (Section 46.3) for anything more complicated
than a quick query. whois can show you registration information for a domain; comparing this
information to a dig on that domain can tell you if your DNS cache is stale (or if the root servers
haven't been updated):
% whois oreilly.com
...
Registrant:
O'Reilly & Associates (OREILLY6-DOM)
 101 Morris Street
 Sebastopol, CA 95472
 US

 Domain Name: OREILLY.COM
...
 Record last updated on 20-Mar-2002.
 Record expires on 28-May-2003.
 Record created on 27-May-1997.
 Database last updated on 28-Mar-2002 15:33:00 EST.

 Domain servers in listed order:

 NS.OREILLY.COM 209.204.146.21
 NS1.SONIC.NET 208.201.224.11

% dig oreilly.com ns
...
;; ANSWER SECTION:
oreilly.com. 3h42m10s IN NS ns2.sonic.net.
oreilly.com. 3h42m10s IN NS ns.oreilly.com.
oreilly.com. 3h42m10s IN NS ns1.sonic.net.
...

You might also want to set up a local DNS cache by configuring bind to resolve only. (You can also
use dnscache, available at http://cr.yp.to/djbdns.html.) To do this, make sure you have bind installed
and then put these lines into your named.conf :
options {
 ...
 allow-query { localnets; };
 allow-transfer { none; };
 allow-recursion { localnets; };
 ...
}
zone "." {
 type hint;
 file "named.root";
};

zone "0.0.127.IN-ADDR.ARPA" {
 type master;
 file "localhost.rev";
};

This allows machines on your local network to query this bind and will look up queries for them
(which is what allow-recursion means). It also provides the normal basic root servers list
(necessary for bind to do full DNS queries for its clients) and the reverse lookup for
127.0.0.1/localhost.

If you need to run your own DNS server, you'll want to configure bind to be authoritative for your
domain or domains. An example is beyond the scope of this book, though; refer to the bind
documentation or to O'Reilly's DNS and Bind.

http://cr.yp.to/djbdns.html

Dynamic Host Configuration Protocol (DHCP)

Most servers have one or more static IP addresses, which are generally set in one of the boot
configuration files. However, it's not uncommon to have one or more workstations on your network,
and its often convenient to configure their addresses in a central place. DHCP allows workstations to
dynamically discover their IP addresses.

If you have a cable modem, it's quite possible you get your IP address via DHCP. Your cable
provider has a DHCP server, and any machine you plug into your cable modem becomes a DHCP
client, automatically getting an IP address from your provider's DHCP server. Section 46.11
describes NAT, which can let you run multiple machines on your home network in a case like this.

To run your own DHCP server, you need a DHCP daemon. isc-dhcpd is available at
http://www.isc.org/products/DHCP/ and allows a variety of configurations. I have a variety of
machines on my network at home, including servers with static IP addresses, workstations that use
DHCP but always get the same IP address, and a few IP addresses dynamically allocated to random
machines plugged into my network (handy for building a new machine or for friends visiting with
their laptops).

Fixed dynamic addresses are extremely useful. Most of the normal workstations I have at home are
configured to have fixed dynamic addresses: they get their IP addresses from the DHCP server, but
the server recognizes each machine's Ethernet address (otherwise known as its MAC address) and
hands out the same IP address each time. This allows me to have a centralized database of
workstation addresses and makes configuration of those workstations trivial, while still giving me
consistent IP addresses for all of my workstations.

— DJPH

http://www.isc.org/products/DHCP/

Gateways and NAT

For two separate networks to communicate, a gateway is needed. A gateway has two network
interfaces (two network cards, a network card and a modem, or so forth) and routes packets between
the two networks as appropriate. Routers and cable modems both function as gateways.

Unix machines can also function as gateways. There are several reasons to use your Unix machine as
your gateway: it is generally more flexible than the built-in gateways in cable modems and DSL
routers; it can function as a firewall (Section 46.12); and if you have a limited number of IP
addresses, it can perform Network Address Translation (NAT) for you.

NAT allows the machines on your LAN to use private addresses , that is, the address ranges set out
in RFC1918 as reserved for private networks. These include 192.168.0.0 with netmask 255.255.0.0
(also known as 192.168.0.0/16), 172.16.0.0 with netmask 255.240.0.0 (also known as
172.16.0.0/12), and 10.0.0.0 with netmask 255.0.0.0 (also known as 10.0.0.0/8). Within the private
network, you can have as many IP addresses as you need. The gateway runs a NAT server, which
translates all the private addresses into a single public address (the address of the public side of the
gateway) on the way out and back into the correct private addresses on the way back in. If you use
DHCP (Section 46.10) to configure your workstations, you can easily configure your gateway and
NAT server to be your DHCP server also and hand out private addresses to your LAN.

Note that you can really only use private NAT for workstations. Servers that need to be externally
accessible will need public IP addresses. If you are using a private network on your internal network,
you can configure your NAT server to map a particular public address to a particular private address,
allowing access to your server while still keeping the server behind your gateway/firewall.
However, for a straightforward setup, each server will still need its own distinct public IP address,
plus the main public IP address for the gateway. At the very least, you will need one public static IP
address for the gateway; it is possible to configure natd to direct specific ports on the gateway to
ports on private servers. This way you can have a private web server and a private mail server and
direct incoming port 80 (HTTP) requests to the web server and incoming port 25 (SMTP) requests to
the mail server. Read the natd documentation for more details on how to do complex configuration
like this.

In FreeBSD, enabling gatewaying is as simple as putting the line gateway_enable="YES" in your
/etc/rc.conf. Most Linux distributions provide a simple way to adjust the proper sysctl variable
(net/ipv4/ip_forward) during startup as well. On other architectures you may need to recompile
your kernel (Section 44.3) to turn on IP forwarding, or it may be on by default.

Generally all that's required to run natd is to add it to your startup files and tell it which network
device it should consider to be the "outside world":
natd -interface rl0

Linux doesn't use natd for NAT. Instead, it uses IP masquerading. Read the masquerading HOWTO
at http://www.linuxdoc.org/HOWTO/IP-Masquerade-HOWTO/ for more information on how to deal
with NAT on Linux.

— DJPH

http://www.linuxdoc.org/HOWTO/IP-Masquerade-HOWTO/

Firewalls

Gateways (Section 46.11) route packets from one network to another. Firewalls prevent some
packets from being routed, based on a set of rules. Generally these rules are based on which direction
the packet is going, to which port (Section 46.1) it is destined or from which port it came, which
protocol the packet is using (TCP, UDP, or ICMP for low-level protocols, though sometimes
firewalls also recognize higher-level protocols like HTTP), and so forth.

A fairly standard firewall ruleset would allow outgoing packets from all machines on the LAN,
disallow incoming packets that weren't part of an established connection (which allows machines on
the LAN to establish connections going out, but keeps outsiders from establishing incoming
connections), and then specifically allow things like incoming connections to port 25 (the SMTP
(Section 46.8) port) on the mail server machine, ports 80 and 443 (the HTTP and HTTPS ports) on
the web server machine, and port 22 (the SSH (Section 46.6) port) on any server that should be able
to receive SSH logins.

Cable modems and DSL routers generally have simple firewalls built in; a Unix machine functioning
as a gateway can also firewall and often has much more complex capabilities. Firewall software
varies enough that detailed configuration of a firewall is beyond the scope of this book; things to look
for include the documentation for ipfw, ipchains (Linux 2.2 kernel), or iptables (Linux 2.4 kernel).

— DJPH

Gatewaying from a Personal LAN over a Modem

Often you have only dialup access but would like your home network to be able to access the Internet.
A simple way to do this is to configure one Unix machine as a gateway (Section 46.11), with one
side of the gateway your LAN and the other side the modem connection. If you then set up the modem
connection to dial on demand, you have a simple way to share your connection between all of the
machines on the LAN.

All that's required is that you set up your PPP connection (Section 44.11), turn on PPP's NAT
(Section 46.11) handling and then turn on gatewaying (Section 46.11). Make sure that all your LAN
machines point to the gateway as their default gateway (handing out addresses via DHCP (Section
46.10) is an easy way to ensure this). Any attempt to access the Internet by any machine on the LAN
will then cause your gateway to dial up your ISP, if the modem isn't currently connected.

Note that I said that you had to turn on NAT handling. A dialup almost always means that your dialup
machine will be getting a dynamic address, and the only way to have multiple machines behind a
dynamic address is NAT. Because this is so common, some PPP clients have NAT built in; no
configuration is required and no separate natd needs to be run. NAT simply has to be enabled,
generally with the -nat option. (Linux's pppd does not support NAT by itself. Read the masquerading
HOWTO at http://www.linuxdoc.org/HOWTO/IP-Masquerade-HOWTO/ for more information on
how to deal with NAT on Linux.)

— DJPH

http://www.linuxdoc.org/HOWTO/IP-Masquerade-HOWTO/

Chapter 47. Connecting to MS Windows

Building Bridges

Too often, it seems, the discussion of operating systems devolves into accusations, recriminations,
and hurt feelings. However, the reality of a heterogeneous computing environment makes cooperation
among the various operating systems critically important. There are a number of ways that Unix
machines can interact with and partipate in Windows networks. Many of those connections work in
reverse, too, so that Windows users can begin to experience Unix without abandoning their preferred
desktop. Polemics aside, operating systems are only a means to an end that is defined by your
business. Fortunately, interoperability is becoming increasingly easier. The following sections will
show some of the options available to you.

— JJ

Installing and Configuring Samba

 Go to http://examples.oreilly.com/upt3 for more information on: Samba

Samba is an open source project that implements the Session Message Block (SMB) protocol, which
is the core networking language of the Microsoft Windows family. Of course, the dominant
networking protocol in Unix is the Transmission Control Protocol/Internet Protocol (TCP/IP). The
challenge of the Samba project is to map SMB traffic onto TCP/IP networks. This is no small feat
since SMB was designed for small, nonsegmented networks. Because all SMB network machine
names exist in one global namespace, the practical size of an SMB network is quite limited. Although
there are workgroups and NT domains (dolled-up workgroups with a domain controller), these
groups don't partition a network in the same way that IP subnets do. Workgroups are simply an
organizational grouping of machine names (although NT domains can also exercise some access
control over the resources within their jurisdiction).

Despite these limitations, most offices these days have a very large installed base of Windows
servers and workstations. With Samba, your Unix machine can participate in Windows file sharing
and print services. In fact, Samba can replace Windows file and print servers in many cases. For the
full reference on Samba (plus a good number of useful tips), pick up a copy of Using Samba from
O'Reilly & Associates.

Samba consists mainly of two daemons and a host of supporting programs. The smbd daemon is
responsible for making your machine's filesystem and printers available to a Windows network. The
nmbd daemon handles the mapping of SMB machine names into the IP namespace and browsing other
SMB resources. Some Unix systems, like Linux, are also able to mount other SMB drives onto their
local filesystems using the smbmnt command.

Samba is available for all popular Unix platforms. The project web site, http://www.samba.org, is
mirrored throughout the world, so you should be able to find a server near you. The current stable
release of samba will be available as a link called samba-latest.tar.gz. As of this writing, the latest
release is 2.2.3a.

After unpacking the archive file, change into the newly created samba subdirectory, become the root
user, and type:
./configure && make

This bit of shell logic simply means, "Execute the program configure in the current directory. It is
important to run the configure as root, since there will be certain tests done that require root access. If
it succeeds, run make ." If the compilation proceeds without error, you should install the Samba
components with:
make install

Now you can configure Samba to share your system's directories and printers with your Windows
neighbors.

There is only one configuration script for both Samba daemons: smb.conf. The Samba build process
does not normally create this file for you. However, there are several example smb.conf files in the
examples directory of the unpacked source code. These can be easily modified for your system.
Alternatively, you may wish to use the web administration tool SWAT (Section 47.4) to configure

http://examples.oreilly.com/upt3
http://www.samba.org

your installation. It is worth understanding a bit about how to configure smb.conf by hand.

Perhaps the best example configuration to start with is the file called smb.conf.default. Lines that
start with a semicolon or pound sign (#) are comments and are ignored by the Samba daemons
entirely. Blocks of related options begin with a line that has a label in square brackets. A special
block called [global] precedes blocks that define individual shared resources. Global configuration
options include what workgroup your machine is part of, what guest account to use for public shares,
and which IP addresses are allowed to connect to your SMB service. For instance:
[global]
 workgroup = MYGROUP
; hosts allow = 192.168.1. 192.168.2. 127.
 guest account = pcguest
 log file = /usr/local/samba/var/log.%m
 max log size = 50
 security = user
; encrypt passwords = yes

Here, all the shares that will be described later in the configuration file will be advertised in the
MYGROUP workgroup. Although the next line is commented out, you can use the host allow
directive to permit only certain hosts or subnets access to your SMB shares. In this example,
machines would have to be in either one of the two class C networks (IPs beginning with 192.168.1
and 192.168.2) or in the class A network (IPs beginning with 127) to even connect to your Samba
daemons. Sometimes you will create public shares that won't require a authentication. For these
shares, some real Unix account is needed. That account is specified with guest account and is
usually a nonprivileged account, like pcguest.
A good rule of thumb when customizing your smb.conf is to leave the defaults in place where you
don't fully understand the directive. The defaults err on the side of caution. Unless you have a good
reason for changing them, leave the log file and max log size directives as is. The security and
encrypt passwords directives are important and are talked about in more detail in Section 47.6.
For now, keep the defaults.

Sharing one of your local directories with the SMB network is easy. For instance:
[tmp]
 comment = Temporary file space
 browseable = yes
 path = /tmp
 read only = no
 public = yes

This block describes sharing the local system's /tmp directory with your SMB network. The comment
option is a human-readable description of the share that is available to SMB browsers (like the
Network Neighborhood application in Windows). The path directive indicates the local path you
wish to share. The browseable option, which defaults to yes anyway, makes sure that this share
appears in browse lists. The read only statement is set to no, making the share writable by SMB
clients that are able to connect (Section 47.6). When the public directive is set to yes, passwords
are not required to access this resource.

There are far too many configuration options to detail here. See the Samba documention or Using
Samba for the full story.

After you have finished configuring the system, you are ready to run the SMB daemons. You can run
these servers (as root) directly from the command line with the following:
/path/to/samba/bin/smbd -D;

/path/to/samba/bin/nmbd -D;

You can also have inetd run them. Simply add the following lines to /etc/services:
netbios-ssn 139/tcp
netbios-ns 137/udp

Add the following lines to /etc/inetd.conf :
netbios-snn stream tcp nowait root /path/to/samba/bin/smbd smbd
netbios-ns dgram upd wait root /path/to/samba/bin/nmbd nmbd

Simply restart inetd to begin answering SMB requests.

To verify that your SMB services are running, use the command-line tool smbclient to browse
yourself.
$ smbclient -L netbios-name

Your machine's NETBIOS name (that is, the name by which SMB peers are known) will be your
DNS hostname or whatever you set the global directive netbios name to be. If prompted for a
password, you can simply hit Enter for now. If your service is running, you should see your shares
displayed in a similiar way to the following:
[jjohn@marian upt]$ smbclient -L marian
added interface ip=192.168.1.50 bcast=192.168.1.255 nmask=255.255.255.0
Password:
Anonymous login successful
Domain=[WORKGROUP] OS=[Unix] Server=[Samba 2.2.2]

 Sharename Type Comment
 --------- ---- -------
 homes Disk Home Directories
 IPC$ IPC IPC Service (Samba Server)
 ADMIN$ Disk IPC Service (Samba Server)
 lp Printer hp
 tmp Disk Temporary file space
 Server Comment
 --------- -------
 MARIAN Samba Server

 Workgroup Master
 --------- -------
 WORKGROUP MARIAN

— JJ

Securing Samba

The topic of security under Samba falls mainly into two categories: how to make the SMB server
secure and how clients authenticate with the SMB server. Since the authentication issue is the
thorniest, let's talk about it first.

In the [global] section of the smb.conf file, there is a directive called security that can take one of
four values: share, user, server, or domain. Choosing share means that each shared resource has a
set of passwords associated with it. Users must present one of those passwords to use the resource.
User security requires users to provide a username and password to gain access to any of the shares.
Samba can ask another SMB server to authenticate user credentials, instead of using local files, by
selecting the server security setting. If you choose this security option, you will need to provide the
password server directive a space-separated list of NETBIOS machine names that will do the
authentication. The last security option is domain. In this model, your machine joins an existing NT
domain that does all the user credential authentication.

If you are new to Samba, your best bet is to use user security. The ugliest problem of Samba now
rears its head: to use encrypted passwords or not to. The issue here is that older Windows clients
(early Windows 95 and pre-SP3 NT 4.0) send user passwords over the network in clear text. The
good news about clear text passwords is that Samba can use your system's /etc/passwd to authenticate
users. All real accounts on your system will use their Unix username and password to connect to your
SMB shares. The problems with this approach are:

Passwords can be easily snooped from the network.
Every SMB user requires a real account on your system.
Newer SMB clients will need to be patched to connect to your shares.

If the first two reasons don't scare you off using clear text passwords, the last reason is pretty
daunting if you need to patch a lot of workstations. However, if you still want to go this route, you
need to add the elements listed in Table 47-1 to each client's registry (using REGEDIT.EXE).

Table 47-1. Registry settings for clear text SMB passwords

Operating
system Registry hack

Windows
95,
Windows
98,
Windows
Me

Create a new field called EnablePlainTextPassword with the dword value 1 in the registry key:
\HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\VxD\VNETSUP\

Windows
NT

Create a new field called EnablePlainTextPassword with a dword value of 1 in the registry key:
HKEY_LOCAL_MACHINE\system\CurrentControlSet\Services\Rdr\Parameters\

Windows Create a new field EnablePlainTextPassword with a dword value of 1 in the registry key:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\LanmanWorkStation\Parameters\

2000
If you're not sold on clear text passwords, you will need to create a separate password file for SMB
users. Luckily, there's a utility called smbpasswd that can manage this file for you. Adding a new
SMB user who already has a Unix account on your system is as simple as:
smbpasswd username

You will then be prompted for a password for this account. The drawback to this approach is the
added maintenance of keeping the SMB passwords in sync with the Unix passwords. See Using
Samba for some guidance here. The hope of the near future is to use an LDAP server (either
Microsoft's Active Directory or a Unix LDAP server) for all system passwords. This is the dream of
single-source logins and something the Samba team is working towards supporting.

After authentication issues, the big security concerns about Samba involve access control. Some of
the ways to handle access control have been shown in the configuration section of this article.
Additionally, each share can use the valid users directive to limit the set of users to a space-
separated list. You might also consider making the share read only and then put only a few users on
the write list.

— JJ

SWAT and GUI SMB Browsers

Modern versions of Samba come bundled with a web adminstration tool called swat. swat doesn't
need any web server to run, but you will need to configure your system's inetd. As with any new
service, you'll need to define a name and a port for it in /etc/services. For instance:
swat 901/tcp

You are now ready to make inetd serve swat. Add the following to /etc/inetd.conf :
swat stream tcp nowait.400 root /path/to/samba/bin/swat swat

Now, restart inetd and point your web browser to http://localhost:901. You will be asked for the root
username and password. If all is successful, you will see a screen that has seven navigation icons:
home, globals, shares, printers, status, view, and password, as shown in Figure 47-1.

Figure 47-1. SWAT's globals page

swat will be on the globals page first. Here you can set the global directives, such as workgroup
name and security type. There is online help, should an option not be immediately clear. Clicking on
the shares icon shows you the services you are currently advertising and allows you to add more.
Clicking on printers allows you to configure which printers you share with the SMB network. You
can even restart the server from swat.
Third-party browsing tools are also available for Samba. Some of these, like smb2www, are web
applications that show you the local SMB neighborhood. Others, like gsnhood and xSMBrowser, are

http://localhost:901

X11 programs that work somewhat like the Windows Network Neighborhood application. One of the
advantages of the X11 browsers is that they can be configured to allow users to mount SMB drives (if
your Unix supports the smbfs filesystem). You will certainly be rewarded by searching the web for
third-party SMB tools.

— JJ

Printing with Samba

Sharing Unix printers with a SMB network is pretty straightforward. You can use swat to select the
printer you want to share. If your /etc/printcap is configured correctly, swat will allow you to select
one of those printers from a drop-down menu. You will then be able to set access controls over that
printer, as well as make the printer browsable. Be sure to click the Commit Changes button when
you're finished to save your settings. If you're running the SMB daemons as standalone processes, you
can restart them from the status section of swat. In any case, your printers won't be shared until the
daemons are restarted.

Of course, you can also edit the smb.conf file directly. Here's how to share your default printer with
the SMB network:
[lp]
 printable = Yes
 printer name = lp
 ; printing = BSD
 ; print command = /usr/bin/lpr -r %s
 path = /var/spool/samba
 guest ok = Yes
 read only = No
 comment = hp

The block should start off with the lpr queue name. The most important directive for print shares is
printable, which identifies this block as defining a print share. The printer name needs to match
the Unix printer queue name for the printer you wish to share. If you have defined a global directive
printing (which defaults to BSD style print queues), you don't need to worry about explicitly telling
Samba how to print to the queue. In the commented-out print command directive, the %s stands for
the file you wish to print. The path directive defines the samba print spool directory. This directory
needs to be writable by the smbd process. Both guest ok and read only directives are simple
access controls. The comment block is self-explanatory.

After saving your changes and restarting the Samba servers (if needed), your shares should be
browsable by the SMB network. From Unix, you can print to SMB printers with the following
command:
$ smbclient //netbios-name/printer
smb: \> print filename-to-print

Here the smbclient program (described in more detail below) is used to connect to the SMB printer.
Using the interactive shell, the print command will send any file you specify to the printer. On some
systems, you may find a program called smbprint that is a Bourne shell wrapper around smbclient.
— JJ

Connecting to SMB Shares from Unix

From Unix, you can connect to SMB shares with the smbclient command. It provides an ftp-like
interactive environment for transferring files between your Unix system and the SMB share. It also is
an excellent tool for debugging your Samba setup. For instance, you can see what shares are available
from an SMB host with the following:
$ smbclient -L //netbios-name -U SMB_username

The -L flag request the list of available shares from the machine specified by its NETBIOS name.
You may optionally provide an SMB username name with the -U flag. If no explicit username is
provided, your Unix account name is used.

Once you have found a directory share that interests you, you can "log in" to it:
$ smbclient //netbios-name/share -U SMB_username
smb: />

You will be prompted for the SMB password associated with whichever account you used. If
successful, you will be at an interactive prompt. You may type ? or help to get all the options
available to you. Use the get command to copy files from the remote host to your Unix machine and
put to copy files in the other direction. Like ftp, Samba also provides the filename wildcard variants
mget and mput to allow you to handle multiple files easily.

— JJ

Sharing Desktops with VNC

 Go to http://examples.oreilly.com/upt3 for more information on: VNC

Virtual Network Computing (VNC) is an open source project from AT&T Labs in Cambridge,
England. It is a client/server system that allows users to manipulate desktop environments remotely.
There are VNC servers for Unix, Windows, and pre-MacOS X environments. The options for clients
are even wider since there is a Java applet VNC client. This can be used on any system that supports
a modern web browser and Java. There is also a native VNC client for Unix, Windows, and pre-
MacOS X machines. VNC provides a platform-independent way to control a heterogeneous network
from any client platform.

VNC provides a live picture of a desktop. When you move your mouse on the client end, the mouse
also moves on the server. The VNC client gets a kind of "graphic diff" of the change on the remote
desktop and applies that to its current notion of the desktop. As you might guess, VNC isn't ideal for
high-performance video games, but it is very serviceable for system administration and development.

You can get either precompiled binaries or the source code at
http://www.uk.research.att.com/vnc/download.html. If you choose to compile VNC from the source,
you will need to get and unpack the tar archive from the above site. To build the source, change into
the unpacked archive directory and type:
$ xmkmf
$ make World && cd Xvnc && make World

If the compile goes cleanly, change to root and install:
make install

http://examples.oreilly.com/upt3
http://www.uk.research.att.com/vnc/download.html

Connecting to a Windows VNC server

Setting up a VNC server on a Windows machine is fairly straightforward. Simply grab the
appropriate binary from the VNC download page, unzip the archive, and run the SETUP.EXE
program in the vncserver folder. VNC will create a folder in the Start menu in which you'll find the
VNC server program. When started, this program will ask you for a password that clients will need
to be able to use your Windows machine.

Connecting to any VNC server requires three things. The first is the server's hostname or IP address.
The second is the display number of the remote desktop. Windows and Macintosh servers can only
have one display (the desktop), while Unix machines can have many VNC servers active at once (just
like they can have many X sessions running concurrently). Display numbers begin at zero. The last
piece of information needed is the password. Be advised that this password is in no way secure, nor
is the VNC network traffic encrypted.

To connect to a VNC server requires running X. From an Xterm, type the following:
$ vncviewer hostname:display_number

If the VNC server is running on that machine, you'll be prompted for a password. You should see
something like Figure 47-2.

Figure 47-2. Unix VNC client connecting to a Windows server

VNC desktops are also available through Java applets that can be accessed through modern web
browsers. The URL for that applet is comprised of the hostname of the VNC server and a port number
that is the display number plus 5800. For example, the URL for connecting to the VNC server on a
Windows machine called karl.oreilly.com would be http://karl.oreilly.com:5800.

Setting up VNC on Unix

It is sometimes convenient to be able to connect to a Unix desktop remotely from a machine that isn't
running X. Fortunately, setting up VNC on UNIX can be as straightforward as:
$ vncserver

VNC will pick the next available display number for your VNC server and report this to you.
New 'X' desktop is marian:1

Starting applications specified in /home/jjohn/.vnc/xstartup
Log file is /home/jjohn/.vnc/marian:1.log

If you haven't picked one before, you will be prompted for a password. Again, this has nothing to do
with your system's /etc/passwd. Keep in mind that the new server is running under the account that
started it. The security issues are manifold, so think carefully about how you deploy this very useful
service.

By default, VNC runs the very lean window manager twm . The fewer the needless graphic elements,
the better network performance you can expected. However, you can adjust the details of that desktop
by looking in your home directory for the .vnc directory. There, you'll find the VNC log, pid, and
password files. More importantly, you'll find the xstartup file, which works just like xinitrc. You can
start X programs, set the desktop color, and choose the window manager to run from this file. Here's
an example of the kinds of customizations you can do:
#!/bin/sh
xrdb $HOME/.Xresources
xsetroot -solid gray85 &
xterm -fg blue -bg lightyellow -g 80x25+0+0 &
xterm -fg red -bg lightyellow -g 80x25+0-0 &
xterm -fg darkgreen -bg lightyellow -g 80x25-0+0 &
xclock -digital -update 5 -bg lightyellow -g -0-300 &
exec twm

Here, three Xterms and xclock are arranged in a convenient way. VNC will also look in your .twmrc,
if you're using the default window manager, for further customizations.

— JJ

Of Emulators and APIs

Sometimes you will need to use a Windows application that hasn't been ported to Unix. While you
can buy an additional Windows machine just for that program, there are a few Unix solutions that will
allow you access to the Windows environment from the comfort of X. While none of the solutions
offered below have the performance of Windows running natively on dedicated hardware, each is
worth mentioning.

VMWare

What's the next best thing to having another machine run Windows? Having a virtual machine running
Windows. VMWare, Inc., has produced software called vmware for Intel Linux that creates a virtual
i386-class machine on which Windows can be installed. All your hardware is virtualized, so the
virtual machine created is a somewhat slower clone of the host. Still, the performance is adequate for
Office applications and development. vmware creates a private network on your machine so that,
with Samba (Section 47.2), you can get to your Unix filesystem from your virtual Windows machine.
You can get an evaluation copy at http://www.vmware.com.

http://www.vmware.com

Wine

If a virtual machine is overkill for your needs, you might want to look into the open source project
called wine . A recursive acronym for Wine Is Not an Emulator, the wine project also runs only on
Intel machines, and it tries to emulate the Windows API for Windows-native applications. This
project has been under development for a long time and isn't quite ready for mission-critical
applications yet. However, many Windows projects can mostly function under wine, including some
video games, such as Blizzard's StarCraft. You will find more information about wine at
http://www.winehq.com.

— JJ

http://www.winehq.com

Citrix: Making Windows Multiuser

Unix users needing to access Windows applications will find that VNC is not a workable solution in
all instances. The reason for this is that Windows operating systems were not designed to be
multiuser; they do not allow multiple concurrent user sessions. When you have more than a few users
needing to run a Windows application, such as Outlook to connect to corporate email, your options
are to put a Windows PC on every desk, run Windows under a virtual machine, or set up Windows
Terminal Services (WTS).

WTS is the current name of the multiuser software Microsoft provides with the Windows 2000
Server product family. Its former iteration was Windows NT 4.0 Terminal Server. Similar to VNC,
WTS provides a Windows 2000 desktop to a connecting client, but does it in true multiuser fashion.
Dozens of users can be connected to the same machine, running different processes, all independent of
the other. However, WTS is only part of the solution for Unix users. This is because Microsoft only
allows connections to a WTS server via the Remote Desktop Protocol (RDP) but doesn't provide any
non-Windows clients that use RDP.

On the flip side, Citrix provides a Unix client program that can connect to a WTS server, but it only
uses the Independent Computing Architecture (ICA) protocol. For that client to work, a server add-on
product to WTS called Citrix Metaframe must be installed. Thankfully, Metaframe provides
additional features to a WTS server besides ICA connectivity that helps to justify the additional cost.

One thing to be careful of when implementing a WTS solution is licensing. Microsoft is very strict in
its rules about what machines can connect under which circumstances. Like tollbooths on the
highway, Microsoft wants to get paid no matter how you get on, or which vehicle you're driving. To
put licensing simply, you must have a Windows 2000 Server license for each server, a Windows
2000 Server Client Access License for each machine connecting to the server, a Terminal Services
License for each machine actually using WTS, and, if you are using Office, each machine that runs
Office off the WTS server must have a license. These are not concurrent licenses: if 50 machines are
going to use Office at some point, all 50 must have licenses, not just the 10 that are connected at any
given moment. Citrix licenses are in addition to Microsoft licenses but are thankfully more friendly.
Citrix allows the use of concurrent licenses, which means 20 licenses could cover the needs of 50
users, if only 20 are going to be connected at a time. Full details about Microsoft licensing in a WTS
environment can be found at
http://www.microsoft.com/windows2000/server/howtobuy/pricing/tsfaq.asp.

http://www.microsoft.com/windows2000/server/howtobuy/pricing/tsfaq.asp

Citrix Metaframe

Assuming that you have a properly installed and configured Citrix Metaframe server to connect to,
you should download and install the appropriate ICA client for your operating system from
http://www.citrix.com/download/. Installation is very simple and adequately explained in the
provided documentation.

After installation, as a user, run wfcmgr from program directory you installed to. This will launch the
configuration program for the ICA client; see Figure 47-3.

Figure 47-3. Existing entries in wfcmgr

To create a new entry, select New from the Entry menu. You will see Figure 47-4. Though all settings
are important, be sure to adjust the settings pertaining to the Window properties. A good tip is to set
up your screen to be 90 percent of your display size, to use a shared palette of colors, and to map
drive letters to your home directory, floppy, and CD-ROM. Using full-screen mode will disable the
use of multiple desktops on your Unix system, so it is not a good idea. Using a shared palette prevents
odd coloring on your display. Mapping to your local devices is useful for transferring files between
the WTS server and your workstation. The settings to do this are under the Option menu after you've
saved the entry.

http://www.citrix.com/download/

Figure 47-4. Creating a new entry in wfcmgr

Running wfcmgr also creates a .ICAClient directory in the user's home directory. Copy this directory
to /etc/skel to insure that new users are automatically setup with default settings to access WTS. For
existing users, copy the directory to their home directory and give ownership to that user.

Create a symbolic link, such as /usr/local/bin/citrix, in your default path that points to wfcmgr. Give
it an easy name like citrix. Using this link name, you can launch saved configurations in wfcmgr with
a single command.
$ citrix desc
 description_name

description_name, in this instance, is the descriptive name you gave your entry in wfcmgr (see
Figure 47-3). It is case-sensitive.

Metaframe offers many additional features, such as load balancing, application publishing, automatic
updates of ICA clients, and a web-based client, that may help justify its cost. Citrix even sells a
Metaframe for Unix that provides Unix programs to Windows clients that don't have an X Server.

rdesktop

The fact that Microsoft has not provided an RDP client for Unix has not stopped enterprising
programmers in the Open Source community from creating one. This program, called rdesktop , is
available at http://www.rdesktop.org. In everyday use this program has proven to be as useful as the
ICA client, though it lacks support for sound, high color depths, drive mapping, or client-side support
for serial and parallel ports. If these features are important to you, you will need Metaframe; if not,
this free program is an excellent alternative.

http://www.rdesktop.org

Hob

Another RDP client, called HOBLink JWT, is available from Hobsoft, http://www.hobsoft.com. The
most interesting feature of this program is that it is written in Java. This means that any client that has
a browser with a working Java runtime should be able to run this program. Hobsoft has provided a
lot of features in this product, and it is a viable alternative to Citrix Metaframe.

— DB

http://www.hobsoft.com

Part IX. Security

Part IX contains the following chapters:

Chapter 48

Chapter 49

Chapter 50

Chapter 51

Chapter 48. Security Basics

Understanding Points of Vulnerability

Rather than being impregnable fortresses of steel, most computers are about as leaky as old wooden
fishing boats. Though the press has focused primarily on Windows security violations in the last few
years, Unix boxes are just as vulnerable and require as much, or more, effort to keep safe.

If your Unix box sits in your home, it is protected from unauthorized access, you live alone, and you
never connect to the Internet, security probably isn't a concern for you. However, chances are your
Unix box is fairly easy to access physically, and your system is most likely connected to the Internet
through a modem or other network connection. In both these cases, this chapter and those that follow
are of extreme interest to you.

Anytime you have a multiuser system, your account is vulnerable to others in the system and to anyone
who might break into the system from outside your organization. The only way to protect accounts is
to ensure that good account management practices are in place, such as removing accounts when
people are no longer with the organization and using difficult-to-hack passwords, as well as making
sure that sensitive data is protected by accidental or deliberate access.

For single-user systems, you'll want to make sure that someone can't accidentally or deliberately log
into your machine at home or work. Chances are no one would try, but particularly if you have
something such as Linux installed on a laptop, you're going to want to keep the snoops out.

More importantly, before you connect to the Internet, you have to know what you're doing with your
system, particularly if you run applications such as web servers on your system. All you need is one
harmful worm or virus, or to have a cracker break into your system, to have all your work and effort
compromised.

The above areas of vulnerability — account, machine, and system — probably don't surprise you. But
are you aware that you're vulnerable to yourself?

How many times have you accidentally deleted a file? Now, how many times have you deleted a file
and not had backup in place? Security isn't just a protection against external intrusion. Used
effectively, security is also an effective means to protect the system and the data and applications
from internal error and blunder.

Before you install your Unix operating system and turn on your machine, you need to have a security
plan in place, starting with a security checklist (Section 48.2).

— SP

CERT Security Checklists

If you can stand the access times, one of the most valuable web sites for Unix security information is
the CERT (Computer Emergency Response Team) web site at http://www.cert.org. At this site you'll
be able to find information about the latest security alerts (Section 48.3), where to get security
patches for your operating system, and the CERT Unix Security Checklist.

The CERT Unix Security Checklist is a step-by-step overview of what security procedures you need
to implement for your Unix system, regardless of the type of system you have.

There's no magic formula in the Checklist, just good common sense. First of all, keep your system up
to date with the most recent security patches. Always apply the most restrictive permission (Section
50.5) on a file: if a file only needs to be read-only, make sure its file permissions are set to read-only,
and so on. Other tips are disabling Internet services you're not using and protecting your system so it
can't be used to launch denial-of-service attacks (DoS) (Section 48.5).

Above all, the Checklist emphasizes an attitude of "Go ahead, be paranoid — someone is out to break
into your system." If your Unix box is connected in any way to the Internet, the Checklist is the first
thing you should print out and review, one step at a time, before you install your Unix operating
system or turn on your machine. Definitely before you connect to the Internet.

Note
The CERT web site has extremely slow access times. I imagine this is because it's a popular site. I can also imagine that the site is the target of every cracker in the world. Regardless of the cause of the slowness, access the site only during non-
peak hours, if there is such a thing with a 24-hour-a-day Internet.

— SP

http://www.cert.org

Keeping Up with Security Alerts

If you have a Microsoft Windows system, you're probably familiar with the frequent security bulletins
from Microsoft's Security division. One of the nice things about Microsoft's security is that you can
get security alerts emailed to you so that you're made aware of new vulnerabilities as soon as
Microsoft acknowledges them.

In the Unix world, you may have to make a little more effort to keep up with the security alerts for
various flavors of Unix; however, keeping up with the alerts isn't a horrendous amount of work. It's
just a case of knowing where to look for them.

I've already mentioned CERT (Section 48.2). This web site has some of the best information about
new security vulnerabilities, and if you're managing a multiuser Unix system, you should check this
site at least once a day. Even if you only have a single-use Unix box, you should check the site
frequently. Note, though, that CERT publicizes all security vulnerabilities, not just Unix ones. On the
day I wrote this, when I checked at CERT's Advisories page (at http://www.cert.org/advisories/),
there were advisories on Oracle, the zlib Compression library, PHP, and Microsoft's Internet
Explorer, to name just a few.

If you're running a Linux system, you can check Linux Security at http://www.linuxsecurity.com for
up-to-date information on security problems related to Linux operating systems. In addition, you can
read articles on Linux security and download security-related utilities. When I accessed the site, the
current reported exploit was related to a vulnerability with Apache, and the most current advisory
was warning about a potential buffer overflow (Section 48.4) problem related to FreeBSD's squid
port.

What I particularly like about Linux Security is that it shows security advisories categorized by flavor
of Unix/Linux. Among the categories are Corel, Caldera, Red Hat, Slackware, Debian, FreeBSD,
NetBSD, and so on. Since I run a Red Hat Linux box as well as a FreeBSD web server, it is
particularly helpful for me to see what I need to be aware of in both of these environments.

O'Reilly publishes information about Unix and open source at the Linux DevCenter at the O'Reilly
Network (at http://linux.oreillynet.com). Rather than list all vulnerabilities, this site tends to focus on
specific instances and then covers each in more detail than you'll normally get at the other security
sites.

— SP

http://www.cert.org/advisories
http://www.linuxsecurity.com
http://linux.oreillynet.com

What We Mean by Buffer Overflow

You can't run any operating system without getting security alerts related to buffer overflow
vulnerabilities. Unless you're into system hacking, you're probably not aware of what this means and
why buffer overflow is the base cause of so many alerts.

In a procedural language, such as the C programming language used to create Unix, functionality is
broken down into separate, reusable functions. These functions are then called whenever that
functionality is needed. Data is passed between the application and the function through function
arguments.

Function arguments are pushed onto a section of memory called the stack. Additionally, the return
point for the function — that place in the application where the function is called — is also pushed
onto the stack. Finally, data internal to the function is also pushed onto the stack.

A buffer is allocated on the stack to store function parameters. If a parameter exceeds the buffer size,
the data overwrites the other stack contents, including the function return call, resulting in an
application failure. Many functions commonly used in C, such as scanf or strcpy, don't ensure that
the buffer meets the size of the data copied, and if the application developer doesn't perform this
check herself, the application will most likely fail the first time the data copied exceeds the size of the
buffer.

An example of this type of problem is an application that opens and copies the contents of a file using
one of the C functions that don't do buffer size checking. As long as the file contents are small enough,
the application doesn't generate an error. However, if a file's contents are too large, the application
will fail, abruptly, leaving application support personnel scratching their heads wondering why an
application that worked to a certain point stopped working.

An application failure is not the worst that can happen in this situation. Crackers with a good
understanding of how the stack works and knowledge of assembly code can exploit this vulnerability
by writing code to the stack beyond the function arguments and function return address. In addition,
they can rewrite the function return address to point to the address of the beginning of this malicious
code. When the function finishes, the address of the new hacked code is pushed to the processor
rather than the return location of the function, and the hacked code is executed, usually with disastrous
results.

To prevent both application crashes and buffer-overflow vulnerabilities, boundary-checking versions
of most C functions are used rather than the unsafe functions. The application developer also adds
boundary checking to his or her own code, such as checking the size of the application file before
processing it from our example application. Unfortunately, this doesn't always happen.

When you read about or receive an alert about buffer-overflow vulnerability in a Unix utility or
application, what's happened is that crackers — or security personnel — have discovered that the
application contains code that isn't testing the boundaries of the data being processed. Usually a patch
that replaces the defective code accompanies this alert.

— SP

What We Mean by DoS

Another major security problem is one in which users of a Unix system can't access the functionality
because access attempts are being blocked in some way. These blocking efforts are called,
appropriately enough, denial-of-service attacks, usually abbreviated DoS.

CERT defines three types of DoS attacks:

An attack that consumes all resources
Manipulation of configuration information
Manipulation of network components

Resources in a networked system include memory, bandwidth, Internet connections, and so on. In a
DoS attack, the attacker seeks to use these resources in such a way that no one else can connect to the
system. Famous examples of this type of attack involve a concept known as the distributed denial-of-
service attack, DDoS.

In a DDoS attack, several machines that have not been properly secured against external control are
compromised, and an application is placed on each. This application lies dormant until triggered by
the attacker. When this happens, these compromised machines — known as handlers — direct other
compromised machines — known as agents — to run an application that generates network packets,
all of which are directed to a specific target. These packets overwhelm the available bandwidth of
the victim, and they may also overwhelm routers in the path to the victim to the point where entire
sections of the Internet may be negatively impacted.

Though Windows-based rather than Unix, the Code Red worm that caused so many problems in 2001
was based on the premise of DDoS.

Though disabling, DoS attacks based on overutilizing ephemeral resources such as bandwidth deny
access but don't permanently damage a machine's infrastructure. However, another DoS attack is one
in which an attacker gains root access to a machine and modifies configuration information such as
usernames and passwords, in such a way that no one can access the network.

How simple is it to access configuration information? Accessing the password file on a system can be
as easy as using TFTP (Trivial File Transfer Protocol) to download the password file unless TFTP is
disabled or configured to prevent unauthorized access.

In fact, a DDoS attack is dependent on the attacker getting access to several machines in order to
launch an attack. Keeping your system clean and protected not only prevents invasion of your own
systems, but prevents your Unix boxes from being used to launch attacks on others.

The third type of DoS attack is based on physical attack. Literally, if someone comes after your wires
with an axe, no security software is going to protect your system. However, axe-wielding intruders
are beyond the scope of this book, so we'll concentrate primarily on software and system adjustments
to protect against DoS attacks.

— SP

Beware of Sluggish Performance

Contrary to popular myth, systems don't just start to fail for no reason. If your system is starting to
perform poorly, chances are it's because of something that's been initiated. In most cases, the cause
has innocuous roots, such as a poorly designed script; however, sluggish performance could also
mean an external attack. Regardless of the origin of the decreasing efficiency, you'll want to take steps
to locate the problem and remove it before it takes your system down.

If you notice that your systems performance is degrading, there are several built-in utilities you can
use to troubleshoot possible problems. Probably the most commonly used utility is ps (Section 24.5);
however, there are other utilities that can provide useful information.

Check Processes

The first check to perform if you think that you have a destructive agent running on your machine is the
processes currently in operation. You'll use the basic ps command to do this, after first checking to
make sure that ps itself hasn't been replaced by a bogus program (check installation date, location,
and size to see if the ps utility has been replaced).

Running the ps command with the flags -aux shows each user's processes, the CPU and memory
usage, time started and command. Here's an example of output:
> ps -aux

root 6910 0.0 0.1 2088 516 ?? IsJ 30Apr02 1:04.80 /usr/sbin/sshd
root 6955 0.0 0.0 2600 384 ?? IsJ 30Apr02 0:06.67 /usr/local/sbin/xinetd -pidfile
/var/run/xinetd.pid
root 6970 0.0 0.0 624 0 #C1- IWJ - 0:00.00 /bin/sh /usr/virtual/share/
pkgs/installed/mysql-server/3.22.32/bin/
mysql 6994 0.0 0.0 11216 144 #C1- SJ 30Apr02 0:35.83 /usr/local/libexec/
mysqld --basedir=/usr/local --datadir=/var/db/my
root 7003 0.0 0.3 10028 2616 ?? SsJ 30Apr02 3:33.55 /usr/local/www/bin/httpd -DSSL
nobody 38060 0.0 0.3 10324 3116 ?? SJ 12:01PM 0:08.60 /usr/local/www/bin/httpd -DSSL
nobody 38061 0.0 0.3 10332 2612 ?? SJ 12:01PM 0:08.23 /usr/local/www/bin/httpd -DSSL
nobody 38062 0.0 0.3 11212 2656 ?? SJ 12:01PM 0:08.89 /usr/local/www/bin/httpd -DSSL
nobody 38117 0.0 0.2 10352 2580 ?? SJ 12:01PM 0:09.37 /usr/local/www/bin/httpd -DSSL
nobody 38314 0.0 0.2 10332 2596 ?? SJ 12:03PM 0:08.98 /usr/local/www/bin/httpd -DSSL
root 62104 0.0 0.0 2112 400 ?? SJ 9:57AM 0:00.16 sshd: shelleyp@ttyp2 (sshd)

In this listing, several processes are being run by root, but all are normal processes and accounted
for. In addition, several processes are being run by "nobody," which is the generic user used with
HTTP web page access. Using additional ps flags displays additional information, including -e for
environment and -f for command-line and environment information of swapped-out processes.

Checking Swap Space

If your system is under DoS attack, your swap space is a vulnerable point. This hard disk space is
reserved for use by the operating system and to provide space for temporary files. If your system is
sluggish and you suspect a possible DoS attack — or just a badly behaving script that results in a lot
of temporary files — the first thing you should check is how much swap space you have.

The pstat utility can be used to check swap space when using the -s option on the command line:
pstat -s

The result will be a listing of swap areas by device with available and used swap space. If the
percentage of used space is much higher than normal, you probably have a bad script or external
interference. Additional utilities can help you determine which.

Within FreeBSD and other Unix systems, swapinfo returns the same information as pstat -s. If you're
running a Mac OS X system, instead of pstat, you'll use the ls command and check the contents of
/var/vm:
ls -l /var/vm
-rw-------T 1 root wheel 000000000 Jun 4 12:56 swapfile0

Since the system wasn't under load, the swap space didn't have any contents at the time this command
was run.

Check Network Connections

Another check you can run if your system is running sluggishly and you think you might be under attack
is netstat . This command will return activity on Unix sockets as well as all of the active Internet
connections, including referrals if the connection occurs through HTTP.

Here's an example of netstat output:
Active Internet connections
Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp4 0 0 burningbird.http a25253.upc-a.che.3617 TIME_WAIT
tcp4 0 0 burningbird.http pm66.internetsee.4301 TIME_WAIT
tcp4 0 0 burningbird.http strider.ccs.neu..4492 TIME_WAIT
tcp4 0 0 burningbird.http strider.ccs.neu..4491 TIME_WAIT
tcp4 0 0 burningbird.http strider.ccs.neu..4490 TIME_WAIT
tcp4 0 0 burningbird.http mailgate.ltsbfou.57600 FIN_WAIT_2
tcp4 0 0 burningbird.http mailgate.ltsbfou.57595 FIN_WAIT_2
tcp4 0 20 burningbird.ssh adsl-64-168-24-1.1076 ESTABLISHED
tcp4 0 0 burningbird.submission *.* LISTEN
tcp4 0 0 burningbird.smtp *.* LISTEN
tcp4 0 0 burningbird.domain *.* LISTEN
tcp4 0 0 burningbird.http *.* LISTEN
tcp4 0 0 burningbird.https *.* LISTEN
tcp4 0 0 burningbird.pop3s *.* LISTEN
tcp4 0 0 burningbird.ssh *.* LISTEN
udp4 0 0 burningbird.domain *.*
udp4 0 0 burningbird.syslog *.*
Active UNIX domain sockets
Address Type Recv-Q Send-Q Inode Conn Refs Nextref Addr
e5ed4cc0 stream 0 0 e5f0cbc0 0 0 0 /tmp/mysql.sock
e5ed4d40 stream 0 0 0 0 0 0
e5e08380 dgram 0 0 0 e5ed4dc0 0 e5e083c0
e5e083c0 dgram 0 0 0 e5ed4dc0 0 e5ed4d80
e5ed4d80 dgram 0 0 0 e5ed4dc0 0 0
e5ed4dc0 dgram 0 0 e556c040 0 e5e08380 0 /var/run/log

Specifying netstat with the command line option -s provides a detailed report of per-protocol —
TCP, UDP, IP, and so on — usage statistics.

The netstat program is helpful not only for determining if someone is trying to break into your system,
but also for determining if your system is having basic communication problems.

Other Checks

You can use iostat to check I/O statistics on your various devices. For instance, to check to see what
kind of activity is occurring on all devices every three seconds for nine runs, issue the following
command:
iostat -odICTw 2 -c 9
 tty mlxd0 acd0 fd0 md0 cpu
 tin tout blk xfr msps blk xfr msps blk xfr msps blk xfr msps us ni sy in id
 0 0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0 0 0
 0 0 224 12 167 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0 0 0
 0 0 568 36 55.8 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0 0 0
 0 0 144 5 402 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0 0 0
 0 0 112 7 287 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0 0 0
 0 0 48 3 670 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0 0 0
 0 0 240 15 134 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0 0 0
 0 0 192 12 168 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0 0 0
 0 0 96 6 335 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0 0 0

The result allows you to compare I/O over a period of time. Note that in some systems, iostat may be
io_stat, instead.

Another check is vmstat (vm_stat), which displays the virtual memory statistics for a machine. As
with iostat, running the command several times over a period of time can show if there is unusual
activity within virtual memory. For instance, if the free memory unexpectedly decreases, no known
user is running a process, the occurrence of the free memory use is consistent (occurring at a set time
of day), and no other system processes or cron jobs are known to be running, you probably have an
intruding application running somewhere on the system. Other tests can then be used to help you
determine what the application is.

— SP

Intruder Detection

From the CERT Intruder detection checklist at
http://www.cert.org/tech_tips/intruder_detection_checklist.html comes a variety of helpful steps to
take to determine if your system has had an intruder.

Check logfiles first, and then check for any unusual setgid (Section 49.5) or setuid files.

A key symptom that something is wrong with your system is when something appears that doesn't
belong. This includes files, directories, users, and groups. Unfortunately, these are also almost
impossible to detect unless they occur in obviously incorrect locations.

You can search for modified files based on a time range using the find (Section 9.1) command. For
instance, the following two commands will find all files that have been changed in the last two days
excluding today. The results are piped to cat for easier reading:
> find / -mtime -2 -mtime +1 -exec ls -ld {} \; | cat
> find / -ctime -2 -ctime +1 -exec ls -ldc {} \; | cat

Running these commands as root will ensure you have access to all files and directories. Note that
depending on the size of your system, the command can take a considerable amount of time.

Also check for hidden files, those beginning with a period. The following command searches every
directory but NFS mounted ones for files beginning with a period (.):
find / -name ".*" -print -xdev | cat -v

In addition, review critical files such as /etc/passwd and the crontab file (Section 25.3), checking for
new and unusual entries. You might want to keep off-disk copies of the files to use for comparison;
online versions can also be compromised.

Check binaries for possible changes and replacements — including backups — and changes to files
such as xinetd.conf, allowing services such as telnet that were originally disallowed.

In other words, according to CERT, knowing your system and checking for changes using built-in
utilities can be the best approach to take to detect intrusion.

— SP

http://www.cert.org/tech_tips/intruder_detection_checklist.html

Importance of MOTD

If you live in the United States, and depending on which state you live in, if you include the word
"welcome" within the MOTD, this can legally be construed as an invitation, which means that anyone
can come into the system if they can find a username and password. And since usernames and
passwords are transmitted in plain text using telnet or a similar service, you're basically leaving your
system open. If someone breaks in, they may not even be prosecutable.

Avoid the use of the word "welcome" in your message; instead use a message that specifically states
that only authorized personnel are allowed access to the system. In addition, you'll also want to
consider removing operating system information from the MOTD: no need to tell people more about
your system then they need to know.

— SP

The Linux proc Filesystem

Linux contains a /proc filesystem with virtual files that maintain the current state of the system. You
can actually access the proc system directly and view the command, command-line parameters, and
other information.

In particular, if you have a suspicious process (detected using ps (Section 49.6)), you can investigate
the process more thoroughly using the Linux proc filesystem. For instance, if ps -ux returns the
following procecss:
Root 1684 0.0 0.7 7492 3888 ? S 13:44 0.00 rp3

you can change to the process directory by using the process number:
bash# cd /proc/1684

Once there, typing ls will show several entries, including ones titled cwd, exe, and cmdline. At that
point you can use cat (Section 11.2) to print out the cmdline entry, which will show the command,
including parameters that kicked off the process:
bash# cat cmdline
rp3

Typing ls -l on cwd results in:
lrwxrwxrwx 1 root root 9 June 4 17:44 cwd-> /root

Typing ls-1 on exe results in:
lrwxrwxrwx 1 root root 9 June 4 17:44 cwd-> /usr/bin/rp3

The proc filesystem is extremely helpful, not only for security reasons, but also for general system
usage.

— SP

Disabling inetd

Any remote access that takes a plain text password increases the vulnerability of your system. This
includes the use of telnet and FTP.

If your flavor of Unix is running the inet daemon, you can disable telnet, ftp, rlogin, and so on by
accessing the /etc/rc.conf file and setting the inetd_enable value to no:
inetd_enable=no

You can disable individual services by accessing the inetd.conf file and setting the associated line to
no, or commenting the line out, as shown in Darwin and BSD environments such as OpenBSD or
FreeBSD:
#telnet stream tcp nowait root /usr/libexe/tcpd telnetd

— SP

Disallow rlogin and rsh

The remote access tools such as rlogin, to login remotely, and rsh , to execute commands on a remote
system, are handy. For instance, with rlogin , if your username is the same on the remote machine as it
is on the local machine, you don't have to provide your username and password.

However, the very simplicity of the rlogin and rsh commands makes them security risks. If you're
concerned about the security of your Unix box, you'll want to disable these.

Disable both rlogin and rsh by commenting out their entries in inetd.conf or xinetd.conf, depending
on which your system is running.

— SP

TCP Wrappers

TCP Wrappers are programs that work with inetd to monitor and filter telnet, ftp, rlogin, and other
services. In particular, TCP wrappers provide log information showing access using these services,
particularly helpful if you're trying to determine if someone's attempting to break into your system.

In FreeBSD, the TCP wrapper tcpd (documented at http://www.freebsddiary.org/tcpwrapper.php) is
built into the system starting with FreeBSD 3.2 release, and is configured through the /etc/syslog.conf
file. The following lines from an existing file show that TCP logging is turned on for all remote
access such as telnet, putting the log messages into a file called auth.log:
 auth.* /var/log/auth.log
mail.info /var/log/maillog
lpr.info /var/log/lpd-errs

Since I have telnet, rlogin, etc. disabled from my system, nothing shows in the log file.

The TCP wrapper is also installed by default in Mac OS X. The tcpd daemon is installed in place of
the service — such as in place of fingerd — or the entry for the service is adjusted to point to tcpd in
/etc/inetd.conf:
finger stream tcp nowait nobody /some/where/tcpd in.fingerd

By default, all unprotected external sources are wrapped with the TCP wrapper.

In some systems, the TCP wrapper is controlled by the /etc/hosts.allow and /etc/hosts.deny files
instead of within syslog.conf. You'll want to check tcpd for your system by accessing the manpage for
it:
man tcpd

The same configuration and TCP wrapper (Section 46.5) — known as the Wietse Venema's network
logger — is used with Debian (downloadable at http://packages.debian.org/stable/base/tcpd.html)
and Linux, as well as other operating systems.

— SP

http://www.freebsddiary.org/tcpwrapper.php
http://packages.debian.org/stable/base/tcpd.html

Chapter 49. Root, Group, and User Management

Unix User/Group Infrastructure

Unix users are given unique usernames and also added to one or more Unix groups (Section 49.7).
Both a user and a group own all content within a system. If you list information about a file, you'll see
both user and group ownership:
> ls -l
-rw-r--r-- 1 root weblog.burningbi 32230 May 22 13:58 access_log
-rw-r----- 1 shelleyp weblog.burningbi 3995 May 12 11:08 analog.cfg
-rw-r--r-- 1 root weblog.burningbi 0 May 22 12:01 error_log

In this listing, the users are root and shelleyp, and the group (truncated) is weblog.burningbird.net.
You're assigned a primary group when you're added to a system. In addition, you can also be assigned
to one or more secondary groups. Depending on the type of Unix system, you can either work with
files that are owned by any one of the groups you belong to or you can work with files of your
primary group only.

BSD-based Unix systems allow you to work with files from primary and secondary groups; this
includes Darwin as well as the popular PC-based BSD systems, FreeBSD, and OpenBSD. System V
systems restrict you to working with a primary group only.

For the majority of Unix systems, user and group membership is controlled through a couple of files,
passwd and group, stored in the /etc directory. This directory has root write access only, but read
and execute access by all users.

— SP

When Does a User Become a User

A user is added to the system when they're given an entry in the passwd file, as in the following entry:
mike:*:1007:1007:Mike User:/usr/home/mike:/usr/local/bin/bash

The elements, delimited by colons that make up this record, are:
Username

Name used to login to system
Password entry

Encrypted password, asterisk symbolizing bad password or use of shadow file, or exclamation
point (!) to signify that the password is in /etc/security/passwd or in /etc/master.passwd in
FreeBSD systems

UID
Unique user identifier

Primary group ID
ID of group that will be primary group for user

Comment
General text holding name, address, and so on

User's home directory
User's startup shell

In the example, "mike" has a UID of 1007, belongs to group 1007, has a home directory in
/usr/home/mike, and logs into a bash shell. In this FreeBSD system, the password is stored in a
separate shadow file.

Usernames are usually no more than 8 characters, though this differs based on type of system.
Usernames consist of alphanumeric characters and are case-sensitive. Case sensitivity also applies
with passwords, which can be longer and use other characters.

The UID must be unique, as would be expected. When a new user is added, the next available UID is
usually used, but there's no restriction on having gaps or using order with UIDs. However, if the Unix
box is part of a network, it is essential that the person's UID be unique across the network. The same
constraints apply to the group ID: in most cases a new group ID equal to the UID is assigned the
person. Addition to other groups occurs after the person is added to the system.

The UID of 0 (zero) is the superuser, root. The GID of 0 (zero) is wheel, the superuser group.

The user's name, address, office location, etc. can be included in the comment field, and the default
home directory (created before adding the user) and person's startup shell is added to the record.

Adding users varies widely between systems. Apple's Darwin uses a separate system called NetInfo,
an open source application (available at http://sourceforge.net/projects/netinfo4unix/) to manage
users, groups, directories, and so on. A daemon uses information from NetInfo to control user access;
the user "flat files," as passwd and group are known in this system, are used only in single-user
environments.

In Linux, Solaris, and other systems, the process of adding a user is simplified with a utility, adduser
(or useradd). The simple form of the utility is:
adduser
 username

http://sourceforge.net/projects/netinfo4unix/

The utility is called with the username of the new user. Based on the system, the user is then added
with defaults or you're interactively asked for more information. Or you can specify information on
the command line that's used to create the user.

In Red Hat Linux, adduser is an alias for useradd. Default values are used for each user, such as a
home location of /home/username and a default shell (bash), unless specified otherwise on the
command line. In the following example, a new user, testuser, is added. Command-line options are
used to override the default information:
useradd -c "Test User" -d /home/local/testuser -G 501, 502 -p changepassword
 -s /bin/bash -e 2002-05-24

In this example, -c is used to add a username comment (the user's full name), -G specifies what
groups to add the person to, -p adds a password, -s sets the person's default shell, and -e specifies
that the username expires on a certain date. The person is added to their own group — 503 in this
example. To override this I would use the -g command-line parameter — the -G only adds the person
to additional groups, it doesn't override default behavior.

Within Mac OS X, user and group management is handled through Netinfo. Find out more about
Netinfo at http://www.opensource.apple.com/projects/documentation/howto/html/netinfo.html. The
command-line utility to add a user via Netinfo is niutil. An example of its use is:
shelleyp% niutil-create//users/newbie

Use the system's manpages to see if useradd or adduser is installed and the command line parameters
supported.

— SP

http://www.opensource.apple.com/projects/documentation/howto/html/netinfo.html

Forgetting the root Password

If a person forgets their password, it's easy for root to reset it using passwd, but what happens if you
forget root's password?

Depending on the security implemented for a system, you can log in to single user mode and then use
passwd to reset the root password. Or you can manually edit the password file to remove the
password for root. Once you reboot and login to the system as root, you can then use passwd to
change the password to something more restrictive.

In Redhat Linux, access single-user mode by typing linux single at the boot prompt. In Solaris,
enter single-user mode by pressing STOP-a and then typing boot-s at the prompt. FreeBSD boots in
this mode by booting with the -s option and then mounting the file system in read/write mode. Check
your system documentation to see how to do this for your particular flavor of Unix.

This approach works only if the system doesn't password-protect single-user mode. However, if you
have access to the physical machine and the installation disks, booting with the install disk will
usually allow you access to the partitions. Once you have this access, edit the password file and
remove the root password.

As an example, Debian requires a password in single-user mode. To reset the root password with
Debian, put the installation disk into the machine and boot. Mount the /root partition and manually
edit the shadow file, setting the password to a blank password. After rebooting into the system, reset
the password using passwd.

— SP

Setting an Exact umask

You can use the umask command to set the default mode for newly created files. Its argument is a
three-digit numeric mode that represents the access to be inhibited — masked out — when a file is
created. Thus, the value it wants is the octal complement of the numeric file mode you want. To
determine this, you simply figure out the numeric equivalent for the file mode you want and then
subtract it from 777. For example, to get the mode 751 by default, compute 777-751 = 026; this is the
value you give to umask.
% umask 026

Once this command is executed, all future files created will be given this protection automatically.
System administrators can put a umask command in the system initialization file to set a default for all
users.

You can set your own umask in your shell setup files to override defaults.

— AF

Group Permissions in a Directory with the setgid Bit

If you work on a Unix system with lots of users, you may be taking advantage of Unix group
permissions to let users in one group write to files in a directory, but not let people in other groups
write there.

How does Unix determine what group should own the files you create? There are (at least!) two
ways:

1. The effective group ID of the process determines the ownership of the files you create. (Your
effective GID is your primary group membership unless you're running a SGID program.)

2. The group that owns the directory in which you create the file owns files.

The system administrator decides which of the methods a filesystem will use for group ownership.
There are other wrinkles, too. A good place to look for the gory details is your system's open
manpage help, but it's probably easier to just create an empty new file and then check the group
ownership with ls -l or -lg.

You may be able to use the directory's set group ID (setgid) bit to control group ownership. In those
cases, if the bit is set, the rule in point 2 applies. If the bit is not set, the rule in point 1 applies. To set
and remove the setgid bit, use the commands chmod g+s and chmod g-s, respectively.
> chmod g+s mt.pl
> ls -l mt.pl
-rwxr-sr-x 1 shelleyp shelleyp 1939 Apr 28 22:55 mt.pl

You can use the chgrp command to change a file's group.
> chgrp wheel mt.pl
> ls -l mt.pl
-rwxr-xr-x 1 shelleyp wheel 1939 Apr 28 22:55 mt.pl

However, you must own the file, and you must also be a member of the file's new group. If you've
reset directory mode bits, it's possible to wind up with ls -l permissions that have an uppercase S,
like drwxr-S. What's that? (It's often a mistake.) The directory's setgid bit is set, but the execute bit
isn't set. If you want the directory to be group-accessible, add execute permission with chmod g+x.
Otherwise, you may want to clear the setgid bit with chmod g-s.

—JP, SP

Groups and Group Ownership

Group membership is an important part of Unix security. All users are members of one or more
groups, as determined by their entries in /etc/passwd and the /etc/group files.

To find the GID number of your primary group, grep your entry in /etc/passwd:
> grep shelleyp /etc/passwd
shelleyp:*:1000:1000:Shelley Powers:/usr/home/shelleyp:/bin/tcsh</screen>

The fourth field (the second number) is your primary group ID. Look up this number in the /etc/group
file:
> grep 1000 /etc/group
> shelleyp:*:1000:

On my FreeBSD system, my primary group is a group of which I'm the only member, shelleyp.
Therefore, when I log in, my group ID is set to 1000.

To see what other groups you belong to, use the groups command if your Unix version has it. If not,
you can get groups from the Free Software Directory at http://www.gnu.org/directory/index.html.
Otherwise, look for your name in /etc/group:
> grep shelleyp /etc/group
wheel:*:0:root,shelleyp
webadmin:*:900:shelleyp,burningbird
ftpadmin:*:901:shelleyp,burningbird
mailadmin:*:903:shelleyp,burningbird
sysadmin:*:905:shelleyp,burningbird
pkgadmin:*:906:shelleyp,burningbird
shelleyp:*:1000:

In the output, you can see that I'm a member of several groups, including wheel, webadmin, and so on.
These are my secondary groups. The output also shows that the user "burningbird" is also a member
of several of the same groups as myself.

On BSD-derived Unix systems (OpenBSD, FreeBSD, Darwin, and so on), you're always a member of
all your groups. This means that I can access files that are owned by webadmin, wheel, and so on,
without doing anything in particular. Under System V Unix, you can only be "in" one group at a time,
even though you can be a member of several.

Within System V and Linux, if you need to access files that are owned by another group, use the
newgrp command to change your primary group:
> newgrp
 groupname

The newgrp command starts a subshell. When you're done, type exit to leave the subshell. newgrp
can be important for another reason: your primary group may own any new files you create. So
newgrp is useful on any system where you want to set your group (for creating files, for example,
when you aren't using a directory that sets its own group). If you can't use newgrp, the chgrp
command will change a file's group owner.

The ls -l command shows a file's owner (and, in many versions, the filefs group too; if yours doesn't,
add the -g option). The GNU ls -nl option shows a file's numeric UID and GID instead of the
username and group name:
$ ls -l
total 38
-rw-r--r-- 1 root weblog.burningbi 33922 May 23 13:52 access_log

http://www.gnu.org/directory/index.html

-rw-r----- 1 shelleyp weblog.burningbi 3995 May 12 11:08 analog.cfg
-rw-r--r-- 1 root weblog.burningbi 0 May 23 12:01 error_log
$ ls -ln
total 37
-rw-r--r-- 1 0 501 32890 May 23 13:50 access_log
-rw-r----- 1 1000 501 3995 May 12 11:08 analog.cfg
-rw-r--r-- 1 0 501 0 May 23 12:01 error_log

(System V-based Unixes even let you change to groups that you don't belong to. In this case, you have
to give a group password. Group passwords are rarely used: usually the password field is filled with
a *, which effectively says that there are no valid passwords for this group.)

On most systems, there are groups for major projects or departments, groups for system
administration, and maybe one or two groups for visitors. BSD-based systems often have a wheel
group; to become root, you must belong to wheel. Many systems make terminals writable only by the
owner and a special group named tty; this prevents other users from sending characters to your
terminal without using an approved setgid program like write.

—JP, SP

Add Users to a Group to Deny Permissions

Usually, Unix group access allows a group of users to access a directory or file that they couldn't
otherwise access. You can turn this around, though, with groups that deny permission.

This trick works only on Unix systems, like BSD (FreeBSD, Darwin, OpenBSD, and so on), that let a
user belong to more than one group at the same time.

For example, you might work on a computer that has some proprietary files and software that "guest"
accounts shouldn't be able to use. Everyone else on the computer should have access. To do this, put
the software in a directory owned by a group named something like deny. Then use chmod to deny
permission to that group:
chmod 705 /usr/local/somedir
ls -lgd /usr/local/somedir
drwx---r-x 2 root deny 512 Mar 26 12:14 /usr/local/somedir

Finally, add the guest accounts to the deny group.

Unix checks permissions in the order user-group-other. The first applicable permission is the one
used, even if it denies permission rather than grant it. In this case, none of the guest accounts are root
(we hope!).

They're members of the group called deny, however; that permission (---) is checked and the group
members are shut out. Other users who aren't members of deny are checked for "other" access (r-x);
they can get into the directory.

The same setup works for individual files (like programs). Just be careful about changing system
programs that are SUID or SGID.

— JIK

Care and Feeding of SUID and SGID Scripts

Scripts may need to run within a root environment but be executed by system users other than root. To
allow a nonroot user or group of users executable access of the script, its SUID or SGID bit can be
set.

The SUID bit is set using the following command:
chmod u+s somefile

Running ls -l on the file afterwards displays the following (within FreeBSD):
-rwSr--r-- 1 root somegroup 7219 Oct 29 2001 somefile

Now, any user can execute the file, and the file runs with root permissions.

A more restricted version of SUID is SGID, set as follows:
-rwx-r-Sr-- 1 root somegroup 7219 Oct 29 2001 somefile

Users belong to the specified group, somegroup, can execute the file now, and it runs with root
permissions.

As handy as SUID and SGID scripts are, they are also dangerous. For instance, SUID scripts are
considered so dangerous that the Linux kernel won't even honor them. This is because environmental
variables are easily manipulated within scripts, particularly C shell scripts, as discussed in Section
50.9. And since the scripts can be run by anybody, and run as root, they represent extreme points of
vulnerability.

To see where you have SUID and SGID scripts, use the following command (pulled from the Linux
Security HOWTO document at http://www.cpmc.columbia.edu/misc/docs/linux/security-howto.html):
find / -type f \(-perm -04000 -o -perm -02000 \)

To do a thorough scan, you need to have root permissions.

You'll be surprised at the number of applications returned from the search. Among those in my
FreeBSD system were:
/usr/virtual/share/usr/sbin/pstat
/usr/virtual/share/usr/sbin/swapinfo
/usr/virtual/share/usr/sbin/sliplogin
/usr/virtual/share/usr/sbin/timedc
/usr/virtual/share/usr/sbin/traceroute

However, a quick check shows that the files — sharable across different FreeBSD installations —
are all SGID: not as dangerous as SUID files long as the group is restricted.

— SP

http://www.cpmc.columbia.edu/misc/docs/linux/security-howto.html

Substitute Identity with su

You don't have to login as a specific user — you can login as yourself and then issue a su command to
login as another person.

Invoke su with a username and you'll be prompted for that person's password. If you invoke su
without a username, the system logs you in as root and asks you for root's password. Without passing
in any other flags, you'll be logged in with your environment variables, except for HOME, SHELL,
and USER. If you want to emulate the full environment of the user — for debugging purposes or
whatever — use the -l flag with su:
bash-2.04$ su -l
Password:

Using su to emulate another person's account is an effective debugging solution if you're trying to
determine why a person is having problems accessing an application. In addition, it's also an
effective way of logging into root without logging in from a console or remotely from another machine
or terminal.

You exit the su shell by typing exit or hitting CTRL-d.

SP, JP

Never Log In as root

The easiest way to allow a cracker into your system is to provide external root login access. In
particular, if you allow root access through an unprotected and open protocol such as telnet, you're
almost guaranteeing that your Unix box is going to be violated at some point.

To prevent this, most Unix systems don't allow remote login into the system as root. Instead, you log
in under another username and then su to root once you're within the system.

Disabling root access differs between systems. If your box has an /etc/securetty file, this lists ttys that
allow root access. Removing this file or removing its contents will disable root access.

In Solaris, a line within /etc/default/login file is commented out if remote root login is allowed:
#CONSOLE=/dev/console

Uncomment the line to allow root access through the system console. To completely disable console
access, remove the /dev/console from the line:
CONSOLE=

— SP

Providing Superpowers with sudo

You may not want to give people access to the root password just to give them access to specific
superuser powers. In cases such as this, you should consider using sudo — an application that
enables specified users to execute applications that normally require root privileges.

The sudo application isn't installed by default on all systems, but it is available for most. You can
find out if it's installed on your system by typing sudo at the command line. If it isn't installed, check
online for versions that run on your machine. The application's home is at
http://www.courtesan.com/sudo/index.html.

The sudo configuration file is called sudoers and is installed in the /etc subdirectory. In Darwin, the
default sudoers file has the following settings:
root ALL=(ALL) ALL
%admin ALL=(ALL) ALL

In the file, root has open access to all applications. In addition, all members of the admin group
(equivalent to wheel within Darwin) can also run all commands.

Without getting into too much detail (an online sudoers manual is at
http://www.courtesan.com/sudo/man/sudoers.html), the sudoers file can consist of a set of aliases,
used to define groups of people, commands, hosts, or run as options. It then defines rules by which
specific users or group of users can run specific commands. There are four types of aliases:
User_Alias

List of specific users
Runas_Alias

List of users to emulate
Host_Alias

List of servers
Cmnd_Alias

Command list

Examples of aliases are:
User_Alias SYSADMINS = shelleyp, mike, tomd
Runas_Alias OP = root
Host_Alias BB = burningbird
Cmnd_Alias SU = /usr/bin/su

Following the aliases are override rules in reference to system defaults. For instance, warnings and
"lectures" can be attached to certain commands to ensure that people are aware of the repercussions
of their actions. However, people who are sysadmins shouldn't be subjected to these rules; the
lectures can be turned off for them:
Defaults:SYSADMINS !lecture

Neither aliases nor default overriding rules are required in the sudoers file. The only statements that
are required are the command rules. In the Darwin file, the rules allowed root and admin access of
all commands. Other rules that can be created are:
sysadmins can run all commands, without password
SYSADMINS ALL = NOPASSWD: ALL

chris can run anything on the burningbird machine as OP (root)
chris BB = (OP) ALL

http://www.courtesan.com/sudo/index.html
http://www.courtesan.com/sudo/man/sudoers.html

joe can run SU on burningbird as root
joe BB = (root) SU

To edit the sudoers file, you use a specialized editing tool, visudo (see manual at
http://www.courtesan.com/sudo/man/visudo.html), while logged in as root. The editor prevents
collision between multiple authors and also verifies the correctness of the edits.

To work with sudo (manual at http://www.courtesan.com/sudo/man/sudo.html), type sudo and the
command you want to exit:
% sudo vi test

Depending on your setup, you'll get a warning or a password prompt, or the command will fail or
execute.

One interesting side effect of sudo is that if you allow root access to an application that has shell
escape, such as vi, you are indirectly giving that person access to a root shell. Use sudo with caution.

— SP

http://www.courtesan.com/sudo/man/visudo.html
http://www.courtesan.com/sudo/man/sudo.html

Enabling Root in Darwin

The majority of Mac OS X users are never going to access the built-in Unix Terminal and never
directly access the Darwin core of the operating system. Instead, they'll work within the GUI.
However, Mac OS X developers and superusers will operate directly with Darwin quite extensively,
and at times, they'll need to have root access.

By default, root access in Darwin is disabled. Trying to use su to change to root within the Terminal
will fail. You have to enable root first using NetInfo.

To enable root within Mac OS X, access the Go menu option of Finder, and double-click on
Applications. When the Applications window opens, double-click on the Utilities folder. In this
folder, select and open NetInfo.

When NetInfo opens, select the Domain menu item and then Security. You'll need to authenticate
yourself to the system first by selecting the Authenticate submenu option. Once you provide a
password (and the system determines you have the authority to enable or disable root), accessing the
Security menu again will show a newly enabled option: Enable Root User. Clicking on this enables
root. However, you'll need to reauthenticate one more time to ensure the change goes through.

Once root is enabled for the system, it stays enabled until you disable it again. With root enabled,
you'll be able to use su to login as root.

— SP

Disable logins

You can temporarily disable logins by creating an entry in /etc/nologin (Section 3.1) and copying a
message to this location. When a user attempts to log in, he will get this message and the system will
prevent entry.

— SP

Chapter 50. File Security, Ownership, and Sharing

Introduction to File Ownership and Security

Because Unix is a multiuser system, you need some way of protecting users from one another: you
don't want other users to look at the wrong files and find out compromising information about you, or
raise their salaries, or something equivalently antisocial. Even if you're on a single-user system, file
ownership still has value: it can often protect you from making mistakes, like deleting important
executables.

In this chapter, we'll describe how file ownership works: who owns files, how to change ownership,
how to specify which kinds of file access are allowed, and so on. We'll also discuss some other ways
to prevent people from "prying," like clearing your screen.

In my opinion, most security breaches arise from mistakes that could easily have been avoided:
someone discovers that anyone can read the boss's email, including the messages to his bookie. Once
you've read this chapter, you'll understand how to avoid the common mistakes and protect yourself
from most intruders.

— ML

Tutorial on File and Directory Permissions

Regardless of how much you think you know about file permissions, there's always something new to
learn.

There are three basic attributes for plain file permissions: read, write, and execute. Read and write
permission obviously let you read the data from a file or write new data to the file. When you have
execute permission, you can use the file as a program or shell script. The characters used to describe
these permissions are r, w, and x, for execute.

Directories use these same permissions, but they have a different meaning. If a directory has read
permission, you can see what files are in the directory. Write permission means you can add, remove,
or rename files in the directory. Execute allows you to use the directory name when accessing files
inside that directory. (Section 10.2 has more information about what's in a directory.) Let's examine
this more closely.

Suppose you have read access to a directory but don't have execute access to the files contained in it.
You can still read the directory, or inode information for that file, as returned by the stat(2) system
call. That is, you can see the file's name, permissions, size, access times, owner and group, and
number of links. You just cannot read the contents of the file.

Write permission in a directory allows you to change the contents in it. Because the name of the file is
stored in the directory and not the file, write permission in a directory allows creation, renaming,
or deletion of files. To be specific, if someone has write permission to your home directory, they can
rename or delete your .login file and put a new file in its place. The permissions of your .login file
do not matter in this regard. Someone can rename a file even if they can't read the contents of a file.
(See Section 50.9.)

Execute permission on a directory is sometimes called search permission. If a directory gives you
execute but not read permission, you can use any file in that directory; however, you must know the
name. You cannot look inside the directory to find out the names of the files. Think of this type of
directory as a black box. You can throw filenames at this directory, and sometimes you find a file,
sometimes you don't. (See Section 50.10.)

User, Group, and World

All files have an owner and group associated with them. There are three sets of read/write/execute
permissions: one set for the user or owner of the file, one set for the group (Section 49.6) of the file,
and one set for everyone else. These permissions are determined by nine bits in the inode information
and are represented by the characters rwxrwxrwx in an ls -l listing:[1]

% ls -l
drwxr-xr-x 3 jerry books 512 Feb 14 11:31 manpages
-rw-r--r-- 1 jerry books 17233 Dec 10 2001 misc.Z
-rwxr-xr-x 1 tim books 195 Mar 29 18:55 myhead

The first character in the ls -l listing specifies the type of file (Section 9.13). The first three of the
nine permissions characters that follow specify the user; the middle three, the group; and the last
three, the world. If the permission is not true, a dash is used to indicate lack of privilege. If you want
to have a data file that you can read or write but don't want anyone else to access, the permissions
would be rw-------.

An easier way to specify these nine bits is with three octal digits instead of nine characters. (Section
1.17 has diagrams of permission bits and explains how to write permissions as an octal number.) The
order is the same, so the above permissions can be described by the octal number 600. The first
number specifies the owner's permission. The second number specifies the group's permission. The
last number specifies permission to everyone who is not the owner or not in the group of the file
[although permissions don't apply to the superuser (Section 1.18), who can do anything to any file or
directory. — JP].

This last point is subtle. When testing for permissions, the system looks at the groups in order. If you
are denied permission, Unix does not examine the next group. Consider the case of a file that is
owned by user jo, is in the group guests, and has the permissions -----xrwx, or 017 in octal. This
has the result that user jo cannot use the file, anyone in group guests can execute the program, and
everyone else besides jo and guests can read, write, and execute the program. This is not a very
common set of permissions, but some people use a similar mechanism (Section 49.7) to deny one
group of users from accessing or using a file. In the above case, jo cannot read or write the file she
owns. She could use the chmod (Section 50.5) command to grant herself permission to read the file.
However, if the file was in a directory owned by someone else, and the directory did not give jo read
or search permission, she would not be able to find the file to change its permission.

The above example is an extreme case. Most of the time permissions fall into four cases:

1. The information is personal. Many people have a directory or two in which they store
information they do not wish to be public. Mail should probably be confidential, and all of your
mailbox files should be in a directory with permissions of 700, denying everyone but yourself
and the superuser read access to your letters. (See Section 7.5.)

2. The information is not personal, yet no one should be able to modify the information. Most of my
directories are set up this way, with the permissions of 755.

3. The files are managed by a team of people. This means group-write permission, or directories
with the mode 775.

4. In the previous case, for confidential projects, you may want to deny access to people outside
the group. In this case, make directories with mode 770.

You could just create a directory with the proper permissions and put the files inside the directory,
hoping the permissions of the directory will "protect" the files in the directory. This is not adequate.
Suppose you had a directory with permissions 755 and a file with permissions 666 inside the
directory. Anyone could change the contents of this file because the world has search access on the
directory and write access to the file.

 Go to http://examples.oreilly.com/upt3 for more information on: umask.csh, umask.sh

What is needed is a mechanism to prevent any new file from having world-write access. This
mechanism exists with the umask command. If you consider that a new directory would get
permissions of 777, and that new files would get permissions of 666, the umask command specifies
permissions to "take away" from all new files. To "subtract" world-write permission from a file, 666
must have 002 "subtracted" from the default value to get 664. To subtract group and world write, 666
must have 022 removed to leave 644 as the permissions of the file. These two values of umask are so
common that it is useful to have some aliases (Section 49.4) defined:
alias open umask 002
alias shut umask 022

With these two values of umask, new directories will have permissions of 775 or 755. Most people
have a umask value of one of these two values.

In a friendly work group, people tend to use the umask of 002, which allows others in your group to
make changes to your files. Someone who uses the mask of 022 will cause grief to others working on
a project. Trying to compile a program is frustrating when someone else owns files that you must
delete but can't. You can rename files if this is the case or ask the system administrator for help.

Members of a team who normally use a default umask of 022 should find a means to change the mask
value when working on the project (or else risk flames from your fellow workers!). Besides the open
alias above, some people have an alias that changes directories and sets the mask to group-write
permission:
alias proj "cd /usr/projects/proj;umask 002"

This isn't perfect, because people forget to use aliases. You could have a special cd alias and a
private shell file in each project directory that sets the umask when you cd there. Other people could
have similar files in the project directory with different names. Section 31.13 shows how.

Still another method is to run find (Section 9.1) three times a day and search for files owned by you
in the project directory that have the wrong permission:

$USER Section 35.5, xargs Section 28.17, chmod Section 50.5
% find /usr/projects -user $USER ! -perm -020 -print | \
 xargs chmod g+w

You can use the command crontab -e (Section 25.2) to define when to run this command.

http://examples.oreilly.com/upt3

Which Group is Which?

Since group-write permission is so important in a team project, you might be wondering how the
group of a new file is determined. The answer depends on several factors. Before I cover these, you
should note that Berkeley and AT&T-based systems would use different mechanisms to determine the
default group.

Originally Unix required you to specify a new group with the newgrp command. If there was a
password for this group in the /etc/group file, and you were not listed as one of the members of the
group, you had to type the password to change your group.

Berkeley-based versions of Unix would use the current directory to determine the group of the new
file. That is, if the current directory has cad as the group of the directory, any file created in that
directory would be in the same group. To change the default group, just change to a different
directory.

Both mechanisms had their good points and bad points. The Berkeley-based mechanism made it
convenient to change groups automatically. However, there is a fixed limit of groups one could
belong to. SunOS 4 has a limit of 16 groups. Earlier versions had a limit of 8 groups.

SunOS and System V Release 4 support both mechanisms. The entire disk can be mounted with either
the AT&T or the Berkeley mechanism. If it is necessary to control this on a directory-by-directory
basis, a special bit in the file permissions is used. If a disk partition is mounted without the Berkeley
group mechanism, a directory with this special bit will make new files have the same group as the
directory. Without the special bit, the group of all new files depends on the current group of the user.

— BB

[1] On some Unix systems, ls -l produces an eight-column listing without the group name (here,
books). Use ls -lg to get the listing format shown here.

Who Will Own a New File?

If you share files with other users, it's good to be able to tell who will own each file. On many
systems, this is even more important because only the superuser can change file ownership (Section
50.14, Section 50.15).

1. When you create a new file, it belongs to you.
2. When you append to a file with >> file, the owner doesn't change because Unix doesn't have to

create a new file.
3. When you rename a file with mv, the ownership doesn't change.

Exception: if you use mv to move a file to another filesystem, the moved file will belong to you,
because to move across filesystems, mv actually has to copy the file and delete the original.

4. When you copy a file, the copy belongs to you because you created it (Section 50.9).
5. When you edit a file:

With an editor like vi (Section 17.2), the file keeps its original owner because a new file is
never created.
An editor like Emacs (Section 19.1), which makes a backup copy, can be different. The
backup copy could belong to you or to the original owner. If you replace the edited file
with its backup, the file's ownership might have changed:
% emacs filea
 ...Edit a lot, then decide you don't want your changes...
% mv filea~ filea

If you aren't sure, use ls -l (Section 50.2).

— JP

Protecting Files with the Sticky Bit

Unix directory access permissions specify that a person with write access to the directory can rename
or remove files there — even files that don't belong to the person (see Section 50.9). Many newer
versions of Unix have a way to stop that. The owner of a directory can set its sticky bit (mode
(Section 1.17) 1000). The only people who can rename or remove any file in that directory are the
file's owner, the directory's owner, and the superuser.

Here's an example: the user jerry makes a world-writable directory and sets the sticky bit (shown as
t here):
jerry% mkdir share
jerry% chmod 1777 share
jerry% ls -ld share
drwxrwxrwt 2 jerry ora 32 Nov 19 10:31 share

Other people create files in it. When jennifer tries to remove a file that belongs to ellie, she can't:
jennifer% ls -l
total 2
-rw-r--r-- 1 ellie ora 120 Nov 19 11:32 data.ellie
-rw-r--r-- 1 jennifer ora 3421 Nov 19 15:34 data.jennifer
-rw-r--r-- 1 peter ora 728 Nov 20 12:29 data.peter
jennifer% rm data.ellie
data.ellie: override 644 mode ? y
rm: data.ellie not removed.
Permission denied

— JP

Using chmod to Change File Permission

To change a file's permissions, you need to use the chmod command, and you must be the file's owner
or root. The command's syntax is pretty simple:
% chmod
 new-mode file(s)

The new-mode describes the access permissions you want after the change. There are two ways to
specify the mode: you can use either a numeric mode or some symbols that describe the changes. I
generally prefer the numeric mode (because I'm strange, I suppose). To use a numeric mode, decide
what permissions you want to have, express them as an octal number (Section 1.17, Section 50.2),
and give a command like this one:
% chmod 644 report.txt

This gives read and write access to the owner of report.txt and read-only access to everyone else.

Many users prefer to use the symbolic mode to specify permissions. A symbolic chmod command
looks like this:
% chmod g-w report.txt

This means "take away write access for group members." The symbols used in mode specifications
are shown in Table 50-1.

Table 50-1. chmod symbolic modes

Category Mode Description

Who u User (owner) of the file.

 g Group members.

 o Others.

 a All (i.e., user, group, and others).

What to do - Take away this permission.

 + Add this permission.

 = Set exactly this permission (Section 50.6).

Permissions r Read access.

 w Write access.

 x Execute access.

 X
Give (or deny) execute permission to directories, or to files that have another
"execute" bit set.

 s Set user or group ID (only valid with + or -).

 t

Set the "sticky bit" (Section 50.4, Section 1.17).
(Section 50.2 explains the "Who" and "Permissions" categories.) Here are a few example symbolic
modes:
o=r

Set others access to read-only, regardless of what other bits are set.
o+r

Add read access for others.
go-w

Take away write access for group members and others.
a=rw

Give everyone (user, group, and others) read-write (but not execute) access.

Remember that + and - add or delete certain permissions but leave the others untouched. The
commands below show how permissions are added and subtracted:
% ls -l foo
-rwx-----x 1 mikel 0 Mar 30 11:02 foo
% chmod a+x foo
% ls -l foo
-rwx--x--x 1 mikel 0 Mar 30 11:02 foo
% chmod o-x,g+r foo
% ls -l foo
-rwxr-x--- 1 mikel 0 Mar 30 11:02 foo
%

Note the last chmod command. It shows something we haven't mentioned before. With symbolic
mode, you're allowed to combine two (or more) specifications, separated by commas. This command
says "take away execute permission for others, and add read access for group members."

On occasion, I've wanted to change the permissions of a whole directory tree: all the files in a
directory and all of its subdirectories. In this case, you want to use chmod -R (the R stands for
recursive) or find -exec (Section 9.9, Section 50.6). You won't need this often, but when you do, it's
a real lifesaver.

— ML

The Handy chmod = Operator

Let's say you have a set of files. Some are writable by you; others are read-only. You want to give
people in your group the same permissions you have — that is, they can write writable files but can
only read the read-only files. It's easy with an underdocumented feature of chmod:
% chmod g=u *

That means "for all files (*), set the group permissions (g) to be the same as the owner permissions
(u)." You can also use the letter o for others, which is everyone who's not the owner or in the owner's
group. Section 50.2 explains these categories.

If your chmod has a -R (recursive) option, you can make the same change to all files and directories
in your current directory and beneath. If you don't have chmod -R, use this find (Section 9.9):
% find . -exec chmod g=u {} \;

— JP

Protect Important Files: Make Them Unwritable

A good way to prevent yourself from making mistakes is to make certain files read-only. If you try to
delete a read-only file, you will get a warning. You will also get a warning if you try to move a file
onto another file that is write-protected. If you know you want to remove or move a file, even though
the file is read-only, you can use the -f option with rm or mv to force the change without warnings.

Manually changing the permissions of files all the time is counterproductive. You could create two
aliases to make it easier to type:

 Go to http://examples.oreilly.com/upt3 for more information on: chmod.csh, chmod.sh
change mode to read only
alias -w chmod -w
change mode to add write permission
alias +w chmod u+w

 Go to http://examples.oreilly.com/upt3 for more information on: chmod_edit

[These are really handy! I use a script named c-w and cw, respectively, instead. For shell
programming, I also added cx that does chmod +x. Section 50.8 explains the script. — JP] It is a
good idea to remove write permission from some files. Occasionally some files contain information
difficult to replace. These files might be included with other, easily replaceable files. Or you might
want to protect some files that rarely change. Combined with directory permissions and the current
value of umask (Section 49.4), you can find some file that might be protected in this manner. You can
always create a script that adds write permission, edits the file, and removes write permission:

"$@" Section 35.20, ${..=..} Section 36.7
#!/bin/sh
add write permission to the files
chmod u+w "$@"
edit the files; use vi if VISUAL not defined
${VISUAL=vi} "$@"
remove write permission
chmod -w "$@"

— BB

http://examples.oreilly.com/upt3
http://examples.oreilly.com/upt3

cx, cw, c-w: Quick File Permission Changes

Here's a short script that I use a lot. To make a new shell script executable, for example, I type:
% cx scriptfile

Using cw adds write permission; c-w takes it away. This is the single script file for all three
commands:
#! /bin/sh
case "$0" in
*cx) chmod +x "$@" ;;
*cw) chmod +w "$@" ;;
*c-w) chmod -w "$@" ;;
*) echo "$0: Help! Shouldn't get here!" 1>&2; exit 1 ;;
esac

The script has three links. Put it in a file named cx. Then type:
% chmod +x cx
% ln cx cw
% ln cx c-w

The script tests the name it was called with, in $0, to decide which chmod command to run. This trick
saves disk space. You can add other commands, too, by adding a line to the case and another link. Or
you can use aliases (Section 50.7).

— JP

A Loophole: Modifying Files Without Write Access

No one said that Unix is perfect (Section 1.20), and one of its nagging problems has always been
security. Here's one glitch that you should be aware of. If you don't have write access to a file, you
can't modify it. However, if you have write access to the directory, you can get around this as
follows:
% ls -l unwritable
-r--r--r-- 1 john 334 Mar 30 14:57 unwritable
% cat > unwritable
unwritable: permission denied
% cat unwritable > temp
% vi temp
 ...
% mv temp unwritable
override protection 444 for unwritable? y
% cat unwritable
John wrote this originally, and made the file read-only.
But then Mike came along and wrote:
I should not have been able to do this!!!

I couldn't write the file unwritable directly. But I was able to copy it, and then use vi to make
whatever changes I wanted. After all, I had read access, and to copy a file, you only need to be able
to read it. When I had my own copy, I could (of course) edit it to my heart's content. When I was
done, I was able to mv the new file on top of unwritable. Why? Renaming a file requires only that you
be able to write the file's directory. You don't need to be able to write the file itself. (Note that cp
wouldn't work — copying requires unwritable to be writable, if it already exists.) This is one reason
to watch directory access fairly closely.

As you can see, allowing directory-write access to others can be dangerous. If this is a problem for
you, solve it by setting your umask (Section 49.4) correctly and using chmod (Section 50.5) to fix
permissions of existing directories. Or you may be able to leave the directory writable and set the
directory's sticky bit (Section 50.4).

— ML

A Directory That People Can Access but Can't List

Do you need to let someone use a file of yours, but you don't want everyone on the system to be able
to snoop around in the directory? You can give execute permission, but not read permission, to a
directory. Then, if a file in the directory is accessible, a person can use the file by typing the exact
filename. ls will say the directory is "unreadable." Wildcards won't work.

Here's an example. Let's say that your home directory has rwxr-xr-x permissions (everyone can
access and list files in it). Your username is hanna. You have a subdirectory named project; you set
its permissions so that everyone else on the system has execute-only permission.

-d Section 8.5
hanna% pwd
/home/hanna
hanna% chmod 711 project
hanna% ls -ld project project/myplan
drwx--x--x 2 hanna 512 Jul 26 12:14 project
-rw-r--r-- 1 hanna 9284 Jul 27 17:34 project/myplan

Now you tell the other user, toria, the exact name of your file, myplan. Like everyone else on the
system, she can access your project directory. She can't list it because she doesn't have read
permission. Because she knows the exact filename, she can read the file because the file is readable
(anyone else could read the file, too, if they knew its exact name):
toria% cd /home/hanna/project
toria% pwd
pwd: can't read .
toria% ls
ls: . unreadable
toria% more myplan
 ...File appears...
toria% ln myplan /home/toria/project.hanna/plan

(We're using the "real" pwd command that reads the filesystem to find your current directory. That's
why it complains can't read .. If you're using the shell's shortcut pwd, you probably won't get the
error shown above. Section 31.4 has details.)

In the example above, toria made a hard link (Section 10.5) to the myplan file, with a different name,
in her own project.hanna directory. (She could have copied, printed, or used any other command that
reads the file.) Now, if you (hanna) want to, you can deny everyone's permission to your project
directory. toria still has her link to the file, though. She can read it any time she wants to, follow the
changes you make to it, and so on:
toria% cd
toria% ls -ld project.hanna project.hanna/plan
drwx------ 2 toria 512 Jul 27 16:43 project.hanna
-rw-r--r-- 2 hanna 9284 Jul 27 17:34 project.hanna/plan
toria% more project.hanna/plan
 ...File appears...

toria has protected her project.hanna directory so that other users can't find her link to hanna's file.

Note
If hanna denies permission to her directory , toria can still read the file through her hard link. If toria had made a sy mbolic link, though, she wouldn't be able to access the file any more. That's because a hard link keeps the file's i-number
(Section 10.2) but a sy mbolic link doesn't.

You might also want to give other users permission to list and access the files in a directory, but not
make the directory open to all users. One way to do this is to put a fully accessible directory with an
unusual name inside an unreadable directory. Users who know the exact name of the fully accessible
directory can cd to it; other users can't find it without its name:
hanna% chmod 711 project
hanna% chmod 777 project/pLaN
hanna% ls -ld project project/pLaN
drwx--x--x 3 hanna 512 Jul 27 17:36 project
drwxrwxrwx 2 hanna 512 Jul 27 17:37 project/pLaN

Users who type cd /home/hanna/project/pLaN can list the directory's contents with ls. With the
permissions you've set, other users can also create, delete, and rename files inside the pLaN directory
— though you could have used more restrictive permissions like drwxr-xr-x instead.

This setup can still be a little confusing. For instance, as Section 31.4 explains, the pwd command
won't work for users in the pLaN directory because pwd can't read the project directory. Variables
like $cwd and $PWD (Section 35.5) will probably have the absolute pathname. If another user gets
lost in a restricted directory like this, the best thing to do is cd to the home directory and start again.

— JP

Juggling Permissions

Like any security feature, Unix permissions occasionally get in your way. When you want to let
people use your apartment, you have to make sure you can get them a key; and when you want to let
someone into your files, you have to make sure they have read and write access.

In the ideal world, each file would have a list of users who can access it, and the file's owner could
just add or delete users from that list at will. Some secure versions of Unix are configured this way,
but standard Unix systems don't provide that degree of control. Instead, we have to know how to
juggle Unix file permissions to achieve our ends.

For example, suppose I have a file called ch01 that I want edited by another user, joe. I tell him that
the file is /books/ptools/ch01, but he reports to me that he can't access it.
joe % cd /books/ptools
joe % more ch01
ch01: Permission denied

The reason joe can't read the file is that it is set to be readable only by me. joe can check the
permissions on the file using the -l option to the ls command:
joe % ls -l ch01
-rw------- 1 lmui 13727 Sep 21 07:43 ch01

joe asks me (lmui) to give him read and write permission on the file. Only the file owner and root can
change permission for a file. Now, what's the best way to give joe access to ch01?

The fastest and most sure-fire way to give another user permission is to extend read and write
permission to everyone:
lmui % chmod 666 ch01
lmui % ls -l ch01
-rw-rw-rw- 1 lmui 13727 Sep 21 07:43 ch01

But this is sort of like leaving your front door wide open so your cat can get in and out. It's far better
to extend read and write access to a common group instead of to the entire world. I try to give joe
access to the file by giving group read and write access:
lmui % chmod 660 ch01
lmui % ls -l ch01
-rw-rw---- 1 lmui 13727 Sep 21 07:43 ch01

But joe reports that it still doesn't work:
joe % more ch01
ch01: Permission denied

What happened? Well, I gave read and write permission to the file's group, but joe doesn't belong to
that group. You can find out the group a file belongs to using the -lg option to ls. (This is the default
on many systems when you type ls -l. Other systems are different. For instance, the GNU ls
command ignores -g and has a -G option for when you don't want to see the group name.)
joe % ls -lg ch01
-rw-rw---- 1 lmui power 13727 Sep 21 07:43 ch01

You can use the groups command (Section 49.6) to find out what groups a user belongs to:
% groups joe
joe : authors ora
% groups lmui
lmui : authors power wheel ora

The ch01 file belongs to group power. joe isn't a member of this group, but both lmui and joe are in

the authors group. To give joe access to the file ch01, therefore, I need to put the file in group
authors. To do that, I use the chgrp (Section 1.17) command:
lmui % chgrp authors ch01
lmui % ls -lg ch01
-rw-rw---- 1 lmui authors 13727 Sep 21 07:43 ch01

Now joe can read and write the file. (On some systems, he may need to run newgrp (Section 49.4)
first.)

— LM

File Verification with md5sum

How can you know if a file has been corrupted — by accident or by a malicious user? You can check
the number of characters with ls -l (Section 50.2), but the corrupted file could have the same number
of characters, just some different ones. You can check the last-modification date (Section 8.2), but
that's easy to change, to any time you want, with touch. And, of course, you can read through the file,
unless it's a binary (nonprintable) file or it's just too long.

 Go to http://examples.oreilly.com/upt3 for more information on: md5sum

The easy way is to compute a checksum — an electronic fingerprint or message digest — that
identifies the file at a time you know it's correct. Save that checksum in a secure place (on an
unwritable CD-ROM, on a filesystem with write protection disabled in hardware, or just on a piece
of paper). Then, when you want to verify the file, recompute the checksum and compare it to the
original. That's just what the md5sum utility does.

md5sum is a more secure version of the earlier Unix sum program, and it's also handier to use. By
default, you give md5sum a list of pathnames; it will write checksums to its standard output. Later,
use the md5sum -c ("check") option to compare the files to their checksums. The first command
below calculates checksums for some gzipped tar archives and saves it in a temporary file. (If we
were doing this "for real," I'd copy that temporary file someplace more secure!) The second command
shows the file. The third command compares the files to their stored checksums:

$? Section 35.12
$ md5sum *.tar.gz > /tmp/sums.out
$ cat /tmp/sums.out
018f4aee79e049095a7b16ed1e7ec925 linux-ar-40.tar.gz
52549f8e390db06f9366ee83e59f64de nvi-1.79.tar.gz
856b4af521fdb78c978e5576f269c1c6 palinux.tar.gz
61dcb5614a61bf123e1345e869eb99d4 sp-1.3.4.tar.gz
c22bc000bee0f7d6f4845eab72a81395 ssh-1.2.27.tar.gz
e5162eb6d4a40e9e90d0523f187e615f vmware-forlinux-103.tar.gz
 ...sometime later, maybe...
$ md5sum -c /tmp/sums.out
linux-ar-40.tar.gz: OK
nvi-1.79.tar.gz: OK
palinux.tar.gz: OK
sp-1.3.4.tar.gz: OK
ssh-1.2.27.tar.gz: OK
vmware-forlinux-103.tar.gz: OK
$ echo $?
0

If all the files match, md5sum returns an exit status of 0. Files that don't match give a FAILED message
and a nonzero exit status.

The exit status — as well as the options -- status (no output, only return statuses) and -w (warn if
the checksum line is improperly formatted) — can help you set up an automated checking system.
Some software downloading and distribution systems, like RPM (Section 40.11), can do this for you
(although in automated systems, it's worth thinking about the integrity of the checksum: does it come
from a system you can trust?). If you're a system administrator, look into Tripwire, a tool for tracking
MD5 checksums of lots of files on your system.

— JP

http://examples.oreilly.com/upt3

Shell Scripts Must Be Readable and (Usually) Executable

Almost everyone knows that you need to make a program file executable — otherwise, Unix won't
execute it. Well, that's true for directly executable binary files like C and Pascal programs, but it's not
quite true for interpreted programs like shell scripts.

The Unix kernel can read an executable binary directly: if there's execute permission, the kernel is
happy; it doesn't need read permission. But a shell script has to be read by a user's Unix program (a
shell). To read a file, any Unix program has to have read permission. So shell scripts must be
readable.

 Section 35.17

Shell scripts don't need execute permission if you start the shell and give it the script file to read:
% sh
 scriptfile
% sh <
 scriptfile

The execute permission is a sign for the kernel that it can try to execute the file when you type only the
filename:
% scriptfile

So shell scripts don't need to be executable — it's just handy.

— JP

Why Can't You Change File Ownership?

This restriction is not bogus, because the system supports disk quotas (Section 15.11). If you could
give away your own files, you could do something like the following:
% mkdir .hide; chmod 700 .hide
% cd .hide
% create_huge_file >foo
% chown prof1 foo
% create_huge_file >bar
% chown prof2 bar
% create_huge_file >baz
% chown prof3 baz

All you would need do is find someone with a high quota or no quota (such as a professor) who does
not often check his own usage (such as a professor) and probably does not care that the disk is 99
percent full (such as a, er, well, never mind), and then give away files as necessary to keep under
your own quota. You could regain ownership of the file by copying it to another disk partition,
removing the original, and copying it back.

If you need to change ownership, there is a workaround (Section 50.15) that doesn't require root
access.

— CT

How to Change File Ownership Without chown

Unix systems with disk quotas (Section 15.11) won't let you change the owner (Section 50.14) of a
file; only the superuser can use chown. Here's a workaround for those systems.

-d Section 8.5, -f Section 14.10

1. The file's current owner should make sure that the new owner has write permission on the
directory where the file is and read permission on the file itself:
jerry% ls -dl . afile
drwxr-xr-x 2 jerry 512 Aug 10 12:20 .
-rw-r--r-- 1 jerry 1934 Aug 10 09:34 afile
jerry% chmod go+w .

2. The new owner (logged in as herself) should rename the file, make a copy, and delete the
original file. If the new owner is there at the same time, su (Section 49.9) is probably the fastest
way to change accounts:
jerry% su laura
Password:
laura% mv afile afile.tmp
laura% cp -p afile.tmp afile
laura% ls -l afile
-rw-r--r-- 1 laura 1934 Aug 10 09:34 afile
laura% rm -f afile.tmp
laura% exit
jerry% chmod go-w .

The cp -p (Section 10.12) command preserves the file's original permissions and last modification
time. After the new owner (laura) is done copying, the old owner (jerry) takes away the directory's
write permission again. Now laura can edit afile, change its modes, and so on: she owns it.

— JP

Chapter 51. SSH

Enabling Remote Access on Mac OS X

Enabling SSH (Section 46.6) on Mac OS X is fairly simple. Access the System Preferences from the
Apple menu and double-click the Sharing folder. When this opens, click the Application tab and
check the box labeled "Allow remote login." Quit System Preferences, and the machine is now
configured for SSH access, remotely.

To enable telnet , rsh, or rlogin (if you're sure you want these processes), open the Terminal window
and edit the /etc/inetd.conf file (using sudo (Section 49.11) if you're logged in as a member of the
administration group (Section 49.7) or login as root). Remove the pound sign (#) from in front of
whatever remote service you want to enable:
#ftp stream tcp nowait root /usr/libexec/tcpd ftpd -L

You'll need to restart the server, or you can restart inetd (Section 46.5) by typing:
kill -HUP `cat /var/run/inetd.pid`

— SP

Protecting Access Through SSH

The problems associated with telnet and ftp, such as passing plain text passwords, can be overcome
through the use of SSH (Section 46.6). SSH encrypts any communication between the client and the
server, preventing anyone from capturing the information in transit. You should always use SSH to
connect to your system remotely.

SSH works by authenticating the client using one of several authentication schemes, including a
simple authentication that looks for a client machine within /etc/hosts.equiv. If the user on the local
machine matches the username on the remote machine, they're allowed in. This isn't particularly safe,
but it does provide encryption of transmitted data.

A second authentication scheme verifies that the login would normally validate with the
$HOME/.rhosts — as with rlogin — and that the client can verify the host's key; if so, login is
permitted. This is safer than the first authentication scheme.

However, a better method is RSA-based authentication using public-private keys. Regardless, once
SSH is enabled, you can then use it to telnet or rlogin to the server machine, and all data transmitted
is safe from snooping.

— SP

Free SSH with OpenSSH

In some systems, such as Mac OS X, SSH (Section 46.6) is built-in. In other cases you can use
commercial products, such as SecureCRT. However, there is a freely available application you can
download called OpenSSH, available at http://www.openssh.com.

There are installation packages for OpenSSH for Linux, Solaris, FreeBSD, AIX — in fact, most
versions of Unix.

OpenSSH has multiple tools, used in place of existing connectivity applications:
ssh

Replaces telnet and rlogin
scp

Replaces rcp for copying files
sftp

Replaces ftp
In addition, the installation features the necessary server-side installation as well as utilities to assist
in the setup and maintenance of the application.

To configure OpenSSH with FreeBSD, check the documentation page at
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/openssh.html. To use OpenSSH with
Redhat Linux, check the web pages at http://www.redhat.com/docs/manuals/linux/RHL-7.3-
Manual/custom-guide/ch-openssh.html. Check your Unix system documentation for OpenSSH
installation specific to your environment.

— SP

http://www.openssh.com
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/openssh.html
http://www.redhat.com/docs/manuals/linux/RHL-7.3-Manual/custom-guide/ch-openssh.html

SSH Problems and Solutions

In the next sections, we cover a wide range of difficulties, organized by category. We list what, in our
experience, are the most frequently asked of the frequently asked questions. We focus on problems
that may occur in many versions of the SSH software on diverse operating systems. We don't address
issues like this one, which rapidly become obsolete:

Compilation problems specific to one operating system, such as "HyperLinux beta 0.98 requires
the -- with-woozle flag"
In all questions, we assume you have already used debug or verbose mode (e.g., ssh -v) to isolate the
problem. (If you haven't, you should!)

— SP

General and Authentication Problems

Q: The commands ssh (Section 46.6), scp, ssh-agent, ssh-keygen, etc., aren't doing what I expect.
Even the help messages look weird.

A: Maybe they are SSH2 programs when you are expecting SSH1, or vice versa. Locate the
executables and do an ls -l. If they are plain files, they are most likely from SSH1 or OpenSSH. If
they are symbolic links, check whether they point to SSH1 or SSH2 files. (SSH2 files have names
ending in "2".)

Q: When I try to connect to an SSH server, I get the error "Connection refused."

A: No SSH server is running where you tried to connect. Double-check the hostname and TCP port
number: perhaps the server is running on a port different from the default?

Q: When I log in, the message of the day (/etc/motd) prints twice.

A: Both sshd and the login program are printing it. Disable sshd's printing by setting the serverwide
configuration keyword PrintMotd to no.

Q: When I log in, I see two messages about email, such as "No mail" or "You have mail."

A: Both sshd and the login program are checking for mail. Prevent sshd from checking by setting the
serverwide configuration keyword CheckMail to no.

Q: The SSH1 server says "Permission denied" and exits.

A: This occurs if all authentication techniques have failed. Run your client in debug mode and read
the diagnostic messages, looking for clues. Also read our solutions to specific authentication
problems in the rest of this section.

Q: How do I authenticate without typing a password or passphrase?

A: The four available authentication methods for this are:

Public-key with ssh-agent
Public-key with an unencrypted key on disk (empty passphrase)
Trusted-host
Kerberos (SSH1 and OpenSSH/1 only)

Automatic authentication has a number of important issues you should carefully consider before
selecting from the preceding list.

Q: I get prompted for my password or passphrase, but before I have time to respond, the SSH server
closes the connection.

A: Your server's idle timeout value may be too short. If you are a system administrator of the server
machine, set IdleTimeout to a larger value in the serverwide configuration file. If you are an end
user of SSH1 or OpenSSH, set an idle-timeout value in authorized_keys.

Q: RequiredAuthentications doesn't work.

A: This feature was broken in SSH2 2.0.13, causing authentication always to fail. This problem was
fixed in 2.1.0.

Q: SilentDeny doesn't seem to work for any authentication method.

A: SilentDeny has nothing to do with authentication. It applies only to access control using
AllowHosts and DenyHosts. If a connection is denied access by an AllowHosts or DenyHosts
value, SilentDeny controls whether the client sees an informative failure message or not.

Q: Password authentication isn't working.

A: Use ssh -v. If the connection is being refused altogether, the SSH server is probably not running,
or you are connecting to the wrong port. Port 22 is the default, but the remote system administrator
might have changed it. If you see "permission denied," password authentication might be disabled in
the server.

Make sure the server permits password authentication in the serverwide configuration file
(PasswordAuthentication yes for SSH1 and OpenSSH, AllowedAuthentications password
for SSH2). Also check your client configuration file to make sure you don't have
PasswordAuthentication no.

If you are prompted for your password, but it is rejected, you might accidentally be connecting to the
wrong account. Does your local username differ from the remote username? If so, you must specify
the remote username when connecting:
$ ssh -l my_remote_username server.example.com
$ scp myfile my_remote_username@server.example.com:

If this still doesn't work, check your local client configuration file (~/.ssh/config or
~/.ssh2/ssh2_config) to make sure you haven't accidentally set the wrong value for the User
keyword. In particular, if your configuration file contains Host values with wildcards, check that your
current command line (the one that isn't working) isn't matching the wrong section in the file.

One common problem on the server side involves OpenSSH and Pluggable Authentication Modules
configuration. PAM is a general system for performing authentication, authorization, and accounting in
an application-independent fashion. If your operating system supports PAM (as Linux and HPUX do,
for example), OpenSSH will probably have been automatically compiled to use it. Unless you take
the extra step of configuring PAM to support SSH, all password authentications will mysteriously
fail. This is usually just a matter of copying the appropriate sshd.pam file from the contrib directory
in the OpenSSH distribution, naming the copy sshd and placing it in the PAM configuration directory
(usually /etc/pam.d). The contrib directory contains several example files for different flavors of
Unix. For example, on a RedHat Linux system:
cp contrib/redhat/sshd.pam /etc/pam.d/sshd
chown root.root /etc/pam.d/sshd
chmod 644 /etc/pam.d/sshd

If OpenSSH isn't using PAM, and password authentication still isn't working, the compilation
switches --with-md5-passwords or --without-shadow might be relevant. These make no
difference if PAM support is enabled in OpenSSH, because they deal with how OpenSSH reads the
Unix passwd map. When using PAM, the OpenSSH code doesn't read the passwd map directly; the
PAM libraries do it instead. Without PAM, though, if your system is using MD5-hashed passwords
instead of the more traditional crypt (DES) hash, you must use --with-md5-passwords. You can tell

which hash your system is using by inspecting the /etc/passwd and /etc/shadow files. The hashed
password is the second field in each entry; if the password field in /etc/passwd is just "x", the real
entry is in /etc/shadow instead. MD5 hashes are much longer and contain a wider range of characters:
/etc/shadow, MD5 hash
test:1tEMXcnZB$rDEZbQXJzUz4g2J4qYkRh.:...
/etc/shadow, crypt hash
test:JGQfZ8DeroV22:...

Finally, you can try --without-shadow if you suspect OpenSSH is trying to use the shadow
password file, but your system doesn't use it.

Q: The server won't let me use an empty password.

A: Empty passwords are insecure and should be avoided. Nevertheless, you can set
PermitEmptyPasswords yes in the serverwide configuration file.

Q: Trusted-host authentication isn't working (SSH1 RhostsRSA, SSH2 hostbased).

A: Use ssh -v. If everything looks right, check the following. Suppose the client user is
orpheus@earth, and the target account is orpheus@hades — that is, on host earth, user orpheus
invokes ssh hades.

Q: For SSH1 and OpenSSH/1

A: The SSH client program must be setuid root.

RhostsRSAAuthentication yes belongs in the server and client configurations.

The client's public host key must be in the server's known hosts list. In this case,
hades:/etc/ssh_known_hosts must contain an entry associating the name "earth" with earth's public
host key, like this:
earth 1024 37 71641647885140363140390131934...

The entry may be in the target account's known hosts file instead, i.e., in
hades:~orpheus/.ssh/known_hosts. Take care that "earth" is the canonical name of the client host
from the server's point of view. That is, if the SSH connection is coming from the address
192.168.10.1, gethostbyname(192.168.10.1) on hades must return "earth", not a nickname or alias for
the host (e.g., if the hostname is river.earth.net, the lookup must not return just "river"). Note that this
can involve multiple naming services, since gethostbyname can be configured to consult multiple
sources to determine a translation (e.g., DNS, NIS, /etc/hosts). See /etc/nsswitch.conf. If your
systems don't agree on canonical hostnames, you'll have no end of trouble with RhostsRSA. You can
work around such problems to an extent by manually adding extra host nicknames to the known hosts
file, like this:
earth,gaia,terra 1024 37 71641647885140363140390131934...

Edit hades:/etc/shosts.equiv or hades:~orpheus/.shosts to allow the login. Adding earth to
shosts.equiv allows any nonroot user on earth to access the account by the same name on hades.
Adding earth to .shosts allows orpheus@earth to access orpheus@hades.

Some firewalls reject outbound connections from privileged ports. This prevents RhostsRSA
authentication from working, since it relies on privileged source ports. You can use ssh -P to get a
connection to the SSH server via a nonprivileged port, but you will have to use a different kind of
authentication.

Q: For SSH2

A: AllowedAuthentications hostbased in the server and client configurations.

ssh2 doesn't need to be setuid root, but ssh-signer2 does. More precisely, it needs to be able to read
the private host key, which in the normal installation means it must be setuid root.

A copy of earth's public host key in hades:/etc/ssh2/knownhosts/earth.ssh-dss.pub (or
hades:~orpheus:/.ssh2/knownhosts/earth.ssh-dss.pub, if you specified "UserKnownHosts yes" on
the server).

Regarding canonical hostnames, the same comments as for RhostsRSA apply.

Q: For OpenSSH/2

A: DSAAuthentication yes belongs in the server and client configurations.

ssh must be setuid root (or otherwise able to read the client hosts's private host key in
/etc/ssh_host_dsa_key ; it doesn't require a privileged source port).

A copy of earth's public host key in hades:/etc/ssh_known_hosts2 (or
hades:~orpheus:/.ssh/known_hosts2).

The same comments as for RhostsRSA apply, regarding canonical hostnames.

Q: How do I install my public key file on the remote host the first time?

A: Here's the general method:

1. Generate a key pair.
2. Copy the text of the public key into your computer's clipboard or other cut/paste buffer.
3. Log into the remote host via SSH with password authentication, which doesn't require any

special files in your remote account.
4. Edit the appropriate authorization and key files on the remote host:

1. For SSH1 and OpenSSH/1, append the public key to ~/.ssh/authorized_keys.
2. For OpenSSH/2, append the public key to ~/.ssh/authorized_keys2.
3. For SSH2, paste the public key into a new .pub file in ~/.ssh2 (say, newkey.pub), and

append the line "Key newkey.pub" to ~/.ssh2/authorization.
5. Log out from the remote host.
6. Log back into the remote host using public-key authentication.

When editing the remote authorization file, make sure your text editor doesn't insert line breaks into
the middle of a public key. SSH1 and OpenSSH public keys are very long and must be kept on a
single line.

Q: I put my SSH public key file mykey.pub into my remote SSH directory, but public-key
authentication doesn't work.

A: Placing a valid public key file (e.g., mykey.pub) in your SSH directory isn't sufficient. For SSH1
and OpenSSH/1, you must append the key (i.e., the contents of mykey.pub) to ~/.ssh/authorized_keys.
For OpenSSH/2, append the key to ~/.ssh/authorized_keys2. For SSH2, you must add a line of text to
~/.ssh2/authorization, Key mykey.pub.

Q: Public-key authentication isn't working.

A: Invoke the client in debug mode (ssh -v). Make sure:

Your local client is using the expected identity file.
The correct public key is on the remote host in the right location.
Your remote home directory, SSH directory, and other SSH-related files have the correct
permissions.

Q: I'm being prompted for my login password instead of my public key passphrase. Or, my
connection is rejected with the error message "No further authentication methods available." (SSH2)

A: There are several possible causes for both of these problems.

Public-key authentication must be enabled in both the client and server (SSH1/OpenSSH
RSAAuthentication yes, SSH2 AllowedAuthentications publickey).

Specify your remote username with -l (lowercase L) if it differs from your local username, or else the
SSH server will examine the wrong remote account:
$ ssh -l jones server.example.com

Check the file permissions in your server account. If certain files or directories have the wrong owner
or careless access permissions, the SSH server refuses to perform public-key authentication. This is a
security feature. Run ssh in verbose mode to reveal the problem:
$ ssh -v server.example.com
...
server.example.com: Remote: Bad file modes for /u/smith/.ssh

In your server account, make sure that the following files and directories are owned by you and aren't
world writable: ~, ~/.ssh, ~/.ssh/authorized_keys, ~/.ssh2, ~/.rhosts, and ~/.shosts.

For SSH2, if you use the -i option to specify an identification file:
$ ssh2 -i my-identity server.example.com

check that my-identity is an identification file, not a private key file. (In contrast, ssh -i for SSH1 and
OpenSSH expects a private key file.) Remember that SSH2 identification files are text files
containing the names of private keys.

Q: I'm being prompted for the passphrase of the wrong key.

A: Make sure your desired public key is in your authorization file on the SSH server machine.

Check for SSH agent problems. Are you running an agent and trying to specify another key with ssh -i
or the IdentityFile keyword? The presence of an agent prevents -i and IdentityFile from
working. Terminate your agent and try again.

For SSH1 and OpenSSH, if any options are specified in ~/.ssh/authorized_keys, check for
typographical errors. A mistyped option causes the associated key line to be skipped silently.
Remember that options are separated by commas, not whitespace.

Q: After the PGP passphrase prompt, I am being prompted for my login password.

A: If you get prompted for your PGP key, and then your password:
Passphrase for pgp key "mykey": ********
smith's password:

and you know you're typing your passphrase correctly, first make sure you're typing your PGP
passphrase correctly. (For instance, encrypt a file with that public key and decrypt it.) If so, then there
might be an incompatibility between the PGP implementations on your client and server machines.
We've seen this behavior when the PGP key (generated on the client machine) doesn't have sufficient
bits for the PGP implementation on the server machine. Generate a new key on the server machine.

Q: I get "Invalid pgp key id number `0276C297'".

A: You probably forgot the leading "0x" on the key ID, and SSH is trying to interpret a hexadecimal
number as a decimal. Use PgpKeyId 0x0276C297 instead.

Key and Agent Problems

Q: I generated a key with SSH1 and tried using it with another SSH1 client, such as NiftyTelnet SSH,
F-Secure SSH Client, or SecureCRT, but the client complains that the key is in an invalid format.

A: First, make sure you generated the key using ssh-keygen1, not ssh-keygen2. SSH1 and SSH2 keys
aren't compatible.

Next, make sure you transferred the key file using an appropriate file-transfer program. If you used
FTP, confirm that the private key file was transferred in binary mode, or the copy will contain
garbage. The public key file should be transferred in ASCII mode.

Q: I generated an SSH1 key and tried using it with SSH2, but it didn't work. (Or vice versa.)

A: This is normal. SSH1 and SSH2 keys aren't compatible.

Q: I specified a key manually, using -i or IdentityFile, but it never gets used!

A: Are you running an agent? If so, -i and IdentityFile don't have any effect. The first applicable
key in the agent takes precedence.

Q: Each time I run ssh-keygen, it overwrites my default identity file.

A: Tell ssh-keygen to write its output to a different file. For ssh-keygen in SSH1 and OpenSSH, use
the -f option. For ssh-keygen2, specify the filename as the last argument on the command line; no
option is needed.

Q: Can I change the passphrase for a key without regenerating the key?

A: Yes. For ssh-keygen in SSH1 and OpenSSH, use the -N option, and for ssh-keygen2, use the -p
option.

Q: How do I generate a host key?

A: Generate a key with an empty passphrase and install it in the correct location:
SSH1, OpenSSH
$ ssh-keygen -N '' -b 1024 -f /etc/ssh_host_key
SSH2 only
$ ssh-keygen2 -P -b 1024 /etc/ssh2/hostkey

Q: Generating a key takes a long time.

A: Yes it may, depending on the speed of your CPU and the number of bits you have requested. DSA
keys tend to take longer than RSA keys.

Q: How many bits should I make my keys?

A: We recommend at least 1024 bits for strong security.

Q: What does oOo.oOo.oOo.oOo mean, as printed by ssh-keygen2?

A: The manpage calls it a "progress indicator." We think it's an ASCII representation of a sine wave.
Or the sound of a chattering gorilla. You can hide it with the -q flag.

Q: My ssh-agent isn't terminating after I log out.

A: If you use the single-shell method to start an agent, this isnormal. You must terminate the agent
yourself, either manually (bleah)or by including appropriate lines in your shell configurationfiles
(Section 6.3). If you use thesubshell method, the agent automatically terminates when you log
out(actually, when you exit the subshell) (Section 6.3).

Q: When I invoke ssh-add and type my passphrase, I get the error message "Could not open a
connection to your authentication agent."

A: Follow this debugging process.

Make sure you are running an ssh-agent process:
$ /usr/bin/ps -ef | grep ssh-agent
smith 22719 1 0 23:34:44 ? 0:00 ssh-agent

If not, you need to run an agent before ssh-add will work.

Check that the agent's environment variables are set:
$ env | grep SSH
SSH_AUTH_SOCK=/tmp/ssh-barrett/ssh-22719-agent
SSH_AGENT_PID=22720

If not, you probably ran ssh-agent incorrectly, like this:
Wrong!
$ ssh-agent

For the single-shell method, you must use eval with backquotes:
$ eval `ssh-agent`

Or, for the subshell method, you must instruct ssh-agent to invoke a shell:
$ ssh-agent $SHELL

Make sure the agent points to a valid socket:
$ ls -lF $SSH_AUTH_SOCK
prwx-- -- -- 1 smith 0 May 14 23:37 /tmp/ssh-smith/ssh-22719-agent|

If not, your SSH_AUTH_SOCK variable might be pointing to an old socket from a previous
invocation of ssh-agent, due to user error. Terminate and restart the agent properly.

Q: My per-account server configuration isn't taking effect.

A: You might be confused about which versions of SSH use which files:
SSH1, OpenSSH/1: ~/.ssh/authorized_keys
SSH2: ~/.ssh2/authorization
OpenSSH/2: ~/.ssh/authorized_keys2 (note this isn't in ~/.ssh2)

Remember that the authorized_keys and authorized_keys2 files contains keys, whereas the SSH2
authorization file contains directives referring to other key files.

You might have a typographical error in one of these files. Check the spelling of options, and
remember to separate SSH1 authorized_keys options with commas, not whitespace. For example:
correct
no-x11-forwarding,no-pty 1024 35 8697511247987525784866526224505...
INCORRECT (will silently fail)
no-x11-forwarding no-pty 1024 35 8697511247987525784866526224505...
ALSO INCORRECT (note the extra space after "no-x11-forwarding,")
no-x11-forwarding, no-pty 1024 35 8697511247987525784866526224505...

Server and Client Problems

Q: How do I get sshd to recognize a new configuration file?

A: You can terminate and restart sshd, but there's quicker way: send the "hangup" signal (SIGHUP) to
sshd with kill -HUP.

Q: I changed the sshd config file and sent SIGHUP to the server. But it didn't seem to make any
difference.

A: sshd may have been invoked with a command-line option that overrides that keyword. Command-
line options remain in force and take precedence over configuration file keywords. Try terminating
and restarting sshd.

Q: A feature of ssh or scp isn't working, but I'm sure I'm using it correctly.

A: The feature might have been disabled by a system administrator, either when the SSH software
was compiled (Chapter 4) or during serverwide configuration (Chapter 5). Compile-time flags cannot
be checked easily, but serverwide configurations are found in the files /etc/sshd_config (SSH1,
OpenSSH) or /etc/ssh2/sshd2_config (SSH2). Ask your system administrator for assistance.

Q: ssh or scp is behaving unexpectedly, using features I didn't request.

A: The program might be responding to keywords specified in your client configuration file (Section
7.1). Remember that multiple sections of the config file apply if multiple Host lines match the remote
machine name you specified on the command line.

Q: My SSH1 .ssh/config file doesn't seem to work right.

A: Remember that after the first use of a "Host" directive in the config file, all statements are inside
some Host block, because a Host block is only terminated by the start of another Host block. The
ssh1 manpage suggests that you put defaults at the end of the config file, which is correct; when
looking up a directive in the config file, ssh1 uses the first match it finds, so defaults should go after
any Host blocks. But don't let your own indentation or whitespace fool you. The end of your file
might look like:
last Host block
Host server.example.com
 User linda
defaults
User smith

You intend that the username for logging into server.example.com is "linda", and the default username
for hosts not explicitly listed earlier is "smith". However, the line "User smith" is still inside the
"Host server.example.com" block. And since there's an earlier User statement for
server.example.com, "User smith" doesn't ever match anything, and ssh appears to ignore it. The right
thing to do is this:
last Host block
Host server.example.com
 User linda
defaults
Host *
 User smith

Q: My .ssh2/ssh2_config file doesn't seem to work right.

A: See our answer to the previous question for SSH1. However, SSH2 has the opposite precedence
rule: if multiple configurations match your target, the last, not the first, prevails. Therefore your
defaults go at the beginning of the file.

Q: I want to suspend ssh with the escape sequence, but I am running more than two levels of ssh
(machine to machine to machine). How do I suspend an intermediate ssh?

A: One method is to start each ssh with a different escape character; otherwise, the earliest ssh client
in the chain interprets the escape character and suspends.

Or you can be clever. Remember that if you type the escape character twice, that's the meta-escape: it
allows you to send the escape character itself, circumventing its usual special function. So, if you
have several chained ssh sessions, all using the default escape character ~, you can suspend the nth
one by pressing the Return key, then n tildes, then Control-Z.

Q: I ran an ssh command in the background on the command line, and it suspended itself, not running
unless I "fg" it.

A: Use the -n command-line option, which instructs ssh not to read from stdin (actually, it reopens
stdin on /dev/null instead of your terminal). Otherwise, the shell's job-control facility suspends the
program if it reads from stdin while in the background.

Q: ssh prints "Compression level must be from 1 (fast) to 9 (slow, best)" and exits.

A: Your CompressionLevel is set to an illegal value for this host, probably in your ~/.ssh/config
file. It must be an integer between 1 and 9, inclusive.

Q: ssh prints "rsh not available" and exits.

A: Your SSH connection attempt failed, and your client was configured to fall back to an rsh
connection. However, the server was compiled without rsh fallback support or with an invalid path
to the rsh executable.

If you didn't expect your SSH connection to fail, run the client in debug mode and look for the reason.
Otherwise, the SSH server is just not set up to receive rsh connections.

Q: ssh1 prints "Too many identity files specified (max 100)" and exits.

A: SSH1 has a hardcoded limit of 100 identity files (private key files) per session. Either you ran an
ssh1 command line with over 100 -i options, or your configuration file ~/.ssh/config has an entry
with over 100 IdentityFile keywords. You should never see this message unless your SSH
command lines and/or configuration files are being generated automatically by another application,
and something in that application has run amok. (Or else you're doing something really funky.)

Q: ssh1 prints "Cannot fork into background without a command to execute" and exits.

A: You used the -f flag of ssh1, didn't you? This tells the client to put itself into the background as
soon as authentication completes, and then execute whatever remote command you requested. But, you
didn't provide a remote command. You typed something like:
This is wrong
$ ssh1 -f server.example.com

The -f flag makes sense only when you give ssh1 a command to run after it goes into the background:
$ ssh1 -f server.example.com /bin/who

If you just want the SSH session for port-forwarding purposes, you may not want to give a command.
You have to give one anyway; the SSH1 protocol requires it. Use sleep 100000. Don't use an infinite
loop like the shell command while true; do false; done. This gives you the same effect, but your
remote shell will eat all the spare CPU time on the remote machine, annoying the sysadmin and
shortening your account's life expectancy.

Q: ssh1 prints "Hostname or username is longer than 255 characters" and exits.

A: ssh1 has a static limit of 255 characters for the name of a remote host or a remote account
(username). You instructed ssh1, either on the command line or in your configuration file, to use a
hostname or username that's longer than this limit.

Q: ssh1 prints "No host key is known for <server name> and you have requested strict checking (or
`cannot confirm operation when running in batch mode')," and exits.

A: The client can't find the server's host key in its known-hosts list, and it is configured not to add it
automatically (or is running in batch mode and so can't prompt you about adding it). You must add it
manually to your per-account or systemwide known-hosts files.

Q: ssh1 prints "Selected cipher type . . . not supported by server" and exits.

A: You requested that ssh1 use a particular encryption cipher, but the SSH1 server doesn't support it.
Normally, the SSH1 client and server negotiate to determine which cipher to use, so you probably
forced a particular cipher by providing the -c flag on the ssh1 command line or by using the Cipher
keyword in the configuration file. Either don't specify a cipher and let the client and server work it
out, or select a different cipher.

Q: ssh1 prints "channel_request_remote_forwarding: too many forwards" and exits.

A: ssh1 has a static limit of 100 forwardings per session, and you've requested more.

Q: scp printed an error message: "Write failed flushing stdout buffer. write stdout: Broken pipe" or
"packet too long".

A: Your shell startup file (e.g., ~/.cshrc, ~/.bashrc), which is run when scp connects, might be
writing a message on standard output. These interfere with the communication between the two scp1
programs (or scp2 and sftp-server). If you don't see any obvious output commands, look for stty or
tset commands that might be printing something.

Either remove the offending statement from the startup file or suppress it for noninteractive sessions:
if ($?prompt) then
 echo 'Here is the message that screws up scp.'
endif

The latest versions of SSH2 have a new server configuration statement,
AllowCshrcSourcingWithSubsystems, which should be set to no to prevent this problem.

Q: scp printed an error message, "Not a regular file."

A: Are you trying to copy a directory? Use the -r option for a recursive copy. Otherwise, you may be
trying to copy a special file that it doesn't make sense to copy, such as a device node, socket, or
named pipe. If you do an ls -l of the file in question and the first character in the file description is
something other than - (for a regular file) or d (for a directory), this is probably what's happening.

You didn't really want to copy that file, did you?

Q: Why don't wildcards or shell variables work on the scp command line?

A: Remember that wildcards and variables are expanded by the local shell first, not on the remote
machine. This happens even before scp runs. So if you type:
$ scp server.example.com:a* .

the local shell attempts to find local files matching the pattern server.example.com:a*. This is
probably not what you intended. You probably wanted files matching a* on server.example.com to be
copied to the local machine.

Some shells, notably C shell and its derivatives, simply report "No match" and exit. Bourne shell and
its derivatives (sh, ksh, bash), finding no match, will actually pass the string
server.example.com:a* to the server as you'd hoped.

Similarly, if you want to copy your remote mail file to the local machine, the command:
$ scp server.example.com:$MAIL .

might not do what you intend. $MAIL is expanded locally before scp executes. Unless (by
coincidence) $MAIL is the same on the local and remote machines, the command won't behave as
expected.

Don't rely on shell quirks and coincidences to get your work done. Instead, escape your wildcards
and variables so the local shell won't attempt to expand them:
$ scp server.example.com:a* .
$ scp 'server.example.com:$MAIL' .

Q: I used scp to copy a file from the local machine to a remote machine. It ran without errors. But
when I logged into the remote machine, the file wasn't there!

A: By any chance, did you omit a colon? Suppose you want to copy the file myfile from the local
machine to server.example.com. A correct command is:
$ scp myfile server.example.com:

but if you forget the final colon:
This is wrong!
$ scp myfile server.example.com

myfile gets copied locally to a file called server.example.com. Check for such a file on the local
machine.

Q: How can I give somebody access to my account by scp to copy files but not give full login
permissions?

A: Bad idea. Even if you can limit the access to scp, this doesn't protect your account. Your friend
could run:
 $
 scp evil_authorized_keys you@your.host:.ssh/authorized_keys

Oops, your friend has just replaced your authorized_keys file, giving himself full login permissions.
Maybe you can accomplish what you want with a clever forced command, limiting the set of
programs your friend may run in your account.

Q: scp -p preserves file timestamps and modes. Can it preserve file ownership?

A: No. Ownership of remote files is determined by SSH authentication. Suppose user smith has
accounts on local computer L and remote computer R. If the local smith copies a file by scp to the
remote smith account, authenticating by SSH, the remote file is owned by the remote smith. If you
want the file to be owned by a different remote user, scp must authenticate as that different user. scp
has no other knowledge of users and uids, and besides, only root can change file ownership (on most
modern Unix variants, anyway).

Q: Okay, scp -p doesn't preserve file ownership information. But I am the superuser, and I'm trying to
copy a directory hierarchy between machines (scp -r) and the files have a variety of owners. How
can I preserve the ownership information in the copies?

A: Don't use scp for this purpose. Use tar and pipe it through ssh. From the local machine, type:
tar cpf - local_dir | (ssh remote_machine "cd remote_dir; tar xpf -")

Q: sftp2 reports "Cipher <name> is not supported. Connection lost."

A: Internally, sftp2 invokes an ssh2 command to contact sftp-server. It searches the user's PATH to
locate the ssh2 executable rather than a hardcoded location. If you have more than one version of
SSH2 installed on your system, sftp2 might invoke the wrong ssh2 program. This can produce the
error message shown.

For example, suppose you have both SSH2 and F-Secure SSH2 installed. SSH2 is installed in the
usual place, under /usr/local, whereas F-Secure is installed under /usr/local/f-secure. You
ordinarily use SSH2, so /usr/local/bin is in your PATH, but /usr/local/f-secure isn't. You decide to
use the F-Secure version of scp2 because you want the CAST-128 cipher, which SSH2 doesn't
include. First, you confirm that the SSH server in question supports CAST-128:
$ /usr/local/f-secure/bin/ssh2 -v -c cast server
 ...
debug: c_to_s: cipher cast128-cbc, mac hmac-sha1, compression none
debug: s_to_c: cipher cast128-cbc, mac hmac-sha1, compression none

Satisfied, you try scp2 and get this:
$ /usr/local/f-secure/bin/scp2 -c cast foo server:bar
FATAL: ssh2: Cipher cast is not supported.
Connection lost.

scp2 is running the wrong copy of ssh2 from /usr/local/bin/ssh2, rather than /usr/local/f-
secure/bin/ssh2. To fix this, simply put /usr/local/f-secure/bin earlier in your PATH than
/usr/local/bin, or specify the alternative location of ssh2 with scp2 -S.

The same problem can occur in other situations where SSH programs run other programs. We have
run afoul of it using host-based authentication with both 2.1.0 and 2.2.0 installed. The later ssh2 ran
the earlier ssh-signer2 program, and the client/signer protocol had changed, causing it to hang.

Q: sftp2 reports "ssh_packet_wrapper_input: invalid packet received."

A: Although this error appears mysterious, its cause is mundane. A command in the remote account's
shell startup file is printing something to standard output, even though stdout isn't a terminal in this
case, and sftp2 is trying to interpret this unexpected output as part of the SFTP packet protocol. It
fails and dies.

You see, sshd uses the shell to start the sftp-server subsystem. The user's shell startup file prints
something, which the SFTP client tries to interpret as an SFTP protocol packet. This fails, and the
client exits with the error message; the first field in a packet is the length field, which is why it's

always that message.

To fix this problem, be sure your shell startup file doesn't print anything unless it's running
interactively. tcsh, for example, sets the variable $interactive if stdin is a terminal. This problem
has been addressed in SSH 2.2.0 with the AllowCshrcSourcingWithSubsystems flag, which
defaults to no, instructing the shell not to run the user's startup file.

Q: I'm trying to do port forwarding, but ssh complains: "bind: Address already in use."

A: The port you're trying to forward is already being used by another program on the listening side
(the local host if it's a -L forwarding or the remote host if it's a -R). Try using the netstat -a
command, available on most Unix implementations and some Windows platforms. If you see an entry
for your port in the LISTEN state, you know that something else is using that port. Check to see
whether you've inadvertently left another ssh command running that's forwarding the same port.
Otherwise, just choose another, unused port to forward.

This problem can occur when there doesn't appear to be any other program using your port, especially
if you've been experimenting with the forwarding feature and have repeatedly used the same ssh to
forward the same port. If the last one of these died unexpectedly (you interrupted it, or it crashed, or
the connection was forcibly closed from the other side, etc.), the local TCP socket may have been left
in the TIME_WAIT state (you may see this if you used the netstat program as described earlier).
When this happens, you have to wait a few minutes for the socket to time out of this state and become
free for use again. Of course, you can just choose another port number if you're impatient.

Q: How do I secure FTP with port forwarding?

A: This is a complex topic. FTP has two types of TCP connections, control and data. The control
connection carries your login name, password, and FTP commands; it is on TCP port 21 and can be
forwarded by the standard method. In two windows, run:
$ ssh -L2001:name.of.server.com:21 name.of.server.com
$ ftp localhost 2001

Your FTP client probably needs to run in passive mode (execute the passive command). FTP data
connections carry the files being transferred. These connections occur on randomly selected TCP
ports and can't be forwarded in general, unless you enjoy pain. If firewalls or NAT (network address
translation) are involved, you may need additional steps (or it may not be possible).

Q: X forwarding isn't working.

A: Use ssh -v, and see if the output points out an obvious problem. If not, check the following.

Make sure you have X working before using SSH. Try running a simple X client such as xlogo or
xterm first. Your local DISPLAY variable must be set, or SSH doesn't attempt X forwarding.

X forwarding must be turned on in the client and server, and not disallowed by the target account (that
is, with no-X11-forwarding in the authorized_keys file).

sshd must be able to find the xauth program to run it on the remote side. If it can't, this should show
up when running ssh -v. You can fix this on the server side with the XAuthLocation directive (SSH1,
OpenSSH), or by setting a PATH (that contains xauth) in your remote shell startup file.

Don't set the DISPLAY variable yourself on the remote side. sshd automatically sets this value
correctly for the forwarding session. If you have commands in your login or shell startup files that

unconditionally set DISPLAY, change the code to set it only if X forwarding isn't in use.

OpenSSH sets the remote XAUTHORITY variable as well, placing the xauth credentials file under
/tmp. Make sure you haven't overridden this setting, which should look like:
$ echo $XAUTHORITY
/tmp/ssh-maPK4047/cookies

Some flavors of Unix actually have code in the standard shell startup files (e.g., /etc/bashrc,
/etc/csh.login) that unconditionally sets XAUTHORITY to ~/.Xauthority. If that's the problem, you
must ask the sysadmin to fix it; the startup file should set XAUTHORITY only if the variable is unset.

If you are using an SSH startup file (/etc/sshrc or ~/.ssh/rc), sshd doesn't run xauth for you on the
remote side to add the proxy key; one of these startup files must do it, receiving the proxy key type
and data on standard input from sshd
— SP

Glossary

A - M

AIX
A version of Unix from the IBM Corporation.

argument
Zero or more characters passed to a program or function as a single unit. The shell breaks a
command line into arguments by cutting it at unquoted whitespace.

array
An ordered collection of data items. An array has a single overall name; each item in it is called
an element or member. For instance, the C shell stores its command search path in an array
named path. The first array member is named $path[1], the second is $path[2], and so on.
Some arrays are indexed from zero (e.g., C, Perl).

ASCII text file
Formally, a text file containing only ASCII characters. More commonly (in the U.S., at least), a
file containing text that's printable, viewable, and has no "binary" (non-ASCII) characters.
ASCII characters use only seven of the bits in a (8-bit) byte.

backquote
The character `. Not the same as a single quote ('). Used in pairs, does command substitution.

backslash
The character \. In Unix, it changes the interpretation of the next character in some way. See also
Section 27.18.

batch queue
A mechanism for sequencing large jobs. A batch queue receives job requests from users. It then
executes the jobs one at a time. Batch queues go back to the earliest days of data processing.
They are an extremely effective, if uncomfortable, way to manage system load.

bin directory
A directory for storing executable programs. See also Section 7.4.

binaries, binary file
A file with nontext characters. Often, a directly executable file that can be run as a program.
Binary characters use all the bits in a (8-bit) byte.

block size
The largest amount of data that a Unix filesystem will always allocate contiguously. For
example, if a filesystem's block size is 8 KB, files of size up to 8 KB are always physically
contiguous (i.e., in one place), rather than spread across the disk. Files that are larger than the
filesystem's block size may be fragmented: 8 KB pieces of the file are located in different places
on the disk. Fragmentation limits filesystem performance. Note that the filesystem block size is
different from a disk's physical block size, which is almost always 512 bytes.

brain-damaged
How a program with poor design or other errors can be described.

BSD Unix
The versions of Unix developed at the University of California, Berkeley. BSD (Berkeley
Software Distribution) Unix has been dominant in academia and has historically had some

features more advanced than System V: BSD introduced virtual memory, TCP/IP networking,
and the "fast filesystem" to the Unix community. It is also the system on which Sun OS was
based. System V Release 4 and some vendors' earlier System V versions also have Berkeley
features.

buffer
A temporary storage place such as a file or an area of the computer's memory. Most text editors
store the file you're editing in a buffer; when you're done editing, the edited buffer is copied over
(i.e., replaces) the original file.

command line
The text you type at a shell prompt. A Unix shell reads the command line, parses it to find the
command name (which is usually the first word on the command line, though it can be a variable
assignment), and executes the command. A command line may have more than one command
joined by operators such as semicolons (;), pipes (|), or doubleampersands (&&).

control character
A character you make by holding down the keyboard CTRL (Control) key while pressing a letter
or another character key.

core file, core dump
The file made when a program terminates abnormally. The core file can be used for debugging.
This comes from ancient "core" memory, where the contents of memory were stored in a
magnetized ferrite core. See also Section 15.4.

.cshrc file
See Section 3.3.

daemon
A program that is invisible to users but provides important system services. Daemons manage
everything from paging to networking to notification of incoming mail. See also Section 1.10.

data switch
Hardware that is something like a telephone switchboard. A data switch connects many
terminals to two or more computers. The user, on a terminal or through a modem, tells the data
switch to which computer she wants a connection. A data switch is also called a terminal
multiplexor. Computers without data switches usually have one terminal connected to each tty
port; characteristics like the terminal type can be set in system files. Conversely, computers with
data switches can't know in advance what sort of terminal is connected to each tty port.

default
In a program that gives you more than one choice, the one you get by not choosing. The default is
usually the most common choice. As an example, the default file for many Unix programs is the
standard input. If you don't give a filename on the command line, a program will read its
standard input.

dot (.) files (.cshrc, .login, .profile)
Files that are read when you start a program (including when you log in and start a shell). These
set up your environment and run any other Unix commands (for instance, tset). If your account
uses the C shell, it will read .cshrc and .login. Accounts that use the Bourne shell and shells like
it read .profile. See also Section 3.6.

double quote
The " character. This isn't the same as two single quotes ('') together. The " is used around a
part of a Unix command line where the shell should do variable and command substitution (and,

on the C shell, history substitution), but no other interpretation. See also Section 27.12 and
Section 27.13.

escape
Using escape on a character or a string of characters is a way to change how it is interpreted.
This can take away its special meaning, as in shell quoting; or it can add special meaning, as in
terminal escape sequences.

flag
In programming, a flag variable is set to signal that some condition has been met or that
something should be done. For example, a flag can be set ("raised") if the user has entered
something wrong; the program can test for this flag and not continue until the problem has been
fixed.

flame
A heated or irrational statement.

Free Software Foundation (FSF)
A group that develops the freely available GNU software. Their address is: 675 Massachusetts
Avenue, Cambridge, MA 02139 USA.

full-duplex
Communications between a terminal and a computer where data flows in both directions at the
same time. Half-duplex communications, where data flows in only one direction at a time, are
unusual these days.

GNU
Gnu's Not Unix, a system of software planned eventually to be a freely available substitute for
Unix.

gotcha
A "catch," difficulty, or surprise in the way that a program works.

hardcoded
In general, a value that can't be changed. For example, in a shell script with the command grep
jane, the value jane is hardcoded; grep will always search for jane. But in the command grep
$USER, the text that grep searches for is not hardcoded; it's a variable value.

hash table
Hashing data into the format of a hash table lets specially designed programs search for data
quickly. A hash table assigns a special search code to each piece of data. For example, the C
shell uses a hash table to locate commands more quickly; the rehash command rebuilds the hash
table after you add a new command.

I/O
Input/output of text from software or hardware.

inode
A data structure that describes a file. Within any filesystem, the number of inodes, and hence the
maximum number of files, is set when the filesystem is created.

i-number
A Unix file has a name (for people to identify it) and an i-number (for Unix to identify it). Each
file's i-number is stored in a directory, along with the filename, to let Unix find the file that you
name.

job
One Unix command. It is easy to be sloppy and use the terms job, process, and program

interchangeably. I do it, and I'm sure you do, too. Within Unix documentation, though, the word
"job" is usually used to mean one, and only one, command line. Note that one command line can
be complex. For example:
 pic a.ms | tbl | eqn | troff -ms

is one command, and hence one job, that is formed from four processes.
job number

Shells with job control assign a job number to every command that is stopped or running in the
background. You can use job numbers to refer to your own commands or groups of commands.
Job numbers are generally easier to use than process IDs; they are much smaller (typically
between 1 and 10) and therefore easier to remember. The C-shell jobs command displays job
numbers. See also Section 23.2.

kernel
The part of the Unix operating system that provides memory management, I/O services, and all
other low-level services. The kernel is the "core" or "heart" of the operating system. See also
Section 1.10.

kludge
A program or a solution to a problem that isn't written carefully, doesn't work as well as it
should, doesn't use good programming style, and so on.

library function
Packages of system calls (and of other library functions) for programmers in C and other
languages. In general (though not always), a library function is a "higher-level operation" than a
system call.

load average
A measure of how busy the CPU is. The load average is useful, though imprecise. It is defined as
the average number of jobs in the run queue plus the average number of jobs that are blocked
while waiting for disk I/O. The uptime command shows the load average.

.login file
See the "dot (.) files (.cshrc, .login, .profile)" entry in this glossary and Section 3.4.

mode
In Unix, an octal number that describes what access a file's owner, group, and others have to the
file. See also Section 1.17.

modulo
Think back to your fourth grade arithmetic. When you divide two numbers, you have a dividend
(the number on top), a divisor (the number on the bottom), a quotient (the answer), and a
remainder (what's left over). In computer science, this kind of division is very important.
However, we're usually more interested in the remainder than in the quotient. When we're
interested in the remainder, we call the operation a modulus (or modulo, or mod). For instance,
one of the examples in your fourth grade arithmetic text might have been 13 ÷ 3 = 4 (with a
remainder of 1). As computer users, we're more interested in 13 mod 3 = 1. It's really the same
operation, though. Modulo is also used in expressions like "modulo wildcards," which means
"everything but wildcards."

N - Z

NFS

Network File System. NFS allows Unix systems and many non-Unix systems to share files via a
TCP/IP network. Subject to certain security restrictions, systems are allowed complete access to
another system's files. See also Section 1.21 and Section 44.9.

newline
The character that marks the end of a line of text in most Unix files. (This is a convention, not a
requirement.) Usually expressed as "\n" or LF.

null
Empty, zero-length, with no characters — for example, a null string. This is not the same as an
ASCII NUL character.

octal number
The base 8 numbering system. Octal numbers are made with the digits 0 through 7,and begin with
O. For example, the decimal (base 10) number 12 is the same as the octal number 14. ASCII
character codes are often shown as octal numbers.

option switch
Typed on a command line to modify the way that a Unix command works. Usually starts with a
dash (-). The terms option and switch are more or less interchangeable. An option may have
several settings, but a switch usually has two settings: on or off, enabled or disabled, yes or no,
etc.

panic
Unix jargon for a "crash." A panic is really a special kind of a crash. Panics occur when Unix
detects some irreconcilable inconsistency in one of its internal data structures. The kernel
throws up its hands and shuts the system down before any damage can be done. As it is going
down, it prints a "panic" message on the console.

parse
To split into pieces and interpret.

partition
A portion of a disk drive. Unix disk drives typically have eight partitions, although not all are in
use.

path, search
See Section 35.6.

pipe
A Unix mechanism for sending the output of one program directly to the input of another
program, without using an intermediate file. All Unix systems support pipes. System V and Sun
OS also provide "named pipes," which are FIFO (first-in/first-out) buffers that have names and
can be accessed via the filesystem.

portable
A program that's portable can be used on more than one version of Unix or with more than one
version of a command.

POSIX
POSIX is not an OS, but a standard for how Unix-like OSes should behave at various levels. As
an effort to counter the balkanization of Unix from vendor to vendor, POSIX defines the ways in
which Unix-like OSes should expose their interfaces, from the kernel up to program- and shell-
argument level.

priority
A number that determines how often the kernel will run a process. A higher-priority process will

run more often — and, therefore, will finish faster — than a low-priority process.
process

A lot of the time, a process is nothing more than another name for a program that is running on
the system. But there is a more formal definition: a process is a single execution thread or a
single stream of computer instructions. One job may be built from many different processes. For
example, a command line with pipes starts two or more processes. See also Section 24.3.

process ID (PID)
Unix assigns every process an ID number (called a PID) when it starts. See also Section 24.3.
This number allows you to refer to a process at a later time. If you need to kill a runaway
program, you refer to it by its process ID. The ps command displays process IDs.

.profile file
See Section 3.4.

prompt
How a program asks you for information: by printing a short string like Delete afile? to the
terminal and waiting for a response. See also "shell prompt" in this glossary.

pseudo-code
A way to write out program text, structured like a program, without using the actual
programming language. Pseudo-code usually explains a program.

read-only filesystem
Filesystems are usually set up to allow write access to users who have the proper permissions.
The system administrator can mount a filesystem read-only; then no user can make changes to
files there.

recursive
A program or routine that re-executes itself or repeats an action over and over. For example, the
find program moves through a directory tree recursively, doing something in each directory.

reverse video
On a video display, reversed foreground and background colors or tones. Reverse video is used
to highlight an area or to identify text to be used or modified. For instance, if text is usually
shown with black letters on a white background, reverse video would have white letters on a
black background.

SCSI
Small Computer Systems Interface, a standard interface for disk and tape devices now used on
many Unix (and non-Unix) systems.

search path
A list of directories that the shell searches to find the program file you want to execute. See also
Section 17.29 and Section 35.6.

shell
A program that reads and interprets command lines and also runs programs. See also Section
27.3.

shell prompt
A signal from a shell (when it's used interactively) that the shell is ready to read a command
line. By default, the percent sign (%) is the default C-shell prompt and the dollar sign ($) is the
default Bourne-shell prompt. The default bash-shell prompt is also the dollar sign ($).

slash
The character /. It separates elements in a pathname. See also Section 1.16.

single quote
The ' character. This isn't the same as a backquote (`). The single quote is used around a part of
a Unix command line where the shell should do no interpretation (except history substitution in
the C shell). See also Section 27.12 and Section 27.13.

special file
An entity in the filesystem that accesses I/O devices. There is a special file for every terminal,
every network controller, every partition of every disk drive, and every possible way of
accessing every tape drive. See also Section 1.19.

string
A sequence of characters.

subdirectory
A directory within a directory. See also Section 1.16 and Section 7.7.

swapping
A technique that the Unix kernel uses to clean up physical memory. The kernel moves pages from
memory to disk and then reassigns the memory to some other function. Processes that have been
idle for more than a certain period of time may be removed from memory to save space.
Swapping is also used to satisfy extreme memory shortages. When the system is extremely short
of memory, active processes may be "swapped out."

system call
The lowest-level access to the Unix operating system. Everything else in Unix is built on system
calls.

System V Unix
A version of Unix from AT&T. The most recent Release of System V is Release 4, known as V.4
or SVR4.

TCP/IP
Transmission Control Protocol/Internet Protocol. A network protocol that is commonly used for
communications via an Ethernet. TCP/IP is also called the "Internet protocol." It is also common
to use TCP/IP over leased lines for long-distance communications.

termcap
Stands for terminal capabilities, an early (and still common) way to describe terminals to Unix.

terminal emulator
A program that makes a computer display emulate (act like) a terminal. For example, many
terminal-emulator programs emulate the Digital Equipment Corporation VT100 terminal.

terminfo
A newer way to describe terminal capabilities to Unix.

the Net
A term for two particular networks: Usenet and Internet. For instance, "I read it on the Net" or
"You can get that file on the Net."

timestamp
The Unix filesystem stores the times that each file was last modified, accessed, or had a change
to its inode. These times — especially the modification time — are often called timestamps.

truncate
To cut, to shorten — for example, "truncate a file after line 10" means to remove all lines after
line 10.

uuencode, uudecode

Utilities that encode files with binary (8-bit) characters into an ASCII (7-bit) format and decode
them back into the original binary format. This is used for transferring data across
communications links that can't transfer binary (8-bit) data. See also Section 39.2.

VAX/VMS
A popular computer operating system from the Digital Equipment Corporation.

wedged
A terminal or program is wedged when it's "frozen" or "stuck." The normal activity stops and
often can't be restarted without resetting the terminal or killing the program.

whitespace
A series of one or more space or TAB characters.

word
Similar to a word in a spoken language like English, a word is a unit made up of one or more
characters. But unlike English, words in Unix can contain whitespace; they can also have no
characters (a zero-length word).

XENIX
One of the first versions of Unix to run on IBM PCs, and one of the few that will run on 80286
systems. XENIX descends from Version 7 Unix, a version developed by AT&T in the late
1970s. It has many resemblances to BSD Unix. Over time, XENIX has been rewritten as a
variant of System V.2.

zombies
Dead processes that have not yet been deleted from the process table. Zombies normally
disappear almost immediately. However, at times it is impossible to delete a zombie from the
process table, so it remains there (and in your ps output) until you reboot. Aside from their slot
in the process table, zombies don't require any of the system's resources. See also Section 24.20.

Index

A note on the digital index
A link in an index entry is display ed as the section title in which that entry appears. Because some sections have multiple index markers, it is not unusual for an entry to have several links to the same section. Clicking on any link will take y ou
directly to the place in the text in which the marker appears.

Symbols

! (exclamation point), X Resource Syntax, How to Use find, Exact File-Time Comparisons, Finding
Text That Doesn't Match, Filtering Text Through a Unix Command, Patterns, Alphabetical Summary
of Commands, Alphabetical Summary of Commands, Special Characters, How Quoting Works, C-
Shell Aliases with Command-Line Arguments, C-Shell Aliases with Command-Line Arguments, My
Favorite Is !$, My Favorite Is !:n*, Using !$ for Safety with Wildcards, History Substitutions, History
Substitutions, History Substitutions, History Substitutions, History Substitutions, Regular
Expressions: The Anchor Characters ̂and $, Filename Wildcards in a Nutshell, Filename Wildcards
in a Nutshell, sed Addressing Basics, Making Edits Everywhere Except..., Exit Status of Unix
Processes, test: Testing Files and Strings, Syntax, Scalars, Scalars

! (Boolean NOT) operator, Patterns
! (logical negation) operator, How to Use find, Exact File-Time Comparisons, Scalars

with find command, Exact File-Time Comparisons
!$, specifying last argument on previous line, Regular Expressions: The Anchor Characters ̂and
$
!= (not equal) operator, Alphabetical Summary of Commands, Syntax, Scalars
!~ (pattern-matching) operator, Alphabetical Summary of Commands
in C shell quoting, How Quoting Works
command line exit status, reversing in bash and zsh, Exit Status of Unix Processes
filename wildcard, Filename Wildcards in a Nutshell
filtering vi text through Unix command, Filtering Text Through a Unix Command
find command operator, Finding Text That Doesn't Match
history substitution commands, Special Characters, C-Shell Aliases with Command-Line
Arguments, C-Shell Aliases with Command-Line Arguments, My Favorite Is !$, My Favorite Is
!:n*, Using !$ for Safety with Wildcards, History Substitutions, History Substitutions, History
Substitutions, History Substitutions, History Substitutions

!! and !\: sequences, History Substitutions
!$ notation, C-Shell Aliases with Command-Line Arguments
!$ sequence, My Favorite Is !$, Using !$ for Safety with Wildcards, History Substitutions
!* notation, C-Shell Aliases with Command-Line Arguments
!* sequence, History Substitutions
!\:n* sequence, My Favorite Is !:n*
! ̂sequence, History Substitutions
bash shell quoting and, Special Characters

regular expression metacharacter, Making Edits Everywhere Except...
sed editor replacements, Making Edits Everywhere Except...

sed address followed by, sed Addressing Basics
test command using, test: Testing Files and Strings
in X Window System comments, X Resource Syntax
[!] filename wildcards, Filename Wildcards in a Nutshell

" (quotes, double), Communication with Unix, Static Prompts, Faster Prompt Setting with Built-ins,
Multiline Shell Prompts, Highlighting and Color in Shell Prompts, Can't Access a File? Look for
Spaces in the Name, Expanding Ranges, Renaming, Copying, or Comparing a Set of Files, Extended
Searching for Text with egrep, Setting Up vi with the .exrc File, Splitting Files by Context: csplit,
Bourne Shell Quoting, How Quoting Works, Differences Between Bourne and C Shell Quoting, How
Quoting Works, Who Handles Wildcards?, Making Edits Everywhere Except..., Pattern Matching in
case Statements, Cleaning script Files, Perl Boot Camp, Part 1: Typical Script Anatomy

$ and ' inside, in C shell quoting, How Quoting Works
around filenames, renaming files and, Renaming, Copying, or Comparing a Set of Files
converting straight quotes to curly quotes with sed, Making Edits Everywhere Except...
for comments in vi .exrc file, Setting Up vi with the .exrc File
in command arguments, Communication with Unix
in prompts, Static Prompts, Faster Prompt Setting with Built-ins, Multiline Shell Prompts,
Highlighting and Color in Shell Prompts
in regular expressions, Extended Searching for Text with egrep
in sed scripts, Cleaning script Files
in shell quoting, Bourne Shell Quoting, How Quoting Works, Differences Between Bourne and C
Shell Quoting
ls -Q command output, Can't Access a File? Look for Spaces in the Name
passing wildcards to programs, Who Handles Wildcards?
search patterns in csplit program, Splitting Files by Context: csplit
shell arrays, expanded values, Expanding Ranges
variable interpolation in Perl, Perl Boot Camp, Part 1: Typical Script Anatomy
wildcard pattern matching in case statements, Pattern Matching in case Statements

"device independent" (DVI) printer language, Printing Languages — PostScript, PCL, DVI, PDF
"fat comma" operator (=>), Hashes
"inverse if" statement, Test Exit Status with the if Statement, Testing Your Success
"Syntax error" error message, Stop Syntax Errors in Numeric Tests
(hash mark), Dynamic Prompts, Setting Your Erase, Kill, and Interrupt Characters, Editing Multiple
Files with vi, Execution Scheduling, Default Commands, How Quoting Works, Filename Wildcards
in a Nutshell, Writing a Simple Shell Program, The Story of : # #!, The Story of : # #!, The
Unappreciated Bourne Shell ":" Operator, RCS Basics, Perl Boot Camp, Part 1: Typical Script
Anatomy

and ## filename wildcards, Filename Wildcards in a Nutshell
#! notation, Default Commands, Writing a Simple Shell Program, The Story of : # #!, Perl Boot
Camp, Part 1: Typical Script Anatomy

in Bourne shell scripts, Writing a Simple Shell Program
in Perl scripts, Perl Boot Camp, Part 1: Typical Script Anatomy

in comments, The Story of : # #!, RCS Basics
$Id $, commenting RCS files in a shell or Perl script, RCS Basics

dynamic prompts in tcsh and zsh shells, Dynamic Prompts

erase character, Setting Your Erase, Kill, and Interrupt Characters
in crontab entries, Execution Scheduling
shell prompt for zsh shells, How Quoting Works
vi editor, alternate filename, Editing Multiple Files with vi
\: (colon) used in place of, The Unappreciated Bourne Shell ":" Operator

$ (dollar sign), Which Shell Am I Running?, Interactive Shells, Dynamic Prompts, Can't Access a
File? Look for Spaces in the Name, How Quoting Works, How Quoting Works, "Special" Characters
and Operators, Command Substitution, Simple Functions: ls with Options, Setting Current Shell
Environment: The work Function, Regular Expressions: The Anchor Characters ̂and $, Regular
Expressions: The Anchor Characters ̂and $, Valid Metacharacters for Different Unix Programs, sed
Addressing Basics, Making Edits Across Line Boundaries, What Environment Variables Are Good
For, Shell Variables, Pattern Matching in case Statements, Exit Status of Unix Processes, Set Exit
Status of a Shell (Script), Handling Command-Line Arguments in Shell Scripts, With the "$@"
Parameter, With the "$@" Parameter, Counting Arguments with $#, Standard Command-Line Parsing,
Finding a Program Name and Giving Your Program Multiple Names, Matching with expr, Matching
with expr, Nested Command Substitution, Quoting and Command-Line Parameters, Quoting and
Command-Line Parameters, RCS Basics, Perl Boot Camp, Part 1: Typical Script Anatomy, Scalars,
Perl Boot Camp, Part 3: Branching and Looping, Perl Boot Camp, Part 4: Pattern Matching

$# command-line argument, Counting Arguments with $#
$() command substitution operator, Command Substitution, Nested Command Substitution
$* argument, Matching with expr, Quoting and Command-Line Parameters
$- variable, displaying current flags, Interactive Shells
$0 parameter, script names in, Finding a Program Name and Giving Your Program Multiple
Names
$1 command-line arguments, Set Exit Status of a Shell (Script), Handling Command-Line
Arguments in Shell Scripts
$1, $2, etc., command-line arguments in, Setting Current Shell Environment: The work Function
$@ argument, Simple Functions: ls with Options, With the "$@" Parameter, With the "$@"
Parameter, Standard Command-Line Parsing, Matching with expr, Quoting and Command-Line
Parameters

passing arguments to getopt, Standard Command-Line Parsing
replacement by arguments passed to function, Simple Functions: ls with Options

$Id $ in RCS files, RCS Basics
$_ variables in Perl, Scalars, Perl Boot Camp, Part 3: Branching and Looping
in bash shell prompt, Which Shell Am I Running?, Dynamic Prompts
inside double quotes in C shell quoting, How Quoting Works
end of line anchor in regular expressions, Regular Expressions: The Anchor Characters ̂and $
end of line indicator in various utilities, Can't Access a File? Look for Spaces in the Name,
Regular Expressions: The Anchor Characters ̂and $
metacharacter in regular expressions and shells, "Special" Characters and Operators
quoting in Bourne shell, How Quoting Works
regular expression metacharacter, Valid Metacharacters for Different Unix Programs, Making
Edits Across Line Boundaries, Perl Boot Camp, Part 4: Pattern Matching

matching at end of line (Perl), Perl Boot Camp, Part 4: Pattern Matching
matching newline at the end of multiline pattern space, Making Edits Across Line

Boundaries
use in Unix programs, Valid Metacharacters for Different Unix Programs

sed addressing symbol, sed Addressing Basics
value of Bourne shell exit status variable (?), getting, Exit Status of Unix Processes
variable names, preceding, What Environment Variables Are Good For, Shell Variables, Perl
Boot Camp, Part 1: Typical Script Anatomy
as wildcard, Pattern Matching in case Statements

$HOME environment variable, Use Absolute Pathnames in Shell Setup Files, Many Homes
$HOME/.rhosts file, Starting a Remote Client with rsh and ssh
$LOGDIR environment variable, Use Absolute Pathnames in Shell Setup Files
% (percent sign), Which Shell Am I Running?, Dynamic Prompts, Dynamic Prompts, Highlighting and
Color in Shell Prompts, Editing Multiple Files with vi, Using jobs Effectively, Syntax, I/O and
Formatting

%?, prefixing job numbers, Using jobs Effectively
arithmetic operator (modulus), Syntax
formatting operator in Python, I/O and Formatting
in shell prompts, Which Shell Am I Running?, Dynamic Prompts, Dynamic Prompts, Highlighting
and Color in Shell Prompts

%! for zsh hisotry number, Dynamic Prompts
%# (dynamic prompt), tcsh and zsh shells, Dynamic Prompts
%{ and %} delimiters for nonprinting escape sequences, Highlighting and Color in Shell
Prompts
C (csh) shell, Which Shell Am I Running?

vi editor, current filename, Editing Multiple Files with vi
& (ampersand), Copying Directory Trees with tar and Pipes, Patterns, Job Control in a Nutshell,
Using Job Control from Your Shell, Disowning Processes, Disowning Processes, Managing
Processes: Overall Concepts, Separating Commands with Semicolons, Running a Series of
Commands on a File, Referencing the Search String in a Replacement, Testing Your Success, Syntax,
Compiling Perl from Scratch, Scalars

& (logical AND) operator, Syntax
&! background operator, Z shell, Disowning Processes
&& (Boolean AND) operator, Copying Directory Trees with tar and Pipes, Patterns, Separating
Commands with Semicolons, Running a Series of Commands on a File, Testing Your Success,
Compiling Perl from Scratch, Scalars
&| background operator, Z shell, Disowning Processes
commands ending with, Job Control in a Nutshell, Using Job Control from Your Shell, Managing
Processes: Overall Concepts
metacharacter in regular expressions, Referencing the Search String in a Replacement

' (quotes, single), Static Prompts, Multiline Shell Prompts, Highlighting and Color in Shell Prompts,
Preprompt, Pre-execution, and Periodic Commands, Running Commands on What You Find,
Renaming, Copying, or Comparing a Set of Files, Bourne Shell Quoting, How Quoting Works,
Differences Between Bourne and C Shell Quoting, How Quoting Works, C-Shell Aliases with
Command-Line Arguments, Setting and Unsetting Bourne-Type Aliases, Don't Confuse Regular
Expressions with Wildcards, Who Handles Wildcards?, Pattern Matching in case Statements

; (semicolon), using with in C shell, Running Commands on What You Find

around filenames, renaming files and, Renaming, Copying, or Comparing a Set of Files
in alias quoting, C-Shell Aliases with Command-Line Arguments, Setting and Unsetting Bourne-
Type Aliases
in bash pre-prompt commands, Preprompt, Pre-execution, and Periodic Commands
in prompts, Static Prompts, Multiline Shell Prompts, Highlighting and Color in Shell Prompts
in shell quoting, Bourne Shell Quoting, How Quoting Works, Differences Between Bourne and C
Shell Quoting, How Quoting Works

inside double quotes (C shell), How Quoting Works
passing wildcards to programs, Who Handles Wildcards?
regular expressions, quoting, Don't Confuse Regular Expressions with Wildcards
strings in case statements, Pattern Matching in case Statements

() (parentheses), Shell Setup Files — Which, Where, and Why, How to Use find, Extended Searching
for Text with egrep, grepping for a List of Patterns, Why ps Prints Some Commands in Parentheses,
Understanding Expressions, Regular Expressions: Remembering Patterns with \ (, \), and \1,
Extended Regular Expressions, Valid Metacharacters for Different Unix Programs, Valid
Metacharacters for Different Unix Programs, Referencing Portions of a Search String, Using sed,
Scalars, Perl Boot Camp, Part 4: Pattern Matching, The () Subshell Operators, How to tee Several
Commands into One Place

commands printed in by ps, Why ps Prints Some Commands in Parentheses
grouping operator, grepping for a List of Patterns, Extended Regular Expressions, Valid
Metacharacters for Different Unix Programs, Perl Boot Camp, Part 4: Pattern Matching, The ()
Subshell Operators

combining commands with, The () Subshell Operators
extended regular expressions, Extended Regular Expressions
Perl regular expressions, Perl Boot Camp, Part 4: Pattern Matching
use in Unix programs, Valid Metacharacters for Different Unix Programs

nesting regular expressions in, Extended Searching for Text with egrep
operator precedence, overriding with, Understanding Expressions
Perl operators, resolving ambiguity in, Scalars
subshell operator, Shell Setup Files — Which, Where, and Why, How to tee Several Commands
into One Place
\(\), How to Use find, Regular Expressions: Remembering Patterns with \ (, \), and \1, Valid
Metacharacters for Different Unix Programs, Referencing Portions of a Search String, Using sed

escaped-parenthesis operators in sed, Referencing Portions of a Search String, Using sed
find command operator, How to Use find
regular expression metacharacters, Regular Expressions: Remembering Patterns with \ (, \
), and \1, Valid Metacharacters for Different Unix Programs

($?CSHRC_READ) prompt test, Gotchas in set prompt Test
* (asterisk), Wildcards, Useful ls Aliases, Wildcards with "Fast find" Database, Understanding
Expressions, Understanding Expressions, Using Metacharacters in Regular Expressions, Regular
Expressions: Repeating Character Sets with *, Valid Metacharacters for Different Unix Programs,
Filename Wildcards in a Nutshell, Filename Wildcards in a Nutshell, Filename Wildcards in a
Nutshell, Filename Wildcards in a Nutshell, Syntax, Scalars, Perl Boot Camp, Part 4: Pattern
Matching

** filename wildcard (zsh), Filename Wildcards in a Nutshell

*** filename wildcard (zsh), Filename Wildcards in a Nutshell
arithmetic operator (multiplication), Syntax
executable files, denoting in ls -F listings, Useful ls Aliases
filename wildcard, Filename Wildcards in a Nutshell, Filename Wildcards in a Nutshell
multiplication operator, Scalars
regular expression metacharacter, Understanding Expressions, Using Metacharacters in Regular
Expressions, Regular Expressions: Repeating Character Sets with *, Valid Metacharacters for
Different Unix Programs, Perl Boot Camp, Part 4: Pattern Matching

quantifier in Perl, Perl Boot Camp, Part 4: Pattern Matching
repeating character sets with, Regular Expressions: Repeating Character Sets with *
use in Unix programs, Valid Metacharacters for Different Unix Programs

shell metacharacter, Understanding Expressions
wildcard character, Wildcards, Wildcards with "Fast find" Database

+ (plus sign), Picking a Unique Filename Automatically, Finding Text That Doesn't Match, Extended
Searching for Text with egrep, Using jobs Effectively, Understanding Expressions, Extended Regular
Expressions, Valid Metacharacters for Different Unix Programs, Filename Wildcards in a Nutshell,
Syntax, Scalars, Scalars, Perl Boot Camp, Part 4: Pattern Matching

+ operator (one or more), Finding Text That Doesn't Match
++ (autoincrement) operator, Scalars
addition (arithmetic) operator, Understanding Expressions, Syntax, Scalars
data command option, Picking a Unique Filename Automatically
filename wildcard, Filename Wildcards in a Nutshell
in job numbers, Using jobs Effectively
regular expression metacharacter, Extended Searching for Text with egrep, Extended Regular
Expressions, Valid Metacharacters for Different Unix Programs, Perl Boot Camp, Part 4: Pattern
Matching

quantifier in Perl, Perl Boot Camp, Part 4: Pattern Matching
, (comma) in filenames, Filenames
- (dash), Handling a Filename Starting with a Dash (-), Here Documents, Making Edits Everywhere
Except..., Handling Command-Line Arguments with a for Loop, Handling Arguments with while and
shift, Standard Command-Line Parsing, Syntax, Perl Boot Camp, Part 1: Typical Script Anatomy,
Scalars, References

- numerical subtraction operator, Scalars
-> (dereferencing) operator, Perl Boot Camp, Part 1: Typical Script Anatomy, References
command-line arguments starting with, Handling Command-Line Arguments with a for Loop,
Handling Arguments with while and shift, Standard Command-Line Parsing
double dashes, converting to em-dashes in sed, Making Edits Everywhere Except...
filenames starting with, Handling a Filename Starting with a Dash (-)
subtraction arithmetic operator, Syntax
with << operator, Here Documents

-1 process ID, Killing All Your Processes
-atime operator (find command), The Times That find Finds
-ctime operator (find command), The Times That find Finds
-exec operator (find command), Running Commands on What You Find, Running Commands on What
You Find, Using -exec to Create Custom Tests, Finding Many Things with One Command,

Duplicating a Directory Tree
creating custom tests, Using -exec to Create Custom Tests
using with -type and -name, Finding Many Things with One Command
xargs command vs., Running Commands on What You Find
{ } operator, using with, Duplicating a Directory Tree

-fstype operator (find command), Keeping find from Searching Networked Filesystem
-group operator (find command), Searching by Owner and Group
-inum operator (find command), Running Commands on What You Find, Finding the (Hard) Links to a
File, Removing a Strange File by its i-number
-ls operator (find command), Searching for Files by Type
-man macros (troff), Make Your Own Manpages Without Learning troff
-mtime operator (find command), Searching for Old Files, The Times That find Finds
-name operator (find command), Be an Expert on find Search Operators, Finding Many Things with
One Command, Finding Many Things with One Command, Finding Text That Doesn't Match

-print operator, combining with, Finding Many Things with One Command
using with -exec, Finding Many Things with One Command

-name option, effect on resources, How -name Affects Resources
-newer operator (find command), Exact File-Time Comparisons
-nouser or -nogroup operators (find command), Searching by Owner and Group
-ok operator (find command), Running Commands on What You Find
-p (parents) option (mkdir command), Making Directories Made Easier
-perm operator (find command), Searching for Files by Permission
-print operator (find command), Finding Many Things with One Command, Finding the (Hard) Links
to a File

-name operator, using with, Finding Many Things with One Command
-prune operator (file command), Quick finds in the Current Directory

quick finds in current directory, Quick finds in the Current Directory
-prune operator (find command), Finding Files with -prune, Keeping find from Searching Networked
Filesystem

preventing networked filesystem searches, Keeping find from Searching Networked Filesystem
-sb option (scrollbar) for xterms, Working with Scrollbars
-size operator (find command), Searching for Files by Size
-sl option (save lines) for xterms, How Many Lines to Save?
-type operator (find command), Finding Many Things with One Command, Searching for Files by
Type
-user operator (find command), Searching by Owner and Group
-v (verbose) option, Shell Scripts On-the-Fly from Standard Input
-xdev operator (find command), Finding the (Hard) Links to a File, Keeping find from Searching
Networked Filesystem

preventing networked filesystem searches, Keeping find from Searching Networked Filesystem
. (dot), Filenames, Wildcards, Making Pathnames, Showing Hidden Files with ls -A and -a, What's
Really in a Directory?, Links to a Directory, Handling a Filename Starting with a Dash (-), Problems
Deleting Directories, Get Back What You Deleted with Numbered Buffers, Build Strings with { },
What Good Is a Current Directory?, Understanding Expressions, Regular Expressions: Match Any
Character with . (Dot), Valid Metacharacters for Different Unix Programs, Filename Wildcards in a

Nutshell, Reading Files with the . and source Commands, Scalars, Perl Boot Camp, Part 4: Pattern
Matching

. (string concatenation) operator, Scalars

. and .. in directories, What's Really in a Directory?, Links to a Directory

. and .. in pathnames, Making Pathnames

. command, reading files with, Reading Files with the . and source Commands

.. (integer-range) operator in zsh, Build Strings with { }

./ (dot slash), filenames beginning with, Handling a Filename Starting with a Dash (-)
in filenames, Filenames, Wildcards
filenames beginning with, Showing Hidden Files with ls -A and -a, Problems Deleting
Directories, Filename Wildcards in a Nutshell

ls command and, Showing Hidden Files with ls -A and -a
wildcards and, Filename Wildcards in a Nutshell

regular expression metacharacter, Understanding Expressions, Regular Expressions: Match Any
Character with . (Dot), Valid Metacharacters for Different Unix Programs, Perl Boot Camp, Part
4: Pattern Matching

matching any character (except newline) in Perl, Perl Boot Camp, Part 4: Pattern Matching
matching any character with, Regular Expressions: Match Any Character with . (Dot)
use in Unix programs, Valid Metacharacters for Different Unix Programs

relative pathname for current directory, What Good Is a Current Directory?
repeat command in vi editor, Get Back What You Deleted with Numbered Buffers

.bashrc file, Setup Files Aren't Read When You Want?, Saving Time When You Change Directories:
cdpath

CDPATH variable, Saving Time When You Change Directories: cdpath
logout file, making all top-level interactive shells read, Setup Files Aren't Read When You
Want?

.bash_login file, Shell Setup Files — Which, Where, and Why

.bash_profile file, Shell Setup Files — Which, Where, and Why, Saving Time When You Change
Directories: cdpath

CDPATH variable, Saving Time When You Change Directories: cdpath
.csh filename extension, Filename Extensions
.cshdirs file for tcsh shells, Shell Setup Files — Which, Where, and Why
.cshrc file, Shell Setup Files — Which, Where, and Why, Setup Files Aren't Read When You Want?,
Gotchas in set prompt Test, Multiline Shell Prompts, dirs in Your Prompt: Better Than $cwd,
Checklist: Terminal Hangs When I Log In, Color ls, Quick cds with Aliases

cd aliases in, Quick cds with Aliases
color, setting in, Color ls
if (! $?prompt) exit test, Gotchas in set prompt Test
multiline prompt showing directory stack, dirs in Your Prompt: Better Than $cwd
prompt setting, Multiline Shell Prompts
set echo verbose command, Checklist: Terminal Hangs When I Log In

.cshrc files, Shell Setup Files — Which, Where, and Why
tcsh shells, use of, Shell Setup Files — Which, Where, and Why

.cshrc.$HOST file, A .cshrc.$HOST File for Per Host Setup

.dircolorsrc file, Configuring It, Configuring It

.emacs initialization file, Customizations and How to Avoid Them

.emacs_ml file, Mike's Favorite Timesavers

.enter file, Automatic Setup When You Enter/Exit a Directory

.exit file, Automatic Setup When You Enter/Exit a Directory

.exrc file, Local Settings for vi, Setting Up vi with the .exrc File
local settings for vi, Local Settings for vi
setting up vi editor with, Setting Up vi with the .exrc File

.history file, Shell Setup Files — Which, Where, and Why, Picking Up Where You Left Off
tcsh shells, Shell Setup Files — Which, Where, and Why

.hushlogin file, What Happens When You Log In

.inputrc file, Shell Setup Files — Which, Where, and Why

.login file, Shell Setup Files — Which, Where, and Why, Login Shells, Setup Files Aren't Read When
You Want?, Terminal Setup: Testing TERM, Show Subshell Level with $SHLVL, Querying Your
Terminal Type: qterm

interactive C shells and, Setup Files Aren't Read When You Want?
SHLVL variable, resetting, Show Subshell Level with $SHLVL
TERM environment variable, testing, Terminal Setup: Testing TERM
terminal type, setting with qterm, Querying Your Terminal Type: qterm

.logout file, Setup Files Aren't Read When You Want?, Running Commands When You Log Out
reading when last top-level shell exits, Setup Files Aren't Read When You Want?
running commands when logging out, Running Commands When You Log Out

.logout file (C shell), Shell Setup Files — Which, Where, and Why

.profile file, Shell Setup Files — Which, Where, and Why, Shell Setup Files — Which, Where, and
Why, Shell Setup Files — Which, Where, and Why, Login Shells, Terminal Setup: Testing TERM,
Querying Your Terminal Type: qterm, Checklist: Terminal Hangs When I Log In, Setting Your Erase,
Kill, and Interrupt Characters, Saving Time When You Change Directories: cdpath

bash shell, Shell Setup Files — Which, Where, and Why
Bourne shells, Terminal Setup: Testing TERM

testing TERM variable with case statement, Terminal Setup: Testing TERM
CDPATH variable in, Saving Time When You Change Directories: cdpath
hung terminal and, Checklist: Terminal Hangs When I Log In
Korn shells, Shell Setup Files — Which, Where, and Why
login shells, Login Shells
stty commands in, Setting Your Erase, Kill, and Interrupt Characters
terminal type, setting with qterm, Querying Your Terminal Type: qterm

.qtermtab file, Querying Your Terminal Type: qterm, Querying Your Terminal Type: qterm
editing, Querying Your Terminal Type: qterm

.rhosts file, Running a Single Command with xterm -e, Starting a Remote Client with rsh and ssh,
Using tar to a Remote Tape Drive
.sh filename extension, Filename Extensions
.shosts file, Starting a Remote Client with rsh and ssh
.sh_logout file, Stop Accidental Bourne-Shell Logouts
.tcshrc file, Show Subshell Level with $SHLVL, dirs in Your Prompt: Better Than $cwd, Checklist:
Terminal Hangs When I Log In

multiline prompt showing directory stack, dirs in Your Prompt: Better Than $cwd

set echo verbose command, Checklist: Terminal Hangs When I Log In
shlvl shell variable, Show Subshell Level with $SHLVL

.tcshrc files, Shell Setup Files — Which, Where, and Why

.Xdefaults file, X Resource Syntax, Setting X Resources: Overview
xrdb utility vs., Setting X Resources: Overview

.Xresources file, X Resource Syntax

.Z file extension (compress program), Compressing Files to Save Space

.zlogin file, Shell Setup Files — Which, Where, and Why

.zprofile file, Shell Setup Files — Which, Where, and Why

.zshenv file, Shell Setup Files — Which, Where, and Why

.zshrc file, Shell Setup Files — Which, Where, and Why, Faster Prompt Setting with Built-ins,
Preprompt, Pre-execution, and Periodic Commands
/ (slash), Internal and External Commands, Filenames, Wildcards, Making Pathnames, Useful ls
Aliases, Wildcards with "Fast find" Database, Using Search Patterns and Global Commands, Special
Characters, Using Relative and Absolute Pathnames, Delimiting a Regular Expression, Pattern
Matching in case Statements, Syntax, Restoring a Few Files, With GNU tar, RCS Basics, Scalars

/* $Id $ */, commenting C program RCS files, RCS Basics
/*/* wildcard metacharacters in case statements, Pattern Matching in case Statements
arithmetic operator (division), Syntax
arithmetic opertor (division), Scalars
Bourne-type shells, quoting and, Special Characters
delimiter for regular expressions in sed, Delimiting a Regular Expression
directory, denoting in ls -F listings, Useful ls Aliases
in filenames, Filenames, Wildcards
in pathnames, Making Pathnames, Using Relative and Absolute Pathnames, With GNU tar

wildcard matching across, With GNU tar
in pathnames, Internal and External Commands, Restoring a Few Files

absolute pathnames, Internal and External Commands
tar archives and, Restoring a Few Files

search patterns in vi editor, delimiting, Using Search Patterns and Global Commands
shell, treatment of, Wildcards with "Fast find" Database

/bin directory, Internal and External Commands, Starting a Remote Client with rsh and ssh, A bin
Directory for Your Programs and Scripts, Timing Programs, Automating /bin/passwd, Automating
/bin/passwd, /usr/bin and Other Software Directories, /usr/bin and Other Software Directories

/bin/passwd, automating, Automating /bin/passwd, Automating /bin/passwd
/bin/time utility, Timing Programs
programs in, Internal and External Commands
remote shell (rsh), Starting a Remote Client with rsh and ssh

/boot directory, /usr/bin and Other Software Directories
/dev directory, Looping Until a Command Fails, Shell Lockfile, /usr/bin and Other Software
Directories, Using Standard Input and Output, Send (Only) Standard Error Down a Pipe, What Can
You Do with an Empty File?, What Can You Do with an Empty File?

/dev/null file, Looping Until a Command Fails, Shell Lockfile, What Can You Do with an Empty
File?

examples, Looping Until a Command Fails, Shell Lockfile

redirecting output to, What Can You Do with an Empty File?
/dev/tty file, Send (Only) Standard Error Down a Pipe
/dev/zero file, What Can You Do with an Empty File?

/dev/null file, grepping a Directory Tree, lookfor: Which File Has That Word?, Save Space with "Bit
Bucket" Log Files and Mailboxes

grep command, using with, lookfor: Which File Has That Word?
replacing log files with symbolic links to, Save Space with "Bit Bucket" Log Files and
Mailboxes

/dev/tty file, Overview: Open Files and File Descriptors
/etc directory, /usr/bin and Other Software Directories
/etc/apt directory, Configuring the sources.list File
/etc/csh.cshrc file, Shell Setup Files — Which, Where, and Why
/etc/csh.login file, Shell Setup Files — Which, Where, and Why
/etc/fstab file, Filesystem Types and /etc/fstab, Mounting Network Filesystems — NFS, SMBFS

shared filesystems in, Mounting Network Filesystems — NFS, SMBFS
/etc/hosts file, Domain Name Service (DNS)

IP address to hostname mapping, Domain Name Service (DNS)
/etc/hosts.allow file, The Director of Operations: inetd

hosts.allow file, The Director of Operations: inetd
tcp_wrappers package, The Director of Operations: inetd

/etc/hosts.equiv file, Starting a Remote Client with rsh and ssh
/etc/inetd.conf file, The Director of Operations: inetd, Installing and Configuring Samba, SWAT and
GUI SMB Browsers, Enabling Remote Access on Mac OS X

Samba daemons, adding to, Installing and Configuring Samba
swat, adding to, SWAT and GUI SMB Browsers

/etc/inputrc file, Shell Setup Files — Which, Where, and Why
/etc/man.config file, The man Command
/etc/nologin file, What Happens When You Log In, Disable logins
/etc/passwd file, Which Shell Am I Running?, File Access Permissions, The man Command, Securing
Samba

documentation on System V machine, reading, The man Command
Samba authentication, using for, Securing Samba
storing passwords on Mac OS X, Which Shell Am I Running?

/etc/profile file, Shell Setup Files — Which, Where, and Why, Shell Setup Files — Which, Where,
and Why

Korn shell, Shell Setup Files — Which, Where, and Why
/etc/securetty file, Never Log In as root

disabling root access, Never Log In as root
/etc/services file, /etc/services Is Your Friend, SWAT and GUI SMB Browsers

swat tool, SWAT and GUI SMB Browsers
/etc/ttys file, What tty Am I On?, Terminal Setup: Searching Terminal Table
/etc/ttytab file, Terminal Setup: Searching Terminal Table
/g regular expression modifier, Perl Boot Camp, Part 4: Pattern Matching
/lib directory, /usr/bin and Other Software Directories
/mnt directory, /usr/bin and Other Software Directories

/opt directory, Searching Online Manual Pages, /usr/bin and Other Software Directories
/proc filesystem, The /proc Filesystem, A Glimpse at Hardware, Memory Information, Kernel and
System Statistics, Statistics of the Current Process, Statistics of Processes by PID, A Glimpse at
Hardware, The Linux proc Filesystem

/stat file (statistics on the kernel and system), Kernel and System Statistics
hardware, A Glimpse at Hardware
memory information, Memory Information
security checks using, The Linux proc Filesystem
statistics by PID, Statistics of Processes by PID
statistics on current process, Statistics of the Current Process

/sbin directory, /usr/bin and Other Software Directories
/tmp directory, bash, ksh, zsh, /usr/bin and Other Software Directories, Installing and Configuring
Samba

history files in, bash, ksh, zsh
sharing with SMB network, Installing and Configuring Samba

/u directory, Finding (Anyone's) Home Directory, Quickly
/usr directory, Internal and External Commands, whatis: One-Line Command Summaries, Searching
Online Manual Pages, Searching Online Manual Pages, Searching Online Manual Pages, Listing the
Current Resources for a Client: appres, Starting a Remote Client with rsh and ssh, Linking
Directories, Linking Directories, How Do I Spell That Word?, Inside spell, Execution Scheduling,
Execution Scheduling, /usr/bin and Other Software Directories, /usr/bin and Other Software
Directories, /usr/bin and Other Software Directories

/usr/bin directory, Internal and External Commands, Linking Directories, /usr/bin and Other
Software Directories

local programs and, Linking Directories
programs in, Internal and External Commands

/usr/bsd directory, Starting a Remote Client with rsh and ssh
remote shell (rsh), Starting a Remote Client with rsh and ssh

/usr/dict/words file, How Do I Spell That Word?
/usr/lib/crontab file, Execution Scheduling
/usr/lib/crontab.local file, Execution Scheduling
/usr/lib/spell directory, Inside spell
/usr/lib/X11/app-defaults file, Listing the Current Resources for a Client: appres
/usr/libexec/makewhatis file, whatis: One-Line Command Summaries
/usr/local directory, Linking Directories
/usr/local/bin directory, /usr/bin and Other Software Directories
/usr/local/man directory, Searching Online Manual Pages
/usr/man directory, Searching Online Manual Pages
/usr/share/man directory, Searching Online Manual Pages

/var directory, /usr/bin and Other Software Directories
/var/log/lastlog file, What Happens When You Log In
/var/log/wtmp file, What Happens When You Log In
/var/run/utmp file, What Happens When You Log In
0 (zero) process ID, Killing All Your Processes
; (semicolon), Trying It, Running Commands on What You Find, Patterns, Separating Commands with

Semicolons, Simple Functions: ls with Options, Test String Values with Bourne-Shell case, Trapping
Exits Caused by Interrupts

code separator in color escape sequences, Trying It
separating awk procedures, Patterns
separating commands, Running Commands on What You Find, Separating Commands with
Semicolons, Test String Values with Bourne-Shell case, Trapping Exits Caused by Interrupts

in case statements, Test String Values with Bourne-Shell case
find -exec and, Running Commands on What You Find

in shell functions, Simple Functions: ls with Options
< > (angle brackets), Which Shell Am I Running?, X Event Translations, Appending to an Existing
File, Alphabetical Summary of Commands, Alphabetical Summary of Commands, Alphabetical
Summary of Commands, Here Documents, Here Documents, A for Loop, Here Document Example
#1: Unformatted Form Letters, Here Document Example #1: Unformatted Form Letters, Regular
Expressions: Matching Words with \ < and \ >, Valid Metacharacters for Different Unix Programs,
Filename Wildcards in a Nutshell, Syntax, Syntax, Syntax, Syntax, Scalars, Scalars, Scalars, Scalars,
Scalars, One Argument with a cat Isn't Enough, Redirection in C Shell: Capture Errors, Too?,
Redirection in C Shell: Capture Errors, Too?

<, Alphabetical Summary of Commands, Alphabetical Summary of Commands, Here Documents,
Here Documents, Here Document Example #1: Unformatted Form Letters, Here Document
Example #1: Unformatted Form Letters, Syntax, Syntax, Scalars, Scalars, One Argument with a
cat Isn't Enough

< (less than) operator, Alphabetical Summary of Commands, Syntax, Scalars
< redirection character, One Argument with a cat Isn't Enough
<< (here document) operator, Here Documents, Here Document Example #1: Unformatted
Form Letters
<<- operator, removing tab characters, Here Documents
<<- operator, removing TABs with, Here Document Example #1: Unformatted Form Letters
<= (less than or equal to) operator, Alphabetical Summary of Commands, Syntax, Scalars

< >, enclosing event names, X Event Translations
<-> filename wildcard, Filename Wildcards in a Nutshell
<=> (comparison) operator in Perl, Scalars
>, Which Shell Am I Running?, Appending to an Existing File, Alphabetical Summary of
Commands, A for Loop, Syntax, Syntax, Scalars, Scalars, Redirection in C Shell: Capture
Errors, Too?, Redirection in C Shell: Capture Errors, Too?

> (greater than) operator, Syntax, Scalars
> (redirection) operator, Redirection in C Shell: Capture Errors, Too?
> as Bourne shell secondary prompt, A for Loop
> tcsh shell prompt, Which Shell Am I Running?
>& (redirection) operator, Redirection in C Shell: Capture Errors, Too?
>= (greater than or equal to) operator, Alphabetical Summary of Commands, Syntax,
Scalars
>> (Unix redirect and append) operator, Appending to an Existing File

\< \\\> regular expression metacharacters, Regular Expressions: Matching Words with \ < and \
>, Valid Metacharacters for Different Unix Programs

<defunct> status under System V, Destroying Processes with kill

= (equal sign), Useful ls Aliases, Alphabetical Summary of Commands, Setting and Unsetting Bourne-
Type Aliases, zsh Aliases, Syntax, Examples, Perl Boot Camp, Part 1: Typical Script Anatomy,
Scalars, Hashes, Perl Boot Camp, Part 4: Pattern Matching

== (numeric equality) operator, Scalars
== (relational) operator, Alphabetical Summary of Commands
=> (fat comma) operator in Perl, Hashes
=~ (pattern binding) operator, Perl Boot Camp, Part 4: Pattern Matching
in alias definitions, Setting and Unsetting Bourne-Type Aliases, zsh Aliases
assignment operator, Perl Boot Camp, Part 1: Typical Script Anatomy
relational operator, Syntax, Examples
socket files, Useful ls Aliases

? (question mark), Wildcards, Showing Nonprintable Characters in Filenames, Wildcards with "Fast
find" Database, Extended Searching for Text with egrep, A foreach Loop, Extended Regular
Expressions, Valid Metacharacters for Different Unix Programs, Filename Wildcards in a Nutshell,
Filename Wildcards in a Nutshell, Pattern Matching in case Statements, Pattern Matching in case
Statements, Exit Status of Unix Processes, Perl Boot Camp, Part 4: Pattern Matching

?) wildcard metacharacters in case statements, Pattern Matching in case Statements
?*) wildcard metacharacters in case statements, Pattern Matching in case Statements
Bourne shell variable for command exit status, Exit Status of Unix Processes
filename wildcard, Filename Wildcards in a Nutshell, Filename Wildcards in a Nutshell
nonprinting characters, converting to with ls -q, Showing Nonprintable Characters in Filenames
regular expression metacharacter, Extended Searching for Text with egrep, Extended Regular
Expressions, Valid Metacharacters for Different Unix Programs, Perl Boot Camp, Part 4: Pattern
Matching

quantifier in Perl, Perl Boot Camp, Part 4: Pattern Matching
use in Unix programs, Valid Metacharacters for Different Unix Programs

as secondary shell prompt, A foreach Loop
shell wildcard, matching with fast find commands, Wildcards with "Fast find" Database
wildcard character, Wildcards

@ (at sign), Setting Your Erase, Kill, and Interrupt Characters, Useful ls Aliases, Build Strings with {
}, Filename Wildcards in a Nutshell, Checking your Perl Installation, Perl Boot Camp, Part 1:
Typical Script Anatomy, Perl Boot Camp, Part 1: Typical Script Anatomy, Perl Boot Camp, Part 1:
Typical Script Anatomy, Arrays

@ARGV array, Perl Boot Camp, Part 1: Typical Script Anatomy
@INC array, Checking your Perl Installation, Perl Boot Camp, Part 1: Typical Script Anatomy
csh built-in operator, Build Strings with { }
filename wildcard, Filename Wildcards in a Nutshell
files as symbolic links, in ls -F listings, Useful ls Aliases
for array names, Arrays
in Perl array values, Perl Boot Camp, Part 1: Typical Script Anatomy
kill character, Setting Your Erase, Kill, and Interrupt Characters

[] (brackets), Highlighting and Color in Shell Prompts, Wildcards with "Fast find" Database,
Hacking on Characters with tr, Use Wildcards to Create Files?, Regular Expressions: Specifying a
Range of Characters with [...], Regular Expressions: Exceptions in a Character Set, Valid
Metacharacters for Different Unix Programs, Filename Wildcards in a Nutshell, Filename Wildcards

in a Nutshell, test: Testing Files and Strings, Stop Syntax Errors in Numeric Tests, Stop Syntax Errors
in String Tests, References, Perl Boot Camp, Part 4: Pattern Matching

bash shell prompts, nonprinting characters, Highlighting and Color in Shell Prompts
range operator, Hacking on Characters with tr
references to lists in Perl, References
regular expression metacharacters, Regular Expressions: Specifying a Range of Characters with
[...], Regular Expressions: Exceptions in a Character Set, Valid Metacharacters for Different
Unix Programs, Perl Boot Camp, Part 4: Pattern Matching

character classes, Perl Boot Camp, Part 4: Pattern Matching
range, specifying, Regular Expressions: Specifying a Range of Characters with [...]
 ̂(caret) within, Regular Expressions: Exceptions in a Character Set

wildcards, Wildcards with "Fast find" Database, Use Wildcards to Create Files?, Filename
Wildcards in a Nutshell

fast find commands, using with, Wildcards with "Fast find" Database
[command, test: Testing Files and Strings, Stop Syntax Errors in Numeric Tests, Stop Syntax
Errors in String Tests

numeric tests, syntax errors, Stop Syntax Errors in Numeric Tests
string text syntax errors, Stop Syntax Errors in String Tests

[̂] filename wildcard, Filename Wildcards in a Nutshell
\ (backslash), External Commands Send Signals to Set Variables, X Resource Syntax, Bourne Shell
Quoting, How Quoting Works, Multiline Quoting, Differences Between Bourne and C Shell Quoting,
How Quoting Works, How Many Backslashes?, C-Shell Aliases with Command-Line Arguments, C-
Shell Aliases with Command-Line Arguments, Setting and Unsetting Bourne-Type Aliases, Regular
Expressions: The Anchor Characters ̂and $, Regular Expressions: Matching a Specific Number of
Sets with \ { and \ }, Regular Expressions: Matching Words with \ < and \ >, Regular Expressions:
Remembering Patterns with \ (, \), and \1, Regular Expressions: Remembering Patterns with \ (, \),
and \1, Extended Regular Expressions, Valid Metacharacters for Different Unix Programs, Valid
Metacharacters for Different Unix Programs, Valid Metacharacters for Different Unix Programs,
Delimiting a Regular Expression, sed Newlines, Quoting, and Backslashes in a Shell Script, Shell
Script "Wrappers" for awk, sed, etc., Perl Boot Camp, Part 1: Typical Script Anatomy, Indentation

in alias quoting, C-Shell Aliases with Command-Line Arguments
escaping regular expression delimiters in sed, Delimiting a Regular Expression
escaping regular expression metacharacters, Regular Expressions: The Anchor Characters ̂and
$
extended regular expressions and, Extended Regular Expressions
in X Window System resource definitions, X Resource Syntax
multiline pipes in C shell scripts, Shell Script "Wrappers" for awk, sed, etc.
multiple-line statements in Python, Indentation
before newline, shell quoting and, Multiline Quoting, How Quoting Works
Perl variables, preventing interpolation in, Perl Boot Camp, Part 1: Typical Script Anatomy
in prompt settings, External Commands Send Signals to Set Variables
quoting newlines in sed, sed Newlines, Quoting, and Backslashes in a Shell Script
regular expression metacharacters, Regular Expressions: Matching Words with \ < and \ >, Valid
Metacharacters for Different Unix Programs

use in Unix programs, Valid Metacharacters for Different Unix Programs

\< \\\>, matching words with, Regular Expressions: Matching Words with \ < and \ >
in shell quoting, Bourne Shell Quoting, How Quoting Works, Differences Between Bourne and C
Shell Quoting

Bourne shell, How Quoting Works
C shell, Differences Between Bourne and C Shell Quoting

shell, terminal and program quoting, conflicts in, How Many Backslashes?
\! operator (C shell), C-Shell Aliases with Command-Line Arguments, Setting and Unsetting
Bourne-Type Aliases
\(\), Regular Expressions: Remembering Patterns with \ (, \), and \1

regular expression metacharacters, Regular Expressions: Remembering Patterns with \ (, \
), and \1

\(\) regular expression metacharacters, Valid Metacharacters for Different Unix Programs
\1, \2, ... metacharacters, recalling remembered patterns, Regular Expressions: Remembering
Patterns with \ (, \), and \1
\{ \} regular expression metacharacters, Regular Expressions: Matching a Specific Number of
Sets with \ { and \ }, Valid Metacharacters for Different Unix Programs

\ (backspace), stripping from formatted manpages, Searching Online Manual Pages
\: (colon), Which Shell Am I Running?, Setting the Terminal Type When You Log In, Checklist:
Terminal Hangs When I Log In, X Event Translations, Configuring It, What We Cover, Setting Up vi
with the .exrc File, Useful ex Commands, String Editing (Colon) Operators, Check Your History First
with :p, Test Exit Status with the if Statement, Standard Command-Line Parsing, The Story of : # #!,
The Unappreciated Bourne Shell ":" Operator, Parameter Substitution, Syntax, Examples

between item=attribute values, Configuring It
Bourne shell operator, The Unappreciated Bourne Shell ":" Operator, Parameter Substitution

parameter substitution, use in, Parameter Substitution
command in vi, What We Cover, Setting Up vi with the .exrc File
in command-line options, Standard Command-Line Parsing
ex commands, issuing from vi, Useful ex Commands
logical operator, Syntax, Examples
as null character, Test Exit Status with the if Statement
separating fields, Which Shell Am I Running?, Checklist: Terminal Hangs When I Log In
separating terminal type values, Setting the Terminal Type When You Log In
shell script comments, The Story of : # #!
string editing operators, String Editing (Colon) Operators
translation table, event and action mappings, X Event Translations
\:p operator, printing command without executing it, Check Your History First with :p

\:0 (zero) operator, in history substitutions, History Substitutions
\:g (global) operator, History Substitutions
\:gt operator (C shell), dirs in Your Prompt: Better Than $cwd
\:p operator, My Favorite Is ^ ,̂ Check Your History First with :p

^̂ history substitution, using with, My Favorite Is ^̂
\:q (quote) string modifier (C shell), Expanding Ranges
\:q (string editing) operator, String Editing (Colon) Operators
\:x (string editing) operator, breaking line into words, String Editing (Colon) Operators
\d (matching numbers) in Perl regular expressions, Perl Boot Camp, Part 4: Pattern Matching

\s (matching whitespace characters) in Perl regular expressions, Perl Boot Camp, Part 4: Pattern
Matching
\W (non-word character character), Regular Expressions: Exceptions in a Character Set
\w in regular expressions, Regular Expressions: Exceptions in a Character Set, Perl Boot Camp, Part
4: Pattern Matching
 ̂(caret), Setting Your Erase, Kill, and Interrupt Characters, Trying It, My Favorite Is ^̂ , History

Substitutions, Using Metacharacters in Regular Expressions, Regular Expressions: The Anchor
Characters ̂and $, Regular Expressions: The Anchor Characters ̂and $, Regular Expressions:
Exceptions in a Character Set, Limiting the Extent of a Match, Valid Metacharacters for Different
Unix Programs, Filename Wildcards in a Nutshell, Filename Wildcards in a Nutshell, Making Edits
Across Line Boundaries, Perl Boot Camp, Part 4: Pattern Matching

beginning of line anchor in regular expressions, Using Metacharacters in Regular Expressions,
Regular Expressions: The Anchor Characters ̂and $
beginning of line indicator in various utilities, Regular Expressions: The Anchor Characters ^
and $
filename wildcard, Filename Wildcards in a Nutshell
in control keys, Setting Your Erase, Kill, and Interrupt Characters
regular expression metacharacter, Regular Expressions: Exceptions in a Character Set, Limiting
the Extent of a Match, Valid Metacharacters for Different Unix Programs, Making Edits Across
Line Boundaries, Perl Boot Camp, Part 4: Pattern Matching

matching at beginning of line (Perl), Perl Boot Camp, Part 4: Pattern Matching
matching newline at the beginning of a multiline pattern space, Making Edits Across Line
Boundaries
negating character classes with, Limiting the Extent of a Match
use in Unix programs, Valid Metacharacters for Different Unix Programs
within [] metacharacters, Regular Expressions: Exceptions in a Character Set

[̂] filename wildcard, Filename Wildcards in a Nutshell
^xy^yx, shorthand substitution command, History Substitutions
[̂ (ESC character), Trying It

^̂ sequence in history substitution, My Favorite Is ^̂
_ (underscore), Filenames, Defining What Makes Up a Word for Selection Purposes

ASCII class for, Defining What Makes Up a Word for Selection Purposes
in filenames, Filenames

` (backquotes), Setting the Terminal Type When You Log In, Picking a Unique Filename
Automatically, Delving Through a Deep Directory Tree, Removing Every File but One, How Quoting
Works, Command Substitution, Command Substitution, Dealing with Too Many Arguments, Standard
Command-Line Parsing, Standard Input to a for Loop, n>&m: Swap Standard Output and Standard
Error, Testing Characters in a String with expr, Nested Command Substitution, Perl Boot Camp, Part
4: Pattern Matching

arguments, reading, Dealing with Too Many Arguments
capturing command output in an array, Perl Boot Camp, Part 4: Pattern Matching
command substitution operators, Setting the Terminal Type When You Log In, Picking a Unique
Filename Automatically, Removing Every File but One, Command Substitution, Command
Substitution, Standard Command-Line Parsing

excluding files from deletion, Removing Every File but One

getopt, using with, Standard Command-Line Parsing
nesting, Command Substitution

command substitution with, Delving Through a Deep Directory Tree
expr command, running with, Testing Characters in a String with expr
for loops combined with, Standard Input to a for Loop
quoting in Bourne shell, How Quoting Works
redirecting standard output, n>&m: Swap Standard Output and Standard Error
\` \`, nested command substitution, Nested Command Substitution

{ } (braces), Wildcards, Running Commands on What You Find, Running Commands on What You
Find, Duplicating a Directory Tree, Patterns, Build Strings with { }, A foreach Loop, A for Loop, C-
Shell Aliases with Command-Line Arguments, Functions with Loops: Internet Lookup, Regular
Expressions: Matching a Specific Number of Sets with \ { and \ }, Valid Metacharacters for Different
Unix Programs, Filename Wildcards in a Nutshell, Who Handles Wildcards?, Making Edits
Everywhere Except..., What Environment Variables Are Good For, References

awk procedures, enclosing, Patterns
dereferencing, use in, References
filename wildcards, Filename Wildcards in a Nutshell
find command, Running Commands on What You Find, Duplicating a Directory Tree
GNU find command and, Running Commands on What You Find
in shells, Wildcards, Who Handles Wildcards?
pattern-expansion characters, Build Strings with { }, A foreach Loop, A for Loop

building strings with, Build Strings with { }
for loop, using with, A for Loop
foreach loop, using with, A foreach Loop

quoting alias argument in, C-Shell Aliases with Command-Line Arguments
sed commands enclosed in, Making Edits Everywhere Except...
shell functions, using in, Functions with Loops: Internet Lookup
variable values, interpolating, What Environment Variables Are Good For
\{ \} regular expression metacharacters, Regular Expressions: Matching a Specific Number of
Sets with \ { and \ }, Valid Metacharacters for Different Unix Programs

| (vertical bar), Programs Are Designed to Work Together, Useful ls Aliases, Extended Searching for
Text with egrep, grepping for a List of Patterns, Useful Global Commands (with Pattern Matches),
Protecting Keys from Interpretation by ex, Patterns, Separating Commands with Semicolons,
Extended Regular Expressions, Valid Metacharacters for Different Unix Programs, Filename
Wildcards in a Nutshell, Pattern Matching in case Statements, Test Exit Status with the if Statement,
Testing Your Success, n>&m: Swap Standard Output and Standard Error, n>&m: Swap Standard
Output and Standard Error, Syntax, Perl Boot Camp, Part 1: Typical Script Anatomy, Scalars, Perl
Boot Camp, Part 4: Pattern Matching, Redirection in C Shell: Capture Errors, Too?, Safe I/O
Redirection with noclobber

alternation operator, Extended Searching for Text with egrep, grepping for a List of Patterns,
Perl Boot Camp, Part 4: Pattern Matching
bitwise or operator, Perl Boot Camp, Part 1: Typical Script Anatomy
command separator in ex editor, Useful Global Commands (with Pattern Matches)
filename wildcard, Filename Wildcards in a Nutshell
files, named pipe (FIFO), Useful ls Aliases

logical OR operator, Syntax
noclobber variable and, Safe I/O Redirection with noclobber
pipes, Programs Are Designed to Work Together, n>&m: Swap Standard Output and Standard
Error, n>&m: Swap Standard Output and Standard Error

redirecting standard output, n>&m: Swap Standard Output and Standard Error, n>&m:
Swap Standard Output and Standard Error

regular expression metacharacter, Extended Regular Expressions, Valid Metacharacters for
Different Unix Programs

alternation in pattern matching, Extended Regular Expressions
use in Unix programs, Valid Metacharacters for Different Unix Programs

separating multiple ex editor commands, Protecting Keys from Interpretation by ex
wildcard metacharacter in case statements, Pattern Matching in case Statements
|& operator, Redirection in C Shell: Capture Errors, Too?
|| (Boolean OR) operator, Patterns, Separating Commands with Semicolons, Test Exit Status
with the if Statement, Testing Your Success, Scalars

testing scripts with, Testing Your Success
~ (tilde), Filename Extensions, Making Pathnames, Use Absolute Pathnames in Shell Setup Files,
Many Homes, Some GNU ls Features, Alphabetical Summary of Commands, Korn-Shell Aliases,
Finding (Anyone's) Home Directory, Quickly, Finding (Anyone's) Home Directory, Quickly

abbreviation for any directory, Korn-Shell Aliases
filenames ending with, Filename Extensions, Some GNU ls Features, Finding (Anyone's) Home
Directory, Quickly

Emacs backup files, Filename Extensions, Some GNU ls Features
for home directory, Use Absolute Pathnames in Shell Setup Files, Finding (Anyone's) Home
Directory, Quickly
for home directory, Many Homes
in pathnames, Making Pathnames
~ and !~ (pattern-matching) operators, Alphabetical Summary of Commands

A

abbreviations for words, vi editor, Local Settings for vi, vi Word Abbreviation, Fixing Typos with vi
Abbreviations, Using vi Abbreviations as Commands (Cut and Paste Between vi's), Fixing Typos
with vi Abbreviations

.exrc files, saving in, Local Settings for vi
commands, using as, Using vi Abbreviations as Commands (Cut and Paste Between vi's)
fixing typos with, Fixing Typos with vi Abbreviations

abbreviations in pathnames, Making Pathnames
absolute pathnames, Internal and External Commands, Use Absolute Pathnames in Shell Setup Files,
Stale Symbolic Links, Showing the Actual Filenames for Symbolic Links, Unset PWD Before Using
Emacs, Controlling Shell Command Searches, Using Relative and Absolute Pathnames, Using
Relative and Absolute Pathnames, Using Relative and Absolute Pathnames, Avoid Absolute Paths
with tar, GNU tar Sampler

archiving with, GNU tar Sampler
creating, Using Relative and Absolute Pathnames

to directory containing new search path, Controlling Shell Command Searches
Emacs and, Unset PWD Before Using Emacs
links to, Stale Symbolic Links, Showing the Actual Filenames for Symbolic Links
in shell setup files, Use Absolute Pathnames in Shell Setup Files
tar, avoiding with, Avoid Absolute Paths with tar

access control, Starting a Remote Client with rsh and ssh, Starting a Remote Client with rsh and ssh,
The Director of Operations: inetd, Secure Shell (SSH), Firewalls, Installing and Configuring Samba,
Securing Samba, Protect Important Files: Make Them Unwritable, Protecting Access Through SSH

files, Protect Important Files: Make Them Unwritable (see permissions)
firewalls, using, Firewalls
host-based, rsh command and, Starting a Remote Client with rsh and ssh
incoming connections, with tcp_wrappers, The Director of Operations: inetd
remote access, Protecting Access Through SSH (see ssh)
Samba, Installing and Configuring Samba, Securing Samba
sshd program, Secure Shell (SSH)
user-based, xauth command and, Starting a Remote Client with rsh and ssh

access method for software package files, choosing, Choosing the Access Method, Choosing the
Access Method
access modes for files, Private (Personal) Directories, Private (Personal) Directories, Making
Directories Made Easier, Finding Many Things with One Command, How Unix Keeps Track of Files:
Inodes

(see also permissions)
private directory, Private (Personal) Directories
setting for files with find, Finding Many Things with One Command
supplying with mkdir command, Making Directories Made Easier

access times for files, The Three Unix File Times, Finding Oldest or Newest Files with ls -t and ls -
u, Be an Expert on find Search Operators, Deleting Stale Files

-atime operator with find, Be an Expert on find Search Operators, Deleting Stale Files
locating files by, Deleting Stale Files

last-access time, showing, Finding Oldest or Newest Files with ls -t and ls -u
accidental file deletion, protecting against, Tricks for Making rm Safer
accounting name for commands, Why ps Prints Some Commands in Parentheses
accounts, Tip for Changing Account Setup: Keep a Shell Ready, Tip for Changing Account Setup:
Keep a Shell Ready, Understanding Points of Vulnerability

(see also groups; users)
protecting, Understanding Points of Vulnerability
setup, changing, Tip for Changing Account Setup: Keep a Shell Ready

addresses, sed Addressing Basics, Internet Protocol (IP), Layer 4 Protocols: TCP, UDP, and ICMP,
Status and Troubleshooting, Status and Troubleshooting, Domain Name Service (DNS), Gateways
and NAT, Gateways and NAT, Gatewaying from a Personal LAN over a Modem

IP, Internet Protocol (IP), Status and Troubleshooting, Status and Troubleshooting, Domain
Name Service (DNS)

displayed with netstart -n, Status and Troubleshooting
displaying with dig, Status and Troubleshooting
hostname mapping to, Domain Name Service (DNS)

NAT (Network Address Translation), Gateways and NAT, Gateways and NAT, Gatewaying
from a Personal LAN over a Modem
sed editor, sed Addressing Basics
TCP and UDP, Layer 4 Protocols: TCP, UDP, and ICMP

addressing lines for batch editing, Line Addressing
adduser (or useradd) utility, When Does a User Become a User
Adobe Acrobat Reader and PDF, Printing Languages — PostScript, PCL, DVI, PDF
Advanced Maryland Automatic Network Disk Archiver (Amanda), Industrial Strength Backups
afio utility, To gzip, or Not to gzip?
age of files, Listing Files by Age and Size
agents, On-Demand Incremental Backups of a Project, What We Mean by DoS, Key and Agent
Problems, Server and Client Problems

-agent option, ssh, On-Demand Incremental Backups of a Project
compromised machines in DDoS attacks, What We Mean by DoS
SSH, problems with, Key and Agent Problems, Server and Client Problems

agrep command (approximate grep), Different Versions of grep, Approximate grep: agrep,
Approximate grep: agrep, Approximate grep: agrep, Compound Searches, Narrowing a Search
Quickly

-d option, Approximate grep: agrep
compound searches with, Compound Searches, Narrowing a Search Quickly
multiple patterns with AND (or OR) queries, Approximate grep: agrep

AIX, The ps Command, Free SSH with OpenSSH
OpenSSH, Free SSH with OpenSSH
ps command, The ps Command

alias command, Introduction to Shell Aliases, Setting and Unsetting Bourne-Type Aliases, Korn-Shell
Aliases, Korn-Shell Aliases, zsh Aliases, zsh Aliases

-d (directory) option, Korn-Shell Aliases
-g (global) option in zsh shell, zsh Aliases
-m (match) option, zsh Aliases
-t (tracked) option, Korn-Shell Aliases
Bourne-type shells, Setting and Unsetting Bourne-Type Aliases

aliases, Internal and External Commands, Shell Setup Files — Which, Where, and Why, What Goes
in Shell Setup Files?, Setup Files Aren't Read When You Want?, Gotchas in set prompt Test,
Multiline Shell Prompts, Session Info in Window Title or Status Line, dirs in Your Prompt: Better
Than $cwd, Preprompt, Pre-execution, and Periodic Commands, The Simple Way to Pick a Font, A
csh Alias to List Recently Changed Files, Useful ls Aliases, newer: Print the Name of the Newest
File, Finding Text That Doesn't Match, A Faster Way to Remove Files Interactively, Deleting Stale
Files, Killing Processes by Name?, Controlling Shell Command Searches, Wildcards Inside Aliases,
Which One Will the C Shell Use?, Introduction to Shell Aliases, Fix Quoting in csh Aliases with
makealias and quote, Introduction to Shell Aliases, C-Shell Aliases with Command-Line Arguments,
C-Shell Aliases with Command-Line Arguments, C-Shell Aliases with Command-Line Arguments,
Setting and Unsetting Bourne-Type Aliases, Setting and Unsetting Bourne-Type Aliases, Korn-Shell
Aliases, zsh Aliases, Sourceable Scripts, Sourceable Scripts, Avoiding C-Shell Alias Loops,
Avoiding C-Shell Alias Loops, How to Put if-then-else in a C-Shell Alias, How to Put if-then-else in
a C-Shell Alias, Fix Quoting in csh Aliases with makealias and quote, Shell Function Basics, Shell

Function Basics, Simulated Bourne Shell Functions and Aliases, History Substitutions, Nice Aliases
for pushd, Quick cds with Aliases, User, Group, and World, Protect Important Files: Make Them
Unwritable

!* sequence in, History Substitutions
Bourne-type shells, Setting and Unsetting Bourne-Type Aliases, Setting and Unsetting Bourne-
Type Aliases

removing, Setting and Unsetting Bourne-Type Aliases
C shell, Shell Setup Files — Which, Where, and Why, What Goes in Shell Setup Files?, C-Shell
Aliases with Command-Line Arguments, How to Put if-then-else in a C-Shell Alias

if-then-else in, How to Put if-then-else in a C-Shell Alias
with command-line arguments, C-Shell Aliases with Command-Line Arguments

for cd command, Quick cds with Aliases
for cd command, Session Info in Window Title or Status Line
changing to shell functions, Shell Function Basics
clean, removing stale files with, Deleting Stale Files
for constant-width fonts, The Simple Way to Pick a Font
defined on command lines, Introduction to Shell Aliases
file-deletion, A Faster Way to Remove Files Interactively
findpt, Finding Text That Doesn't Match
group-write permissions, User, Group, and World
inside the ($?prompt) test, Gotchas in set prompt Test
kill command and, Killing Processes by Name?
Korn shell, Korn-Shell Aliases
limitations of, Sourceable Scripts
lr, listing recently changed files, A csh Alias to List Recently Changed Files
ls command, Useful ls Aliases
newer (printing newest filename), newer: Print the Name of the Newest File
permission changes, handling with, Protect Important Files: Make Them Unwritable
precmd (tcsh shell), Preprompt, Pre-execution, and Periodic Commands
prompt set inside, Multiline Shell Prompts
for pushd command, Nice Aliases for pushd
quoting, C-Shell Aliases with Command-Line Arguments, C-Shell Aliases with Command-Line
Arguments, How to Put if-then-else in a C-Shell Alias, Fix Quoting in csh Aliases with
makealias and quote

fixing in csh with makealias and quote, Fix Quoting in csh Aliases with makealias and
quote

reading logout file when using exit command, Setup Files Aren't Read When You Want?
recursive, Avoiding C-Shell Alias Loops
redefining commands, problems with, Avoiding C-Shell Alias Loops
setprompt, dirs in Your Prompt: Better Than $cwd
shell functions and, Shell Function Basics
simulating in Bourne shell, Simulated Bourne Shell Functions and Aliases
sourceable scripts, options for, Sourceable Scripts
tracked, Controlling Shell Command Searches
wildcards in, Wildcards Inside Aliases

word vectors and, Which One Will the C Shell Use?
zsh, zsh Aliases

alphabetic sorting vs. numeric, Alphabetic and Numeric Sorting
ALT key in Emacs, Emacs: The Other Editor
alternation in regular expression pattern matching, Extended Regular Expressions, Perl Boot Camp,
Part 4: Pattern Matching
alternation operator (|), Extended Searching for Text with egrep, grepping for a List of Patterns
Amanda (Advanced Maryland Automatic Network Disk Archiver), Industrial Strength Backups
anacron system, Periodic Program Execution: The cron Facility
anchors (in regular expressions), Using Metacharacters in Regular Expressions, Regular Expressions:
The Anchor Characters ̂and $, Regular Expressions: The Anchor Characters ̂and $

anchor characters, examples of, Regular Expressions: The Anchor Characters ̂and $
 ̂and $ anchor characters, Regular Expressions: The Anchor Characters ̂and $

and (-a) operator, case command, Testing Two Strings with One case Statement
AND operator, Be an Expert on find Search Operators, Approximate grep: agrep, Patterns,
Separating Commands with Semicolons, Running a Series of Commands on a File, Syntax

& (logical AND) operator, Syntax
&& (Boolean) AND, Patterns, Separating Commands with Semicolons, Running a Series of
Commands on a File
agrep command, searching for multiple patterns, Approximate grep: agrep

and operator (Boolean), Scalars
Ange-ftp mode (Emacs), Emacs Features: A Laundry List
anonymous FTP, Here Documents, Configuring an Anonymous FTP Server

server, configuring, Configuring an Anonymous FTP Server
anonymous functions (Python), Functions
Apache webserver, module for running Python, Python and the Web, mod_python
append command (ex), Useful ex Commands
applications, Communication with Unix, How -name Affects Resources, Listing the Current
Resources for a Client: appres, Starting Remote X Clients

default files for resources, Listing the Current Resources for a Client: appres
names of, resources and, How -name Affects Resources
relationship with kernel, shell, and utilities, Communication with Unix
running remotely and viewing on local display, Starting Remote X Clients

appres (application resource) utility, Listing the Current Resources for a Client: appres
approximate patterns, searching for, Approximate grep: agrep (see agrep command)
apsfilter script, Converting Source Files Automagically Within the Spooler
apt-get tool, Installing Software with Debian's Apt-Get, Choosing Packages for Installation or
Removal
archives, Filename Extensions, Filename Extensions, Deleting Stale Files, Save Space: tar and
compress a Directory Tree, On-Demand Incremental Backups of a Project, The cpio Tape Archiver,
Industrial Strength Backups, Packing Up and Moving, Packing Up and Moving, Managing and Sharing
Files with RCS and CVS, RCS Basics, List RCS Revision Numbers with rcsrevs, CVS Basics,
Compiling Perl from Scratch

Amanda system, Industrial Strength Backups
copying without asking for password, On-Demand Incremental Backups of a Project

CPAN (Comprehensive Perl Archive Network), Compiling Perl from Scratch
cpio tape archiver, The cpio Tape Archiver
deleted files on tape, Deleting Stale Files
filename extensions, Filename Extensions
packing up and moving files, Packing Up and Moving
shell, Filename Extensions
tar, Save Space: tar and compress a Directory Tree (see tar utility)
version control systems, Managing and Sharing Files with RCS and CVS, RCS Basics, List RCS
Revision Numbers with rcsrevs, CVS Basics

CVS, CVS Basics
RCS, RCS Basics, List RCS Revision Numbers with rcsrevs

arguments, Anyone Can Program the Shell, Delving Through a Deep Directory Tree, Output
Command-Line Arguments One by One, Is It "2>&1 file" or "> file 2>&1"? Why?, Is It "2>&1 file"
or "> file 2>&1"? Why?, Special Characters, How Quoting Works, Quoting Special Characters in
Filenames, Quoting Special Characters in Filenames, Command Substitution, Dealing with Too Many
Arguments, Dealing with Too Many Arguments, Setting Current Shell Environment: The work
Function, Finding the Last Command-Line Argument, Quoting and Command-Line Parameters,
Quoting and Command-Line Parameters, Functions, Functions

(see also command line; commands)
executing as commands (xarg command), Delving Through a Deep Directory Tree
filenames in, Quoting Special Characters in Filenames
finding last, Finding the Last Command-Line Argument
iterating shell variables over, Quoting and Command-Line Parameters
maximum allowable, Dealing with Too Many Arguments
passed to scripts, Anyone Can Program the Shell
passing lists to other programs with $@, Quoting and Command-Line Parameters
Python functions, Functions, Functions

lambdas as, Functions
reading by shells, Is It "2>&1 file" or "> file 2>&1"? Why?
separators for, Special Characters, How Quoting Works, Quoting Special Characters in
Filenames, Command Substitution

C shell quoting and, Quoting Special Characters in Filenames
inside backquotes, Command Substitution

showargs script, Output Command-Line Arguments One by One
stored in $1, $2, etc., Setting Current Shell Environment: The work Function
too many, dealing with, Dealing with Too Many Arguments

arguments too long error message, Delving Through a Deep Directory Tree
@ARGV array (Perl), Perl Boot Camp, Part 1: Typical Script Anatomy
argv, variables set to, Quoting and Command-Line Parameters
arithmetic (built-in) for shells, Functions Calling Functions: Factorials
arithmetic operators, Syntax
array indexes, Perl, Cutting Columns or Fields
arrays, Using Shell Arrays to Browse Directories, Expanding Ranges, Expanding Ranges, Variables
and Array Assignments, Perl Boot Camp, Part 1: Typical Script Anatomy, Perl Boot Camp, Part 2:
Variables and Data Types, Arrays, Arrays, Arrays, Arrays

awk utility and, Variables and Array Assignments
Perl, Perl Boot Camp, Part 1: Typical Script Anatomy, Perl Boot Camp, Part 2: Variables and
Data Types, Arrays, Arrays, Arrays, Arrays

iterating through, Arrays
lists vs., Arrays
operators used with, Arrays

shell, Using Shell Arrays to Browse Directories, Expanding Ranges, Expanding Ranges
browsing directories with, Using Shell Arrays to Browse Directories, Expanding Ranges
expanding ranges, Expanding Ranges

arrow keys, Text-Input Mode Maps, Text-Input Mode Cursor Motion with No Arrow Keys, Emacs:
The Other Editor

cursor motion in vi text-input mode without using, Text-Input Mode Cursor Motion with No
Arrow Keys
Emacs editor, moving around in, Emacs: The Other Editor
mapping in vi, Text-Input Mode Maps

ASCII, Anyone Can Program the Shell, Filename Extensions, Defining What Makes Up a Word for
Selection Purposes, Show Nonprinting Characters with cat -v or od -c, Using unlink to Remove a File
with a Strange Name, Encoding "Binary" Files into ASCII, MIME Encoding, uuencoding, MIME
Encoding, MIME Encoding, Text Conversion with dd, What Can You Do with an Empty File?

(see also non-ASCII characters)
converting to EBCDIC with dd, Text Conversion with dd
encoding binary files into, Encoding "Binary" Files into ASCII, MIME Encoding, uuencoding,
MIME Encoding, MIME Encoding

MIME encoding, MIME Encoding, MIME Encoding
uuencoding, uuencoding

end-of-line characters, Anyone Can Program the Shell
filename extension, Filename Extensions
printable representation of unprintable and non-ASCII characters, Show Nonprinting Characters
with cat -v or od -c
xterm table of characters and character classes, Defining What Makes Up a Word for Selection
Purposes
zeros (NUL characters), What Can You Do with an Empty File?

ash shell, There Are Many Shells, What the Shell Does
aspell utility, Check Spelling Interactively with ispell, How Do I Spell That Word?

-a option, How Do I Spell That Word?
Assembly language code extension, Filename Extensions
assignment operator (=), Perl Boot Camp, Part 1: Typical Script Anatomy
associative arrays, Counting Files by Types, Variables and Array Assignments, Hashes

(see also hashes)
awk utility, Variables and Array Assignments

at commands, Other Ideas, Building Software Robots the Easy Way, The at Command, Avoiding
Other at and cron Jobs, Making Your at Jobs Quiet, Checking and Removing Jobs, Checking and
Removing Jobs, Checking and Removing Jobs, Checking and Removing Jobs, Avoiding Other at and
cron Jobs

-l option, Checking and Removing Jobs

-r option, Checking and Removing Jobs
atq command, Checking and Removing Jobs, Avoiding Other at and cron Jobs
atrm command, removing jobs in queue, Checking and Removing Jobs
limiting file size, Other Ideas
quieting output, Making Your at Jobs Quiet

AT environment variable, Gotchas in set prompt Test
atan2 command (awk), Alphabetical Summary of Commands
atomic operation, testing for and creating lockfile, Shell Lockfile
attribute code (bold, underscore, etc.), Configuring It
Audio\:\:SoundFile module, Perl Boot Camp, Part 1: Typical Script Anatomy
authentication, Securing Samba, Protecting Access Through SSH, General and Authentication
Problems, General and Authentication Problems

PAM (Pluggable Authentication Modules), General and Authentication Problems
with SMB server, Securing Samba
SSH, Protecting Access Through SSH, General and Authentication Problems

problems with, General and Authentication Problems
auto-save file (Emacs), Backup and Auto-Save Files
autoconf utility, Simplifying the make Process
autoincrement (++) operator, Scalars
autoloading shell functions, FPATH Search Path, Korn shell

Korn shells, Korn shell
automake utility, Simplifying the make Process
automated deletion commands, risks of, Deleting Stale Files
automatic directory setup, Automatic Setup When You Enter/Exit a Directory
automating /bin/passwd, Automating /bin/passwd, Automating /bin/passwd
autowrite (vi), job control and, Job Control and autowrite: Real Timesavers!
awk utility, Counting Files by Types, Counting Files by Types, Numbering Lines, Different Versions
of grep, Compound Searches, Finding a Character in a Column, Looking for Closure, Why Line
Editors Aren't Dinosaurs, Quick Reference: awk, Command-Line Syntax, Patterns and Procedures,
Procedures, awk System Variables, Operators, Operators, Variables and Array Assignments,
Variables and Array Assignments, Centering Lines in a File, Straightening Jagged Columns, lensort:
Sort Lines by Length, Using Metacharacters in Regular Expressions, Extended Regular Expressions,
Pattern Matching Quick Reference with Examples, Shell Script "Wrappers" for awk, sed, etc., Shell
Script "Wrappers" for awk, sed, etc., Don't Need a Shell for Your Script? Don't Use One, Don't Need
a Shell for Your Script? Don't Use One, Using echo with awk or cut

-f option, Don't Need a Shell for Your Script? Don't Use One
arrays and, Variables and Array Assignments
associative arrays, Counting Files by Types
centering lines, Centering Lines in a File
command-line syntax, Command-Line Syntax
counting files by types, Counting Files by Types
echo command, using with, Using echo with awk or cut
eval compared to, Shell Script "Wrappers" for awk, sed, etc.
extended regular expressions, use of, Using Metacharacters in Regular Expressions, Extended
Regular Expressions

grep programs, Different Versions of grep
lexical analyzer, Looking for Closure
line-by-line and search using, Compound Searches
line-numbering with, Numbering Lines
operators, Operators, Operators
patterns, Patterns and Procedures
procedures, Procedures
regular expressions, documentation for, Pattern Matching Quick Reference with Examples
running directly, Don't Need a Shell for Your Script? Don't Use One
searching for a character in a column, Finding a Character in a Column
sorting lines by length, lensort: Sort Lines by Length
straightening columns, Straightening Jagged Columns
variables, awk System Variables, Variables and Array Assignments
wrappeing awk programs in shell scripts, Shell Script "Wrappers" for awk, sed, etc.

B

b (branch) command, sed editor, Making Edits Everywhere Except..., Making Edits Everywhere
Except...
background color, Configuring It
background jobs, Job Control in a Nutshell, Job Control in a Nutshell, Job Control in a Nutshell, Job
Control in a Nutshell, Using Job Control from Your Shell, Notification When Jobs Change State,
Managing Processes: Overall Concepts

bringing into foreground with fg command, Using Job Control from Your Shell
killing, Job Control in a Nutshell
listing with their job numbers, Job Control in a Nutshell
notification of state change in, Notification When Jobs Change State
putting into foreground, Job Control in a Nutshell
suspending with stop command, Job Control in a Nutshell

background processes, The Kernel and Daemons, The Kernel and Daemons, Job Control in a
Nutshell, Job Control in a Nutshell, Using Job Control from Your Shell, Using Job Control from Your
Shell, Some Gotchas with Job Control, Some Gotchas with Job Control, Stop Background Output
with stty tostop, Managing Processes: Overall Concepts, Killing All Your Processes, Waiting a Little
While: sleep, Exit Status of Unix Processes, Exit Status of Unix Processes

exit status, Exit Status of Unix Processes
testing with if statement, Exit Status of Unix Processes

exit status of, Exit Status of Unix Processes
listing with jobs command, Using Job Control from Your Shell
output from, stopping, Stop Background Output with stty tostop
overloading system with, Some Gotchas with Job Control
preventing continuation after logout, Killing All Your Processes
running at lower priority with nice command, Some Gotchas with Job Control
shell capabilities for manipulating, Using Job Control from Your Shell
stopping automatically upon attempt to write to screen, Job Control in a Nutshell
watching, Waiting a Little While: sleep

backquotes, Setting the Terminal Type When You Log In (see `, under Symbols)
BACKSPACE key, A .cshrc.$HOST File for Per Host Setup, Setting Your Erase, Kill, and Interrupt
Characters, Emacs: The Other Editor, Cleaning script Files

Emacs editor, Emacs: The Other Editor
erase character, Cleaning script Files
location for, A .cshrc.$HOST File for Per Host Setup

backup files, Filename Extensions, Some GNU ls Features, Check Spelling Interactively with ispell,
File-Backup Macros, Backup and Auto-Save Files, Test Exit Status with the if Statement, Who Will
Own a New File?

bkedit script, Test Exit Status with the if Statement
Emacs, Filename Extensions, Some GNU ls Features, Backup and Auto-Save Files

ignoring with ls -B, Some GNU ls Features
file ownership and, Who Will Own a New File?
ispell program, Check Spelling Interactively with ispell
macro for creation in vi editor, File-Backup Macros

backup option (xrdb), Setting Resources with xrdb
backups, Tricks for Making rm Safer, What Is This "Backup" Thing?, tar in a Nutshell, Make Your
Own Backups, More Ways to Back Up, More Ways to Back Up, How to Make Backups to a Local
Device, To gzip, or Not to gzip?, What to Back Up, Backing Up to Tape, Backing Up to Floppies or
Zip Disks, To gzip, or Not to gzip?, To gzip, or Not to gzip?, Restoring Files from Tape with tar,
Restoring a Few Files, Remote Restoring, Using tar to a Remote Tape Drive, Using GNU tar with a
Remote Tape Drive, On-Demand Incremental Backups of a Project, On-Demand Incremental Backups
of a Project, On-Demand Incremental Backups of a Project, Using Wildcards with tar, Avoid
Absolute Paths with tar, Avoid Absolute Paths with tar, Getting tar's Arguments in the Right Order,
The cpio Tape Archiver, Industrial Strength Backups, Managing and Sharing Files with RCS and
CVS

compression, advantages and disadvantages of, To gzip, or Not to gzip?
cpio tape archiver, The cpio Tape Archiver
excluding files from, On-Demand Incremental Backups of a Project
GNU tar, using with remote tape drive, Using GNU tar with a Remote Tape Drive
incremental, On-Demand Incremental Backups of a Project, On-Demand Incremental Backups of
a Project
industrial strength, Industrial Strength Backups
making to a local device, How to Make Backups to a Local Device, To gzip, or Not to gzip?,
What to Back Up, Backing Up to Tape, Backing Up to Floppies or Zip Disks

deciding what to back up, What to Back Up
floppies or zip disks, Backing Up to Floppies or Zip Disks
tape, Backing Up to Tape

making your own, Make Your Own Backups
protecting against accidental file deletions, Tricks for Making rm Safer
RCS and CVS, Managing and Sharing Files with RCS and CVS
to remote tape drive using tar, Using tar to a Remote Tape Drive
restoring files from tape with tar, Restoring Files from Tape with tar, Restoring a Few Files,
Remote Restoring

remote restoring, Remote Restoring

restoring a few files, Restoring a Few Files
tar utility, tar in a Nutshell, More Ways to Back Up, Using Wildcards with tar, Avoid Absolute
Paths with tar, Avoid Absolute Paths with tar, Getting tar's Arguments in the Right Order

absolute pathnames, avoiding, Avoid Absolute Paths with tar
avoiding absolute pathnames, Avoid Absolute Paths with tar
options for, More Ways to Back Up
tar command line arguments, order of, Getting tar's Arguments in the Right Order
wildcards, using, Using Wildcards with tar

utilities for, To gzip, or Not to gzip?
versions control systems, using, More Ways to Back Up

barewords used as hash keys, Hashes
base64 encoding, MIME Encoding
basename program, Save Disk Space and Programming: Multiple Names for a Program, Using
basename and dirname, Introduction to basename and dirname, Use with Loops

bugs in, Introduction to basename and dirname
examples, Save Disk Space and Programming: Multiple Names for a Program
loops, using with, Use with Loops

bash (Bourne-again shell), There Are Many Shells, There Are Many Shells, Which Shell Am I
Running?, Shell Setup Files — Which, Where, and Why, Login Shells, Setup Files Aren't Read When
You Want?, Automatic Setups for Different Terminals, Terminal Setup: Searching Terminal Table,
Static Prompts, Simulating Dynamic Prompts, Multiline Shell Prompts, Highlighting and Color in
Shell Prompts, Highlighting and Color in Shell Prompts, Show Subshell Level with $SHLVL, Show
Subshell Level with $SHLVL, dirs in Your Prompt: Better Than $cwd, Preprompt, Pre-execution, and
Periodic Commands, Preprompt, Pre-execution, and Periodic Commands, Running Commands When
You Log Out, Stop Accidental Bourne-Shell Logouts, Checklist: Terminal Hangs When I Log In,
Using the Stored Lists, Expanding Ranges, limit and ulimit, limit and ulimit, Job Control in a Nutshell,
Stop Background Output with stty tostop, Disowning Processes, Killing Processes by Name?, What
the Shell Does, Bourne Shell Used Here, Output Command-Line Arguments One by One, Controlling
Shell Command Searches, Controlling Shell Command Searches, Which One Will bash Use?,
"Special" Characters and Operators, What's Special About the Unix Command Line, Build Strings
with { }, String Editing (Colon) Operators, Automatic Completion, Command-Specific Completion,
Introduction to Shell Aliases, Setting and Unsetting Bourne-Type Aliases, Shell Function Specifics,
Shell Function Specifics, Exporting bash Functions, History by Number, History by Number, History
Substitutions, bash, ksh, zsh, Pass History to Another Shell, bash Editing, Filename Wildcards in a
Nutshell, What if a Wildcard Doesn't Match?, What Environment Variables Are Good For,
Predefined Environment Variables, Exit Status of Unix Processes, Parameter Substitution, Quoting
and Command-Line Parameters, Using Standard Input and Output

(see also bsh; shell scripts; shells)
.bashrc file, Shell Setup Files — Which, Where, and Why
.bashrc or .bash_profile, hung terminals and, Checklist: Terminal Hangs When I Log In
aliases, Introduction to Shell Aliases, Setting and Unsetting Bourne-Type Aliases
arrays, Using the Stored Lists, Expanding Ranges

browsing directories with, Using the Stored Lists
expanding ranges, Expanding Ranges

bash2, built-in kill command, Killing Processes by Name?

BASH_ENV variable, Predefined Environment Variables
case statements, Automatic Setups for Different Terminals
choosing built-in, external, or shell functions, Which One Will bash Use?
command history, History Substitutions (see history of commands)
command-line editing, bash Editing
completion features, Automatic Completion, Command-Specific Completion

hostnames, Command-Specific Completion
disown command, Disowning Processes
dynamic prompts, simulating, Simulating Dynamic Prompts
editing history substitutions, String Editing (Colon) Operators
environment variables for shell functions, changing, Shell Function Specifics
environment variables, unsetting, What Environment Variables Are Good For
exit status of command line, reversing, Exit Status of Unix Processes
exporting shell functions, Exporting bash Functions
fc -l command, listing previous commands with, History by Number
forcing to use internal exit command, Setup Files Aren't Read When You Want?
globbing (wildcard expansion), preventing, Filename Wildcards in a Nutshell
hash command, Controlling Shell Command Searches
history -r command, cautions about, History by Number
history file, bash, ksh, zsh
ignoreeof variable, Stop Accidental Bourne-Shell Logouts
job control commands, Job Control in a Nutshell
limiting file size, limit and ulimit
loading changed PATH, Controlling Shell Command Searches
login and nonlogin, startup files, Login Shells
logout file, running commands when logging out, Running Commands When You Log Out
octal character strings, Highlighting and Color in Shell Prompts
parameter expansion shortcuts, Quoting and Command-Line Parameters
passing command history to, Pass History to Another Shell
pre-prompt commands, Preprompt, Pre-execution, and Periodic Commands, Preprompt, Pre-
execution, and Periodic Commands
process substitution, What's Special About the Unix Command Line
prompts, Which Shell Am I Running?, Static Prompts, Multiline Shell Prompts, Highlighting and
Color in Shell Prompts, Show Subshell Level with $SHLVL, dirs in Your Prompt: Better Than
$cwd

$ in, Which Shell Am I Running?
newline (\n) character in, Multiline Shell Prompts
nonprinting escape characters, Highlighting and Color in Shell Prompts
showing directory stack, dirs in Your Prompt: Better Than $cwd
subshell level, showing, Show Subshell Level with $SHLVL

read-only functions, Shell Function Specifics
redirecting standard I/O, Using Standard Input and Output
scripts in this book, Bourne Shell Used Here
SHLVL environment variable, Show Subshell Level with $SHLVL
showargs script, Output Command-Line Arguments One by One

special characters/operators, "Special" Characters and Operators
string editing operators, Parameter Substitution
stty tostop command, background jobs writing to terminal, Stop Background Output with stty
tostop
terminal port type, putting into ttykind shell variable, Terminal Setup: Searching Terminal Table
ulimit -c command, removing limits on core dumps, limit and ulimit
wildcards, failing to match, What if a Wildcard Doesn't Match?
{ } (pattern-expansion characters), Build Strings with { }

BASH_ENV environment variable, Predefined Environment Variables
batch editing, Why Line Editors Aren't Dinosaurs, Writing Editing Scripts, Line Addressing, Useful
ex Commands, Useful ex Commands, Running Editing Scripts Within vi, Change Many Files by
Editing Just One, Change Many Files by Editing Just One, ed/ex Batch Edits: A Typical Example,
ed/ex Batch Edits: A Typical Example, Batch Editing Gotcha: Editors Fail on Big Files, patch:
Generalized Updating of Files That Differ, Quick Reference: awk, Command-Line Syntax, Patterns
and Procedures, awk System Variables, Operators, Operators

awk utility, Quick Reference: awk, Command-Line Syntax, Patterns and Procedures, awk System
Variables, Operators, Operators

command-line syntax, Command-Line Syntax
operators, Operators, Operators
patterns and procedures, Patterns and Procedures
system variables, awk System Variables

changing many files by editing one, Change Many Files by Editing Just One, Change Many Files
by Editing Just One
ed editor, ed/ex Batch Edits: A Typical Example, Batch Editing Gotcha: Editors Fail on Big
Files

example, ed/ex Batch Edits: A Typical Example
failure on big files, Batch Editing Gotcha: Editors Fail on Big Files

ex editor, Useful ex Commands, Useful ex Commands, ed/ex Batch Edits: A Typical Example
example, ed/ex Batch Edits: A Typical Example
useful commands, Useful ex Commands, Useful ex Commands

line addressing, Line Addressing
patch program, patch: Generalized Updating of Files That Differ
running scripts in vi, Running Editing Scripts Within vi
scripts, writing, Writing Editing Scripts

BEGIN and END patterns, awk, Patterns
behead script, Remove Mail/News Headers with behead, MIME Encoding
Bell Labs research operating system (Plan 9), There Are Many Shells
Berkeley Internet Name Daemon (bind), Domain Name Service (DNS), Domain Name Service
(DNS)

DNS cache, setting up local, Domain Name Service (DNS)
Berkeley-based Unix, Hacking on Characters with tr, Save Disk Space and Programming: Multiple
Names for a Program, lpr-Style Printing Commands, Which Group is Which?

ex, vi, view, edit commands, linked to same executable file, Save Disk Space and Programming:
Multiple Names for a Program
group file ownership, Which Group is Which?

printing commands, lpr-Style Printing Commands
tr command, ranges in, Hacking on Characters with tr

bg command, Program Waiting for Input?, Job Control in a Nutshell, Using Job Control from Your
Shell

putting jobs in background, Program Waiting for Input?
bgnice option (ksh), The Process Chain to Your Window
bg_nice option (zsh), The Process Chain to Your Window
binary characters, inserting into Emacs files, Inserting Binary Characters into Files
binary files, Finding Words Inside Binary Files, Deleting Stale Files, Encoding "Binary" Files into
ASCII, MIME Encoding, uuencoding, MIME Encoding, MIME Encoding, Wildcard Gotchas in GNU
tar, /usr/bin and Other Software Directories, /usr/bin and Other Software Directories

accessible by users in /usr/bin subdirectory, /usr/bin and Other Software Directories
archiving system test file, Wildcard Gotchas in GNU tar
encoding into ASCII, Encoding "Binary" Files into ASCII, MIME Encoding, uuencoding, MIME
Encoding, MIME Encoding

MIME encoding, MIME Encoding, MIME Encoding
uuencoding, uuencoding

executables, access time updates, Deleting Stale Files
searching for words in, Finding Words Inside Binary Files
system, in /sbin directory, /usr/bin and Other Software Directories

bind (Berkeley Internet Name Daemon), Domain Name Service (DNS), Domain Name Service
(DNS)

DNS cache, setting up, Domain Name Service (DNS)
bind command, ksh Editing, ksh Editing

-l option, ksh Editing
binding operator (=~), Perl Boot Camp, Part 4: Pattern Matching
bindkey command, tcsh Editing, tcsh Editing, tcsh Editing, tcsh Editing, tcsh Editing, zsh Editing

-c option, tcsh Editing
-k option, tcsh Editing
-l option, tcsh Editing
-v option, zsh Editing
tcsh editing, tcsh Editing, tcsh Editing

bit bucket, Save Space with "Bit Bucket" Log Files and Mailboxes
bitmaps, The Portable Bitmap Package
bitwise or (|) operator, Perl Boot Camp, Part 1: Typical Script Anatomy
bkedit script, Test Exit Status with the if Statement, Set Exit Status of a Shell (Script), Parameter
Substitution

ending and setting exit status, Set Exit Status of a Shell (Script)
parameter substitution in, Parameter Substitution

blank lines, squashing extras, Squash Extra Blank Lines
blank shell prompts, What Good Is a Blank Shell Prompt?
blocks, Finer Control on tail, Moving Blocks of Text by Patterns, Indentation, Installing and
Configuring Samba

of bytes, counting with tail -b command, Finer Control on tail
of code, defining in Python, Indentation

of text, defining with patterns, Moving Blocks of Text by Patterns
of related options in smb.conf files, Installing and Configuring Samba

body of email, forming properly, MIME Encoding
bold text, VT Fonts Menu, Trying It
Boolean operators, Patterns, Scalars

combining awk patterns with, Patterns
boot -v command, Reading Kernel Boot Output
boundary-checking versions of C functions, What We Mean by Buffer Overflow
Bourne shells, There Are Many Shells, Shell Setup Files — Which, Where, and Why, Multiline Shell
Prompts, What the Shell Does, Types of Shells, Types of Shells, Bourne Shell Used Here

(see also bash; ksh; sh; zsh)
newlines in prompts, Multiline Shell Prompts
profile file, Shell Setup Files — Which, Where, and Why
scripts in this book, running on, Bourne Shell Used Here
types of, Types of Shells

branch (b) command, sed editor, Making Edits Everywhere Except..., Making Edits Everywhere
Except...
break command, Alphabetical Summary of Commands, Loop Control: break and continue, Loop
Control: break and continue

awk, Alphabetical Summary of Commands
broken links, Creating and Removing Links
browseable option (smb.conf), Installing and Configuring Samba
browsers, Tips for Copy and Paste Between Windows, Example #2: A Web Browser, SWAT and
GUI SMB Browsers, SWAT and GUI SMB Browsers

closing window by killing its processes, Example #2: A Web Browser
for Samba, SWAT and GUI SMB Browsers
SMB network, SWAT and GUI SMB Browsers
text copied from, reformatting, Tips for Copy and Paste Between Windows

BSD Unix, The ps Command, BSD, BSD, What Are Signals?, Know When to Be "nice" to Other
Users...and When Not To, Know When to Be "nice" to Other Users...and When Not To, BSD C Shell
nice, BSD Standalone nice, Changing a Running Job's Niceness, /usr/bin and Other Software
Directories, Which make?, Unix User/Group Infrastructure, Groups and Group Ownership, Why Can't
You Change File Ownership?

file ownership, Why Can't You Change File Ownership?
Filesystem Hierarchy Standard, support of, /usr/bin and Other Software Directories
group membership, Groups and Group Ownership
make utility, versions of, Which make?
nice command, Know When to Be "nice" to Other Users...and When Not To, BSD C Shell nice,
BSD Standalone nice

C shell, BSD C Shell nice
ps -a command, BSD
ps -aux command, The ps Command
ps ax command, BSD
renice command, Know When to Be "nice" to Other Users...and When Not To, Changing a
Running Job's Niceness

signals, What Are Signals?
user/group infrastructure, Unix User/Group Infrastructure

bsplit utility, Splitting Files at Fixed Points: split
buffer overflow, security vulnerability, What We Mean by Buffer Overflow
buffers, Using Buffers to Move or Copy Text, Get Back What You Deleted with Numbered Buffers,
Keep Your Original File, Write to a New File, Be Careful with vi -r Recovered Buffers, Hold Space:
The Set-Aside Buffer, Hold Space: The Set-Aside Buffer, Send Output Two or More Places

edited, saving as files in vi, Keep Your Original File, Write to a New File
hold space in sed, Hold Space: The Set-Aside Buffer
numbered, recovering vi editor deletions in, Get Back What You Deleted with Numbered
Buffers
pattern space in sed, Hold Space: The Set-Aside Buffer
pipes, buffering of output, Send Output Two or More Places
recovered with vi -r, cautions about, Be Careful with vi -r Recovered Buffers
vi editor, using to copy and move text, Using Buffers to Move or Copy Text

buildhash script, Adding Words to ispell's Dictionary
built-in commands, Internal and External Commands, Faster Prompt Setting with Built-ins, Which
One Will bash Use?, Which One Will bash Use?, Which One Will bash Use?, Which One Will the C
Shell Use?

builtin command, forcing use with, Which One Will bash Use?
C shell, determining whether to use, Which One Will the C Shell Use?
faster prompt setting with, Faster Prompt Setting with Built-ins
shells, Internal and External Commands

bunzip2 file decompression program, Compressing Files to Save Space
button presses, Defining Keys and Button Presses with xmodmap, Defining Keys and Button Presses
with xmodmap

defining with xmodmap, Defining Keys and Button Presses with xmodmap, Defining Keys and
Button Presses with xmodmap

byte order, converting with dd, Text Conversion with dd
bzip2 utility, Compressing Files to Save Space, More Ways to Back Up, To gzip, or Not to gzip?

C

c function (for changing directories), cd by Directory Initials
C language, The Core of Unix, There Are Many Shells, There Are Many Shells, There Are Many
Shells, There Are Many Shells, Filename Extensions, Filename Extensions, Looking for Closure,
Emacs Features: A Laundry List

C mode for programming in Emacs, Emacs Features: A Laundry List
csh shell, There Are Many Shells, There Are Many Shells
interoperability of programs on different Unix systems, The Core of Unix
lexical analyzer for syntax checking, Looking for Closure
program file extensions, Filename Extensions, Filename Extensions
tcsh shell, There Are Many Shells, There Are Many Shells

C shell (csh), Which Shell Am I Running?, Filename Extensions, Shell Setup Files — Which, Where,
and Why, What Goes in Shell Setup Files?, Setup Files Aren't Read When You Want?, Setup Files

Aren't Read When You Want?, Terminal Setup: Testing TERM, Terminal Setup: Testing Port, Static
Prompts, C-Shell Prompt Causes Problems in vi, rsh, etc., Faster Prompt Setting with Built-ins,
Session Info in Window Title or Status Line, dirs in Your Prompt: Better Than $cwd, Running
Commands When You Log Out, Stop Accidental Bourne-Shell Logouts, Setting the Terminal Type
When You Log In, Checklist: Terminal Hangs When I Log In, Checklist: Terminal Hangs When I Log
In, Aborting Programs, A bin Directory for Your Programs and Scripts, Running Commands on What
You Find, Using the Stored Lists, Expanding Ranges, Renaming, Copying, or Comparing a Set of
Files, limit and ulimit, Using Job Control from Your Shell, Managing Processes: Overall Concepts,
What the Shell Does, Types of Shells, Controlling Shell Command Searches, Controlling Shell
Command Searches, Controlling Shell Command Searches, Which One Will the C Shell Use?,
Differences Between Bourne and C Shell Quoting, Special Characters, How Quoting Works, Quoting
Special Characters in Filenames, Verbose and Echo Settings Show Quoting, Here Documents,
"Special" Characters and Operators, Build Strings with { }, String Editing (Colon) Operators, String
Editing (Colon) Operators, Repeating Commands, A foreach Loop, Multiline Commands, Secondary
Prompts, Introduction to Shell Aliases, C-Shell Aliases with Command-Line Arguments, C-Shell
Aliases with Command-Line Arguments, Avoiding C-Shell Alias Loops, How to Put if-then-else in a
C-Shell Alias, The Lessons of History, History Substitutions, C Shells, Pass History to Another Shell,
Changing History Characters with histchars, Regular Expressions: The Anchor Characters ̂and $,
Filename Wildcards in a Nutshell, sed Newlines, Quoting, and Backslashes in a Shell Script, What
Environment Variables Are Good For, Shell Variables, Exit Status of Unix Processes, Using Standard
Input and Output, Redirection in C Shell: Capture Errors, Too?, Safe I/O Redirection with noclobber

(see also shell scripts; shells; tcsh shell)
! ̂and !$, specifying first and last arguments on previous line, Regular Expressions: The Anchor
Characters ̂and $
.cshrc file, Shell Setup Files — Which, Where, and Why
.login file, Terminal Setup: Testing TERM

TERM variable, testing, Terminal Setup: Testing TERM
.logout file, Running Commands When You Log Out
aliases, Introduction to Shell Aliases, C-Shell Aliases with Command-Line Arguments, C-Shell
Aliases with Command-Line Arguments, How to Put if-then-else in a C-Shell Alias

if-then-else in, How to Put if-then-else in a C-Shell Alias
with command-line arguments, C-Shell Aliases with Command-Line Arguments, C-Shell
Aliases with Command-Line Arguments

arrays, Using the Stored Lists, Expanding Ranges
expanding ranges, Expanding Ranges

avoiding alias loops, Avoiding C-Shell Alias Loops
background processing, Using Job Control from Your Shell
built-in string operators, Faster Prompt Setting with Built-ins
choosing among built-in commands, external commands, or shell functions, Which One Will the
C Shell Use?
command history, History Substitutions (see history of commands)
configuration files, What Goes in Shell Setup Files?, Setup Files Aren't Read When You Want?

aliases, What Goes in Shell Setup Files?
csh command name, Aborting Programs
current directory, updating in status line, Session Info in Window Title or Status Line

defining variables, Shell Variables
editing history and variable substitutions, String Editing (Colon) Operators, String Editing
(Colon) Operators
environment variables, unsetting, What Environment Variables Are Good For
eval command, Setting the Terminal Type When You Log In
exit status of previous command, Exit Status of Unix Processes
forcing to use internal exit command, Setup Files Aren't Read When You Want?
foreach loop, A foreach Loop
globbing (wildcard expansion), Filename Wildcards in a Nutshell
history, The Lessons of History (see history of commands)
history characters, Changing History Characters with histchars
history file, C Shells
ignoreeof shell variable, Stop Accidental Bourne-Shell Logouts
limiting file size, limit and ulimit
multiline commands, Multiline Commands, Secondary Prompts
passing command history to, Pass History to Another Shell
port, testing, Terminal Setup: Testing Port
prompt, Which Shell Am I Running?, Static Prompts, C-Shell Prompt Causes Problems in vi,
rsh, etc.

% in, Which Shell Am I Running?
problems caused by, C-Shell Prompt Causes Problems in vi, rsh, etc.
setting, Static Prompts

quotation marks around filenames, Renaming, Copying, or Comparing a Set of Files
quoting in, Differences Between Bourne and C Shell Quoting, Special Characters, How Quoting
Works, Quoting Special Characters in Filenames, Verbose and Echo Settings Show Quoting,
Here Documents

here documents, Here Documents
rules for, How Quoting Works
showing with verbose and echo settings, Verbose and Echo Settings Show Quoting
special characters, Special Characters
special characters in filenames, Quoting Special Characters in Filenames

redirecting standard I/O, Using Standard Input and Output, Redirection in C Shell: Capture
Errors, Too?, Safe I/O Redirection with noclobber

noclobber variable, Safe I/O Redirection with noclobber
rehash command, A bin Directory for Your Programs and Scripts, Controlling Shell Command
Searches
repeating commands with repeat command, Repeating Commands
script file extension, Filename Extensions
search path for commands, changing, Controlling Shell Command Searches
sed newlines quoting and backslashes in shell script, sed Newlines, Quoting, and Backslashes in
a Shell Script
set echo verbose command, Checklist: Terminal Hangs When I Log In
special characters/operators in, "Special" Characters and Operators
su -f stucklogin command, Checklist: Terminal Hangs When I Log In
\:gt operator, dirs in Your Prompt: Better Than $cwd

{ and } and ; (with find command), Running Commands on What You Find
{ } (pattern-expansion characters), building strings with, Build Strings with { }

cable modems, Dynamic Host Configuration Protocol (DHCP), Gateways and NAT, Firewalls
DHCP and, Dynamic Host Configuration Protocol (DHCP)
firewalls, Firewalls
gateways, Gateways and NAT

cache, DNS, Domain Name Service (DNS)
cancel command (System V), lp-Style Printing Commands
canonical hostname, Status and Troubleshooting
capitalization, Check Spelling Interactively with ispell (see case)
CAPS LOCK key, Defining Keys and Button Presses with xmodmap, Typing in Uppercase Without
CAPS LOCK
capturing in patterns, Perl Boot Camp, Part 4: Pattern Matching
carriage returns, Anyone Can Program the Shell, Hacking on Characters with tr

Macintosh, ASCII character for, Anyone Can Program the Shell
translating to newlines, Hacking on Characters with tr

case, Filenames, Faking Case-Insensitive Searches, Check Spelling Interactively with ispell,
Capitalizing Every Word on a Line, Filtering Text Through a Unix Command, vi Line Commands
Versus Character Commands, Typing in Uppercase Without CAPS LOCK, Alphabetical Summary of
Commands, Hacking on Characters with tr, Text Conversion with dd, Alphabetic and Numeric
Sorting, Case-Insensitive Sorts, String Editing (Colon) Operators, String Editing (Colon) Operators,
Understanding Expressions, Transforming Part of a Line, Scalars, Scalars

case sensitivity, Filenames
case-insensitive searches, faking, Faking Case-Insensitive Searches
case-insensitive sorts, Case-Insensitive Sorts
case-sensitivity, Understanding Expressions

in regular expressions, Understanding Expressions
converting to/from uppercase or lowercase, Filtering Text Through a Unix Command,
Alphabetical Summary of Commands, Text Conversion with dd, Transforming Part of a Line

awk utility, Alphabetical Summary of Commands
dd utility, Text Conversion with dd
filtering vi text through tr command, Filtering Text Through a Unix Command
sed transform command, Transforming Part of a Line

converting to/from uppercase or lowercase, Hacking on Characters with tr
(see also tr command)

ispell program and, Check Spelling Interactively with ispell
lc operator, Scalars
sort command, sort order, Alphabetic and Numeric Sorting
uc operator, Scalars
uppercase letters in vi character and line commands, vi Line Commands Versus Character
Commands
uppercase without CAPS LOCK in vi, Typing in Uppercase Without CAPS LOCK
vi and ex editors, capitalizing words, Capitalizing Every Word on a Line
\:l operator, String Editing (Colon) Operators
\:u operator, String Editing (Colon) Operators

case statements, Automatic Setups for Different Terminals, Automatic Setups for Different Terminals,
Terminal Setup: Testing TERM, Terminal Setup: Testing Port, Faster Prompt Setting with Built-ins,
Pattern Matching in case Statements, Test Exit Status with the if Statement, Handling Arguments with
while and shift, Save Disk Space and Programming: Multiple Names for a Program, Testing Two
Strings with One case Statement, Outputting Text to an X Window, Missing or Extra esac, ;;, fi, etc.

adding to .profile to test TERM variable, Terminal Setup: Testing TERM
debugging, Missing or Extra esac, ;;, fi, etc.
port, testing, Terminal Setup: Testing Port
testing exit status for commands, Test Exit Status with the if Statement
testing pathnames for calling a script, Save Disk Space and Programming: Multiple Names for a
Program
testing tty name, Faster Prompt Setting with Built-ins
testing two strings using, Testing Two Strings with One case Statement
in while loop, handling arguments with, Handling Arguments with while and shift
wildcard pattern matching, Pattern Matching in case Statements
in xmessage command line, Outputting Text to an X Window

cat command, Communication with Unix, Trying It, Can't Access a File? Look for Spaces in the
Name, What Good Is a cat?, Show Nonprinting Characters with cat -v or od -c, Show Nonprinting
Characters with cat -v or od -c, What's in That Whitespace?, Squash Extra Blank Lines, Numbering
Lines, MIME Encoding, Command Evaluation and Accidentally Overwriting Files, Regular
Expressions: The Anchor Characters ̂and $, Testing Your Success, Standard Input to a for Loop,
One Argument with a cat Isn't Enough, One Argument with a cat Isn't Enough

-e option, marking ends of lines with $, Can't Access a File? Look for Spaces in the Name
-n option, Numbering Lines
-s option, squashing extra blank lines, Squash Extra Blank Lines
-t and -e options, displaying whitespace, Show Nonprinting Characters with cat -v or od -c
-v -e options, Regular Expressions: The Anchor Characters ̂and $
-v -t and -e options, displaying whitespace, What's in That Whitespace?
-v option, Trying It, Show Nonprinting Characters with cat -v or od -c
creating mail header with, MIME Encoding
exit status, testing, Testing Your Success
file, adding to end of another file, Command Evaluation and Accidentally Overwriting Files
for loops combined with, Standard Input to a for Loop
redirecting I/O, One Argument with a cat Isn't Enough
starting pipelines, One Argument with a cat Isn't Enough

CBLKWID (comment block width) environment variable, The recomment Script
cd command, Internal and External Commands, Session Info in Window Title or Status Line, What
Good Is a Current Directory?, Saving Time When You Change Directories: cdpath, The Shells' pushd
and popd Commands, Quick cds with Aliases, Predefined Environment Variables

+n and -n options (zsh), The Shells' pushd and popd Commands
aliases for, Quick cds with Aliases
cdpath variable and, Saving Time When You Change Directories: cdpath
PWD environment variable and, Predefined Environment Variables

CD-ROMs, Configuring the sources.list File, Quick Introduction to Hardware, Filesystem Types and
/etc/fstab, Mounting and Unmounting Removable Filesystems, Loopback Mounts

cdrom protocol, Configuring the sources.list File
loopback mounts, Loopback Mounts
mounting, Filesystem Types and /etc/fstab, Mounting and Unmounting Removable Filesystems

cdable_vars shell variable, Marking Your Place with a Shell Variable
CDPATH environment variable, Saving Time When You Change Directories: cdpath
cdpath shell variable, Saving Time When You Change Directories: cdpath
centering lines, script for, Centering Lines in a File
CERT, Configuring an Anonymous FTP Server, CERT Security Checklists, Keeping Up with Security
Alerts, Intruder Detection

intruder detection checklist, Intruder Detection
safely setting up anonymous FTP, guide for, Configuring an Anonymous FTP Server
security checklists, CERT Security Checklists
security vulnerabilities, information about, Keeping Up with Security Alerts

CGI scripts, Python module for, Python and the Web, cgi
cgrep script, A Multiline Context grep Using sed, Searching for Patterns Split Across Lines,
Searching for Patterns Split Across Lines
chain of processes to a window, The Process Chain to Your Window, The Process Chain to Your
Window
change command (ex), Useful ex Commands
change times for files, The Three Unix File Times, Finding Oldest or Newest Files with ls -t and ls -
u, Searching for Old Files

inode information, Finding Oldest or Newest Files with ls -t and ls -u, Searching for Old Files
find -ctime, accessing with, Searching for Old Files

character classes, Defining What Makes Up a Word for Selection Purposes, Perl Boot Camp, Part 4:
Pattern Matching

for ASCII characters, Defining What Makes Up a Word for Selection Purposes
defining in Perl regular expressions, Perl Boot Camp, Part 4: Pattern Matching

character commands in vi, vi Line Commands Versus Character Commands
character sets (in regular expressions), Using Metacharacters in Regular Expressions, Regular
Expressions: Matching a Character with a Character Set, Regular Expressions: Exceptions in a
Character Set, Regular Expressions: Repeating Character Sets with *

exceptions to, indicating with [̂], Regular Expressions: Exceptions in a Character Set
matching a character with, Regular Expressions: Matching a Character with a Character Set
repeating with *, Regular Expressions: Repeating Character Sets with *

character strings, Using sed (see strings)
characters, Anyone Can Program the Shell, Showing Nonprintable Characters in Filenames, Showing
Nonprintable Characters in Filenames, Show Nonprinting Characters with cat -v or od -c, Show
Nonprinting Characters with cat -v or od -c, Show Nonprinting Characters with cat -v or od -c, Finer
Control on tail, Counting Lines, Words, and Characters: wc, Counting Lines, Words, and Characters:
wc, Emacs: The Other Editor, Low-Level File Butchery with dd, Hacking on Characters with tr,
Regular Expressions: Specifying a Range of Characters with [...]

converting with tr command, Anyone Can Program the Shell
counting with tail -c command, Finer Control on tail
counting with wc command, Counting Lines, Words, and Characters: wc, Counting Lines,
Words, and Characters: wc

deleting from a file with dd, Low-Level File Butchery with dd
deleting in Emacs, Emacs: The Other Editor
nonprintable, Show Nonprinting Characters with cat -v or od -c

displaying with od c command, Show Nonprinting Characters with cat -v or od -c
nonprinting, Showing Nonprintable Characters in Filenames, Show Nonprinting Characters with
cat -v or od -c, Show Nonprinting Characters with cat -v or od -c

(see also special characters)
showing with cat -v or od -c, Show Nonprinting Characters with cat -v or od -c, Show
Nonprinting Characters with cat -v or od -c

ranges of, specifying for regular expressions, Regular Expressions: Specifying a Range of
Characters with [...]
special, Showing Nonprintable Characters in Filenames (see special characters)
translating with tr command, Hacking on Characters with tr

charClass resource (xterm), Defining What Makes Up a Word for Selection Purposes
checkout command (co) in RCS, RCS Basics
checkout, CVS repository, CVS Basics
checksed script, checksed
chess script, Automating /bin/passwd
chgrp command, File Access Permissions
child processes, Managing Processes: Overall Concepts, Managing Processes: Overall Concepts,
Managing Processes: Overall Concepts, Subshells, Killing Foreground Jobs, Destroying Processes
with kill, What Environment Variables Are Good For, Overview: Open Files and File Descriptors

changes to environment of, Subshells
environment variables, inheritance of, What Environment Variables Are Good For
exit status returned to parent, Managing Processes: Overall Concepts
file descriptors given to, Overview: Open Files and File Descriptors
killing parent of, Destroying Processes with kill
relationship to parent, Managing Processes: Overall Concepts
signals and, Killing Foreground Jobs

child signal, What Are Signals?
CHLD (child) signal, What Are Signals?
chmod command, Anyone Can Program the Shell, A bin Directory for Your Programs and Scripts, A
bin Directory for Your Programs and Scripts, Writing a Simple Shell Program, User, Group, and
World, Using chmod to Change File Permission, Using chmod to Change File Permission, Using
chmod to Change File Permission, Using chmod to Change File Permission, Using chmod to Change
File Permission, The Handy chmod = Operator, The Handy chmod = Operator

-R option, Using chmod to Change File Permission, The Handy chmod = Operator
changing permissions for directory tree, Using chmod to Change File Permission

= operator, The Handy chmod = Operator
adding and subtracting permissions, Using chmod to Change File Permission
go+rx bin to give other users access to bin directory, A bin Directory for Your Programs and
Scripts
go-w bin, write access to bin directory, A bin Directory for Your Programs and Scripts
numeric mode, Using chmod to Change File Permission
permissions, changing, User, Group, and World

symbolic modes, Using chmod to Change File Permission
chmod function (Perl), Perl Boot Camp, Part 5: Perl Knows Unix
chopping columns out of a file, Searching Online Manual Pages
chown command, How to Change File Ownership Without chown
chown function (Perl), Perl Boot Camp, Part 5: Perl Knows Unix
Christiansen, Tom, One Argument with a cat Isn't Enough
chroot, anonymous FTP connections, Configuring an Anonymous FTP Server
ci (checkin) command (RCS), RCS Basics
Citrix, Citrix: Making Windows Multiuser, Citrix: Making Windows Multiuser, Citrix Metaframe

Metaframe, Citrix: Making Windows Multiuser, Citrix Metaframe
class methods (Python), Everything's an Object
class of objects, application resources associated with, X Resource Syntax
class variables (Python), Everything's an Object
classes (Python), Everything's an Object
clean alias, removing stale files with, Deleting Stale Files
cleanup script, Using find to Clear Out Unneeded Files
clear command, Running Commands When You Log Out
clear text SMB passwords, Securing Samba
CLICOLOR environment variable, Another color ls
clients, Starting Remote X Clients, Starting a Remote Client with rsh and ssh, Starting Remote X
Clients from Interactive Logins, Starting a Remote Client with rsh and ssh, Python and the Web,
Sharing Desktops with VNC, Citrix Metaframe, rdesktop, Hob, Server and Client Problems, Server
and Client Problems

ICA, Citrix Metaframe
Python as web client, Python and the Web
RDP, for Unix (rdesktop), rdesktop
RDP, HOBLink JWT, Hob
remote, starting for X window systems, Starting Remote X Clients, Starting a Remote Client
with rsh and ssh, Starting Remote X Clients from Interactive Logins, Starting a Remote Client
with rsh and ssh

from interactive logins, Starting Remote X Clients from Interactive Logins
with rsh and ssh, Starting a Remote Client with rsh and ssh

SSH, problems with, Server and Client Problems, Server and Client Problems
VNC (Virtual Network Computing), Sharing Desktops with VNC

CLIPBOARD selection (xterm), Working with xclipboard
clock in Unix, How Unix Keeps Time
close command (awk), Alphabetical Summary of Commands
close() method (for Perl objects), Perl Boot Camp, Part 1: Typical Script Anatomy
closing windows, The Process Chain to Your Window, Close a Window by Killing Its Process(es),
Closing a Window from a Shell Script

by exiting the shell, The Process Chain to Your Window
by killing window processes, Close a Window by Killing Its Process(es), Closing a Window
from a Shell Script

cmd field in crontab entries, Execution Scheduling
cmp operator (Perl), Scalars

cmp program, cmp and diff
co (checkout) command (RCS), RCS Basics, RCS Basics, RCS Basics

-j option, merging file versions with, RCS Basics
-p option, sending file to standard output, RCS Basics

Collinson, Peter, Shell Script "Wrappers" for awk, sed, etc.
color, Highlighting and Color in Shell Prompts, Color ls, Another color ls, Configuring It, Predefined
Environment Variables

displaying names of with ls command, Color ls, Another color ls
in shell prompts, Highlighting and Color in Shell Prompts
LS_COLORS environment variable, Configuring It, Predefined Environment Variables

columns, Searching Online Manual Pages, List All Subdirectories with ls -R, Useful ls Aliases,
Finding a Character in a Column, Cutting Columns or Fields, Making Text in Columns with pr, Order
Lines Across Columns: -l, Make Columns Automatically with column, Make Columns Automatically
with column, Straightening Jagged Columns, Pasting Things in Columns

chopping out of a file, Searching Online Manual Pages
column utility, creating with, Make Columns Automatically with column, Make Columns
Automatically with column

rebalancing into table with variable-width columns, Make Columns Automatically with
column

cutting, Cutting Columns or Fields
ls -C command, listing output in, List All Subdirectories with ls -R, Useful ls Aliases
pasting data into, Pasting Things in Columns
searching files for character in, Finding a Character in a Column
straightening, Straightening Jagged Columns
text in, with pr command, Making Text in Columns with pr, Order Lines Across Columns: -l

COLUMNS environment variable, Terminal Setup: Testing Window Size
comma (,) in filenames, Filenames
comma, "fat comma" operator (=>), Hashes
command characters, Showing Nonprintable Characters in Filenames (see special characters)
command command, disabling shell function lookup, Which One Will bash Use?
command directories, What Environment Variables Are Good For
command editing mode, Predefined Environment Variables
command interpreters, Communication with Unix (see shells)
command line, Communication with Unix, There Are Many Shells, Anyone Can Program the Shell,
Highlighting and Color in Shell Prompts, Emacs Features: A Laundry List, Command Completion,
Command-Line Syntax, The at Command, Wildcards Inside Aliases, What's Special About the Unix
Command Line, Other Problems, What's Special About the Unix Command Line, Reprinting Your
Command Line with CTRL-r, Build Strings with { }, String Editing (Colon) Operators, Automatic
Completion, General Example: Filename Completion, Menu Completion, Command-Specific
Completion, Editor Functions for Completion, Don't Match Useless Files in Filename Completion,
Repeating Commands, A foreach Loop, A for Loop, Repeating a Command with Copy-and-Paste,
Repeating a Time-Varying Command, Multiline Commands, Secondary Prompts, Handling Lots of
Text with Temporary Files, Separating Commands with Semicolons, Dealing with Too Many
Arguments, Expect, Other Problems, C-Shell Aliases with Command-Line Arguments, The Lessons of
History, Shell Command-Line Editing, vi Editing Mode, Emacs Editing Mode, tcsh Editing, zsh

Editing, ksh Editing, bash Editing, zsh Editing, Invoking sed, Writing a Simple Shell Program, Finding
the Last Command-Line Argument, How to Unset All Command-Line Parameters

aliases for arguments, C-Shell Aliases with Command-Line Arguments
as shell scripts, Writing a Simple Shell Program
awk, Command-Line Syntax
building strings with { }, Build Strings with { }
completion features, Emacs Features: A Laundry List, Command Completion, Automatic
Completion, General Example: Filename Completion, Menu Completion, Command-Specific
Completion, Editor Functions for Completion, Don't Match Useless Files in Filename
Completion

command-specific completion, Command-Specific Completion
editor functions for, Editor Functions for Completion
Emacs, Command Completion
Emacscommand completion, Emacs Features: A Laundry List (see command line)
filename completion, General Example: Filename Completion
filename completion, ignoring file suffixes, Don't Match Useless Files in Filename
Completion
menu completion, Menu Completion

editing on, There Are Many Shells, Highlighting and Color in Shell Prompts, The Lessons of
History, Shell Command-Line Editing, vi Editing Mode, Emacs Editing Mode, tcsh Editing, zsh
Editing, ksh Editing, bash Editing, zsh Editing

bash shell, bash Editing
Emacs editing mode, Emacs Editing Mode
ksh (Korn shell), There Are Many Shells, ksh Editing
tcsh shell, tcsh Editing, zsh Editing
vi editing mode, vi Editing Mode
zsh shell, zsh Editing

executing commands with long list of files as arguments, Handling Lots of Text with Temporary
Files
finding last argument on, Finding the Last Command-Line Argument
interactive applications, controlling with Expect program, Expect, Other Problems
interpretation by shell, Communication with Unix
multiline commands and secondary prompts, Multiline Commands, Secondary Prompts
parameters, unsetting, How to Unset All Command-Line Parameters
parsing, Wildcards Inside Aliases
repeating commands, Repeating Commands, A foreach Loop, A for Loop, Repeating a Command
with Copy-and-Paste, Repeating a Time-Varying Command

at set intervals, Repeating a Time-Varying Command
copy and paste, using, Repeating a Command with Copy-and-Paste
with variations, A foreach Loop, A for Loop

reprinting wilth CTRL-r, Reprinting Your Command Line with CTRL-r
saving to file, Anyone Can Program the Shell
sed editor, Invoking sed
separating commands with semicolon (\:), Separating Commands with Semicolons
shortcuts, What's Special About the Unix Command Line

string-editing (\:) operators, String Editing (Colon) Operators
submitting for execution at a later time, The at Command
too many arguments, dealing with, Dealing with Too Many Arguments

command search path, Predefined Environment Variables (see search path)
command substitution, Delving Through a Deep Directory Tree, Removing Every File but One,
Bourne Shell Quoting, How Quoting Works, What's Special About the Unix Command Line,
Command Substitution, Command Substitution, Command Substitution, Handling Command-Line
Arguments with a for Loop, Nested Command Substitution

Bourne shell quoting and, How Quoting Works
examples of, Command Substitution
excluding files from rm command, Removing Every File but One
find command output, using with, Delving Through a Deep Directory Tree
in for loops, Handling Command-Line Arguments with a for Loop
grep command, using in vi editor, Command Substitution
nested, Nested Command Substitution

command-line arguments, Statistics of Processes by PID, Handling Command-Line Arguments in
Shell Scripts, Handling Arguments with while and shift, With a Loop, Handling Command-Line
Arguments with a for Loop, Standard Command-Line Parsing, Standard Command-Line Parsing,
Setting (and Parsing) Parameters, Setting (and Parsing) Parameters, Watch Your Quoting, Watch Your
Quoting, Finding the Last Command-Line Argument, Using set and IFS, Testing Two Strings with One
case Statement, Quoting and Command-Line Parameters, Getting tar's Arguments in the Right Order,
Perl Boot Camp, Part 1: Typical Script Anatomy

@ARGV array passed to Perl scripts, Perl Boot Camp, Part 1: Typical Script Anatomy
finding last, Finding the Last Command-Line Argument
handling in Bourne shell scripts, Handling Command-Line Arguments in Shell Scripts, Handling
Arguments with while and shift, With a Loop

for loops, using, With a Loop
parsing, Watch Your Quoting
parsing standard, Standard Command-Line Parsing, Standard Command-Line Parsing
of a process, Statistics of Processes by PID
quoting, Watch Your Quoting, Quoting and Command-Line Parameters
setting and parsing, Setting (and Parsing) Parameters
starting with - (dash), Handling Command-Line Arguments with a for Loop, Setting (and
Parsing) Parameters
storing single-line string in, Using set and IFS
tar, correct order for, Getting tar's Arguments in the Right Order
testing with case statement, Testing Two Strings with One case Statement

command-line parameters, Setting (and Parsing) Parameters (see command-line arguments)
commands, Communication with Unix, Communication with Unix, Internal and External Commands,
whereis: Finding Where a Command Is Located, Which Version Am I Using?, What Goes in Shell
Setup Files?, Faster Prompt Setting with Built-ins, A "Menu Prompt" for Naive Users, Preprompt,
Pre-execution, and Periodic Commands, Preprompt, Pre-execution, and Periodic Commands,
Preprompt, Pre-execution, and Periodic Commands, Running Commands When You Log Out, Running
Commands at Bourne/Korn Shell Logout, A bin Directory for Your Programs and Scripts, Filtering
Text Through a Unix Command, Shell Escapes: Running One UnixCommand While Using Another, vi

Line Commands Versus Character Commands, Neatening Lines, Setting Up vi with the .exrc File,
Setting Up vi with the .exrc File, Save Time and Typing with the vi map Commands, File-Backup
Macros, Emacs Features: A Laundry List, Useful ex Commands, Useful ex Commands, Procedures,
Stopping Remote Login Sessions, fork and exec, Managing Processes: Overall Concepts, Managing
Processes: Overall Concepts, Why ps Prints Some Commands in Parentheses, What Commands Are
Running and How Long Do They Take?, What the Shell Does, How Many Backslashes?, What the
Shell Does, How the Shell Executes Other Commands, How the Shell Executes Other Commands,
How Shells Run Other Programs, Interactive Use Versus Shell Scripts, Default Commands, Command
Evaluation and Accidentally Overwriting Files, Output Command-Line Arguments One by One,
Controlling Shell Command Searches, Controlling Shell Command Searches, Wildcards Inside
Aliases, eval: When You Need Another Chance, Which One Will bash Use?, Which One Will the C
Shell Use?, Is It "2>&1 file" or "> file 2>&1"? Why?, Bourne Shell Quoting, Multiline Quoting,
Differences Between Bourne and C Shell Quoting, Here Documents, String Editing (Colon)
Operators, A foreach Loop, Expect, Creating Custom Commands, Setting and Unsetting Bourne-Type
Aliases, Korn-Shell Aliases, zsh Aliases, Sourceable Scripts, Sourceable Scripts, Avoiding C-Shell
Alias Loops, How to Put if-then-else in a C-Shell Alias, Shell Function Basics, Simulated Bourne
Shell Functions and Aliases, Conclusion, The Lessons of History, Instead of Changing History
Characters, tcsh Editing, Order of Commands in a Script, The Deliberate Scrivener, The Deliberate
Scrivener, The Deliberate Scrivener, Writing a Simple Shell Program, Writing a Simple Shell
Program, Writing a Simple Shell Program, Everyone Should Learn Some Shell Programming, The
PATH Environment Variable, Exit Status of Unix Processes, Test Exit Status with the if Statement,
Picking a Name for a New Command, A while Loop with Several Loop Control Commands, Using
Standard Input and Output, The () Subshell Operators, How to tee Several Commands into One
Place, lp-Style Printing Commands

ampersand (&) character at the end of, putting into background with, Managing Processes:
Overall Concepts
awk utility, categories of, Procedures
binding to keys, tcsh Editing
built-in, Communication with Unix, Faster Prompt Setting with Built-ins, fork and exec

faster prompt setting with, Faster Prompt Setting with Built-ins
combining with grouping () operator, The () Subshell Operators
custom, creating, Creating Custom Commands, Setting and Unsetting Bourne-Type Aliases,
Korn-Shell Aliases, zsh Aliases, Sourceable Scripts, Sourceable Scripts, How to Put if-then-
else in a C-Shell Alias, Shell Function Basics, Simulated Bourne Shell Functions and Aliases

Bourne-type aliases, Setting and Unsetting Bourne-Type Aliases
if-then-else, putting in C shell alias, How to Put if-then-else in a C-Shell Alias
Korn shell aliases, Korn-Shell Aliases
shell functions, Shell Function Basics, Simulated Bourne Shell Functions and Aliases
sourceable scripts, Sourceable Scripts, Sourceable Scripts
zsh aliases, zsh Aliases

default, specifying shell with #!, Default Commands
displaying running commands, What Commands Are Running and How Long Do They Take?
ex editor, Useful ex Commands, Useful ex Commands
exit status of, Exit Status of Unix Processes
external, shell execution of, How the Shell Executes Other Commands

filtering text through with vi editor, Filtering Text Through a Unix Command, Neatening Lines
fmt command, neatening lines with, Neatening Lines

finding where located, whereis: Finding Where a Command Is Located
functions, working with, Conclusion
history of, The Lessons of History, Instead of Changing History Characters
in .exrc file for vi editor, Setting Up vi with the .exrc File
interactive, Communication with Unix
internal and external, Internal and External Commands
interpretation by shells, What the Shell Does, How Many Backslashes?, What the Shell Does,
How the Shell Executes Other Commands, How Shells Run Other Programs, Interactive Use
Versus Shell Scripts, Command Evaluation and Accidentally Overwriting Files, Output
Command-Line Arguments One by One, Controlling Shell Command Searches, Controlling Shell
Command Searches, Wildcards Inside Aliases, eval: When You Need Another Chance, Which
One Will bash Use?, Which One Will the C Shell Use?, Is It "2>&1 file" or "> file 2>&1"?
Why?, Bourne Shell Quoting, Multiline Quoting, Differences Between Bourne and C Shell
Quoting, Here Documents

arguments passed to a script, showing, Output Command-Line Arguments One by One
Bourne shell quoting, Bourne Shell Quoting, Multiline Quoting
C shell quoting, Differences Between Bourne and C Shell Quoting
choosing built-in, external or shell functions in bash, Which One Will bash Use?
choosing built-in, external, or shell functions in C shell, Which One Will the C Shell Use?
evaluation of command line, eval: When You Need Another Chance
executing external commands, How the Shell Executes Other Commands
interactive use vs. shell scripts, Interactive Use Versus Shell Scripts
overwriting files accidentally, Command Evaluation and Accidentally Overwriting Files
quoting with here documents, Here Documents
redirections, Is It "2>&1 file" or "> file 2>&1"? Why?
running other programs, How Shells Run Other Programs
search path for commands, Controlling Shell Command Searches, Controlling Shell
Command Searches
wildcards in aliases, Wildcards Inside Aliases

joining with pipes, Writing a Simple Shell Program
in .logout file, Running Commands When You Log Out
logout file, creating for Bourne and Korn shells, Running Commands at Bourne/Korn Shell
Logout
multiple control commands, while loops with, A while Loop with Several Loop Control
Commands
naming, Picking a Name for a New Command
null, Test Exit Status with the if Statement
PATH environment variable, The PATH Environment Variable
periodic, Preprompt, Pre-execution, and Periodic Commands
preprompt, Preprompt, Pre-execution, and Periodic Commands, Preprompt, Pre-execution, and
Periodic Commands
printed in parentheses by ps, Why ps Prints Some Commands in Parentheses
printing, String Editing (Colon) Operators, lp-Style Printing Commands

without executing (\:p operator), String Editing (Colon) Operators
System V, lp-Style Printing Commands

putting names of into shell prompts, A "Menu Prompt" for Naive Users
redefining with aliases, problems with, Avoiding C-Shell Alias Loops
redirection, How to tee Several Commands into One Place (see redirecting input and output)
remote-login utilities, Stopping Remote Login Sessions
repeating, A foreach Loop (see repeating commands)
running at login, What Goes in Shell Setup Files?
running one while using another with shell escapes, Shell Escapes: Running One UnixCommand
While Using Another
search path, A bin Directory for Your Programs and Scripts, Writing a Simple Shell Program

rehash command, updating with, A bin Directory for Your Programs and Scripts
search table (C shells), resetting, Writing a Simple Shell Program
sed editor, The Deliberate Scrivener, The Deliberate Scrivener, The Deliberate Scrivener

operations of, The Deliberate Scrivener, The Deliberate Scrivener
sed, order of, Order of Commands in a Script
sequences of, executing automatically with Emacs, Emacs Features: A Laundry List
standard input, reading, Using Standard Input and Output
storing for startup of vi, Setting Up vi with the .exrc File
Tcl, Expect
typing at the shell prompt, Managing Processes: Overall Concepts
versions, Everyone Should Learn Some Shell Programming
versions of, Which Version Am I Using?
vi editor, vi Line Commands Versus Character Commands, Save Time and Typing with the vi
map Commands, File-Backup Macros

custom, creating, Save Time and Typing with the vi map Commands, File-Backup Macros
line vs. character, vi Line Commands Versus Character Commands

commenting, X Resource Syntax, Changing History Characters with histchars, Writing a Simple Shell
Program, Shell Script "Wrappers" for awk, sed, etc., The Story of : # #!, Don't Need a Shell for Your
Script? Don't Use One, The Unappreciated Bourne Shell ":" Operator, RCS Basics, Installing and
Configuring Samba

#, shell understanding of, Don't Need a Shell for Your Script? Don't Use One
Bourne shell, The Unappreciated Bourne Shell ":" Operator

using \: in place of #, The Unappreciated Bourne Shell ":" Operator
for ease of use, Shell Script "Wrappers" for awk, sed, etc.
in zsh, Changing History Characters with histchars
RCS files, RCS Basics
shell scripts, Writing a Simple Shell Program
smb.conf files, Installing and Configuring Samba
in X resource files, X Resource Syntax
\: and #, beginning with, The Story of : # #!

comments, Setting Up vi with the .exrc File, Mike's Favorite Timesavers, Clean Up Program
Comment Blocks, Execution Scheduling

in crontab entries, Execution Scheduling
in Emacs editor, Mike's Favorite Timesavers

in .exrc file for vi editor, Setting Up vi with the .exrc File
lines in program comment block, cleaning up, Clean Up Program Comment Blocks

committing modifications to CVS files, CVS Basics
Common Unix Printing System (CUPS), The Common Unix Printing System (CUPS)
communicating with Unix, Communication with Unix
communications utilities, Unix Networking and Communications
compare, List RCS Revision Numbers with rcsrevs

two most recent revisions of several RCS files, List RCS Revision Numbers with rcsrevs
comparing, Exact File-Time Comparisons, Renaming, Copying, or Comparing a Set of Files,
Checking Differences with diff, cmp and diff, make Isn't Just for Programmers!, Even More Uses for
make, Counting Lines, Words, and Characters: wc, What Is (or Isn't) Unique?, Understanding
Expressions, Stop Syntax Errors in Numeric Tests

file-times, exact comparisons, Exact File-Time Comparisons
files, Renaming, Copying, or Comparing a Set of Files, Checking Differences with diff, cmp and
diff, make Isn't Just for Programmers!, Even More Uses for make

cmp program, using, cmp and diff
diff commands, using, Checking Differences with diff
make program, using, make Isn't Just for Programmers!, Even More Uses for make

lines for uniqueness (uniq command), What Is (or Isn't) Unique?
numbers, Stop Syntax Errors in Numeric Tests
strings for pattern matching, Understanding Expressions
word counts in two files, Counting Lines, Words, and Characters: wc

complete command, Command-Specific Completion
completion features of shells, Automatic Completion, General Example: Filename Completion, Menu
Completion, Editor Functions for Completion, Don't Match Useless Files in Filename Completion

editor functions for, Editor Functions for Completion
filename completion, General Example: Filename Completion, Don't Match Useless Files in
Filename Completion

ignoring file suffixes, Don't Match Useless Files in Filename Completion
menu completion, Menu Completion

Comprehensive Perl Archive Network (CPAN), Sorting a List of People by Last Name, Compiling
Perl from Scratch
Comprehensive TEX Archive Network (CTAN), Formatting Markup Languages — troff, LATEX,
HTML, and So On
compress command, Compressing Files to Save Space
compressed files, Filename Extensions, Searching Online Manual Pages, uuencoding, tar in a
Nutshell, More Ways to Back Up

encoding into 7-bit representation, uuencoding
filename extensions, Filename Extensions
manpage, finding with grep -Z, Searching Online Manual Pages
tar archive, tar in a Nutshell
tar utility, More Ways to Back Up

gzip and bzip2 utilities, More Ways to Back Up
compressing a directory tree, Save Space: tar and compress a Directory Tree, Compressing a
Directory Tree: Fine-Tuning

fine-tuning, Compressing a Directory Tree: Fine-Tuning
compressing files, Compressing Files to Save Space, Compressing Files to Save Space
compression, Compressing Files to Save Space, To gzip, or Not to gzip?, GNU tar Sampler, Using
Standard Input and Output

bzip2 utility, Compressing Files to Save Space
GNU tar archives, GNU tar Sampler
gzip, Using Standard Input and Output

unpacking tar archives, Using Standard Input and Output
tar archives, advantages and disadvantages, To gzip, or Not to gzip?

Computer Emergency Response Team, CERT Security Checklists (see CERT)
concatenate, What Good Is a cat? (see cat command)
concatenating strings with . operator, Scalars
concatenation in regular expressions, Understanding Expressions
Concurrent Version System, Managing and Sharing Files with RCS and CVS (see CVS)
conditional expressions, Test Exit Status with the if Statement (see expressions, conditional)
configuration files, The man Command, Shell Setup Files — Which, Where, and Why, Shell Setup
Files — Which, Where, and Why, Shell Setup Files — Which, Where, and Why, Shell Setup Files —
Which, Where, and Why, Shell Setup Files — Which, Where, and Why, Shell Setup Files — Which,
Where, and Why, Shell Setup Files — Which, Where, and Why, Shell Setup Files — Which, Where,
and Why, What Goes in Shell Setup Files?, Use Absolute Pathnames in Shell Setup Files, Setup Files
Aren't Read When You Want?, Automatic Setups for Different Terminals, A .cshrc.$HOST File for
Per Host Setup, Local Settings for vi, Setting Up vi with the .exrc File, Printer Queue Watcher: A
Restartable Daemon Shell Script, /usr/bin and Other Software Directories, Simplifying the make
Process, Configuring the sources.list File, Basic Kernel Configuration, Status and Troubleshooting,
The Director of Operations: inetd, Domain Name Service (DNS), Installing and Configuring Samba,
Enabling Remote Access on Mac OS X

.exrc for vi editor, Setting Up vi with the .exrc File
/etc/inetd.conf file, The Director of Operations: inetd
bash shell, Shell Setup Files — Which, Where, and Why
C shells, Setup Files Aren't Read When You Want?

reading at different times, Setup Files Aren't Read When You Want?
configure.in file (Makefile.in), Simplifying the make Process
daemons, rereading of, Printer Queue Watcher: A Restartable Daemon Shell Script
etc/inetd.conf file, Enabling Remote Access on Mac OS X
ifconfig, for network devices, Status and Troubleshooting
kernel, device lines from, Basic Kernel Configuration
Korn shell, Shell Setup Files — Which, Where, and Why
login shells, What Goes in Shell Setup Files?

contents of, What Goes in Shell Setup Files?
man (/etc/man.config), The man Command
named.conf, Domain Name Service (DNS)
pathnames in, Use Absolute Pathnames in Shell Setup Files
shells, Shell Setup Files — Which, Where, and Why, Shell Setup Files — Which, Where, and
Why, Shell Setup Files — Which, Where, and Why, Shell Setup Files — Which, Where, and
Why, Automatic Setups for Different Terminals, A .cshrc.$HOST File for Per Host Setup

.cshrc.$HOST file for per host setup, A .cshrc.$HOST File for Per Host Setup
automatic terminal setups, Automatic Setups for Different Terminals
C shell, Shell Setup Files — Which, Where, and Why
system-wide setup, Shell Setup Files — Which, Where, and Why

smb.conf, Installing and Configuring Samba
sources.list, Configuring the sources.list File
system, /usr/bin and Other Software Directories
tcsh shell, Shell Setup Files — Which, Where, and Why
for vi editor (.exrc), Local Settings for vi
zsh shells, Shell Setup Files — Which, Where, and Why

configuration information, manipulation in DoS attacks, What We Mean by DoS
configure command, Installing and Configuring Samba
configuring, Configuring It, Configuring Packages, Quick Introduction to Hardware, Basic Kernel
Configuration, Filesystem Types and /etc/fstab, Network Devices — ifconfig, Win Is a Modem Not a
Modem?, USB Configuration, Configuring an Anonymous FTP Server, Mail — SMTP, POP, and
IMAP, Dynamic Host Configuration Protocol (DHCP)

anonymous FTP server, Configuring an Anonymous FTP Server
color ls, Configuring It
devices, user-space tools for, Quick Introduction to Hardware
filesystem mounts, Filesystem Types and /etc/fstab
installed software packages, Configuring Packages
kernel, Basic Kernel Configuration
Message Transfer Agents (MTAs), Mail — SMTP, POP, and IMAP
modems, Win Is a Modem Not a Modem?
network devices with ifconfig, Network Devices — ifconfig
USB, USB Configuration
workstations with DHCP, Dynamic Host Configuration Protocol (DHCP)

configuring terminals, There's a Lot to Know About Terminals, Don't Quote Arguments to xterm -e,
Setting the Terminal Type When You Log In, Querying Your Terminal Type: qterm, Querying Your
xterm Size: resize, Checklist: Terminal Hangs When I Log In, Aborting Programs, Find Out Terminal
Settings with stty, Working with xterm and Friends, Don't Quote Arguments to xterm -e, The Simple
Way to Pick a Font, The xterm Menus, The xterm Menus, Changing Fonts Dynamically, Enabling
Escape Sequence and Selection, Working with xclipboard, Tips for Copy and Paste Between
Windows

finding terminal settings with stty command, Find Out Terminal Settings with stty
hung terminals, fixing, Checklist: Terminal Hangs When I Log In, Aborting Programs
querying terminal type with qterm, Querying Your Terminal Type: qterm
size of xterm windows, Querying Your xterm Size: resize
terminal type, setting, Setting the Terminal Type When You Log In
xterm, Working with xterm and Friends, Don't Quote Arguments to xterm -e, The xterm Menus,
The xterm Menus, Changing Fonts Dynamically, Enabling Escape Sequence and Selection,
Working with xclipboard, Tips for Copy and Paste Between Windows

copy and paste between windows, Tips for Copy and Paste Between Windows
fonts changing dynamically, Changing Fonts Dynamically, Enabling Escape Sequence and
Selection

menus, The xterm Menus, The xterm Menus
xclipboard, Working with xclipboard

xterms, The Simple Way to Pick a Font
fonts selecting, The Simple Way to Pick a Font

confirming, Remove Some, Leave Some, Confirming Substitutions in vi
file deletions with rm -i, Remove Some, Leave Some
substitutions in vi, Confirming Substitutions in vi

connectivity, TCP/IP — IP Addresses and Ports, Gatewaying from a Personal LAN over a Modem,
TCP/IP — IP Addresses and Ports, /etc/services Is Your Friend, Status and Troubleshooting, Status
and Troubleshooting, Where, Oh Where Did That Packet Go?, The Director of Operations: inetd,
Secure Shell (SSH), Configuring an Anonymous FTP Server, Mail — SMTP, POP, and IMAP,
Domain Name Service (DNS), Dynamic Host Configuration Protocol (DHCP), Gateways and NAT,
Firewalls, Gatewaying from a Personal LAN over a Modem

/etc/services (database of well-known ports), /etc/services Is Your Friend
configuring anonymous FTP server, Configuring an Anonymous FTP Server
DHCP (Dynamic Host Configuration Protocol), Dynamic Host Configuration Protocol (DHCP)
diagnosing network problems with ping and traceroute, Where, Oh Where Did That Packet Go?
DNS (Domain Name Service), Domain Name Service (DNS)
firewalls, Firewalls
gatewaying form personl LAN over a modem, Gatewaying from a Personal LAN over a Modem
gateways and NAT, Gateways and NAT
inetd file, managing Internet services, The Director of Operations: inetd
mail, Mail — SMTP, POP, and IMAP
SSH (Secure Shell), Secure Shell (SSH)
status and troubleshooting, Status and Troubleshooting, Status and Troubleshooting
TCP/IP addresses and ports, TCP/IP — IP Addresses and Ports

consoles, Decapitating Your Machine — Serial Consoles
serial, Decapitating Your Machine — Serial Consoles

constant-width fonts, The Simple Way to Pick a Font, VT Fonts Menu, VT Fonts Menu
in xterm, VT Fonts Menu

constants, scalars defined as in Perl scripts, Scalars
CONT (continue) signal, What Are Signals?
context diffs, Context diffs, cmp and diff
continue command, Loop Control: break and continue, Loop Control: break and continue
continue command (awk), Alphabetical Summary of Commands
control characters, Programs Are Designed to Work Together, X Event Translations, Show
Nonprinting Characters with cat -v or od -c, Show Nonprinting Characters with cat -v or od -c,
Protecting Keys from Interpretation by ex, Inserting Binary Characters into Files, Inserting Binary
Characters into Files, Cleaning script Files

Emacs and, Inserting Binary Characters into Files
ex and vi editors and, Protecting Keys from Interpretation by ex
od -c command, displying with, Show Nonprinting Characters with cat -v or od -c
quoting in Emacs, Inserting Binary Characters into Files
storing in shell variables, Cleaning script Files
X event translations, X Event Translations

controlling process, Managing Processes: Overall Concepts
controlling terminal, The Controlling Terminal
controlling tty, write command and, Printer Queue Watcher: A Restartable Daemon Shell Script
Conway, Damian, Alternatives to fmt
Cooper, Michael, Querying Your Terminal Type: qterm
copy and paste, Simple Copy and Paste in xterm, Keymaps for Pasting into a Window Running vi,
Scrolling, Using a Mouse, Repeating a Command with Copy-and-Paste

configuring xterms for, Simple Copy and Paste in xterm
repeating command with, Repeating a Command with Copy-and-Paste
in tty-type virtual consoles, Scrolling, Using a Mouse
into windows running vi, Keymaps for Pasting into a Window Running vi

copy command (ex), Useful ex Commands
copying, What's So Complicated About Copying Files, What's Really in a Directory?, Renaming,
Copying, or Comparing a Set of Files, Copying Directory Trees with cp -r, Copying Directory Trees
with tar and Pipes, Using Buffers to Move or Copy Text, Build Strings with { }, Shell Scripts On-the-
Fly from Standard Input, Copy What You Do with script, On-Demand Incremental Backups of a
Project, Secure Shell (SSH), Who Will Own a New File?

archives, without asking for password, On-Demand Incremental Backups of a Project
directory trees with tar and pipes, Copying Directory Trees with tar and Pipes
everything you do into a file with script, Copy What You Do with script
files, What's So Complicated About Copying Files, What's Really in a Directory?, Renaming,
Copying, or Comparing a Set of Files, Secure Shell (SSH), Who Will Own a New File?

between filesystems, What's Really in a Directory?
ownership of copy, Who Will Own a New File?
scp utility, Secure Shell (SSH)

files to different directories, Shell Scripts On-the-Fly from Standard Input
links, Copying Directory Trees with cp -r
remote files, shortcut for, Build Strings with { }
text with vi editor, Using Buffers to Move or Copy Text

copying text, Simple Copy and Paste in xterm, Working with xclipboard, Working with xclipboard,
Tips for Copy and Paste Between Windows

between xterm windows, Tips for Copy and Paste Between Windows
button combinations for selecting in xterms, Simple Copy and Paste in xterm
xclipboard, using in xterms, Working with xclipboard, Working with xclipboard

core dumps, limit and ulimit, limit and ulimit, Killing Foreground Jobs, What if a Wildcard Doesn't
Match?

eliminating entirely, limit and ulimit
files, wildcard matching and, What if a Wildcard Doesn't Match?
limiting file size, limit and ulimit
QUIT signal, creating with, Killing Foreground Jobs

core flavors of Unix, The Core of Unix
corrupt files, To gzip, or Not to gzip?
cos command (awk), Alphabetical Summary of Commands
count command, Making an Arbitrary-Size File for Testing
count.it script, Counting Lines, Words, and Characters: wc

counting, Counting Lines, Words, and Characters: wc
characters, lines, and words in files, Counting Lines, Words, and Characters: wc

counting occurrences with vi editor, Counting Occurrences; Stopping Search Wraps
cp command, Unix Networking and Communications, Unix Networking and Communications,
Renaming, Copying, or Comparing a Set of Files, Exit Status of Unix Processes, How to Change File
Ownership Without chown

-p option, How to Change File Ownership Without chown
exit status, Exit Status of Unix Processes
i option, Renaming, Copying, or Comparing a Set of Files

cpio command, The cpio Tape Archiver
cpio operator (find command), Deleting Stale Files
cpio utility, To gzip, or Not to gzip?
cps shell function, Simulated Bourne Shell Functions and Aliases
CPU, The ps Command, A Glimpse at Hardware

/proc/cpuinfo file, A Glimpse at Hardware
listing usage by processes, The ps Command

CPU time, Timing Programs
CPU-bound process, Timing Is Everything, Know When to Be "nice" to Other Users...and When Not
To

lowering scheduling priority with nice, Know When to Be "nice" to Other Users...and When Not
To

create function (tar), Using tar to Create and Unpack Archives
cron command, GNU tail File Following, Execution Scheduling
cron daemon, Execution Scheduling
cron system, Safe Delete: Pros and Cons, Other Ideas, Building Software Robots the Easy Way,
Periodic Program Execution: The cron Facility, Periodic Program Execution: The cron Facility,
Execution Scheduling, Adding crontab Entries, Including Standard Input Within a cron Entry, Other
Problems

crontab entries, adding, Adding crontab Entries
execution scheduling, Execution Scheduling
Expect scripts, using, Other Problems
jobs, running on system environment, Periodic Program Execution: The cron Facility
limiting file size, Other Ideas
standard input, including in cron entry, Including Standard Input Within a cron Entry
trash directory, cleaning out, Safe Delete: Pros and Cons

crontab command, Adding crontab Entries
crontab entries, Execution Scheduling, Execution Scheduling, Execution Scheduling, Execution
Scheduling, Adding crontab Entries, Adding crontab Entries, Adding crontab Entries

adding, Adding crontab Entries
editing, Adding crontab Entries
example, Execution Scheduling
removing, Adding crontab Entries
time fields, Execution Scheduling

crontab files, Deleting Stale Files, Execution Scheduling, Avoiding Other at and cron Jobs
find commands, adding to, Deleting Stale Files

personal, Avoiding Other at and cron Jobs
crontab system, User, Group, and World

-e option, User, Group, and World
finding your files with wrong permissions, User, Group, and World

crontab.local file, Adding crontab Entries
cryptdir script, Automating /bin/passwd
cryptography, Key and Agent Problems

keys, problems with on SSH, Key and Agent Problems
csh (C shell), limit and ulimit, limit and ulimit, Unset PWD Before Using Emacs, Job Control in a
Nutshell, System Overloaded? Try Stopping Some Jobs, Stop Background Output with stty tostop,
nohup, Making Your at Jobs Quiet, BSD C Shell nice, System V C Shell nice, What if a Wildcard
Doesn't Match?, Shell Variables, Quoting and Command-Line Parameters

at command output, quieting, Making Your at Jobs Quiet
hangups, background processes and, nohup
job control commands, Job Control in a Nutshell
limiting file size, limit and ulimit
nice command, BSD C Shell nice, System V C Shell nice

BSD Unix, BSD C Shell nice
System V, System V C Shell nice

PWD environment variable, Unset PWD Before Using Emacs
Emacs and, Unset PWD Before Using Emacs

quoting in scripts, Quoting and Command-Line Parameters
shell variables, Shell Variables

listing, Shell Variables
stop command, System Overloaded? Try Stopping Some Jobs
stty -tostop command, background jobs writing to terminal, Stop Background Output with stty
tostop
unlimit coredumpsize command, limit and ulimit
wildcards, failing to match, What if a Wildcard Doesn't Match?

csh shell, There Are Many Shells
csh time variable, Timing Programs
CSHRC_READ environment variable, Gotchas in set prompt Test
csplit program, Splitting Files by Context: csplit, Splitting Files by Context: csplit, Splitting Files by
Context: csplit

-f option, Splitting Files by Context: csplit
-s option, Splitting Files by Context: csplit

CTAN (Comprehensive TEX Archive Network), Formatting Markup Languages — troff, LATEX,
HTML, and So On
ctime (change time for files), The Three Unix File Times
ctime command, How Unix Keeps Time

time conversion routines, How Unix Keeps Time
CTRL -\ (to quit), Aborting Programs
CTRL key, Setting Your Erase, Kill, and Interrupt Characters

specifying with stty command, Setting Your Erase, Kill, and Interrupt Characters
CTRL-c command, Aborting Programs, Job Control in a Nutshell, Killing Foreground Jobs, Shell

Command-Line Editing
aborting programs, Aborting Programs
canceling commands with, Shell Command-Line Editing
INT signal, sending, Killing Foreground Jobs
killing foreground job, Job Control in a Nutshell

CTRL-command, sending QUIT signal, Killing Foreground Jobs
CTRL-d (end-of-input character), Subshells
CTRL-d command, Bourne Shell Used Here, Copy What You Do with script

ending scripts, Copy What You Do with script
exiting Bourne shell, Bourne Shell Used Here

CTRL-g in Emacs, canceling entire operation, Emacs Features: A Laundry List
Ctrl-M character, When Is a File Not a File?
CTRL-q (Emacs quoting command), Inserting Binary Characters into Files
CTRL-q command, Cleaning Up an Unkillable Process

killing processes, Cleaning Up an Unkillable Process
CTRL-q command, restarting stopped output, Output Stopped?
CTRL-r (reprint) character, Reprinting Your Command Line with CTRL-r
CTRL-s command, Output Stopped?, Cleaning Up an Unkillable Process

stopping output, Output Stopped?
CTRL-v, Protecting Keys from Interpretation by ex, Typing in Uppercase Without CAPS LOCK

escaping keys in vi mappings, Protecting Keys from Interpretation by ex
temporarily disabling vi keymaps, Typing in Uppercase Without CAPS LOCK

CTRL-x in Emacs macros, Emacs Features: A Laundry List
CTRL-z command, Program Waiting for Input?, Job Control in a Nutshell, Using Job Control from
Your Shell, Some Gotchas with Job Control, Subshells, What Are Signals?

putting jobs in background, Program Waiting for Input?
stopping a subshell, Subshells

CUPS (Common Unix Printing System), The Common Unix Printing System (CUPS)
curl application, The curl Application and One-Step GNU-Darwin Auto-Installer for OS X, The curl
Application and One-Step GNU-Darwin Auto-Installer for OS X
current directory, Making Pathnames, Simulating Dynamic Prompts, Multiline Shell Prompts, Session
Info in Window Title or Status Line, dirs in Your Prompt: Better Than $cwd, dirs in Your Prompt:
Better Than $cwd, Quick finds in the Current Directory, What's Really in a Directory?, Links to a
Directory, Managing Processes: Overall Concepts, What Good Is a Current Directory?, How Does
Unix Find Your Current Directory?, Marking Your Place with a Shell Variable, Predefined
Environment Variables, Which Group is Which?

advantages of, What Good Is a Current Directory?
alias for, storing in shell variable, Marking Your Place with a Shell Variable
determining group file ownership, Which Group is Which?
finding, How Does Unix Find Your Current Directory?
in C-shell status line, Session Info in Window Title or Status Line
links to, Links to a Directory
PWD environment variable, Predefined Environment Variables
quick finds in, Quick finds in the Current Directory
in shell prompts, Simulating Dynamic Prompts, Multiline Shell Prompts, dirs in Your Prompt:

Better Than $cwd
dirs command output, using, dirs in Your Prompt: Better Than $cwd
multiline C-shell prompt, Multiline Shell Prompts

current job, Using jobs Effectively, The "Current Job" Isn't Always What You Expect
current process, Statistics of the Current Process

statistics on, Statistics of the Current Process
cursor for xterm windows, Working with xterm and Friends (see pointer)
cursors, Text-Input Mode Cursor Motion with No Arrow Keys

moving in vi text-input mode without arrow keys, Text-Input Mode Cursor Motion with No
Arrow Keys

custom commands, creating, Creating Custom Commands, Setting and Unsetting Bourne-Type Aliases,
Korn-Shell Aliases, zsh Aliases, Sourceable Scripts, Sourceable Scripts, How to Put if-then-else in a
C-Shell Alias, Shell Function Basics, Simulated Bourne Shell Functions and Aliases, Functions with
Loops: Internet Lookup, Functions Calling Functions: Factorials, Functions Calling Functions:
Factorials, Propagating Shell Functions, Exporting bash Functions, FPATH Search Path, zsh,
Simulated Bourne Shell Functions and Aliases

Bourne-type aliases, Setting and Unsetting Bourne-Type Aliases
if-then-else, putting in C shell alias, How to Put if-then-else in a C-Shell Alias
Korn shell aliases, Korn-Shell Aliases
propagating shell functions, Propagating Shell Functions, Exporting bash Functions, FPATH
Search Path, zsh

exporting bash functions, Exporting bash Functions
FPATH search path, FPATH Search Path, zsh

shell functions, Shell Function Basics, Simulated Bourne Shell Functions and Aliases, Functions
with Loops: Internet Lookup, Functions Calling Functions: Factorials, Functions Calling
Functions: Factorials, Simulated Bourne Shell Functions and Aliases

functions calling functions, Functions Calling Functions: Factorials, Functions Calling
Functions: Factorials
loops, using, Functions with Loops: Internet Lookup
simulating in Bourne shell, Simulated Bourne Shell Functions and Aliases

sourceable scripts, Sourceable Scripts, Sourceable Scripts
zsh aliases, zsh Aliases

customization, Emacs Features: A Laundry List, Customizations and How to Avoid Them, Mike's
Favorite Timesavers, Rational Searches

Emacs, Emacs Features: A Laundry List, Customizations and How to Avoid Them, Mike's
Favorite Timesavers, Rational Searches

and how to avoid, Customizations and How to Avoid Them
searches, Rational Searches

customizing, X Resource Syntax
X Window System, X Resource Syntax

cut command, Searching Online Manual Pages, Cutting Columns or Fields, Command Substitution,
Setting (and Parsing) Parameters, Using echo with awk or cut

who command output, cutting, Command Substitution
cutting and pasting text, Using vi Abbreviations as Commands (Cut and Paste Between vi's)

between vi's, Using vi Abbreviations as Commands (Cut and Paste Between vi's)

CVS, Emacs Features: A Laundry List
Emacs support of, Emacs Features: A Laundry List

cvs, CVS Basics, More CVS, More CVS, More CVS, More CVS
CVSROOT environment variable, CVS Basics, More CVS
CVS_RSH environment variable, More CVS
remote repositories, More CVS
repositories, More CVS

CVS (Concurrent Version Control) system, Change Many Files by Editing Just One
CVS (Concurrent Version System), Managing and Sharing Files with RCS and CVS, CVS Basics,
CVS Basics, CVS Basics, CVS Basics, CVS Basics, CVS Basics, CVS Basics, CVS Basics, CVS
Basics, CVS Basics, CVS Basics, More CVS

archiving files, Managing and Sharing Files with RCS and CVS
cvs add command, CVS Basics
cvs checkout command, CVS Basics
cvs commit command, CVS Basics
cvs diff, CVS Basics
cvs import command, CVS Basics
cvs init command, CVS Basics
cvs log command, CVS Basics, More CVS

conflicting change, examining log message on, More CVS
cvs remove command, CVS Basics
cvs update command, CVS Basics
cvsroot directory for archive storage, CVS Basics

cvs diff command, Context diffs
CVSROOT environment variable, CVS Basics, More CVS
CVS_RSH environment variable, More CVS
cwd shell variable, dirs in Your Prompt: Better Than $cwd
cwdcmd alias for tcsh shell status line updates, Session Info in Window Title or Status Line
cx script, cx, cw, c-w: Quick File Permission Changes

D

d or D (delete) command, sed editor, Multiline Delete
d or D (delete) commands, sed editor, The Deliberate Scrivener
daemons, The Kernel and Daemons, The Kernel and Daemons, The Controlling Terminal, Printer
Queue Watcher: A Restartable Daemon Shell Script, Execution Scheduling, Mounting and
Unmounting Removable Filesystems, Mounting and Unmounting Removable Filesystems, Printer
Control with lpc, Printing Over a Network, Converting Source Files Automagically Within the
Spooler, Dynamic Host Configuration Protocol (DHCP), Installing and Configuring Samba, Installing
and Configuring Samba, Installing and Configuring Samba, Printing with Samba, Disabling inetd, TCP
Wrappers, General and Authentication Problems, General and Authentication Problems, Server and
Client Problems

controlling terminal and, The Controlling Terminal
cron daemon, Execution Scheduling
DHCP, Dynamic Host Configuration Protocol (DHCP)

inetd, Disabling inetd
disabling for security, Disabling inetd

lpd, Printing Over a Network, Converting Source Files Automagically Within the Spooler
filters, Converting Source Files Automagically Within the Spooler

nmbd, Installing and Configuring Samba
printer, Printer Control with lpc
removable media on Linux, Mounting and Unmounting Removable Filesystems
restarting with the kill command, Printer Queue Watcher: A Restartable Daemon Shell Script
Samba, Printing with Samba

restarting to share printers, Printing with Samba
SMB, Installing and Configuring Samba
SMB, running, Installing and Configuring Samba
sshd, General and Authentication Problems, Server and Client Problems

.pam file, General and Authentication Problems
problems with, Server and Client Problems

sshd, disabling printing and mail checking for, General and Authentication Problems
tcpd, TCP Wrappers
vold, for removable media, Mounting and Unmounting Removable Filesystems

Darwin, What's Special About Unix?, The Core of Unix, When Does a User Become a User, Enabling
Root in Darwin

adding users to system, When Does a User Become a User
enabling root access in, Enabling Root in Darwin

data types, Everything's an Object
Python, Everything's an Object

data types (Perl), Perl Boot Camp, Part 2: Variables and Data Types, Scalars, Scalars, Arrays,
Hashes, References

hashes, Hashes
lists, Arrays
references, References
scalars, Scalars, Scalars

databases, Finding Files (Much) Faster with a find Database, Finding Files (Much) Faster with a find
Database, Even More Uses for make

distributed, updating, Even More Uses for make
find command, Finding Files (Much) Faster with a find Database, Finding Files (Much) Faster
with a find Database

date and time, External Commands Send Signals to Set Variables
Bourne shell prompts, putting in, External Commands Send Signals to Set Variables

date and time, including in shell prompt, Dynamic Prompts
date command, Simulating Dynamic Prompts, External Commands Send Signals to Set Variables,
Picking a Unique Filename Automatically

+ option, Picking a Unique Filename Automatically
current date in dynamic shell prompt, Simulating Dynamic Prompts

dater script, Named Pipes: FIFOs
dd command, Making an Arbitrary-Size File for Testing, Remote Restoring, Using tar to a Remote
Tape Drive

creating file for debugging purposes, Making an Arbitrary-Size File for Testing
restoring files from remote tape drives, Using tar to a Remote Tape Drive
restoring files remotely, Remote Restoring

dd utility, Low-Level File Butchery with dd, Splitting Files at Fixed Points: split, Text Conversion
with dd

splitting files with, Splitting Files at Fixed Points: split
DDoS (distributed denial-of-service attack), What We Mean by DoS
dead links, listing, oldlinks: Find Unconnected Symbolic Links
dead processes, Why You Can't Kill a Zombie (see zombies)
Debian dselect tool, Using Debian's dselect (see dselect tool)
Debian Linux, Using Debian's dselect (see Linux)
debugging, Checklist: Terminal Hangs When I Log In, Using xev to Learn Keysym Mappings, limit
and ulimit, Emacs Features: A Laundry List, Functions Calling Functions: Factorials, Test Exit Status
with the if Statement, Tips for Debugging Shell Scripts, Use -xv, Use -xv, Unmatched Operators,
Missing or Extra esac, ;;, fi, etc., Line Numbers Reset Inside Redirected Loops, Bourne Shell
Debugger Shows a Shell Variable, Bourne Shell Debugger Shows a Shell Variable, Stop Syntax
Errors in Numeric Tests, Stop Syntax Errors in String Tests, Quoting and Command-Line Parameters,
How Unix Keeps Time, Copy What You Do with script, Making an Arbitrary-Size File for Testing,
Where, Oh Where Did That Packet Go?, Substitute Identity with su

Bourne shell scripts, Test Exit Status with the if Statement, Tips for Debugging Shell Scripts,
Use -xv, Use -xv, Unmatched Operators, Missing or Extra esac, ;;, fi, etc., Line Numbers Reset
Inside Redirected Loops, Bourne Shell Debugger Shows a Shell Variable, Bourne Shell
Debugger Shows a Shell Variable, Stop Syntax Errors in Numeric Tests, Stop Syntax Errors in
String Tests, Quoting and Command-Line Parameters, How Unix Keeps Time, Copy What You
Do with script, Making an Arbitrary-Size File for Testing

copying your work with script program, Copy What You Do with script
line numbers reset in redirected loops, Line Numbers Reset Inside Redirected Loops
making a file for testing, Making an Arbitrary-Size File for Testing
numeric tests, errors in, Stop Syntax Errors in Numeric Tests
output, piping to pager, Use -xv
quoting command line arguments, Quoting and Command-Line Parameters
saving output in file and displaying on screen, Use -xv
shell variable, Bourne Shell Debugger Shows a Shell Variable
shell variables, Bourne Shell Debugger Shows a Shell Variable
string test syntax errors, Stop Syntax Errors in String Tests
time keeping on Unix systems, How Unix Keeps Time
unmatched code or fi unexpected errors, Missing or Extra esac, ;;, fi, etc.
unmatched operators, Unmatched Operators

core dumps and, limit and ulimit
keysyms, Using xev to Learn Keysym Mappings
network connectivity, Where, Oh Where Did That Packet Go?
Perl code in Emacs editor, Emacs Features: A Laundry List
recursion depth, messages about, Functions Calling Functions: Factorials
setup files for account with hung terminal, Checklist: Terminal Hangs When I Log In
su command, using to emulate accounts, Substitute Identity with su

decimal numbers, Alphabetic and Numeric Sorting
sorting with sort, Alphabetic and Numeric Sorting

declaring variables in Perl, Perl Boot Camp, Part 1: Typical Script Anatomy
decoding uuencoded tar files, uuencoding
decompressing files, Compressing Files to Save Space

bunzip2 program, Compressing Files to Save Space
dedent script, removing whitespace from text, Tips for Copy and Paste Between Windows
deferencing references, References
defining, Functions

Python functions, Functions
DEL character, Show Nonprinting Characters with cat -v or od -c
delayed execution, Building Software Robots the Easy Way, Waiting a Little While: sleep, Periodic
Program Execution: The cron Facility, The at Command, Avoiding Other at and cron Jobs, Waiting a
Little While: sleep

at command, The at Command, Avoiding Other at and cron Jobs
cron system, Periodic Program Execution: The cron Facility
sleep command, Waiting a Little While: sleep

delete (d or D) commands, sed editor, The Deliberate Scrivener, Multiline Delete
multiline delete, Multiline Delete

delete command (awk), Alphabetical Summary of Commands
delete command (ex), Useful ex Commands
delete function (Perl), Hashes
DELETE key, A .cshrc.$HOST File for Per Host Setup, Setting Your Erase, Kill, and Interrupt
Characters, Using xev to Learn Keysym Mappings, Emacs: The Other Editor, Cleaning script Files

Emacs editor, Emacs: The Other Editor
erase character, Cleaning script Files
location for, A .cshrc.$HOST File for Per Host Setup
redefined, debugging with xevBACKSPACE, Using xev to Learn Keysym Mappings

delete script, A Faster Way to Remove Files Interactively
deleted files, Deleting Stale Files

archiving on tape, Deleting Stale Files
deleted text, recovering with vi editor, Get Back What You Deleted with Numbered Buffers
deleting, Filenames, Showing Nonprintable Characters in Filenames, oldlinks: Find Unconnected
Symbolic Links, Running Commands on What You Find, Differences Between Hard and Symbolic
Links, The Cycle of Creation and Destruction, rm and Its Dangers, Tricks for Making rm Safer,
Answer "Yes" or "No" Forever with yes, Answer "Yes" or "No" Forever with yes, Problems
Deleting Directories, Deleting Stale Files, Emacs Features: A Laundry List, Low-Level File Butchery
with dd, What Is (or Isn't) Unique?, lensort: Sort Lines by Length, Conclusion, My Favorite Is ^̂ , sed
Addressing Basics, RCS Basics

characters from a file with dd, Low-Level File Butchery with dd
d command, sed editor, sed Addressing Basics
directories, Problems Deleting Directories
duplicate lines, What Is (or Isn't) Unique?, lensort: Sort Lines by Length

Perl script, using, lensort: Sort Lines by Length
extra characters with ,̂ My Favorite Is ^̂

files, Filenames, Running Commands on What You Find, The Cycle of Creation and Destruction,
rm and Its Dangers, Tricks for Making rm Safer, Answer "Yes" or "No" Forever with yes,
Answer "Yes" or "No" Forever with yes, Deleting Stale Files, Emacs Features: A Laundry List,
RCS Basics

(see also removing files)
-inum and -exec operators, using with find command, Running Commands on What You
Find
by last access date, Deleting Stale Files
confirmation before deleting, Answer "Yes" or "No" Forever with yes
with Emacs, Emacs Features: A Laundry List
preventing by making directories unwritable, Tricks for Making rm Safer
program for, Answer "Yes" or "No" Forever with yes
RCS system, RCS Basics
wildcards and, rm and Its Dangers

files with nonprint characters in names, Showing Nonprintable Characters in Filenames
function definitions, Conclusion
linked files, Differences Between Hard and Symbolic Links
unconnected symbolic links, oldlinks: Find Unconnected Symbolic Links

deleting files, Deleting Stale Files
archiving deleted files with tar, Deleting Stale Files

denial-of-service attacks (DoS), CERT Security Checklists, What We Mean by DoS, What We Mean
by DoS, What We Mean by DoS, What We Mean by DoS, Checking Swap Space

comsuming all resources, What We Mean by DoS
manipulation of configuration information, What We Mean by DoS
physical attacks on equipment, What We Mean by DoS
swap space vulnerability in, Checking Swap Space

dependency conflicts in package installation/removal, Choosing Packages for Installation or Removal
dereferencing operator (->), Perl Boot Camp, Part 1: Typical Script Anatomy
deroff command, Just the Words, Please
deroff w command, Inside spell
desktops, The Kernel and Daemons, Sharing Desktops with VNC, Connecting to a Windows VNC
server, Connecting to a Windows VNC server, Setting up VNC on Unix, rdesktop

display numbers, Connecting to a Windows VNC server
Gnome and Enlightenment programs, The Kernel and Daemons
rdesktop (RDP client for Unix), rdesktop
sharing with VNC, Sharing Desktops with VNC, Connecting to a Windows VNC server, Setting
up VNC on Unix

connecting to Windows VNC server, Connecting to a Windows VNC server
setting VNC up on Unix, Setting up VNC on Unix

destroying processes with kill, Destroying Processes with kill
device drivers, Quick Introduction to Hardware
device drivers, resetting to kill processes, Cleaning Up an Unkillable Process
devices, Quick Introduction to Hardware, Decapitating Your Machine — Serial Consoles, Reading
Kernel Boot Output, Reading Kernel Boot Output, Basic Kernel Configuration, Disk Partitioning,
Filesystem Types and /etc/fstab, Mounting and Unmounting Removable Filesystems, Loopback

Mounts, Network Devices — ifconfig, Mounting Network Filesystems — NFS, SMBFS, Win Is a
Modem Not a Modem?, Setting Up a Dialup PPP Session, USB Configuration, Dealing with Sound
Cards and Other Annoying Hardware, Decapitating Your Machine — Serial Consoles

dialup PPP session, setting up, Setting Up a Dialup PPP Session
disk partitioning, Disk Partitioning
filesystem types and /etc/fstab, Filesystem Types and /etc/fstab
filesystems, Mounting and Unmounting Removable Filesystems

removable, mounting/umounting, Mounting and Unmounting Removable Filesystems
kernel boot output, reading, Reading Kernel Boot Output
kernel configuration, Basic Kernel Configuration
loopback mounts, Loopback Mounts
modems, Win Is a Modem Not a Modem?
network filesystems, mounting, Mounting Network Filesystems — NFS, SMBFS
network, configuring with ifconfig, Network Devices — ifconfig
not recognized by kernel, Reading Kernel Boot Output
serial consoles, Decapitating Your Machine — Serial Consoles
sound cards, Dealing with Sound Cards and Other Annoying Hardware
Universal Serial Bus (USB), configuring, USB Configuration

df command, Timing Is Everything, Using sed
output, parsing with sed, Using sed

DHCP (Dynamic Host Configuration Protocol), Dynamic Host Configuration Protocol (DHCP),
Gateways and NAT

NAT and, Gateways and NAT
dialback script, Dialback
dialup session, setting up, Setting Up a Dialup PPP Session
dialup terminal type, Setting the Terminal Type When You Log In
dictionaries, How Do I Spell That Word?, Inside spell, Adding Words to ispell's Dictionary

ispell program, adding words to, Adding Words to ispell's Dictionary
spell program, Inside spell
system word file, How Do I Spell That Word?

dictionary files for spell command, The Unix spell Command
dictionary order, sorting in, Dictionary Order
dierctory hierarchy, /usr/bin and Other Software Directories
diff command, Renaming, Copying, or Comparing a Set of Files, Renaming, Copying, or Comparing a
Set of Files, Checking Differences with diff, cmp and diff, Checking Differences with diff, Comparing
Three Different Versions with diff3, Context diffs, cmp and diff, Context diffs, Context diffs, Context
diffs, Context diffs, Context diffs, Context diffs, Context diffs, Context diffs, Context diffs, Context
diffs, Side-by-Side diffs: sdiff, Problems with diff and Tabstops, cmp and diff, Change Many Files by
Editing Just One, Change Many Files by Editing Just One, patch: Generalized Updating of Files That
Differ, Dealing with Too Many Arguments, Managing and Sharing Files with RCS and CVS, CVS
Basics

-c option, Context diffs, Context diffs, Context diffs, Context diffs, Context diffs, Dealing with
Too Many Arguments

added lines, listing of, Context diffs
changed lines, marking of, Context diffs

deletions, listing of, Context diffs
difference sections, marking of, Context diffs
listings, start of, Context diffs
running on lists of files, Dealing with Too Many Arguments

-e option, Checking Differences with diff
-u option, Context diffs, Context diffs, Context diffs, Context diffs, Context diffs

added lines, listing of, Context diffs
changed lines, marking of, Context diffs
deletions, listing of, Context diffs
difference sections, marking of, Context diffs
listings, start of, Context diffs

batch editing, use in, Change Many Files by Editing Just One, Change Many Files by Editing Just
One
cmp program vs., cmp and diff
comparing sets of files, Renaming, Copying, or Comparing a Set of Files
context diffs, Context diffs, cmp and diff
cvs, CVS Basics
CVS, use with, Managing and Sharing Files with RCS and CVS
diff3 script, Comparing Three Different Versions with diff3
output, feeding to patch program, patch: Generalized Updating of Files That Differ
r option, Renaming, Copying, or Comparing a Set of Files
sdif command, Side-by-Side diffs: sdiff
tabstops, problems with, Problems with diff and Tabstops

dig command, Functions with Loops: Internet Lookup, Status and Troubleshooting, Domain Name
Service (DNS)

DNS queries with, Status and Troubleshooting
dircolors command, Configuring It, Configuring It

-p option, Configuring It
LS_COLORS environment variable, setting, Configuring It

dircolors command (GNU), Highlighting and Color in Shell Prompts
directories, The Tree Structure of the Filesystem, Your Home Directory, Your Home Directory,
Searching Online Manual Pages, Checklist: Terminal Hangs When I Log In, What? Me, Organized?,
Making Directories Made Easier, Access to Directories, A bin Directory for Your Programs and
Scripts, Private (Personal) Directories, Naming Files, Make More Directories!, Making Directories
Made Easier, Everything but the find Command, Picking a Unique Filename Automatically, The Three
Unix File Times, Finding Oldest or Newest Files with ls -t and ls -u, List All Subdirectories with ls -
R, The ls -d Option, Some GNU ls Features, A csh Alias to List Recently Changed Files, Delving
Through a Deep Directory Tree, Duplicating a Directory Tree, grepping a Directory Tree, Using
Shell Arrays to Browse Directories, Expanding Ranges, Skipping Parts of a Tree in find, What's
Really in a Directory?, Differences Between Hard and Symbolic Links, Links to a Directory, Linking
Directories, Renaming, Copying, or Comparing a Set of Files, Copying Directory Trees with tar and
Pipes, Safer File Deletion in Some Directories, Problems Deleting Directories, Other Ideas, Save
Space: tar and compress a Directory Tree, Compressing a Directory Tree: Fine-Tuning, Counting
Lines, Words, and Characters: wc, Out of Temporary Space? Use Another Directory, Emacs
Features: A Laundry List, Directories for Emacs Hacks, Managing Processes: Overall Concepts,

Controlling Shell Command Searches, Build Strings with { }, Build Strings with { }, Korn-Shell
Aliases, My Favorite Is !$, Using Relative and Absolute Pathnames, How Does Unix Find Your
Current Directory?, Saving Time When You Change Directories: cdpath, cd by Directory Initials,
Finding (Anyone's) Home Directory, Quickly, Finding (Anyone's) Home Directory, Quickly, Marking
Your Place with a Shell Variable, Automatic Setup When You Enter/Exit a Directory, Automatic
Setup When You Enter/Exit a Directory, Introduction to basename and dirname, tar in a Nutshell,
Restoring a Few Files, On-Demand Incremental Backups of a Project, Temporary Change of
Directory and Environment, Installing and Configuring Samba, Connecting to SMB Shares from Unix,
Tutorial on File and Directory Permissions, Tutorial on File and Directory Permissions, Tutorial on
File and Directory Permissions, User, Group, and World, Who Will Own a New File?, Protecting
Files with the Sticky Bit, Using chmod to Change File Permission, A Directory That People Can
Access but Can't List, A Directory That People Can Access but Can't List

!$ sequence, My Favorite Is !$
/u, Finding (Anyone's) Home Directory, Quickly
absolute pathnames and, Using Relative and Absolute Pathnames
aliases for, Korn-Shell Aliases
archived on tape drives, restoring, Restoring a Few Files
automatic setup for entering and exiting, Automatic Setup When You Enter/Exit a Directory,
Automatic Setup When You Enter/Exit a Directory
backing up, On-Demand Incremental Backups of a Project

excluding files from backup, On-Demand Incremental Backups of a Project
browsing with shell arrays, Using Shell Arrays to Browse Directories, Expanding Ranges
changing, Saving Time When You Change Directories: cdpath, Marking Your Place with a Shell
Variable
changing with c (shell function), cd by Directory Initials
comparing with diff -r command, Renaming, Copying, or Comparing a Set of Files
contents of, What's Really in a Directory?
counting files in, Counting Lines, Words, and Characters: wc
current, How Does Unix Find Your Current Directory?

(see also current directory)
current directory, Managing Processes: Overall Concepts
deep directory tree, finding files in, Delving Through a Deep Directory Tree
deleting, Problems Deleting Directories
directory tree, grepping a Directory Tree, Skipping Parts of a Tree in find, Copying Directory
Trees with tar and Pipes, Save Space: tar and compress a Directory Tree, Compressing a
Directory Tree: Fine-Tuning, tar in a Nutshell, Using chmod to Change File Permission

archives/backups of, tar in a Nutshell
changing permissions of, Using chmod to Change File Permission
compressing, Save Space: tar and compress a Directory Tree, Compressing a Directory
Tree: Fine-Tuning
copying with tar and pipes, Copying Directory Trees with tar and Pipes
grepping, grepping a Directory Tree
skipping parts with find command, Skipping Parts of a Tree in find

directory tree, duplicating, Duplicating a Directory Tree
dirname command, Introduction to basename and dirname

Emacs editor, viewing and manipulating in, Emacs Features: A Laundry List
emacs hacks, Directories for Emacs Hacks
files in, The Tree Structure of the Filesystem
files, finding, Everything but the find Command, Picking a Unique Filename Automatically, The
Three Unix File Times, Finding Oldest or Newest Files with ls -t and ls -u, List All
Subdirectories with ls -R

change and modification times, The Three Unix File Times
oldest and newest with ls -t and ls -u, Finding Oldest or Newest Files with ls -t and ls -u
subdirectories, listing with ls -R, List All Subdirectories with ls -R

finding files, The ls -d Option, Some GNU ls Features, A csh Alias to List Recently Changed
Files

GNU ls command, features of, Some GNU ls Features, A csh Alias to List Recently
Changed Files
listing directories with ls -d, The ls -d Option

home, Your Home Directory, Finding (Anyone's) Home Directory, Quickly
finding (for anyone), Finding (Anyone's) Home Directory, Quickly

linking, Linking Directories
links to, Links to a Directory
listing contents with ls -lai command, Differences Between Hard and Symbolic Links
manual page files, searching for, Searching Online Manual Pages
organization of, What? Me, Organized?, Making Directories Made Easier, Access to
Directories, A bin Directory for Your Programs and Scripts, Private (Personal) Directories,
Naming Files, Make More Directories!, Making Directories Made Easier

access, Access to Directories
bin directory for programs and scripts, A bin Directory for Your Programs and Scripts
creating many, Make More Directories!
creating new, Making Directories Made Easier
naming files, Naming Files
private or personal, Private (Personal) Directories

ownership, Who Will Own a New File?
permissions, Tutorial on File and Directory Permissions, Tutorial on File and Directory
Permissions, Tutorial on File and Directory Permissions, User, Group, and World, Protecting
Files with the Sticky Bit, A Directory That People Can Access but Can't List, A Directory That
People Can Access but Can't List

(see also permissions)
execute without read permission, A Directory That People Can Access but Can't List
fully accessible directory within unreadable, A Directory That People Can Access but
Can't List
search access, User, Group, and World
search permission, Tutorial on File and Directory Permissions
sticky bit and, Protecting Files with the Sticky Bit

printing files to, Build Strings with { }
remotely mounted, hung terminals and, Checklist: Terminal Hangs When I Log In
safer file deletion in, Safer File Deletion in Some Directories
in search path, Controlling Shell Command Searches

sharing local with SMB network, Installing and Configuring Samba
sharing with SMB network, Connecting to SMB Shares from Unix
subdirectories, Your Home Directory, Build Strings with { }

creating, Build Strings with { }
temporary changes in, Temporary Change of Directory and Environment
temporary, setting different for vi, Out of Temporary Space? Use Another Directory
write permission, denying to limit file creation, Other Ideas

directory stack, The Shells' pushd and popd Commands, Nice Aliases for pushd, The Shells' pushd
and popd Commands, The Shells' pushd and popd Commands

clearing with dirs -c, The Shells' pushd and popd Commands
clearing with popd command, The Shells' pushd and popd Commands

directorys, The Shells' pushd and popd Commands
moving to temporarily with pushd and popd commands, The Shells' pushd and popd Commands

Dired mode (Emacs), Emacs Features: A Laundry List
dirname command, Using basename and dirname, Introduction to basename and dirname, Use with
Loops

bugs in, Introduction to basename and dirname
loops, using with, Use with Loops

dirs command, dirs in Your Prompt: Better Than $cwd, The Shells' pushd and popd Commands, The
Shells' pushd and popd Commands

-c option, clearing the stack, The Shells' pushd and popd Commands
output in prompt, using, dirs in Your Prompt: Better Than $cwd

dirsfile variable for tcsh shells, Shell Setup Files — Which, Where, and Why
disabling bash built-in commands, Which One Will bash Use?
disk controllers, Quick Introduction to Hardware
disk quotas, Why Can't You Change File Ownership?, How to Change File Ownership Without
chown

file permissions, changing without chown, How to Change File Ownership Without chown
disk space, How Much Disk Space?, Automatic Setup When You Enter/Exit a Directory, Checking
Swap Space

hard links vs. symbolic links, Automatic Setup When You Enter/Exit a Directory
reports on, How Much Disk Space?
swap space for temporary files, Checking Swap Space

disk space, optimizing, Disk Space Is Cheap, Disk Quotas, Instead of Removing a File, Empty It,
Save Space with "Bit Bucket" Log Files and Mailboxes, Save Space with a Link, Limiting File Sizes,
Compressing Files to Save Space, Compressing Files to Save Space, Save Space: tar and compress a
Directory Tree, Compressing a Directory Tree: Fine-Tuning, Save Space in Executable Files with
strip, Disk Quotas, tar in a Nutshell

compressed tar archive, tar in a Nutshell
compressing a directory tree, Save Space: tar and compress a Directory Tree, Compressing a
Directory Tree: Fine-Tuning

fine-tuning, Compressing a Directory Tree: Fine-Tuning
compressing files, Compressing Files to Save Space, Compressing Files to Save Space
emptyig files, Instead of Removing a File, Empty It
executable binaries, stripping, Save Space in Executable Files with strip

limiting file sizes, Limiting File Sizes
links and, Save Space with a Link
log files and, Save Space with "Bit Bucket" Log Files and Mailboxes
quotas on disk usage, Disk Quotas

disks, Quick Introduction to Hardware, Disk Partitioning, Disk Partitioning, Mounting and
Unmounting Removable Filesystems

partitioning, Disk Partitioning, Disk Partitioning
PCs, Disk Partitioning

removable, mounting/unmounting, Mounting and Unmounting Removable Filesystems
disown command, Disowning Processes, Disowning Processes

vs. nohup, Disowning Processes
disowned processes, The Controlling Terminal, Killing Processes by Name?

controlling terminal and, The Controlling Terminal
killing parent processes by name, Killing Processes by Name?

display command, vis vs., Repeating a Time-Varying Command
DISPLAY environment variable, Terminal Setup: Testing Environment Variables, Starting Remote X
Clients from Interactive Logins, Starting a Remote Client with rsh and ssh, Predefined Environment
Variables, The DISPLAY Environment Variable, Outputting Text to an X Window

checking setting in xwrist script, Outputting Text to an X Window
hard-coded into shell setup file on remote machine, Starting a Remote Client with rsh and ssh
setting for remote X client, Starting Remote X Clients from Interactive Logins

DISTDIR environment variable, Installation with FreeBSD Ports
distributed database, updating, Even More Uses for make
distributed denial-of-service attacks (DDoS), What We Mean by DoS
distribution release for software packages, Configuring the sources.list File
Distutils program, Installation and Distutils
dmesg command, How to Look at the End of a File: tail

getting last ten lines from, How to Look at the End of a File: tail
DNS (Domain Name Service), Status and Troubleshooting, Domain Name Service (DNS), Installing
and Configuring Samba

cache, checking, Domain Name Service (DNS)
NETBIOS name, Installing and Configuring Samba
queries, making with dig, Status and Troubleshooting

DNS MX (mail exchanger) record for a host, looking up, Functions with Loops: Internet Lookup
do command (awk), Alphabetical Summary of Commands
DocBook, Formatting Markup Languages — troff, LATEX, HTML, and So On
doctor program, An Absurd Amusement
documentation, High-Octane Shell Scripting, Perl Boot Camp, Part 1: Typical Script Anatomy, Perl
Boot Camp, Part 1: Typical Script Anatomy

(see also (see also manual pages)
Perl, High-Octane Shell Scripting, Perl Boot Camp, Part 1: Typical Script Anatomy

domains, NT, Installing and Configuring Samba
Doman Name Service, Domain Name Service (DNS) (see DNS)
DoS, What We Mean by DoS (see denial-of-service attacks)
dos2unix application, /usr/bin and Other Software Directories

dot (.), Showing Hidden Files with ls -A and -a (see ., Under Symbols)
dot (.) files, Showing Hidden Files with ls -A and -a, Differences Between Hard and Symbolic Links,
Filename Wildcards in a Nutshell

showing with ls -a option, Showing Hidden Files with ls -A and -a, Differences Between Hard
and Symbolic Links
wildcard matching and, Filename Wildcards in a Nutshell

double quotes, How Quoting Works, How Quoting Works (see ", under Symbols)
doubled word typing errors, finding, Find a a Doubled Word
downloading files from the Internet with wget, Interruptable gets with wget
drive controllers, Reading Kernel Boot Output

kernel boot output for, Reading Kernel Boot Output
dselect tool, Using Debian's dselect, Exiting dselect, Choosing the Access Method, Choosing the
Access Method, Updating Information on Available Packages, Choosing Packages for Installation or
Removal, Exiting the Select Function, Installing Packages, Configuring Packages, Removing
Packages, Exiting dselect

access method, choosing, Choosing the Access Method, Choosing the Access Method
choosing packages for installation or removal, Choosing Packages for Installation or Removal
configuring packages, Configuring Packages
exiting, Exiting dselect
exiting select function, Exiting the Select Function
installing packages, Installing Packages
removing packages, Removing Packages
updating information on available packages, Updating Information on Available Packages

du command, How Much Disk Space?, How Much Disk Space?, Counting Lines, Words, and
Characters: wc

-k option, How Much Disk Space?
-s option, How Much Disk Space?

dump command, Getting tar's Arguments in the Right Order, Industrial Strength Backups
arguments, correct order for, Getting tar's Arguments in the Right Order
industrial strength backups with, Industrial Strength Backups

dumping files to the screen, Cracking the Nut, What Good Is a cat?
cat command, What Good Is a cat?

duplicate lines, deleting, What Is (or Isn't) Unique?, Dealing with Repeated Lines, lensort: Sort Lines
by Length

Perl script, using, lensort: Sort Lines by Length
DVD-ROMs, Mounting and Unmounting Removable Filesystems
DVI ("device independent") printer language, Printing Languages — PostScript, PCL, DVI, PDF
DVORAK keyboards, Defining Keys and Button Presses with xmodmap, Defining Keys and Button
Presses with xmodmap
dynamic expansion in Emacs, Command Completion
Dynamic Host Configuration Protocol (DHCP), Dynamic Host Configuration Protocol (DHCP)
dynamic IP addresses, Internet Protocol (IP)
dynamic prompts, Dynamic Prompts, Simulating Dynamic Prompts

simulating, Simulating Dynamic Prompts

E

E

each function (Perl), Hashes
EBCDIC, converting ASCII to, Text Conversion with dd
echo command, Session Info in Window Title or Status Line, A bin Directory for Your Programs and
Scripts, Showing Nonprintable Characters in Filenames, Which One Will bash Use?, How Many
Backslashes?, Don't Confuse Regular Expressions with Wildcards, What Environment Variables Are
Good For, Shell Variables, Trapping Exits Caused by Interrupts, Trapping Exits Caused by Interrupts,
Standard Command-Line Parsing, A while Loop with Several Loop Control Commands, Turn Off
echo for "Secret" Answers, Using echo with awk or cut, Cleaning script Files

awk or cut, using with, Using echo with awk or cut
backslashes (\) in shell quoting and argument separation, How Many Backslashes?
checking shell interpretation of regular expression special characters, Don't Confuse Regular
Expressions with Wildcards
ending with n\\>&m operator, Trapping Exits Caused by Interrupts
escaped characters, handling, A while Loop with Several Loop Control Commands
external versions of, Which One Will bash Use?
opttest script (example), Standard Command-Line Parsing
PATH for directory, finding, A bin Directory for Your Programs and Scripts
printing value of individual shell variable, Shell Variables
showing values of variables, What Environment Variables Are Good For
storing control characters in shell variables, Cleaning script Files
testing filenames with wildcards in them, Showing Nonprintable Characters in Filenames
turning off for secret answers, Turn Off echo for "Secret" Answers
writing special escape sequences, Session Info in Window Title or Status Line
zmore script, use in, Trapping Exits Caused by Interrupts

echo shell variable, Verbose and Echo Settings Show Quoting
ed editor, Checking Differences with diff, Why Line Editors Aren't Dinosaurs, Useful ex Commands,
Change Many Files by Editing Just One, ed/ex Batch Edits: A Typical Example, Batch Editing
Gotcha: Editors Fail on Big Files, Valid Metacharacters for Different Unix Programs

batch editing, example of, ed/ex Batch Edits: A Typical Example
diff command, using with script, Change Many Files by Editing Just One
ex commands and, Useful ex Commands
failure on big files, Batch Editing Gotcha: Editors Fail on Big Files
search and replacement patterns, regular expression metacharacters in, Valid Metacharacters for
Different Unix Programs

edit option (xrdb), Setting Resources with xrdb
editing, There Are Many Shells, The Unix spell Command, Looking for Closure, Emacs Features: A
Laundry List, Writing Editing Scripts, And Why Not?, Rotating Text, Alternatives to fmt, Clean Up
Program Comment Blocks, Clean Up Program Comment Blocks, Remove Mail/News Headers with
behead, offset: Indent Text, Centering Lines in a File, Splitting Files by Context: csplit, Splitting Files
by Context: csplit, Hacking on Characters with tr, Encoding "Binary" Files into ASCII, MIME
Encoding, Text Conversion with dd, Cutting Columns or Fields, Making Text in Columns with pr,
Order Lines Across Columns: -l, Make Columns Automatically with column, Straightening Jagged
Columns, Pasting Things in Columns, Joining Lines with join, What Is (or Isn't) Unique?, Rotating

Text, String Editing (Colon) Operators, String Editing (Colon) Operators, The Lessons of History,
Shell Command-Line Editing

advanced techniques in Emacs, Emacs Features: A Laundry List
columns, creating automatically with column, Make Columns Automatically with column
command-line, with ksh, There Are Many Shells
history and variable substitutions with \: (colon) string editing operators, String Editing (Colon)
Operators, String Editing (Colon) Operators
interactive, on command line, The Lessons of History
interactive, on shell command line, Shell Command-Line Editing

command history, Shell Command-Line Editing
paired item checking in text, Looking for Closure
scripts for, Writing Editing Scripts, And Why Not?, Rotating Text, Alternatives to fmt, Clean Up
Program Comment Blocks, Clean Up Program Comment Blocks, Remove Mail/News Headers
with behead, offset: Indent Text, Centering Lines in a File, Splitting Files by Context: csplit,
Splitting Files by Context: csplit, Hacking on Characters with tr, Encoding "Binary" Files into
ASCII, MIME Encoding, Text Conversion with dd, Cutting Columns or Fields, Making Text in
Columns with pr, Order Lines Across Columns: -l, Straightening Jagged Columns, Pasting
Things in Columns, Joining Lines with join, What Is (or Isn't) Unique?, Rotating Text

behead script, removing mail/news headers, Remove Mail/News Headers with behead
centering lines, Centering Lines in a File
cutting columns or fields, Cutting Columns or Fields
encoding binary files into ASCII, Encoding "Binary" Files into ASCII, MIME Encoding
fmt.sh, Alternatives to fmt
joining lines with join, Joining Lines with join
making text in columns with pr, Making Text in Columns with pr, Order Lines Across
Columns: -l
offset script, indenting text, offset: Indent Text
pasting into columns, Pasting Things in Columns
program comment blocks, cleaning up, Clean Up Program Comment Blocks, Clean Up
Program Comment Blocks
rotating text with rot, Rotating Text
splitting files by context (csplit), Splitting Files by Context: csplit, Splitting Files by
Context: csplit
straightening jagged columns columns, Straightening Jagged Columns
text conversion with dd, Text Conversion with dd
translating characters with tr, Hacking on Characters with tr
uniq command, What Is (or Isn't) Unique?
writing, Writing Editing Scripts

spell checking, The Unix spell Command (see spell checking)
editing modes (command), Predefined Environment Variables
editing modes, Emacs, Emacs Features: A Laundry List
EDITOR environment variable, Predefined Environment Variables
editors, The vi Editor: Why So Much Material?, The vi Editor: Why So Much Material?, The vi
Editor: Why So Much Material?, The vi Editor: Why So Much Material?, Emacs: The Other Editor,
An Absurd Amusement, Emacs Features: A Laundry List, Why Line Editors Aren't Dinosaurs, Why

Line Editors Aren't Dinosaurs, Why Line Editors Aren't Dinosaurs, Why Line Editors Aren't
Dinosaurs, Why Line Editors Aren't Dinosaurs, Why Line Editors Aren't Dinosaurs, Line Addressing,
Useful ex Commands, Running Editing Scripts Within vi, Killing Foreground Jobs, Editor Functions
for Completion, sed Sermon^H^H^H^H^H^HSummary, Predefined Environment Variables, Shell
Lockfile, Indentation, Who Will Own a New File?

batch, Why Line Editors Aren't Dinosaurs, Why Line Editors Aren't Dinosaurs, Why Line
Editors Aren't Dinosaurs, Why Line Editors Aren't Dinosaurs, Why Line Editors Aren't
Dinosaurs, Why Line Editors Aren't Dinosaurs, Line Addressing, Useful ex Commands

(see also entries under individual editor names)
awk, Why Line Editors Aren't Dinosaurs
ed, Why Line Editors Aren't Dinosaurs
ex, Why Line Editors Aren't Dinosaurs
line addressing, Line Addressing
patch, Why Line Editors Aren't Dinosaurs
sed, Why Line Editors Aren't Dinosaurs

completion, functions for, Editor Functions for Completion
EDITOR environment variable, Predefined Environment Variables
Emacs, The vi Editor: Why So Much Material?, Emacs: The Other Editor, An Absurd
Amusement, Emacs Features: A Laundry List

(see also Emacs editor)
file ownership and, Who Will Own a New File?
ignoring signals, Killing Foreground Jobs
locking files before editing, Shell Lockfile
Python, Indentation
sed, sed Sermon^H^H^H^H^H^HSummary
vi, The vi Editor: Why So Much Material?, The vi Editor: Why So Much Material?, Running
Editing Scripts Within vi

(see also vi editor)
running ex scripts in, Running Editing Scripts Within vi

vim, The vi Editor: Why So Much Material?
egrep command, Searching Online Manual Pages, grepping a Directory Tree, lookfor: Which File
Has That Word?, Different Versions of grep, Extended Searching for Text with egrep, grepping for a
List of Patterns, rcsgrep, rcsegrep, rcsfgrep, Faking Case-Insensitive Searches, Removing Every File
but One, zap, Using Metacharacters in Regular Expressions, Extended Regular Expressions,
Examples of Searching, Without GNU tar

-f option, grepping for a List of Patterns
-i option, Searching Online Manual Pages
-v option, Removing Every File but One

excluding files from deletion, Removing Every File but One
case-insensitive searches, faking, Faking Case-Insensitive Searches
extended regular expressions, use of, Using Metacharacters in Regular Expressions, Extended
Regular Expressions
picking processes to kill, zap
regular expression, building for, lookfor: Which File Has That Word?
regular expressions to match tar archive filenames, Without GNU tar

regular expressions used with, search pattern examples, Examples of Searching
running on RCS files, rcsgrep, rcsegrep, rcsfgrep

eight-bit filenames, deleting files with, Using unlink to Remove a File with a Strange Name
elapsed time, Timing Programs
elif statement, Test Exit Status with the if Statement
else statement, Test Exit Status with the if Statement, The Unappreciated Bourne Shell ":" Operator

using while leaving then empty, The Unappreciated Bourne Shell ":" Operator
Emacs editor, Filename Extensions, Some GNU ls Features, The vi Editor: Why So Much Material?,
Emacs: The Other Editor, An Absurd Amusement, Emacs: The Other Editor, Emacs: The Other
Editor, Emacs: The Other Editor, Emacs: The Other Editor, Emacs: The Other Editor, Emacs: The
Other Editor, Emacs: The Other Editor, Emacs Features: A Laundry List, Emacs Features: A Laundry
List, Emacs Features: A Laundry List, Emacs Features: A Laundry List, Emacs Features: A Laundry
List, Emacs Features: A Laundry List, Emacs Features: A Laundry List, Emacs Features: A Laundry
List, Emacs Features: A Laundry List, Emacs Features: A Laundry List, Customizations and How to
Avoid Them, Backup and Auto-Save Files, Putting Emacs in Overwrite Mode, Command
Completion, Mike's Favorite Timesavers, Rational Searches, Rational Searches, Unset PWD Before
Using Emacs, Inserting Binary Characters into Files, Making Word Abbreviations Part of Your
Startup, Directories for Emacs Hacks, An Absurd Amusement, Killing Foreground Jobs, Emacs
Editing Mode, ksh Editing, Finding (Anyone's) Home Directory, Quickly, Who Will Own a New
File?

.emacs file, Rational Searches, Making Word Abbreviations Part of Your Startup
abbreviations in, Making Word Abbreviations Part of Your Startup
search customization file, adding to, Rational Searches

advantages of, Emacs: The Other Editor
backup and auto-save files, Backup and Auto-Save Files
backup files, Filename Extensions, Some GNU ls Features

ignoring with ls -B, Some GNU ls Features
built-in editor functions in pdksh shell, ksh Editing
command completion, Command Completion
command-line editing, Emacs Editing Mode
customization, Customizations and How to Avoid Them, Mike's Favorite Timesavers

and how to avoid, Customizations and How to Avoid Them
deleting characters and lines, Emacs: The Other Editor
directories for hacks, Directories for Emacs Hacks
exiting, Emacs: The Other Editor
features, listing of, Emacs Features: A Laundry List, Emacs Features: A Laundry List, Emacs
Features: A Laundry List, Emacs Features: A Laundry List, Emacs Features: A Laundry List,
Emacs Features: A Laundry List, Emacs Features: A Laundry List, Emacs Features: A Laundry
List, Emacs Features: A Laundry List

cusomization, Emacs Features: A Laundry List
editing modes, Emacs Features: A Laundry List
FTP, Emacs Features: A Laundry List
HTTP, Emacs Features: A Laundry List
keyboard macros and advanced editing, Emacs Features: A Laundry List
mail, Emacs Features: A Laundry List

mouse, not having to use with, Emacs Features: A Laundry List
windows, Emacs Features: A Laundry List

file ownership, Who Will Own a New File?
insert mode vs. overwrite, Putting Emacs in Overwrite Mode
inserting binary characters into files, Inserting Binary Characters into Files
moving around in, Emacs: The Other Editor
online help, key bindings abbreviations vs. those used in this book, Emacs: The Other Editor
psychotherapist program, An Absurd Amusement
PWD, unsetting before using, Unset PWD Before Using Emacs
searches, customization of, Rational Searches
shells, running in, Emacs Features: A Laundry List
signals, ignoring, Killing Foreground Jobs
starting, Emacs: The Other Editor
temporary files generated by, Finding (Anyone's) Home Directory, Quickly
undoing actions, Emacs: The Other Editor

email, Tips for Copy and Paste Between Windows, Tips for Copy and Paste Between Windows,
MIME Encoding, Build Strings with { }, Command-Specific Completion, Mail — SMTP, POP, and
IMAP

(see also mail)
header and body, proper formation of, MIME Encoding
MH system, command completion for, Command-Specific Completion
reformatting messages for xterms, Tips for Copy and Paste Between Windows
shortcut for multiple addresses, Build Strings with { }
SMTP (Simple Message Transfer Protocol), Mail — SMTP, POP, and IMAP

empty files, grepping a Directory Tree, What Can You Do with an Empty File?
empty num variable, numeric test error, Stop Syntax Errors in Numeric Tests
empty passwords, SSH server and, General and Authentication Problems
emptying files, Instead of Removing a File, Empty It
emulating Windows API (wine program), Wine
enable command, Which One Will bash Use?
encoding, Encoding "Binary" Files into ASCII, MIME Encoding, uuencoding, MIME Encoding,
MIME Encoding, MIME Encoding

binary files into ASCII, Encoding "Binary" Files into ASCII, MIME Encoding, uuencoding,
MIME Encoding, MIME Encoding

MIME encoding, MIME Encoding, MIME Encoding
uuencoding, uuencoding

full binary text with base64, MIME Encoding
encrypting all files in a directory (crypdir script), Automating /bin/passwd
end anchor ($) in regular expressions, Regular Expressions: The Anchor Characters ̂and $
end of a file, displaying with tail command, How to Look at the End of a File: tail
End of file unexpected error, Tips for Debugging Shell Scripts, Exit Early

exit early, using to find error, Exit Early
END pattern, awk, Patterns
end-of-file character (expect eof command), Automating /bin/passwd
end-of-input character (usually CTRL-d), Subshells

end-of-line characters, Anyone Can Program the Shell (see newlines)
endless loops, Which One Will bash Use?, The Unappreciated Bourne Shell ":" Operator

starting with shell functions, Which One Will bash Use?
Enlightenment, The Kernel and Daemons
enscript program, Formatting Plain Text: enscript
entering directories, automatic setup for, Automatic Setup When You Enter/Exit a Directory,
Automatic Setup When You Enter/Exit a Directory
env command, Terminal Setup: Testing Environment Variables, Statistics of Processes by PID, What
Environment Variables Are Good For, Shell Variables, Making #! Search the PATH

checking for environment changes at different systems, Terminal Setup: Testing Environment
Variables
running scripts from kernel, Making #! Search the PATH

ENV environment variable, Shell Setup Files — Which, Where, and Why, Shell Setup Files —
Which, Where, and Why, Predefined Environment Variables

Bourne shells, setting up, Shell Setup Files — Which, Where, and Why
Korn shells, setting, Shell Setup Files — Which, Where, and Why

environment, Managing Processes: Overall Concepts, Statistics of Processes by PID, Temporary
Change of Directory and Environment

current process, finding for, Statistics of Processes by PID
temporary changes in, Temporary Change of Directory and Environment

environment variables, The man Command, Shell Setup Files — Which, Where, and Why, Shell
Setup Files — Which, Where, and Why, Shell Setup Files — Which, Where, and Why, Shell Setup
Files — Which, Where, and Why, What Goes in Shell Setup Files?, Use Absolute Pathnames in Shell
Setup Files, Gotchas in set prompt Test, Gotchas in set prompt Test, Automatic Setups for Different
Terminals, Terminal Setup: Testing Environment Variables, Terminal Setup: Testing Window Size,
Terminal Setup: Setting and Testing Window Name, A .cshrc.$HOST File for Per Host Setup, Make
Your Own Manpages Without Learning troff, Show Subshell Level with $SHLVL, The Idea of a
Terminal Database, Querying Your xterm Size: resize, Starting Remote X Clients from Interactive
Logins, Starting a Remote Client with rsh and ssh, Many Homes, Configuring It, Another color ls,
Another color ls, Check Spelling Interactively with ispell, Adding Words to ispell's Dictionary,
Local Settings for vi, Out of Temporary Space? Use Another Directory, Unset PWD Before Using
Emacs, The recomment Script, Managing Processes: Overall Concepts, Setting Current Shell
Environment: The work Function, Shell Function Specifics, FPATH Search Path, zsh, The Lessons of
History, Picking Up Where You Left Off, Picking Up Where You Left Off, Picking Up Where You
Left Off, Saving Time When You Change Directories: cdpath, Finding (Anyone's) Home Directory,
Quickly, Finding (Anyone's) Home Directory, Quickly, What Environment Variables Are Good For,
The DISPLAY Environment Variable, What Environment Variables Are Good For, What
Environment Variables Are Good For, Predefined Environment Variables, Predefined Environment
Variables, Predefined Environment Variables, The PATH Environment Variable, PATH and path,
The DISPLAY Environment Variable, Shell Variables, Reading Files with the . and source
Commands, CVS Basics, More CVS, More CVS, Installation with FreeBSD Ports

$HOME, Many Homes
$HOME and $LOGDIR, Use Absolute Pathnames in Shell Setup Files
AT, Gotchas in set prompt Test
CBLKWID (comment block width), The recomment Script

CDPATH, Saving Time When You Change Directories: cdpath
CLICOLOR, Another color ls
in .cshrc.$HOST file, A .cshrc.$HOST File for Per Host Setup
CSHRC_READ, Gotchas in set prompt Test
CVSROOT, CVS Basics, More CVS
CVS_RSH, More CVS
DISPLAY, Starting Remote X Clients from Interactive Logins, Starting a Remote Client with rsh
and ssh, The DISPLAY Environment Variable

setting for remote X client, Starting Remote X Clients from Interactive Logins
DISTDIR, Installation with FreeBSD Ports
EDITOR, Predefined Environment Variables
ENV, for Bourne shells, Shell Setup Files — Which, Where, and Why
EXINIT, Local Settings for vi, Out of Temporary Space? Use Another Directory
FPATH, FPATH Search Path, zsh
HISTFILESIZE, Picking Up Where You Left Off
HISTSIZE, The Lessons of History, Picking Up Where You Left Off
HOME, Finding (Anyone's) Home Directory, Quickly
LINES and COLUMNS, Terminal Setup: Testing Window Size
LOGDIR, Finding (Anyone's) Home Directory, Quickly
LSCOLORS, Another color ls
LS_COLORS, Configuring It
MANPATH, The man Command, Make Your Own Manpages Without Learning troff
modification by programs, Reading Files with the . and source Commands
names, What Environment Variables Are Good For
PATH, The PATH Environment Variable, PATH and path

path shell variable and, PATH and path
predefined, listing of, Predefined Environment Variables, Predefined Environment Variables
PWD, Unset PWD Before Using Emacs
SAVEHIST (zsh), Picking Up Where You Left Off
setting in shell setup files, What Goes in Shell Setup Files?
SHELL, Querying Your xterm Size: resize
shell functions and, Setting Current Shell Environment: The work Function
shell functions, changing for, Shell Function Specifics
shell variables vs., What Environment Variables Are Good For, Shell Variables
SHLVL, Show Subshell Level with $SHLVL
system-wide setup, Shell Setup Files — Which, Where, and Why, Shell Setup Files — Which,
Where, and Why

C shells, Shell Setup Files — Which, Where, and Why
TERM, Automatic Setups for Different Terminals, The Idea of a Terminal Database
terminal setup, testing for, Terminal Setup: Testing Environment Variables
WINNAME, Terminal Setup: Setting and Testing Window Name
WORDLIST, Check Spelling Interactively with ispell, Adding Words to ispell's Dictionary
zsh shells, Shell Setup Files — Which, Where, and Why

epoch, How Unix Keeps Time
eq operator, Scalars

equality, Scalars
ne (string inequality test) operator, Scalars

erase character, Setting Your Erase, Kill, and Interrupt Characters, Cleaning script Files, Cleaning
script Files

as, Setting Your Erase, Kill, and Interrupt Characters
BACKSPACE, Cleaning script Files
DELETE, Cleaning script Files

erase character, setting automatically for X terminals, Automatic Setups for Different Terminals
erase characters, setting, Setting Your Erase, Kill, and Interrupt Characters
error messages, What Are Signals?, Finding a Program Name and Giving Your Program Multiple
Names, Using Standard Input and Output, Problems Piping to a Pager

(see also standard error)
program names included in, Finding a Program Name and Giving Your Program Multiple Names
scrolling off screen, Problems Piping to a Pager
signals as, What Are Signals?

errors, What if a Wildcard Doesn't Match?, Tips for Debugging Shell Scripts, Unmatched Operators,
Exit Early, Missing or Extra esac, ;;, fi, etc., Missing or Extra esac, ;;, fi, etc., Stop Syntax Errors in
Numeric Tests, Stop Syntax Errors in String Tests, Send (Only) Standard Error Down a Pipe

End of file unexpected, Tips for Debugging Shell Scripts, Unmatched Operators, Exit Early
exit early, using to find error, Exit Early
unmatched operators as cause, Unmatched Operators

fi unexpected, Missing or Extra esac, ;;, fi, etc.
line #\: ;; unexpected, Missing or Extra esac, ;;, fi, etc.
numeric test syntax errors, Stop Syntax Errors in Numeric Tests
stderr, Send (Only) Standard Error Down a Pipe (see standard error)
string test syntax errors, Stop Syntax Errors in String Tests
wildcard matching failure, What if a Wildcard Doesn't Match?

ESC key, Don't Match Useless Files in Filename Completion
file completion and, Don't Match Useless Files in Filename Completion

ESC Z string, Querying Your Terminal Type: qterm
ESC-x in Emacs, Emacs: The Other Editor
escape sequences, Session Info in Window Title or Status Line, Highlighting and Color in Shell
Prompts, Highlighting and Color in Shell Prompts, Setting the Titlebar and Icon Text, Enabling
Escape Sequence and Selection, Trying It, Copy What You Do with script

copied by script program into files, Copy What You Do with script
for colors, Trying It
nonprinting, in shell prompts, Highlighting and Color in Shell Prompts
prompt settings and, Highlighting and Color in Shell Prompts
titlebar text, changing in xterms, Setting the Titlebar and Icon Text
writing with echo command, Session Info in Window Title or Status Line
xterm VT Fonts menu, Enabling Escape Sequence and Selection

escaping regular expression metacharacters, Regular Expressions: The Anchor Characters ̂and $
etc/group file, Which Group is Which?

passwords, Which Group is Which?
ethereal program, Where, Oh Where Did That Packet Go?

Ethernet address, Dynamic Host Configuration Protocol (DHCP)
ethernet cards, Quick Introduction to Hardware
eval command, Setting the Terminal Type When You Log In, Querying Your xterm Size: resize, eval:
When You Need Another Chance, Shell Script "Wrappers" for awk, sed, etc., Finding the Last
Command-Line Argument, Making a for Loop with Multiple Variables, Using sed

awk compared to, Shell Script "Wrappers" for awk, sed, etc.
last parameter from command line, picking, Finding the Last Command-Line Argument
resize output, evaluating, Querying Your xterm Size: resize
scanning contents of variables, Making a for Loop with Multiple Variables
sed, using with, Using sed

evaluating, Finding Many Things with One Command, Expect, Understanding Expressions
expressions, Finding Many Things with One Command, Understanding Expressions
multiple commands, Expect

event translations, X Event Translations, X Event Translations, X Event Translations, X Event
Translations

overriding default, X Event Translations
translation table, X Event Translations

events, X Event Translations
ex command, line-numbering with, Numbering Lines
ex editor, Editing Multiple Files with vi, Edits Between Files, Local Settings for vi, Local Settings
for vi, Using Search Patterns and Global Commands, Global Searches, Confirming Substitutions in vi,
Saving Part of a File, Appending to an Existing File, Moving Blocks of Text by Patterns, Capitalizing
Every Word on a Line, Per-File Setups in Separate Files, vi File Recovery Versus Networked
Filesystems, Protecting Keys from Interpretation by ex, Protecting Keys from Interpretation by ex,
Typing in Uppercase Without CAPS LOCK, Why Line Editors Aren't Dinosaurs, Line Addressing,
Line Addressing, Useful ex Commands, Useful ex Commands, Running Editing Scripts Within vi,
ed/ex Batch Edits: A Typical Example, Valid Metacharacters for Different Unix Programs, Examples
of Searching and Replacing

appending to file, Appending to an Existing File
batch editing, example of, ed/ex Batch Edits: A Typical Example
capitalizing words, Capitalizing Every Word on a Line
commands, Useful ex Commands, Useful ex Commands
confirming substitutions, Confirming Substitutions in vi
deleting by patterns, Moving Blocks of Text by Patterns
ex command mode in vi, Typing in Uppercase Without CAPS LOCK
file recovery, vi File Recovery Versus Networked Filesystems
global command, Global Searches
line addressing, Line Addressing, Line Addressing
multiple setup files, Per-File Setups in Separate Files
protecting vi keymaps from interpretation by, Protecting Keys from Interpretation by ex
quoting | (vertical bar), Protecting Keys from Interpretation by ex
regular expressions used in, Examples of Searching and Replacing

search and replace commands, Examples of Searching and Replacing
running scripts in vi, Running Editing Scripts Within vi
saving part of file, Saving Part of a File

search and replacement patterns, regular expression metacharacters in, Valid Metacharacters for
Different Unix Programs
search patterns and global commands, using, Using Search Patterns and Global Commands
settings, Local Settings for vi
startup commands, Local Settings for vi
switching between files, Editing Multiple Files with vi
yank buffers, Edits Between Files

exchange command (x), sed editor, Hold Space: The Set-Aside Buffer, The Deliberate Scrivener
excluding files from deletion, Removing Every File but One
exec command, fork and exec, The exec Command, The exec Command, The exec Command

manipulation of file descriptors, The exec Command
replacing one shell with another, The exec Command
typing at shell prompt, fork and exec

exec system call, fork and exec, How the Shell Executes Other Commands
typing at a shell prompt, fork and exec

executable files, Anyone Can Program the Shell, whereis: Finding Where a Command Is Located,
Finding Oldest or Newest Files with ls -t and ls -u, Save Space in Executable Files with strip, Korn-
Shell Aliases, Writing a Simple Shell Program, Beyond the Basics, Save Disk Space and
Programming: Multiple Names for a Program

#!, making directly executable with, Beyond the Basics
chmod command, Anyone Can Program the Shell
external, tracking locations with aliases, Korn-Shell Aliases
last-access time, Finding Oldest or Newest Files with ls -t and ls -u
locating for programs, whereis: Finding Where a Command Is Located
multiple commands linked to a file, Save Disk Space and Programming: Multiple Names for a
Program
permissions on, Writing a Simple Shell Program
strip command, Save Space in Executable Files with strip

execute permission, Tutorial on File and Directory Permissions, Using chmod to Change File
Permission, cx, cw, c-w: Quick File Permission Changes, A Directory That People Can Access but
Can't List, Shell Scripts Must Be Readable and (Usually) Executable

changing with chmod, Using chmod to Change File Permission
for directories, Tutorial on File and Directory Permissions
script for changing, cx, cw, c-w: Quick File Permission Changes
shell scripts, Shell Scripts Must Be Readable and (Usually) Executable
without read permission, A Directory That People Can Access but Can't List

execution statistics, report summarizing, The ps Command
execution, delayed, Building Software Robots the Easy Way (see delayed execution)
exim program, Mail — SMTP, POP, and IMAP
EXINIT environment variable, Local Settings for vi, Out of Temporary Space? Use Another
Directory
exists function (Perl), Hashes
exit () function (Perl), Perl Boot Camp, Part 1: Typical Script Anatomy
exit command, Setup Files Aren't Read When You Want?, Alphabetical Summary of Commands,
Subshells, Copy What You Do with script, Printer Control with lpc

awk utility, Alphabetical Summary of Commands
effect on subshells, Subshells
ending scripts, Copy What You Do with script
lpc, Printer Control with lpc
reading logout file when using, Setup Files Aren't Read When You Want?

exit status, cmp and diff, Deletion with Prejudice: rm -f, Managing Processes: Overall Concepts, Why
You Can't Kill a Zombie, Exit Status of Unix Processes, Exit Status of Unix Processes, Exit Status of
Unix Processes, Exit Status of Unix Processes, Test Exit Status with the if Statement, Test Exit Status
with the if Statement, Loops That Test Exit Status, Loops That Test Exit Status, The Unappreciated
Bourne Shell ":" Operator, A while Loop with Several Loop Control Commands, Shell Scripts On-
the-Fly from Standard Input, Syntax, Testing Characters in a String with expr

dead processes and, Why You Can't Kill a Zombie
diff and cmp, returned by, cmp and diff
of loops, A while Loop with Several Loop Control Commands
of pipelines, Exit Status of Unix Processes
printing for any program not returning zero, Exit Status of Unix Processes
returned by processes, Managing Processes: Overall Concepts
returned by \: operator, The Unappreciated Bourne Shell ":" Operator
reversing for command line in bash and zsh, Exit Status of Unix Processes
rm and rm -f command, Deletion with Prejudice: rm -f
sh -e command, Shell Scripts On-the-Fly from Standard Input
testing with if statement, Test Exit Status with the if Statement, Test Exit Status with the if
Statement
testing with loops, Loops That Test Exit Status
of Unix processes, Exit Status of Unix Processes
values for expr, Syntax, Testing Characters in a String with expr
zero, Loops That Test Exit Status

exit test, if (! $?prompt), Gotchas in set prompt Test
exiting, Emacs: The Other Editor, The Process Chain to Your Window, Automatic Setup When You
Enter/Exit a Directory, Automatic Setup When You Enter/Exit a Directory, Perl Boot Camp, Part 3:
Branching and Looping

directories, automatic setup for, Automatic Setup When You Enter/Exit a Directory, Automatic
Setup When You Enter/Exit a Directory
Emacs, Emacs: The Other Editor
loops, Perl Boot Camp, Part 3: Branching and Looping
shell to close a window, The Process Chain to Your Window

exp command (awk), Alphabetical Summary of Commands
expansion of wildcards by shells, Wildcards Inside Aliases, Don't Confuse Regular Expressions with
Wildcards, Quoting and Command-Line Parameters

quoting regular expressions to prevent, Don't Confuse Regular Expressions with Wildcards
shortcuts, Quoting and Command-Line Parameters

expect command, Expect
expect eof command, Automating /bin/passwd
Expect programs, Expect, Other Problems, Expect, Dialback, Automating /bin/passwd, Automating
/bin/passwd, Automating /bin/passwd, Automating /bin/passwd, Automating /bin/passwd, Testing: A

Story
automating /bin/passwd, Automating /bin/passwd, Automating /bin/passwd
cryptdir script, Automating /bin/passwd
dialback script, Dialback
passmass script, Automating /bin/passwd
rftp script, Automating /bin/passwd
Tcl language, writing in, Expect
testing interactive programs, Testing: A Story

exporting bash shell functions, Exporting bash Functions
expr command, Counting Lines, Words, and Characters: wc, Quick Reference: expr, Syntax, Syntax,
Syntax, Syntax, Syntax, Examples, Testing Characters in a String with expr, Matching with expr,
Matching with expr, Matching with expr

arguments, Matching with expr, Matching with expr
$*, Matching with expr
$@, Matching with expr

arithmetic operators used with, Syntax
examples of, Examples
exit status values, Syntax
logical operators used with, Syntax
matching parts of strings with regular expressions, Matching with expr
relational operators used with, Syntax
syntax, Syntax
testing character strings, Testing Characters in a String with expr

expressions, Finding Many Things with One Command, Finding Many Things with One Command,
That's an Expression, Understanding Expressions, Test Exit Status with the if Statement, Test Exit
Status with the if Statement, Test Exit Status with the if Statement, Scalars, Functions

(see also operators)
conditional, Test Exit Status with the if Statement, Test Exit Status with the if Statement, Test
Exit Status with the if Statement
order of evaluation in Perl, Scalars
in Python lambdas, Functions
regular expressions vs., Understanding Expressions

extended expressions, matching more than one process, zap
extended grep, Different Versions of grep (see egrep command)
extended partition, Disk Partitioning
extended regular expressions, Using Metacharacters in Regular Expressions, Extended Regular
Expressions
extensions, filename, Filename Extensions, String Editing (Colon) Operators, Filename Wildcards in
a Nutshell

wildcard matching and, Filename Wildcards in a Nutshell
\:e string editing operator, String Editing (Colon) Operators

external commands, Internal and External Commands, Faster Prompt Setting with Built-ins, External
Commands Send Signals to Set Variables, How the Shell Executes Other Commands, Which One
Will bash Use?, Which One Will the C Shell Use?, Perl Boot Camp, Part 5: Perl Knows Unix

C shell, determining whether to use, Which One Will the C Shell Use?

creating subshell for execution in Perl, Perl Boot Camp, Part 5: Perl Knows Unix
executing, How the Shell Executes Other Commands
setting shell variables with, External Commands Send Signals to Set Variables

extract function (tar), Using tar to Create and Unpack Archives

F

factorial functions, Functions Calling Functions: Factorials, Functions Calling Functions: Factorials
failure of commands, indication in exit status, Exit Status of Unix Processes
false (exit status) utility, Exit Status of Unix Processes
false values in Perl, Scalars
fast find commands, Using "Fast find" Databases, Wildcards with "Fast find" Database, Finding Files
(Much) Faster with a find Database

database for, Finding Files (Much) Faster with a find Database
databases for, Using "Fast find" Databases
matching shell wildcards, Wildcards with "Fast find" Database

fc command, History by Number, History by Number
-e option, starting editor and loading file with recent history, History by Number
-l option, listing previous commands, History by Number

fg command, Job Control in a Nutshell, Using Job Control from Your Shell, Using jobs Effectively
job numbers, supplying to, Using jobs Effectively

fgrep command, grepping a Directory Tree, Different Versions of grep, rcsgrep, rcsegrep, rcsfgrep
running on RCS files, rcsgrep, rcsegrep, rcsfgrep

fgrep command (fixed grep), grepping for a List of Patterns
-f option, grepping for a List of Patterns

fi statements, Test Exit Status with the if Statement
fi unexpected error, Missing or Extra esac, ;;, fi, etc.
fields, Checklist: Terminal Hangs When I Log In, Cutting Columns or Fields, Sort Fields: How sort
Sorts, Changing the sort Field Delimiter, Execution Scheduling

in crontab entries, Execution Scheduling
cutting, Cutting Columns or Fields
separating with \: (colon), Checklist: Terminal Hangs When I Log In
sort command, Sort Fields: How sort Sorts, Changing the sort Field Delimiter

changing delimiter, Changing the sort Field Delimiter
fignore shell variable, Don't Match Useless Files in Filename Completion
file access mode, Private (Personal) Directories (see permissions)
file descriptors, Managing Processes: Overall Concepts, Statistics of the Current Process, Why You
Can't Kill a Zombie, The exec Command, Overview: Open Files and File Descriptors, Overview:
Open Files and File Descriptors, Overview: Open Files and File Descriptors, Overview: Open Files
and File Descriptors, n>&m: Swap Standard Output and Standard Error, n>&m: Swap Standard
Output and Standard Error

closing, Why You Can't Kill a Zombie
files currently pointing to, viewing, Statistics of the Current Process
manipulation by exec command, The exec Command
open files and, Overview: Open Files and File Descriptors, Overview: Open Files and File

Descriptors, Overview: Open Files and File Descriptors, Overview: Open Files and File
Descriptors

standard error or stderr, Overview: Open Files and File Descriptors
standard input or stdin, Overview: Open Files and File Descriptors
standard output or stdout, Overview: Open Files and File Descriptors

redirecting, n>&m: Swap Standard Output and Standard Error, n>&m: Swap Standard Output
and Standard Error

file permissions, Shell Lockfile (see permissions)
file protection mode, supplying for directories, Making Directories Made Easier
file protocol (URI types), Configuring the sources.list File
file utility, Finding File Types
filehandles in Perl, Perl Boot Camp, Part 5: Perl Knows Unix
filenames, Communication with Unix, Filenames, Filenames, Filename Extensions, Naming Files,
Can't Access a File? Look for Spaces in the Name, Hacking on Characters with tr, Quoting Special
Characters in Filenames, What's Special About the Unix Command Line, General Example: Filename
Completion, How to Put if-then-else in a C-Shell Alias, Finding (Anyone's) Home Directory,
Quickly, File-Naming Wildcards, Filename Wildcards in a Nutshell, Filename Wildcards in a
Nutshell, Filename Wildcards in a Nutshell, Who Handles Wildcards?, Who Handles Wildcards?,
What if a Wildcard Doesn't Match?, Maybe You Shouldn't Use Wildcards in Pathnames, Getting a
List of Matching Files with grep -l, The vgrep Script, nom: List Files That Don't Match a Wildcard,
With the "$@" Parameter, Finding a Program Name and Giving Your Program Multiple Names,
Introduction to basename and dirname, Introduction to basename and dirname, Perl Boot Camp, Part
5: Perl Knows Unix

changing with rename function (Perl), Perl Boot Camp, Part 5: Perl Knows Unix
completion by shells, What's Special About the Unix Command Line, General Example:
Filename Completion
conventions, Filenames, Filenames
converting form uppercase to lowercase, Hacking on Characters with tr
ending with ~, Finding (Anyone's) Home Directory, Quickly
executable vs. source, How to Put if-then-else in a C-Shell Alias
extensions for, Filename Extensions
finding with cat command, Communication with Unix
links and, Finding a Program Name and Giving Your Program Multiple Names
path name components, stripping with basename, Introduction to basename and dirname
special characters, quoting in C shell, Quoting Special Characters in Filenames
stripped from pathnames, Introduction to basename and dirname
symbols in, With the "$@" Parameter
whitespace in, Can't Access a File? Look for Spaces in the Name
wildcards for, File-Naming Wildcards, Filename Wildcards in a Nutshell, Filename Wildcards
in a Nutshell, Filename Wildcards in a Nutshell, Who Handles Wildcards?, Who Handles
Wildcards?, What if a Wildcard Doesn't Match?, Maybe You Shouldn't Use Wildcards in
Pathnames, Getting a List of Matching Files with grep -l, The vgrep Script, nom: List Files That
Don't Match a Wildcard

failing to match, What if a Wildcard Doesn't Match?
file's name and extension as separate entities, Filename Wildcards in a Nutshell

grep -l command, listing matching files, Getting a List of Matching Files with grep -l
listing of, Filename Wildcards in a Nutshell, Filename Wildcards in a Nutshell
nom script, listing nonmatching files, nom: List Files That Don't Match a Wildcard
pathnames, not using in, Maybe You Shouldn't Use Wildcards in Pathnames
shell handling of, Who Handles Wildcards?, Who Handles Wildcards?
vgrep script, listing nonmatching files, The vgrep Script

files, Filename Extensions, When Is a File Not a File?, Starting a Remote Client with rsh and ssh,
Starting a Remote Client with rsh and ssh, Everything but the find Command, Picking a Unique
Filename Automatically, The Three Unix File Times, The Three Unix File Times, Finding Oldest or
Newest Files with ls -t and ls -u, List All Subdirectories with ls -R, Some GNU ls Features, A csh
Alias to List Recently Changed Files, Showing Hidden Files with ls -A and -a, Useful ls Aliases,
Can't Access a File? Look for Spaces in the Name, Showing Nonprintable Characters in Filenames,
Counting Files by Types, Listing Files by Age and Size, newer: Print the Name of the Newest File,
oldlinks: Find Unconnected Symbolic Links, Picking a Unique Filename Automatically, How to Use
find, What's Really in a Directory?, Files with Two or More Names, Files with Two or More Names,
Files with Two or More Names, More About Links, Links to a Directory, Creating and Removing
Links, Stale Symbolic Links, Linking Directories, Showing the Actual Filenames for Symbolic Links,
Renaming, Copying, or Comparing a Set of Files, Renaming a List of Files Interactively, Checking
Differences with diff, cmp and diff, make Isn't Just for Programmers!, Even More Uses for make,
Cracking the Nut, What Good Is a cat?, "less" is More, "less" is More, Show Nonprinting Characters
with cat -v or od -c, Show Nonprinting Characters with cat -v or od -c, Finding File Types, Squash
Extra Blank Lines, How to Look at the End of a File: tail, Printing the Top of a File, Numbering
Lines, Different Versions of grep, A Highlighting grep, Search RCS Files with rcsgrep, Finding a
Character in a Column, Fast Searches and Spelling Checks with "look", Finding Words Inside Binary
Files, The Cycle of Creation and Destruction, How Unix Keeps Track of Files: Inodes, Deleting Stale
Files, Instead of Removing a File, Empty It, Limiting File Sizes, Compressing Files to Save Space,
Compressing Files to Save Space, Counting Lines, Words, and Characters: wc, Editing Multiple
Files with vi, Keep Your Original File, Write to a New File, Saving Part of a File, Appending to an
Existing File, vi File Recovery Versus Networked Filesystems, Be Careful with vi -r Recovered
Buffers, File-Backup Macros, Emacs Features: A Laundry List, Backup and Auto-Save Files, Batch
Editing Gotcha: Editors Fail on Big Files, Splitting Files by Context: csplit, Splitting Files by
Context: csplit, Command Evaluation and Accidentally Overwriting Files, Use Wildcards to Create
Files?, Build Strings with { }, Build Strings with { }, Build Strings with { }, Handling Lots of Text
with Temporary Files, Finding (Anyone's) Home Directory, Quickly, Automatic Setup When You
Enter/Exit a Directory, File-Naming Wildcards, Trapping Exits Caused by Interrupts, test: Testing
Files and Strings, Overview: Open Files and File Descriptors, Shell Scripts On-the-Fly from
Standard Input, Shell Lockfile, What Is This "Backup" Thing?, On-Demand Incremental Backups of a
Project, Using tar to Create and Unpack Archives, I/O and Formatting, Using Standard Input and
Output, Using Standard Input and Output, Send (Only) Standard Error Down a Pipe, What Can You
Do with an Empty File?, Intruder Detection, Setting an Exact umask, Tutorial on File and Directory
Permissions, User, Group, and World

appending to existing with vi editor, Appending to an Existing File
backing up, Filename Extensions, File-Backup Macros, What Is This "Backup" Thing?, On-
Demand Incremental Backups of a Project

(see also backup files)

excluding from, On-Demand Incremental Backups of a Project
vi editor, macro for, File-Backup Macros

backup and auto-save, Emacs, Backup and Auto-Save Files
binary, searching, Finding Words Inside Binary Files
comparing, Checking Differences with diff, cmp and diff, make Isn't Just for Programmers!, Even
More Uses for make

cmp program, using, cmp and diff
diff commands, using, Checking Differences with diff
make program, using, make Isn't Just for Programmers!, Even More Uses for make

compressing, Compressing Files to Save Space, Compressing Files to Save Space
copying from subdirectories to single directory, Shell Scripts On-the-Fly from Standard Input
counting number in a directory, Counting Lines, Words, and Characters: wc
creating, using wildcards, Use Wildcards to Create Files?
deleted, archiving on tape, Deleting Stale Files
directory contents, explanation of, What's Really in a Directory?
Emacs editor, viewing and manipulating in, Emacs Features: A Laundry List
empty, What Can You Do with an Empty File?
emptying, Instead of Removing a File, Empty It
finding, Everything but the find Command, Picking a Unique Filename Automatically, The Three
Unix File Times, The Three Unix File Times, Finding Oldest or Newest Files with ls -t and ls -
u, List All Subdirectories with ls -R, Some GNU ls Features, A csh Alias to List Recently
Changed Files, Showing Hidden Files with ls -A and -a, Useful ls Aliases, Can't Access a File?
Look for Spaces in the Name, Showing Nonprintable Characters in Filenames, Counting Files by
Types, Listing Files by Age and Size, newer: Print the Name of the Newest File, oldlinks: Find
Unconnected Symbolic Links, Picking a Unique Filename Automatically

access times, The Three Unix File Times
by age and size, Listing Files by Age and Size
change and modification times, The Three Unix File Times
counting by types, Counting Files by Types
GNU ls command, features of, Some GNU ls Features, A csh Alias to List Recently
Changed Files
listing subdirectories with ls -R, List All Subdirectories with ls -R
newest file, printing name of, newer: Print the Name of the Newest File
nonprintable characters in filenames, showing, Showing Nonprintable Characters in
Filenames
oldest or newest with ls -t or ls -u, Finding Oldest or Newest Files with ls -t and ls -u
showing hidden files with ls -a or ls -A, Showing Hidden Files with ls -A and -a
spaces in filenames, Can't Access a File? Look for Spaces in the Name
symbolic links, unconnected, oldlinks: Find Unconnected Symbolic Links
type of file in each directory, listing with ls -F, Useful ls Aliases
unique filenames, picking automatically, Picking a Unique Filename Automatically

finding with find command, How to Use find (see find command)
hosts.equiv, Starting a Remote Client with rsh and ssh, Starting a Remote Client with rsh and ssh
inodes, How Unix Keeps Track of Files: Inodes
linking, Files with Two or More Names, Files with Two or More Names, Files with Two or

More Names, More About Links, Links to a Directory, Creating and Removing Links, Stale
Symbolic Links, Linking Directories, Showing the Actual Filenames for Symbolic Links

creating and removing links, Creating and Removing Links
directories, linking, Linking Directories
directory, links to, Links to a Directory
filenames for symbolic links, Showing the Actual Filenames for Symbolic Links
links, types of, More About Links
reasons for, Files with Two or More Names, Files with Two or More Names
stale symbolic links, Stale Symbolic Links

lockfiles, Shell Lockfile
modification by attackers, checking for, Intruder Detection
names for, File-Naming Wildcards (see filenames)
newly created, setting default mode in unmask, Setting an Exact umask
old and new version, saving with vi editor, Keep Your Original File, Write to a New File
open, and file descriptors, Overview: Open Files and File Descriptors
overwriting accidentally, Command Evaluation and Accidentally Overwriting Files
ownership of, User, Group, and World (see ownership, file)
packing up and moving, Using tar to Create and Unpack Archives (see archives)
permissions for, Automatic Setup When You Enter/Exit a Directory (see permissions)
printing, Build Strings with { }, Build Strings with { }

(see also printing)
shortcut for, Build Strings with { }

Python, opening, closing and reading, I/O and Formatting
reading to/writing from, Using Standard Input and Output, Using Standard Input and Output, Send
(Only) Standard Error Down a Pipe

(see also redirecting input and output)
recovering with vi -r command, vi File Recovery Versus Networked Filesystems, Be Careful
with vi -r Recovered Buffers

recovered buffers, cautions about, Be Careful with vi -r Recovered Buffers
remote, copying to local system, Build Strings with { }
removing, The Cycle of Creation and Destruction (see deleting removing files rm command)
renaming, Renaming, Copying, or Comparing a Set of Files, Renaming a List of Files
Interactively

copying or comparing set of, Renaming, Copying, or Comparing a Set of Files
interactively, Renaming a List of Files Interactively

saving part of with vi editor, Saving Part of a File
searching, Different Versions of grep, A Highlighting grep, Search RCS Files with rcsgrep,
Finding a Character in a Column, Fast Searches and Spelling Checks with "look"

by column, using awk, Finding a Character in a Column
with grep commands, Different Versions of grep, A Highlighting grep
look program, Fast Searches and Spelling Checks with "look"
rcsgrep script, Search RCS Files with rcsgrep

security, Tutorial on File and Directory Permissions (see security)
showing contents of, Cracking the Nut, What Good Is a cat?, "less" is More, "less" is More,
Show Nonprinting Characters with cat -v or od -c, Show Nonprinting Characters with cat -v or

od -c, Finding File Types, Squash Extra Blank Lines, How to Look at the End of a File: tail,
Printing the Top of a File, Numbering Lines

cat -v or od -c, showing nonprinting characters, Show Nonprinting Characters with cat -v
or od -c, Show Nonprinting Characters with cat -v or od -c
cat command, What Good Is a cat?
displaying end with tail command, How to Look at the End of a File: tail
file types, finding, Finding File Types
head, displaying beginning with, Printing the Top of a File
less and more pagers, "less" is More, "less" is More
numbering lines, Numbering Lines
squashing extra blank lines with cat -s, Squash Extra Blank Lines

size of, Limiting File Sizes, Batch Editing Gotcha: Editors Fail on Big Files
batch editing and, Batch Editing Gotcha: Editors Fail on Big Files
limiting, Limiting File Sizes

splitting by context (csplit), Splitting Files by Context: csplit, Splitting Files by Context: csplit
switching among with vi editor, Editing Multiple Files with vi
temporary, Handling Lots of Text with Temporary Files, Finding (Anyone's) Home Directory,
Quickly

handling text with, Handling Lots of Text with Temporary Files
testing, test: Testing Files and Strings
uncompressing, Trapping Exits Caused by Interrupts

filesystem check (fsck) program, The Kernel and Daemons
Filesystem Hierarchy Standard (FHS), /usr/bin and Other Software Directories, /usr/bin and Other
Software Directories

web site information on, /usr/bin and Other Software Directories
filesystems, Change Many Files by Editing Just One, The /proc Filesystem, A Glimpse at Hardware,
Getting Around the Filesystem, Using Relative and Absolute Pathnames, What Good Is a Current
Directory?, How Does Unix Find Your Current Directory?, Saving Time When You Change
Directories: cdpath, Loop Control: break and continue, The Shells' pushd and popd Commands, Nice
Aliases for pushd, Quick cds with Aliases, cd by Directory Initials, Finding (Anyone's) Home
Directory, Quickly, Marking Your Place with a Shell Variable, Automatic Setup When You
Enter/Exit a Directory, Perl Boot Camp, Part 5: Perl Knows Unix, Filesystem Types and /etc/fstab,
Mounting and Unmounting Removable Filesystems, Mounting Network Filesystems — NFS, SMBFS,
USB Configuration

/proc, The /proc Filesystem, A Glimpse at Hardware
navigating Unix filesystem, Getting Around the Filesystem, Using Relative and Absolute
Pathnames, What Good Is a Current Directory?, How Does Unix Find Your Current Directory?,
Saving Time When You Change Directories: cdpath, Loop Control: break and continue, The
Shells' pushd and popd Commands, Nice Aliases for pushd, Quick cds with Aliases, cd by
Directory Initials, Finding (Anyone's) Home Directory, Quickly, Marking Your Place with a
Shell Variable, Automatic Setup When You Enter/Exit a Directory

cd, speeding up with aliases, Quick cds with Aliases
changing directories, Saving Time When You Change Directories: cdpath
changing directories with c (shell function), cd by Directory Initials
current directory, What Good Is a Current Directory?

current directory, finding, How Does Unix Find Your Current Directory?
directories, automatic setup when entering/exiting, Automatic Setup When You Enter/Exit a
Directory
home directory, finding (for anyone), Finding (Anyone's) Home Directory, Quickly
loop control, break and continue, Loop Control: break and continue
marking your place with shell variable, Marking Your Place with a Shell Variable
relative and absolute pathnames, Using Relative and Absolute Pathnames
shell pushd and popd commands, The Shells' pushd and popd Commands, Nice Aliases for
pushd

NFS and SMBFS, mounting, Mounting Network Filesystems — NFS, SMBFS
Perl functions for, Perl Boot Camp, Part 5: Perl Knows Unix
removable, mounting/unmounting, Mounting and Unmounting Removable Filesystems
synchronizing with rsync program, Change Many Files by Editing Just One
for USBs, USB Configuration

File\:\:Find module (Perl), oldlinks: Find Unconnected Symbolic Links
filtering text through Unix commands, Compound Searches, Keymaps for Pasting into a Window
Running vi

fmt command, Keymaps for Pasting into a Window Running vi
greps, Compound Searches

filters, Programs Are Designed to Work Together, Searching for Text with grep, Overview: Open
Files and File Descriptors, Printing to Windows Printers from Unix, Converting Source Files
Automagically Within the Spooler, The Portable Bitmap Package

apsfilter, Converting Source Files Automagically Within the Spooler
for graphics, The Portable Bitmap Package
grep command as, Searching for Text with grep
lpd daemon, running files through, Printing to Windows Printers from Unix

find command, oldlinks: Find Unconnected Symbolic Links, How to Use find, Keeping find from
Searching Networked Filesystem, How to Use find, How to Use find, Delving Through a Deep
Directory Tree, Delving Through a Deep Directory Tree, Delving Through a Deep Directory Tree,
Looking for Files with Particular Names, Searching for Old Files, Searching for Old Files, Be an
Expert on find Search Operators, Be an Expert on find Search Operators, The Times That find Finds,
Exact File-Time Comparisons, Running Commands on What You Find, Using -exec to Create Custom
Tests, Custom -exec Tests Applied, Finding Many Things with One Command, Searching for Files by
Type, Searching for Files by Size, Searching for Files by Permission, Searching by Owner and
Group, Searching by Owner and Group, Duplicating a Directory Tree, Using "Fast find" Databases,
Wildcards with "Fast find" Database, Finding Files (Much) Faster with a find Database, Finding
Files (Much) Faster with a find Database, grepping a Directory Tree, lookfor: Which File Has That
Word?, Finding the (Hard) Links to a File, Finding Files with -prune, Quick finds in the Current
Directory, Skipping Parts of a Tree in find, Keeping find from Searching Networked Filesystem,
Finding Text That Doesn't Match, Answer "Yes" or "No" Forever with yes, Removing a Strange File
by its i-number, Removing a Strange File by its i-number, Removing a Strange File by its i-number,
Deleting Stale Files, Deleting Stale Files, Using find to Clear Out Unneeded Files, Compressing a
Directory Tree: Fine-Tuning, Don't Confuse Regular Expressions with Wildcards, Don't Confuse
Regular Expressions with Wildcards, Use with Loops, Nested Command Substitution, On-Demand
Incremental Backups of a Project, Intruder Detection, User, Group, and World, Using chmod to

Change File Permission, The Handy chmod = Operator
$() operator, used with, Nested Command Substitution
-atime operator, Deleting Stale Files

locating files based on last access time, Deleting Stale Files
-exec operator, Using -exec to Create Custom Tests, Custom -exec Tests Applied

creating custom tests, Using -exec to Create Custom Tests
large recursive greps, using for, Custom -exec Tests Applied

-exec option, Using chmod to Change File Permission, The Handy chmod = Operator
changing permissions for directory tree, Using chmod to Change File Permission

-inum operator, Removing a Strange File by its i-number
-mtime operator, Searching for Old Files
-name operator, Looking for Files with Particular Names
-newer option, using in incremental file backups, On-Demand Incremental Backups of a Project
-nouser or -nogroup operators, Searching by Owner and Group
-ok option, Answer "Yes" or "No" Forever with yes
-perm operator, Searching for Files by Permission
-prune operator, Finding Files with -prune, Quick finds in the Current Directory, Removing a
Strange File by its i-number

quick find in current directory, Quick finds in the Current Directory
-size operator, Searching for Files by Size
-type operator, Searching for Files by Type
-user and -group operators, Searching by Owner and Group
clearing out unneeded files with, Using find to Clear Out Unneeded Files
cpio operator, Deleting Stale Files

archiving deleted files on tape, Deleting Stale Files
directory tree, delving through, Delving Through a Deep Directory Tree
duplicating a directory tree, Duplicating a Directory Tree
fast find commands, Delving Through a Deep Directory Tree, Wildcards with "Fast find"
Database, Finding Files (Much) Faster with a find Database, Finding Files (Much) Faster with a
find Database

database for, Finding Files (Much) Faster with a find Database, Finding Files (Much)
Faster with a find Database
matching shell wildcards, Wildcards with "Fast find" Database

fast find databases, using, Using "Fast find" Databases
features and basic operators, How to Use find, How to Use find
filename-matching patterns, Don't Confuse Regular Expressions with Wildcards
files for compression, Compressing a Directory Tree: Fine-Tuning
files you own with wrong permissions, User, Group, and World
finding many things with one command, Finding Many Things with One Command
grepping a directory tree, grepping a Directory Tree
hard links to a file, finding, Finding the (Hard) Links to a File
lookfor script, using in, lookfor: Which File Has That Word?
loops using, Use with Loops
maxdepth operator, Removing a Strange File by its i-number
modified files, checking for, Intruder Detection

networked filesystem, preventing from searching, Keeping find from Searching Networked
Filesystem
old files, searching for, Searching for Old Files
operators, Finding Text That Doesn't Match
regex and iregex options, Don't Confuse Regular Expressions with Wildcards
running commands on results, Running Commands on What You Find
search operators, Be an Expert on find Search Operators, Be an Expert on find Search Operators
skipping parts of directory tree, Skipping Parts of a Tree in find
time operators (-mtime, -atime, and -ctime), The Times That find Finds, Exact File-Time
Comparisons

exact file-time comparisons, Exact File-Time Comparisons
unconnected symbolic links, finding, oldlinks: Find Unconnected Symbolic Links
xargs command, using with, Delving Through a Deep Directory Tree

finding, Finding File Types, How Does Unix Find Your Current Directory?, Finding (Anyone's)
Home Directory, Quickly

current directory, How Does Unix Find Your Current Directory?
file types, Finding File Types
home directory (for anyone), Finding (Anyone's) Home Directory, Quickly

findpt alias, Finding Text That Doesn't Match
firewalls, Gateways and NAT, Firewalls

gateways functioning as, Gateways and NAT
fixed dynamic addresses, Dynamic Host Configuration Protocol (DHCP)
fixed grep, Different Versions of grep (see fgrep command)
fixed length records, converting to/from variable-length records, Text Conversion with dd
flags, Interactive Shells

displaying current, Interactive Shells
flavors of Unix, The Core of Unix
floating-point numbers, Alphabetic and Numeric Sorting, Perl Boot Camp, Part 2: Variables and Data
Types

Perl data type, Perl Boot Camp, Part 2: Variables and Data Types
sort command and, Alphabetic and Numeric Sorting

floppies, Backing Up to Floppies or Zip Disks, Mounting and Unmounting Removable Filesystems,
Loopback Mounts

backing up to, Backing Up to Floppies or Zip Disks
loopback mounts, Loopback Mounts

flow-control operators for loops (in Perl), Perl Boot Camp, Part 3: Branching and Looping
fmt command, Neatening Lines, Keymaps for Pasting into a Window Running vi, Neatening Text with
fmt, Neatening Text with fmt, Neatening Text with fmt, Neatening Text with fmt, Neatening Text with
fmt, Clean Up Program Comment Blocks, fmt -p, Outputting Text to an X Window

-p option, reformatting program source code, Neatening Text with fmt, Clean Up Program
Comment Blocks, fmt -p
-tuw options, Neatening Text with fmt
disk initializer command, Neatening Text with fmt
ending punctuation for sentences and, Neatening Text with fmt
filtering text from vi editor through, Keymaps for Pasting into a Window Running vi

filtering vi text through, Neatening Lines
reformatting fortune with, Outputting Text to an X Window

fmt.sh script, Alternatives to fmt
fmtarg variable (xmessage utility), Outputting Text to an X Window
fold utility, Neatening Text with fmt
font resource (xterm), The Simple Way to Pick a Font, Changing Fonts Dynamically
fonts, The Simple Way to Pick a Font, The Simple Way to Pick a Font, The xterm Menus, The xterm
Menus, Changing Fonts Dynamically, Enabling Escape Sequence and Selection, VT Fonts Menu

default, The Simple Way to Pick a Font
selecting, The Simple Way to Pick a Font
xterm, changing dynamically, Changing Fonts Dynamically, Enabling Escape Sequence and
Selection, VT Fonts Menu

VT Fonts menu, VT Fonts Menu
xterm, VT Fonts menu, The xterm Menus, The xterm Menus

for command (awk), Alphabetical Summary of Commands
for loops, Anyone Can Program the Shell, Alphabetical Summary of Commands, Repeating
Commands, A for Loop, Multiline Commands, Secondary Prompts, Here Document Example #1:
Unformatted Form Letters, Loop Control: break and continue, Testing and Using a sed Script:
checksed, runsed, With a Loop, Handling Command-Line Arguments with a for Loop, Handling
Command-Line Arguments with a for Loop, Handling Arguments with while and shift, Loop Control:
break and continue, Standard Input to a for Loop, Making a for Loop with Multiple Variables, Perl
Boot Camp, Part 3: Branching and Looping

break and continue commands in, Loop Control: break and continue
break and continue, controlling with, Loop Control: break and continue
command-line arguments, handling with, Handling Command-Line Arguments with a for Loop,
Handling Arguments with while and shift
commands, varying while repeating, Repeating Commands, A for Loop
here documents, using to print form letters, Here Document Example #1: Unformatted Form
Letters
in command-line arguments, With a Loop
with multiple variables, Making a for Loop with Multiple Variables
sed scripts, use in, Testing and Using a sed Script: checksed, runsed
standard input, stepping through, Standard Input to a for Loop
wildcards, using with, Handling Command-Line Arguments with a for Loop

forcing file removal/moving without warnings, Protect Important Files: Make Them Unwritable
foreach loop, A foreach Loop
foreach loops, A foreach Loop, Multiline Commands, Secondary Prompts, Arrays, Perl Boot Camp,
Part 3: Branching and Looping

commands, varying while repeating, A foreach Loop
iterating through arrays, Arrays
iterating through list elements, Perl Boot Camp, Part 3: Branching and Looping

foreground color, Configuring It
foreground jobs, Stop Background Output with stty tostop, Killing Foreground Jobs, A nice Gotcha

interrupting with notification of state change in background job, Stop Background Output with
stty tostop

killing, Killing Foreground Jobs
nice command and, A nice Gotcha

foreground processes, Job Control in a Nutshell, Managing Processes: Overall Concepts
process group and, Managing Processes: Overall Concepts

fork system call, fork and exec, Processes Out of Control? Just STOP Them, How the Shell Executes
Other Commands

processes forking out of control, Processes Out of Control? Just STOP Them
format, Backing Up to Tape

tape drives, Backing Up to Tape
formatted manpage files, Searching Online Manual Pages
formatting, Formatting Markup Languages — troff, LATEX, HTML, and So On

markup languages for, Formatting Markup Languages — troff, LATEX, HTML, and So On
formatting Python output, I/O and Formatting
Fortran program source file extension, Filename Extensions
fpath array (zsh), FPATH Search Path
FPATH environment variable, FPATH Search Path, FPATH Search Path, zsh, Korn shell, zsh, zsh

Korn shell, Korn shell
zsh shell, zsh, zsh

free disk space, Timing Is Everything
checking with df, Timing Is Everything

free memory, Memory Information
information about, Memory Information

Free Software Foundation website, Managing and Sharing Files with RCS and CVS
FreeBSD, The Core of Unix, The man Command

sections, searching in manpages, The man Command
FreeBSD Unix, The info Command, Finding Words Inside Binary Files, /usr/bin and Other Software
Directories, Installation with FreeBSD Ports, Installing with FreeBSD Packages, Reading Kernel
Boot Output, Disk Partitioning, Decapitating Your Machine — Serial Consoles, Status and
Troubleshooting, The Director of Operations: inetd, Gateways and NAT, Checking Swap Space,
Forgetting the root Password, Free SSH with OpenSSH

disk partitions, Disk Partitioning
enabling gatewaying, Gateways and NAT
ifconfig file output, Status and Troubleshooting
inetd.conf file, The Director of Operations: inetd
info command, The info Command
installing software with FreeBSD packages, Installing with FreeBSD Packages
kernel boot output for devices, Reading Kernel Boot Output
OpenSSH, Free SSH with OpenSSH
serial consoles, Decapitating Your Machine — Serial Consoles
single user mode, Forgetting the root Password
software installation with FreeBSD Ports, Installation with FreeBSD Ports
software installation with Ports system, /usr/bin and Other Software Directories
strings utility, searching for words in binary files, Finding Words Inside Binary Files
swapinfo utility, Checking Swap Space

fsck (filesystem check) program, The Kernel and Daemons

FTP, Unix Networking and Communications, Emacs Features: A Laundry List, Here Documents,
Configuring the sources.list File, Configuring an Anonymous FTP Server, Server and Client Problems

anonymous ftp, Here Documents
anonymous FTP server, configuring, Configuring an Anonymous FTP Server
Emacs facility for, Emacs Features: A Laundry List
ftp program, Unix Networking and Communications
ftp protocol (URI types), Configuring the sources.list File
securing with port forwarding, Server and Client Problems

function keys, mapping in vi, Command Mode Maps
functional programming languages, functions in, Functions
functions, Internal and External Commands, vi @-Functions, Newlines in an @-Function, Defining
and Using Simple @-Functions, Combining @-Functions, Reusing a Definition, Newlines in an @-
Function, Which One Will bash Use?, Shell Function Basics, tcsh Editing, tcsh Editing, Using tar to
Create and Unpack Archives, Perl Boot Camp, Part 1: Typical Script Anatomy, Scalars, Hashes, Perl
Boot Camp, Part 5: Perl Knows Unix, Functions, Functions, Functions, Everything's an Object, What
We Mean by Buffer Overflow, What We Mean by Buffer Overflow

@-functions, vi editor, vi @-Functions, Newlines in an @-Function, Defining and Using Simple
@-Functions, Combining @-Functions, Reusing a Definition, Newlines in an @-Function

combining, Combining @-Functions
defining and using simple, Defining and Using Simple @-Functions
newlines in, Newlines in an @-Function
reusing definition, Reusing a Definition

buffer overflow, causing, What We Mean by Buffer Overflow
built-in editor functions, tcsh, tcsh Editing, tcsh Editing
C language, boundary checking, What We Mean by Buffer Overflow
Perl, Perl Boot Camp, Part 1: Typical Script Anatomy, Scalars, Hashes, Perl Boot Camp, Part 5:
Perl Knows Unix

exit(), Perl Boot Camp, Part 1: Typical Script Anatomy
filesystem, Perl Boot Camp, Part 5: Perl Knows Unix
hash functions, Hashes
print, Scalars

Python, Functions, Functions, Functions, Everything's an Object
anonymous, creating, Functions
class methods, Everything's an Object
defining, Functions

shell, Internal and External Commands, Which One Will bash Use?, Shell Function Basics
(see also shell functions)

tar utility, Using tar to Create and Unpack Archives

G

g or G (get) commands, sed editor, History Substitutions, Transforming Part of a Line, The Deliberate
Scrivener, The Deliberate Scrivener

G (Get) command, Transforming Part of a Line
gateways, Gateways and NAT, Firewalls, Gatewaying from a Personal LAN over a Modem

functioning as firewalls, Firewalls
personal LAN over a modem, Gatewaying from a Personal LAN over a Modem

gawk utility, Looking for Closure, Quick Reference: awk, awk System Variables, Versions of awk,
Using Standard Input and Output

paired item check script, Looking for Closure
standard I/O, Using Standard Input and Output
variables, awk System Variables
version history, Versions of awk

geometry variable (xmessage utility), Outputting Text to an X Window
get (g or G) commands, sed editor, Transforming Part of a Line, The Deliberate Scrivener, The
Deliberate Scrivener

G (Get) command, Transforming Part of a Line
get command, Connecting to SMB Shares from Unix

copying files from remote host to Unix machine, Connecting to SMB Shares from Unix
getline command (nawk), Alphabetical Summary of Commands
getopt command, Handling Command-Line Arguments with a for Loop, Standard Command-Line
Parsing

parsing output, Standard Command-Line Parsing
getopts command, Handling Arguments with while and shift, Standard Command-Line Parsing
getty program, Job Control in a Nutshell, How Job Control Works, What Are They?, fork and exec

Linux virtual consoles, use in, What Are They?
GID (group ID), Managing Processes: Overall Concepts, When Does a User Become a User, Groups
and Group Ownership

primary group, finding for, Groups and Group Ownership
zero, for superuser group, When Does a User Become a User

global (\:g) string editing operator, String Editing (Colon) Operators
global aliases, zsh Aliases
global command (ex), Useful ex Commands
global commands with pattern matches, Useful Global Commands (with Pattern Matches)
global commands, using in vi editor, Using Search Patterns and Global Commands, Global Searches

global searches, Global Searches
global crontab entries, Adding crontab Entries
global initializations (Emacs), disabling, Customizations and How to Avoid Them
global replacements, Global Searches
globbing, Filename Wildcards in a Nutshell, What if a Wildcard Doesn't Match?

enabling/preventing in shells, Filename Wildcards in a Nutshell
shell failure to match wildcards and, What if a Wildcard Doesn't Match?

Gnome, The Kernel and Daemons
GNU, Highlighting and Color in Shell Prompts, Color ls, Another color ls, Some GNU ls Features,
Can't Access a File? Look for Spaces in the Name, Running Commands on What You Find, Using
"Fast find" Databases, Using "Fast find" Databases, How to Look at Files as They Grow, GNU tail
File Following, GNU tail File Following, Printing the Top of a File, GNU Context greps, Save
Space: tar and compress a Directory Tree, The Unix spell Command, The vi Editor: Why So Much
Material?, tar in a Nutshell, More Ways to Back Up, Using GNU tar with a Remote Tape Drive, With
GNU tar, Wildcard Gotchas in GNU tar, Avoid Absolute Paths with tar, Getting tar's Arguments in

the Right Order, Simplifying the make Process, Interruptable gets with wget
autoconf and automake utilities, Simplifying the make Process
context greps, GNU Context greps
dircolors command, Highlighting and Color in Shell Prompts
Emacs, The vi Editor: Why So Much Material? (see Emacs editor)
fast find utility (locate), Using "Fast find" Databases
find command, {} and, Running Commands on What You Find
head command, Printing the Top of a File
ls command, Color ls, Another color ls, Some GNU ls Features, Can't Access a File? Look for
Spaces in the Name

-Q (quoting) option, Can't Access a File? Look for Spaces in the Name
displaying color names, Color ls, Another color ls

slocate command, Using "Fast find" Databases
spell, download site for, The Unix spell Command
tail program, How to Look at Files as They Grow, GNU tail File Following, GNU tail File
Following

follow option, GNU tail File Following
follow=name and retry options, GNU tail File Following

tar command, Save Space: tar and compress a Directory Tree
tar utility, tar in a Nutshell, More Ways to Back Up, Using GNU tar with a Remote Tape Drive,
With GNU tar, Wildcard Gotchas in GNU tar, Avoid Absolute Paths with tar, Getting tar's
Arguments in the Right Order

command-line arguments, order of, Getting tar's Arguments in the Right Order
gzip and bzip2 options, More Ways to Back Up
remote tape drive, using with, Using GNU tar with a Remote Tape Drive
storing absolute pathnames, Avoid Absolute Paths with tar
wildcards, using with, With GNU tar, Wildcard Gotchas in GNU tar

wget utility, Interruptable gets with wget
GNU Readline, Shell Setup Files — Which, Where, and Why
GNU-Darwin auto-installer for OS X (One-Step), The curl Application and One-Step GNU-Darwin
Auto-Installer for OS X
GNUS (Emacs Usenet client), Emacs Features: A Laundry List
gprof profiler, Timing Is Everything
grabchars program, read: Reading from the Keyboard
graphical user interfaces, Communication with Unix (see GUIs)
graphics, The Portable Bitmap Package, The Portable Bitmap Package

conversion programs, The Portable Bitmap Package, The Portable Bitmap Package
graymaps, The Portable Bitmap Package
greater than (>) operator, Syntax, Scalars
greater than or equal to (>=) operator, Scalars
greedy and non-greedy regular expressions, Regular Expressions: Potential Problems
grep command, Searching Online Manual Pages, Who's On?, Custom -exec Tests Applied, grepping a
Directory Tree, lookfor: Which File Has That Word?, Numbering Lines, Different Versions of grep,
A Highlighting grep, Removing Every File but One, Command Substitution, Command Substitution,
Understanding Expressions, Regular Expressions: Matching a Character with a Character Set,

Examples of Searching, Getting a List of Matching Files with grep -l, Getting a List of Nonmatching
Files, The vgrep Script, Searching for Patterns Split Across Lines, Searching for Patterns Split
Across Lines, Overview: Open Files and File Descriptors, Problems Piping to a Pager

-c option, Getting a List of Nonmatching Files
listing nonmatching files, Getting a List of Nonmatching Files

-e option, The vgrep Script
-exec operator (find command), using for, Custom -exec Tests Applied
-l option, Command Substitution, Getting a List of Matching Files with grep -l

listing matching files, Getting a List of Matching Files with grep -l
-n option, number lines with, Numbering Lines
-Z option for compressed files, Searching Online Manual Pages
cgrep script, Searching for Patterns Split Across Lines, Searching for Patterns Split Across
Lines
finding commands containing the word "error", Command Substitution
finding file with particular word or string in it, grepping a Directory Tree
lookfor script, using in, lookfor: Which File Has That Word?
piping output to pager, Problems Piping to a Pager
redirecting output, Overview: Open Files and File Descriptors
regular expressions used with, search pattern examples, Examples of Searching
regular expressions, evaluating and matching, Understanding Expressions
regular expressions, use of, Regular Expressions: Matching a Character with a Character Set

printing every address in your incoming mailbox, Regular Expressions: Matching a
Character with a Character Set

v option, Removing Every File but One
excluding files from deletion, Removing Every File but One

who command, using with, Who's On?
grep commands, Communication with Unix, Different Versions of grep, Different Versions of grep,
Different Versions of grep, Different Versions of grep, Different Versions of grep, Searching for Text
with grep, Searching for Text with grep, Searching for Text with grep, Searching for Text with grep,
Searching for Text with grep, Searching for Text with grep, Extended Searching for Text with egrep,
grepping for a List of Patterns, Approximate grep: agrep, Search RCS Files with rcsgrep,
rcsegrep.fast, rcsgrep, rcsegrep, rcsfgrep, GNU Context greps, GNU Context greps, GNU Context
greps, GNU Context greps, A Multiline Context grep Using sed, Compound Searches, Narrowing a
Search Quickly, Narrowing a Search Quickly, Faking Case-Insensitive Searches, A Highlighting grep

agrep, Different Versions of grep, Approximate grep: agrep
case-insensitive searches, Faking Case-Insensitive Searches
compound searches, Compound Searches, Narrowing a Search Quickly
egrep, Different Versions of grep, Extended Searching for Text with egrep
egrep -f and fgrep -f, grepping for a List of Patterns
fgrep, Different Versions of grep
GNU context greps, GNU Context greps, GNU Context greps, GNU Context greps, GNU Context
greps

-A option, GNU Context greps
-B option, GNU Context greps
-C option, GNU Context greps

grep, Different Versions of grep, Searching for Text with grep, Searching for Text with grep,
Searching for Text with grep, Searching for Text with grep, Searching for Text with grep,
Searching for Text with grep, Narrowing a Search Quickly

-c option, Searching for Text with grep
-i option, Searching for Text with grep
-l option, Searching for Text with grep
-v option, Searching for Text with grep, Narrowing a Search Quickly
-w option, Searching for Text with grep
ps command, using with, Searching for Text with grep

highlighting text with hgrep, A Highlighting grep
multiline context grep using sed, A Multiline Context grep Using sed
rcsgrep, Different Versions of grep, Search RCS Files with rcsgrep, rcsegrep.fast
running on RCS files with rcsgrep script, rcsgrep, rcsegrep, rcsfgrep
searching files for matching line of text, Communication with Unix

group ID, Managing Processes: Overall Concepts (see GID)
grouping operator (()), Be an Expert on find Search Operators, grepping for a List of Patterns,
Extended Regular Expressions
groups, Access to Directories, Managing Processes: Overall Concepts, Perl Boot Camp, Part 5: Perl
Knows Unix, Unix User/Group Infrastructure, Group Permissions in a Directory with the setgid Bit,
Groups and Group Ownership, Groups and Group Ownership, Add Users to a Group to Deny
Permissions, User, Group, and World, User, Group, and World, Which Group is Which?, The Handy
chmod = Operator, Juggling Permissions

denying permissions with, Add Users to a Group to Deny Permissions
file ownership, User, Group, and World
file ownership, determining, Which Group is Which?
group ownership and, Groups and Group Ownership, Groups and Group Ownership
ownership of files in directories, Access to Directories
ownership of files, changing, Perl Boot Camp, Part 5: Perl Knows Unix
permissions, Group Permissions in a Directory with the setgid Bit, User, Group, and World, The
Handy chmod = Operator, Juggling Permissions

denying, User, Group, and World
directory with setgid bit, Group Permissions in a Directory with the setgid Bit
listing for files, Juggling Permissions
setting to same as file owner, The Handy chmod = Operator

process groups, Managing Processes: Overall Concepts
Unix user/group infrastructure, Unix User/Group Infrastructure

groups command, Groups and Group Ownership, Juggling Permissions
gsub command (awk), Alphabetical Summary of Commands
gt operator (Perl), Scalars
guest accounts, Installing and Configuring Samba
GUIs (graphical user interfaces), Power Grows on You, Communication with Unix, There Are Many
Shells, Other Problems, wxPython

operating systems, Power Grows on You
Python, wxPython
Tcl/Tk commands for, using in wish shell, There Are Many Shells

wrapping interactive programs with, using Expect, Other Problems
gunzip utility, Compressing Files to Save Space, Compressing Files to Save Space, Compressing
Files to Save Space, uuencoding

-c option, writing uncompressed data to standard output, Compressing Files to Save Space
-N option, Compressing Files to Save Space
recreating original tar files with, uuencoding

gzcat command, Compressing Files to Save Space
gzip utility, Compressing Files to Save Space, Compressing Files to Save Space, More Ways to Back
Up, Backing Up to Floppies or Zip Disks, To gzip, or Not to gzip?, Using Standard Input and Output

gzip -c command, Using Standard Input and Output
gzip -l command, Compressing Files to Save Space

H

h or H (hold) commands, sed editor, The Deliberate Scrivener, The Deliberate Scrivener
h command, The Deliberate Scrivener

hacking, Power Grows on You
handlers for DDoS attacks, What We Mean by DoS
hangups, What Are Signals? (see HUP signals)
hangups, background processes and, nohup
hard disk quota limits, Disk Quotas
hard drives, Reading Kernel Boot Output
hard links, Finding the (Hard) Links to a File, More About Links, Differences Between Hard and
Symbolic Links, Creating and Removing Links, Stale Symbolic Links, Copying Directory Trees with
cp -r, Safer File Deletion in Some Directories, Save Space with a Link, Save Space: tar and
compress a Directory Tree, Automatic Setup When You Enter/Exit a Directory

-i file in home directory for confirmation of file deletion, Safer File Deletion in Some
Directories
broken, Creating and Removing Links
copying, Copying Directory Trees with cp -r
disk space and, Save Space with a Link
finding for files, Finding the (Hard) Links to a File
symbolic links vs., Differences Between Hard and Symbolic Links
tar -l command, printing messages about, Save Space: tar and compress a Directory Tree
to .enter and .exit files, Automatic Setup When You Enter/Exit a Directory

hardware, A Glimpse at Hardware, Quick Introduction to Hardware, Reading Kernel Boot Output,
Basic Kernel Configuration, Disk Partitioning, Disk Partitioning, Filesystem Types and /etc/fstab,
Network Devices — ifconfig, Mounting Network Filesystems — NFS, SMBFS, Win Is a Modem Not
a Modem?, Setting Up a Dialup PPP Session, USB Configuration, Dealing with Sound Cards and
Other Annoying Hardware, Dealing with Sound Cards and Other Annoying Hardware, Decapitating
Your Machine — Serial Consoles

/proc filesystem files, A Glimpse at Hardware
dialup PPP sessions, Setting Up a Dialup PPP Session
disk partitioning, Disk Partitioning, Disk Partitioning

PCs, Disk Partitioning

filesystem types and /etc/fstab, Filesystem Types and /etc/fstab
filesystems, Mounting Network Filesystems — NFS, SMBFS

mounting NFS and SMBFS, Mounting Network Filesystems — NFS, SMBFS
kernel boot output for devices, Reading Kernel Boot Output
kernel configuration to support, Basic Kernel Configuration
modems, Win Is a Modem Not a Modem?
network devices, configuring, Network Devices — ifconfig
serial consoles, Decapitating Your Machine — Serial Consoles
sound cards and other, Dealing with Sound Cards and Other Annoying Hardware
supported hardware lists, Dealing with Sound Cards and Other Annoying Hardware
USB configuration, USB Configuration

hash codes, Inside spell
hash command, Controlling Shell Command Searches
hashes (Perl), Perl Boot Camp, Part 2: Variables and Data Types, Hashes, Hashes, Hashes

functions for, Hashes
iterating over, Hashes

head command, newer: Print the Name of the Newest File, Printing the Top of a File, Printing the Top
of a File, Printing the Top of a File, Printing the Top of a File, Making an Arbitrary-Size File for
Testing, What Can You Do with an Empty File?

c option to print characters/bytes, Printing the Top of a File
GNU version, c nk and c nm options, Printing the Top of a File
n option to control number of lines displayed, Printing the Top of a File

head of a pathname (\:h operator), String Editing (Colon) Operators
headers, mail, Remove Mail/News Headers with behead, MIME Encoding, MIME Encoding

creating with cat, MIME Encoding
proper formation of, MIME Encoding
removing with behead script, Remove Mail/News Headers with behead

help, The man Command, The info Command, The man Command, whatis: One-Line Command
Summaries, whereis: Finding Where a Command Is Located, Searching Online Manual Pages, How
Unix Systems Remember Their Names, Which Version Am I Using?, What tty Am I On?, Who's On?,
The info Command, The info Command

command versions, Which Version Am I Using?
info commands, The info Command, The info Command
man command, The man Command
searching online manual pages, Searching Online Manual Pages
terminals, tty command, What tty Am I On?
Unix system names, How Unix Systems Remember Their Names
whatis command, whatis: One-Line Command Summaries
whereis command, whereis: Finding Where a Command Is Located
who command, Who's On?

help command (lpc), Printer Control with lpc
here documents, Here Documents, Here Document Example #1: Unformatted Form Letters
hereis document terminators, Quoted hereis Document Terminators: sh Versus csh
hgrep script, A Highlighting grep
hidden files, listing with and ls -a and ls -A, Showing Hidden Files with ls -A and -a

hierarchy, filesystem, /usr/bin and Other Software Directories
highlighting, Highlighting and Color in Shell Prompts, Trying It, A Highlighting grep

hgrep script, using, A Highlighting grep
in shell prompts, Highlighting and Color in Shell Prompts

histchars shell variable, changing history characters with, Changing History Characters with histchars
histfile shell variable (tcsh), Shell Setup Files — Which, Where, and Why
HISTFILESIZE environment variable, Picking Up Where You Left Off
history command, The Lessons of History, History by Number, History by Number, History by
Number, History by Number, Pass History to Another Shell, Pass History to Another Shell, Pass
History to Another Shell

-d and -f options, showing dates and times, History by Number
-D option, showing elapsed time, History by Number
-h option, Pass History to Another Shell
-r (reverse) option, History by Number, Pass History to Another Shell

bash shell, cautions about using, History by Number
-w option, Pass History to Another Shell
listing specified number of previous commands, History by Number

history number in shell prompts, Dynamic Prompts, Multiline Shell Prompts, History in a Nutshell,
History by Number

multiline C-shell prompt, Multiline Shell Prompts
history of commands, There Are Many Shells, Making Directories Made Easier, Narrowing a Search
Quickly, Repeating a Time-Varying Command, The Lessons of History, Instead of Changing History
Characters, My Favorite Is !$, My Favorite Is !:n*, Using !$ for Safety with Wildcards, History by
Number, History by Number, History Substitutions, History Substitutions, Check Your History First
with :p, Picking Up Where You Left Off, C Shells, bash, ksh, zsh, C Shells, Pass History to Another
Shell, Shell Command-Line Editing, zsh Editing, vi Editing Mode, Emacs Editing Mode, tcsh Editing,
zsh Editing, ksh Editing, bash Editing, zsh Editing, Changing History Characters with histchars

!$ sequence for safety with wildcards, Using !$ for Safety with Wildcards
changing history characters with histchars, Changing History Characters with histchars
checking with \:p operator, Check Your History First with :p
history numbers, History by Number, History by Number
history substitution, Making Directories Made Easier, My Favorite Is !$, My Favorite Is !:n*

!$ sequence, My Favorite Is !$
!\:n* sequence, My Favorite Is !:n*
mkdir command, using with, Making Directories Made Easier

history substitutions, History Substitutions, History Substitutions
narrowing searches with, Narrowing a Search Quickly
passing to other shells, Pass History to Another Shell
repeating commands with, Repeating a Time-Varying Command
saving history in history file, Picking Up Where You Left Off, C Shells, bash, ksh, zsh, C Shells

bash, ksh, and zsh shells, bash, ksh, zsh
C shells, C Shells

shell command line-editing, Shell Command-Line Editing, zsh Editing, vi Editing Mode, Emacs
Editing Mode, tcsh Editing, zsh Editing, ksh Editing, bash Editing, zsh Editing

bash, bash Editing

Emacs editing mode, Emacs Editing Mode
ksh (Korn shell), ksh Editing
tcsh shell, tcsh Editing, zsh Editing
vi editing mode, vi Editing Mode
zsh, zsh Editing

history shell variable, Shell Variables
history substitution, String Editing (Colon) Operators, String Editing (Colon) Operators, A foreach
Loop, C-Shell Aliases with Command-Line Arguments, History in a Nutshell, History Substitutions,
History Substitutions, Instead of Changing History Characters

disabling in bash, Instead of Changing History Characters
editing substitutions in C shells, zsh, and bash, String Editing (Colon) Operators, String Editing
(Colon) Operators
for loop, using for, A foreach Loop

HISTSIZE environment variable, The Lessons of History, Picking Up Where You Left Off
HOBLink JWT RDP client, Hob
hold (h or H) commands, sed editor, Hold Space: The Set-Aside Buffer, The Deliberate Scrivener,
The Deliberate Scrivener

h command, The Deliberate Scrivener
HOLD SCREEN button, Output Stopped?
hold space (sed editor), Transforming Part of a Line, The Deliberate Scrivener

transforming part of a line, use in, Transforming Part of a Line
home directory, Your Home Directory, Use Absolute Pathnames in Shell Setup Files, Many Homes,
A bin Directory for Your Programs and Scripts, Finding (Anyone's) Home Directory, Quickly,
Predefined Environment Variables

bin subdirectory, creating, A bin Directory for Your Programs and Scripts
finding, Many Homes, Finding (Anyone's) Home Directory, Quickly
HOME environment variable, Predefined Environment Variables
pathname of, Use Absolute Pathnames in Shell Setup Files

HOME environment variable, Finding (Anyone's) Home Directory, Quickly, Predefined Environment
Variables
host allow directive, Installing and Configuring Samba
host tool, Domain Name Service (DNS)
host-based access control, Starting a Remote Client with rsh and ssh
host-based modems, Win Is a Modem Not a Modem?
hostname command, How Unix Systems Remember Their Names
hostnames, Terminal Setup: Testing Remote Hostname and X Display, Static Prompts, Multiline Shell
Prompts, Command-Specific Completion, Status and Troubleshooting, Domain Name Service (DNS),
Installing and Configuring Samba

completion by shells, Command-Specific Completion
for IP address, finding with dig -x, Status and Troubleshooting
mapped to IP addresses by DNS, Domain Name Service (DNS)
NETBIOS, Installing and Configuring Samba
in shell prompts, Static Prompts, Multiline Shell Prompts

multiline C-shell prompt, Multiline Shell Prompts
showing with who am i command, Terminal Setup: Testing Remote Hostname and X Display

hosts, A .cshrc.$HOST File for Per Host Setup, General and Authentication Problems
.cshrc.$HOST file for per host setup, A .cshrc.$HOST File for Per Host Setup
trusted-host authentication on SSH, General and Authentication Problems

hosts.equiv file, Starting a Remote Client with rsh and ssh
HTML, Filename Extensions, ed/ex Batch Edits: A Typical Example, Formatting Markup Languages
— troff, LATEX, HTML, and So On, Converting Typeset Files into a Printing Language

converted into PostScript, Converting Typeset Files into a Printing Language
editing files with batch editing script, ed/ex Batch Edits: A Typical Example
file extensions, Filename Extensions

htmllib and HTMLParser modules, Python and the Web
HTMLParser module, htmllib and HTMLParser
HTTP, Emacs Features: A Laundry List, Configuring the sources.list File

Emacs facility for, Emacs Features: A Laundry List
URI protocol types, Configuring the sources.list File

hung terminals, fixing, Checklist: Terminal Hangs When I Log In, Output Stopped?, Job Stopped?,
Program Waiting for Input?, Stalled Data Connection?, Aborting Programs

aborting programs, Aborting Programs
output stopped by HOLD SCREEN or SCROLL LOCK button, Output Stopped?
program waiting for input, Program Waiting for Input?
stalled data connection, Stalled Data Connection?
stopped jobs, checking for, Job Stopped?

HUP (hangup) signals, nohup, What Are Signals?, Printer Queue Watcher: A Restartable Daemon
Shell Script

ignoring with nohup command, nohup
hyphen , under symbols), Handling Command-Line Arguments with a for Loop (see - (dash)
HZ constant, frequency of system time updates, How Unix Keeps Time

I

i-number (inodes), How Unix Keeps Track of Files: Inodes
i-numbers, Removing a Strange File by its i-number

deleting files by, Removing a Strange File by its i-number
I/O-bound processes, Timing Is Everything, Know When to Be "nice" to Other Users...and When Not
To

nice command, effect of, Know When to Be "nice" to Other Users...and When Not To
ICA client, installing, Citrix Metaframe
ICMP (Internet Control Message Protocol), TCP/IP — IP Addresses and Ports, Layer 4 Protocols:
TCP, UDP, and ICMP, Layer 4 Protocols: TCP, UDP, and ICMP

diagnostic and traffic control messages, Layer 4 Protocols: TCP, UDP, and ICMP
icons, Setting the Titlebar and Icon Text, SWAT and GUI SMB Browsers

navigation, for resources shared with SMB network, SWAT and GUI SMB Browsers
text, setting for xterms, Setting the Titlebar and Icon Text

IDE (Integrated Development Environment), Emacs as, Emacs Features: A Laundry List
identifiers, Managing Processes: Overall Concepts, Managing Processes: Overall Concepts,
Managing Processes: Overall Concepts, Managing Processes: Overall Concepts

(see also entries under identifier names)
group ID (GID), Managing Processes: Overall Concepts
process ID (PID), Managing Processes: Overall Concepts
user IDs (UIDs), Managing Processes: Overall Concepts

identity, Python objects, Everything's an Object
if (! $?prompt) exit test, Gotchas in set prompt Test
if command (awk), Alphabetical Summary of Commands
if statements, Test Exit Status with the if Statement, Test Exit Status with the if Statement, Test Exit
Status with the if Statement, test: Testing Files and Strings, The Unappreciated Bourne Shell ":"
Operator, Outputting Text to an X Window, Missing or Extra esac, ;;, fi, etc.

debugging, Missing or Extra esac, ;;, fi, etc.
syntax for Bourne shell, Test Exit Status with the if Statement
test command, using with, test: Testing Files and Strings
testing exit status with, Test Exit Status with the if Statement, Test Exit Status with the if
Statement
in xmessage command line, Outputting Text to an X Window
\: used as do-nothing place filler, The Unappreciated Bourne Shell ":" Operator

if-then-else loops, How to Put if-then-else in a C-Shell Alias, Searching for Patterns Split Across
Lines, Perl Boot Camp, Part 3: Branching and Looping

cgrep script, using in, Searching for Patterns Split Across Lines
csh aliases, use in, How to Put if-then-else in a C-Shell Alias
Perl scripts, using in, Perl Boot Camp, Part 3: Branching and Looping

if/else block, testing multiple conditionals in, Test Exit Status with the if Statement
ifconfig tool, Quick Introduction to Hardware, Network Devices — ifconfig, Status and
Troubleshooting
IFS (internal field separator) shell variable, Using set and IFS
ignoreeof variable, Stop Accidental Bourne-Shell Logouts
ignoring filenames in ls command listing, Some GNU ls Features
@INC array (Perl), Checking your Perl Installation, Perl Boot Camp, Part 1: Typical Script Anatomy

module paths in, Perl Boot Camp, Part 1: Typical Script Anatomy
incremental backups, On-Demand Incremental Backups of a Project, On-Demand Incremental
Backups of a Project
incremental searches in Emacs, Rational Searches
indentation, offset: Indent Text, Here Documents, Indentation

in Bourne shell scripts with <<- operator, Here Documents
Perl script for text, offset: Indent Text
in Python scripts, Indentation

index command (awk), Alphabetical Summary of Commands
indexes, Using the Stored Lists, Using the Stored Lists, Hashes

Bourne shell arrays, Using the Stored Lists
C shell arrays, Using the Stored Lists
hashes, Hashes

industrial strength backups, Industrial Strength Backups
inequality, Scalars, Scalars

!= operator, Scalars

ne operator, Scalars
inetd daemon, Other Problems, The Director of Operations: inetd, Installing and Configuring Samba,
Disabling inetd

disabling for security reasons, Disabling inetd
Expect scripts with, Other Problems
running Samba daemons, Installing and Configuring Samba

infinite loops, How to Look at Files as They Grow
tail -f command, creating with, How to Look at Files as They Grow

info command, The info Command, The info Command
inheritance, Managing Processes: Overall Concepts, Shell Variables

process information, Managing Processes: Overall Concepts
variables, Shell Variables

_ _init_ _() method (Python classes), Everything's an Object
init program, Job Control in a Nutshell, How Job Control Works, fork and exec, Why You Can't Kill
a Zombie

collecting child processes after parent exits, Why You Can't Kill a Zombie
initialization files (Emacs), Customizations and How to Avoid Them
initializing new cvsroot, CVS Basics
inodes, Finding Oldest or Newest Files with ls -t and ls -u, Searching for Old Files, What's Really in
a Directory?, Differences Between Hard and Symbolic Links, Links to a Directory, How Unix Keeps
Track of Files: Inodes, How Unix Keeps Track of Files: Inodes, tar in a Nutshell, User, Group, and
World

-ctime (change time) operator, using with find, Searching for Old Files
file permissions in, User, Group, and World
i-numbers for parent directory entries, Links to a Directory
information in, How Unix Keeps Track of Files: Inodes
ls -c command for, Finding Oldest or Newest Files with ls -t and ls -u
ls -i command, listing number for each directory entry, Differences Between Hard and Symbolic
Links
tar utility and, tar in a Nutshell

input, Using Standard Input and Output (see input/output standard input)
input events, X Event Translations
input/output (I/O), Programs Are Designed to Work Together, Searching Online Manual Pages,
Output Stopped?, Running Commands on What You Find, Stop Background Output with stty tostop,
nohup, Making Your at Jobs Quiet, Overview: Open Files and File Descriptors, I/O and Formatting,
Using Standard Input and Output, Other Checks

(see also standard error; standard input; stardard output)
checking statistics for security problems, Other Checks
find command -print0 option, Running Commands on What You Find
output from at command, quieting, Making Your at Jobs Quiet
output from background jobs, stopping, Stop Background Output with stty tostop
output from command, sending to nohup.out file, nohup
piping shell loop output to pager, Searching Online Manual Pages
Python, I/O and Formatting
redirecting, Using Standard Input and Output (see redirecting input and output)

redirecting for programs, Overview: Open Files and File Descriptors
stopped terminal output, debugging, Output Stopped?

INPUTRC environment variable, Predefined Environment Variables
inputrc file, bash Editing

customizing bash editing in, bash Editing
insert command (ex), Useful ex Commands
insert mode for pasting text, Simple Copy and Paste in xterm
insertion mode (Emacs), Putting Emacs in Overwrite Mode
installing, Installation and Distutils

Python, Installation and Distutils
installing Perl, Compiling Perl from Scratch
installing software, /usr/bin and Other Software Directories, /usr/bin and Other Software Directories,
The Challenges of Software Installation on Unix, Which make?, Simplifying the make Process, Using
Debian's dselect, Exiting dselect, Choosing the Access Method, Choosing the Access Method,
Updating Information on Available Packages, Choosing Packages for Installation or Removal,
Choosing Packages for Installation or Removal, Exiting the Select Function, Installing Packages,
Configuring Packages, Removing Packages, Exiting dselect, Installing Software with Debian's Apt-
Get, Configuring the sources.list File, Interruptable gets with wget, The curl Application and One-
Step GNU-Darwin Auto-Installer for OS X, Installation with FreeBSD Ports, Installing with
FreeBSD Packages, Finding and Installing RPM Packaged Software

/usr/bin and other directories for, /usr/bin and Other Software Directories
challenges of, The Challenges of Software Installation on Unix
curl application, using, The curl Application and One-Step GNU-Darwin Auto-Installer for OS
X
Debian apt-get tool, using, Installing Software with Debian's Apt-Get, Configuring the
sources.list File

configuring sources.list file, Configuring the sources.list File
Debian dselect tool, using, Using Debian's dselect, Exiting dselect, Choosing the Access
Method, Choosing the Access Method, Updating Information on Available Packages, Choosing
Packages for Installation or Removal, Choosing Packages for Installation or Removal, Exiting
the Select Function, Installing Packages, Configuring Packages, Removing Packages, Exiting
dselect

access method, choosing, Choosing the Access Method, Choosing the Access Method
choosing packages for installation or removal, Choosing Packages for Installation or
Removal, Choosing Packages for Installation or Removal
configuring packages, Configuring Packages
exiting, Exiting dselect
exiting select function, Exiting the Select Function
installing packages, Installing Packages
removing packages, Removing Packages
updating information on available packages, Updating Information on Available Packages

FreeBSD packages, using, Installing with FreeBSD Packages
FreeBSD Ports, using, Installation with FreeBSD Ports
GNU wget utility, using, Interruptable gets with wget
make utility, problems with differing versions, Which make?

RPM, using, Finding and Installing RPM Packaged Software
simplifying the make process, Simplifying the make Process

instance of an object, application resources associated with, X Resource Syntax
instance variables (Python), Everything's an Object
instances of Python classes, Everything's an Object
INT (interrupt) signal, What Are Signals?, Killing Foreground Jobs, Destroying Processes with kill

killing processes waiting for NFS resources, Destroying Processes with kill
sending with CTRL-c command, Killing Foreground Jobs

int command (awk), Alphabetical Summary of Commands
Integrated Development Environment (IDE), Emacs as, Emacs Features: A Laundry List
interactive command-line editing, The Lessons of History, Shell Command-Line Editing, vi Editing
Mode, Emacs Editing Mode, tcsh Editing, zsh Editing, ksh Editing, bash Editing, zsh Editing

bash, bash Editing
Emacs editing mode, Emacs Editing Mode
ksh (Korn shell), ksh Editing
tcsh shell, tcsh Editing, zsh Editing
vi editing mode, vi Editing Mode
zsh shell, zsh Editing

interactive commands, Communication with Unix
interactive logins, Starting Remote X Clients from Interactive Logins

starting remote X clients from, Starting Remote X Clients from Interactive Logins
interactive mode for shells, Interactive Use Versus Shell Scripts
interactive programs, A nice Gotcha, Expect, Other Problems, Testing: A Story

controlling with Expect program, Expect, Other Problems
nice command and, A nice Gotcha
testing with Expect, Testing: A Story

interactive renaming of files, Renaming a List of Files Interactively
interactive shells, Shell Setup Files — Which, Where, and Why, Login Shells, Interactive Shells,
Interactive Shells, Interactive Shells, Setup Files Aren't Read When You Want?

Bourne shell, Shell Setup Files — Which, Where, and Why
ENV environment variable, Shell Setup Files — Which, Where, and Why

setup files, reading at different times, Setup Files Aren't Read When You Want?
interactive spell checking, Check Spelling Interactively with ispell
interation in loops, Loop Control: break and continue
intergers in Perl, Perl Boot Camp, Part 2: Variables and Data Types
internal commands, Internal and External Commands
internal field separator (IFS) shell variable, Using set and IFS
Internet, Unix Networking and Communications
Internet Control Message Protocol, TCP/IP — IP Addresses and Ports (see ICMP)
Internet Message Access Protocol (IMAP), Mail — SMTP, POP, and IMAP
Internet Protocol (IP), TCP/IP — IP Addresses and Ports
interoperability, The Core of Unix

POSIX standard, The Core of Unix
interpolating variables, Perl Boot Camp, Part 1: Typical Script Anatomy
interpretation of commands by shells, What the Shell Does (see commands)

interpreted languages, What Is Python?
interpreter, Installation and Distutils

Python, Installation and Distutils
interpreter, perl, Checking your Perl Installation
interrupt characters, setting, Setting Your Erase, Kill, and Interrupt Characters
interrupting commands, Separating Commands with Semicolons

in a string of commands separated by semicolons, Separating Commands with Semicolons
interrupting jobs, Stop Background Output with stty tostop
interrupts, Trapping Exits Caused by Interrupts

shell scripts, trapping exits caused by, Trapping Exits Caused by Interrupts
intr key, Setting Your Erase, Kill, and Interrupt Characters
intruder detection, Intruder Detection
invalid symbolic links, Stale Symbolic Links
invisible files, Problems Deleting Directories
IP (Internet Protocol), Network Devices — ifconfig, TCP/IP — IP Addresses and Ports, Internet
Protocol (IP), Internet Protocol (IP), Internet Protocol (IP), Layer 4 Protocols: TCP, UDP, and ICMP,
Layer 4 Protocols: TCP, UDP, and ICMP, Status and Troubleshooting, Domain Name Service (DNS),
Dynamic Host Configuration Protocol (DHCP), Gateways and NAT, Gateways and NAT

addresses, Network Devices — ifconfig, Status and Troubleshooting, Domain Name Service
(DNS), Dynamic Host Configuration Protocol (DHCP), Gateways and NAT

DHCP and, Dynamic Host Configuration Protocol (DHCP)
displaying with dig, Status and Troubleshooting
mapping hostnames to, Domain Name Service (DNS)
network devices, Network Devices — ifconfig
private network addresses and, Gateways and NAT

addresses and ports, TCP/IP — IP Addresses and Ports, Internet Protocol (IP), Layer 4
Protocols: TCP, UDP, and ICMP

addresses, Internet Protocol (IP)
ports, Layer 4 Protocols: TCP, UDP, and ICMP

IP masquerading on Linux, Gateways and NAT
TCP, UDP, and ICMP with, Layer 4 Protocols: TCP, UDP, and ICMP
Version 4 (IPv4), Internet Protocol (IP)
Version 6 (IPv6), Internet Protocol (IP)

IP Control Message Protocol, TCP/IP — IP Addresses and Ports (see ICMP)
irc utility, Unix Networking and Communications
IRIX systems, Starting a Remote Client with rsh and ssh

restricted shell (rsh), Starting a Remote Client with rsh and ssh
isc-dhcpd daemon, Dynamic Host Configuration Protocol (DHCP)
ispell program, Check Spelling Interactively with ispell
iterating, Arrays, Hashes, Perl Boot Camp, Part 3: Branching and Looping

through arrays, Arrays
through key-value pairs in hashes, Hashes
through list elements with foreach, Perl Boot Camp, Part 3: Branching and Looping

iterating shell variables over arguments, Quoting and Command-Line Parameters

J

J

Java, Sharing Desktops with VNC, Hob
applet VNC client, Sharing Desktops with VNC
HOBLink JWT (RDP client), Hob

jiffies (hundredths of a second), Kernel and System Statistics
job control, Shell Escapes: Running One UnixCommand While Using Another, Job Control in a
Nutshell, Stopping Remote Login Sessions, Job Control Basics, How Job Control Works, Using Job
Control from Your Shell, Some Gotchas with Job Control, Job Control and autowrite: Real
Timesavers!, Disowning Processes, Linux Virtual Consoles, Stopping Remote Login Sessions,
Managing Processes: Overall Concepts, Managing Processes: Overall Concepts, Processes Out of
Control? Just STOP Them

autowrite and, Job Control and autowrite: Real Timesavers!
basics of, Job Control Basics, How Job Control Works, Using Job Control from Your Shell

how it works, How Job Control Works
using from your shell, Using Job Control from Your Shell

Linux virtual consoles, use in, Linux Virtual Consoles
potential problems with, Some Gotchas with Job Control
process groups, Managing Processes: Overall Concepts
remote login sessions, stopping, Stopping Remote Login Sessions
running background jobs without, Disowning Processes
shell features for, Managing Processes: Overall Concepts
STOP signal, using to stop forking processes, Processes Out of Control? Just STOP Them

job numbers, Using jobs Effectively
putting job into foreground or background with, Using jobs Effectively

job numbers, assignment to background processes, Using jobs Effectively
jobs, Setting Your Erase, Kill, and Interrupt Characters, Job Control in a Nutshell, Using jobs
Effectively, Using jobs Effectively, Using jobs Effectively, Using jobs Effectively, The "Current Job"
Isn't Always What You Expect, System Overloaded? Try Stopping Some Jobs, Notification When
Jobs Change State, Stop Background Output with stty tostop, Disowning Processes, Managing
Processes: Overall Concepts, Killing Foreground Jobs, Making Your at Jobs Quiet, Checking and
Removing Jobs, Avoiding Other at and cron Jobs

at command, checking and removing, Checking and Removing Jobs
at command, making quiet, Making Your at Jobs Quiet
current job, Using jobs Effectively, The "Current Job" Isn't Always What You Expect
deciding when to run, Avoiding Other at and cron Jobs
effective use of, Using jobs Effectively, Using jobs Effectively
foreground, Killing Foreground Jobs

killing, Killing Foreground Jobs
killing by process ID number, Job Control in a Nutshell
notification of changed job state, Notification When Jobs Change State
output from background jobs, stopping, Stop Background Output with stty tostop
previous job, Using jobs Effectively
running without job control, Disowning Processes
stopping to relieve overloaded system, System Overloaded? Try Stopping Some Jobs

terminating or stopping, control keys for, Setting Your Erase, Kill, and Interrupt Characters
jobs command, Job Stopped?, Job Control in a Nutshell, Using Job Control from Your Shell, Using
jobs Effectively

stopped jobs, checking for, Job Stopped?
join command, Joining Lines with join
jot utility, Repeating Commands

commands, repeating with, Repeating Commands
Joy, Bill, The Idea of a Terminal Database

K

kernel, Communication with Unix, Communication with Unix, The Kernel and Daemons, The Kernel
and Daemons, Kernel and System Statistics, What Are Signals?, Timing Is Everything, The Story of :
#!, The Story of : # #!, Don't Need a Shell for Your Script? Don't Use One, Making #! Search the
PATH, Overview: Open Files and File Descriptors, What to Back Up

backing up, What to Back Up
daemons, The Kernel and Daemons, The Kernel and Daemons
relationship with shell, utilities, and applications, Communication with Unix
running scripts from, The Story of : # #!, The Story of : # #!, Don't Need a Shell for Your Script?
Don't Use One, Making #! Search the PATH

env command, using, Making #! Search the PATH
script filename as argument, Don't Need a Shell for Your Script? Don't Use One

scheduler program, Timing Is Everything
signals and, What Are Signals?
starting processes, Overview: Open Files and File Descriptors
statistics on (/proc/stat file), Kernel and System Statistics

kernel boot output for, Reading Kernel Boot Output
kernels, Quick Introduction to Hardware, Reading Kernel Boot Output, Basic Kernel Configuration,
Setting Up a Dialup PPP Session, Gateways and NAT

boot output, reading, Reading Kernel Boot Output
configuration, Basic Kernel Configuration
modules for device drivers, Quick Introduction to Hardware
PPP code in, Setting Up a Dialup PPP Session
recompiling to turn on IP forwarding, Gateways and NAT

Kernighan, Brian, zap
key bindings, tcsh Editing, tcsh Editing, ksh Editing

bindkey command, tcsh Editing, tcsh Editing
to built-in Emacs editor functions in Korn shell, ksh Editing

key bindings in Emacs, Emacs: The Other Editor, Rational Searches
for incremental searches, Rational Searches

key definitions, "less" is More
key mappings, Local Settings for vi

.exrc file for vi editor, saving in, Local Settings for vi
key-value pairs for hashes, Hashes
keybindings, zsh Editing

zsh command-line editing, zsh Editing
keyboard macros, Emacs, Emacs Features: A Laundry List
keyboard shortcuts, Save Time and Typing with the vi map Commands, What You Lose When You
Use map!, Protecting Keys from Interpretation by ex, vi Macro for Splitting Long Lines, Command
Completion

command completion in Emacs, Command Completion
vi map commands, Save Time and Typing with the vi map Commands, What You Lose When
You Use map!, Protecting Keys from Interpretation by ex, vi Macro for Splitting Long Lines

keycode keyword, Defining Keys and Button Presses with xmodmap
keymap table, maintained by X server, Defining Keys and Button Presses with xmodmap
keymapping, Why Type More Than You Have To?
keymaps, vi, Keymaps for Pasting into a Window Running vi, Keymaps for Pasting into a Window
Running vi, Protecting Keys from Interpretation by ex, Maps for Repeated Edits, More Examples of
Mapping Keys in vi, Repeating a vi Keymap, Text-Input Mode Cursor Motion with No Arrow Keys,
Don't Lose Important Functions with vi Maps: Use noremap

(see also map commands, vi)
cursor motion in text-input mode without arrow keys, Text-Input Mode Cursor Motion with No
Arrow Keys
further examples of, More Examples of Mapping Keys in vi
noremap command and, Don't Lose Important Functions with vi Maps: Use noremap
pasting text into window system running vi, Keymaps for Pasting into a Window Running vi
protecting from interpretation by ex, Protecting Keys from Interpretation by ex
for repeated edits, Maps for Repeated Edits
repeating, Repeating a vi Keymap

keys, Defining Keys and Button Presses with xmodmap, Defining Keys and Button Presses with
xmodmap, Secure Shell (SSH)

defining with xmodmap, Defining Keys and Button Presses with xmodmap, Defining Keys and
Button Presses with xmodmap
public/private key pair for encrypted information, Secure Shell (SSH)

keys function (Perl), Hashes
keys, cryptographic, Key and Agent Problems

SSH, problems with, Key and Agent Problems
keysym mappings, Defining Keys and Button Presses with xmodmap, Using xev to Learn Keysym
Mappings
keysyms, Using xev to Learn Keysym Mappings

debugging, Using xev to Learn Keysym Mappings
kill 9 command, What Are Signals?
kill character, @ (at sign) as, Setting Your Erase, Kill, and Interrupt Characters
kill command, Aborting Programs, Job Control in a Nutshell, Job Control in a Nutshell, Using Job
Control from Your Shell, System Overloaded? Try Stopping Some Jobs, Managing Processes:
Overall Concepts, Subshells, What Are Signals?, Destroying Processes with kill, Destroying
Processes with kill, Printer Queue Watcher: A Restartable Daemon Shell Script, Printer Queue
Watcher: A Restartable Daemon Shell Script, Killing All Your Processes, Killing All Your
Processes, Killing Processes by Name?, Kill Processes Interactively, zap, Cleaning Up an Unkillable
Process, The Process Chain to Your Window, Close a Window by Killing Its Process(es), Closing a

Window from a Shell Script, Example #1: An xterm Window, Example #2: A Web Browser, Closing
a Window from a Shell Script, Trapping Exits Caused by Interrupts

%num, Job Control in a Nutshell
-l option, signals for, Trapping Exits Caused by Interrupts
-STOP $$, Subshells
aborting programs, Aborting Programs
closing window by killing its processes, Close a Window by Killing Its Process(es), Closing a
Window from a Shell Script, Example #1: An xterm Window, Example #2: A Web Browser,
Closing a Window from a Shell Script

shell script, using, Closing a Window from a Shell Script
web browser (example), Example #2: A Web Browser
xterm window (example), Example #1: An xterm Window

hung window or process in a window, killing, The Process Chain to Your Window
jobs, killing by job number, Using Job Control from Your Shell
KILL or 9 option, Destroying Processes with kill
killall -i, Kill Processes Interactively
killing all processes, Killing All Your Processes
killing processes by name, Killing Processes by Name?
pid, Job Control in a Nutshell
process ID-1 and, Killing All Your Processes
restarting daemons, Printer Queue Watcher: A Restartable Daemon Shell Script, Printer Queue
Watcher: A Restartable Daemon Shell Script
stopping jobs on overloaded system, System Overloaded? Try Stopping Some Jobs
unkillable processes, Cleaning Up an Unkillable Process
user ID and, Managing Processes: Overall Concepts
zap script, using, zap

kill key, Setting Your Erase, Kill, and Interrupt Characters
KILL signal, What Are Signals?, Destroying Processes with kill
killall command, i (interactive) option, killall -i
ksh (Korn shell), There Are Many Shells, Shell Setup Files — Which, Where, and Why, Terminal
Setup: Searching Terminal Table, Static Prompts, Simulating Dynamic Prompts, Highlighting and
Color in Shell Prompts, Running Commands at Bourne/Korn Shell Logout, Running Commands at
Bourne/Korn Shell Logout, Stop Accidental Bourne-Shell Logouts, Using the Stored Lists, Expanding
Ranges, limit and ulimit, limit and ulimit, Job Control in a Nutshell, The Process Chain to Your
Window, What the Shell Does, Bourne Shell Used Here, Controlling Shell Command Searches, Is It
"2>&1 file" or "> file 2>&1"? Why?, "Special" Characters and Operators, Automatic Completion,
Introduction to Shell Aliases, Setting and Unsetting Bourne-Type Aliases, Korn-Shell Aliases, Shell
Function Specifics, Korn shell, History by Number, History Substitutions, bash, ksh, zsh, Pass History
to Another Shell, ksh Editing, The Shells' pushd and popd Commands, Filename Wildcards in a
Nutshell, What if a Wildcard Doesn't Match?, Predefined Environment Variables, Predefined
Environment Variables, Handling Command-Line Arguments in Shell Scripts, Parameter Substitution,
Using set and IFS, Using Standard Input and Output

.profile file, Shell Setup Files — Which, Where, and Why
alias command, Controlling Shell Command Searches
aliases, Introduction to Shell Aliases, Setting and Unsetting Bourne-Type Aliases, Korn-Shell

Aliases
arrays, Using the Stored Lists, Expanding Ranges

expanding ranges, Expanding Ranges
bgnice option, The Process Chain to Your Window
command history, History Substitutions (see history of commands)
command-line arguments in shell scripts, Handling Command-Line Arguments in Shell Scripts
command-line editing, ksh Editing
completion features, Automatic Completion
dynamic prompts, simulating, Simulating Dynamic Prompts
ENV variable, Predefined Environment Variables
environment variables, Predefined Environment Variables
fc -l command, listing previous commands with, History by Number
FPATH search path for shell functions, Korn shell
globbing (wildcard expansion), preventing, Filename Wildcards in a Nutshell
history file, bash, ksh, zsh
ignoreeof variable, Stop Accidental Bourne-Shell Logouts
job control commands, Job Control in a Nutshell
limiting file size, limit and ulimit
logging out of, Running Commands at Bourne/Korn Shell Logout
logout, running commands at, Running Commands at Bourne/Korn Shell Logout
parsing strings, using set and IFS, Using set and IFS
passing command history to, Pass History to Another Shell
prompt, setting, Static Prompts
prompts, Highlighting and Color in Shell Prompts

nonprinting characters in, Highlighting and Color in Shell Prompts
read-only functions, Shell Function Specifics
reading arguments, Is It "2>&1 file" or "> file 2>&1"? Why?
redirecting standard I/O, Using Standard Input and Output
scripts in this book, Bourne Shell Used Here
shell functions for pushd and popd commands, The Shells' pushd and popd Commands
special characters/operators in, "Special" Characters and Operators
string editing operators, Parameter Substitution
terminal port type, putting into ttykind shell variable, Terminal Setup: Searching Terminal Table
ulimit -c command, removing limits on core dumps, limit and ulimit
wildcards, failing to match, What if a Wildcard Doesn't Match?

L

la function, Simple Functions: ls with Options
lambda statement (Python), Functions
lambda statements (Python), Functions

as function arguments, Functions
last access time for files, Finding Oldest or Newest Files with ls -t and ls -u, Deleting Stale Files

deleting files by, Deleting Stale Files
last line of a file (ed and sed), referring to with $, Regular Expressions: The Anchor Characters ̂and

$
last modification time for files, Listing Files by Age and Size, Listing Files by Age and Size

(see also timestamps)
last operator (Perl), Perl Boot Camp, Part 3: Branching and Looping
lastcomm command, What Commands Are Running and How Long Do They Take?, What Commands
Are Running and How Long Do They Take?

piping output or redirecting to a file, What Commands Are Running and How Long Do They
Take?

LATEX, Formatting Markup Languages — troff, LATEX, HTML, and So On
Layer 3 Internet Protocol (IP), TCP/IP — IP Addresses and Ports
Layer 4 protocols, TCP/IP — IP Addresses and Ports, Layer 4 Protocols: TCP, UDP, and ICMP
lc operator, Scalars
LDAP server for system passwords, Securing Samba
leave function, Right-Side Prompts
length command (awk), Alphabetical Summary of Commands
lensort script, lensort: Sort Lines by Length
less command, A Highlighting grep, Compressing Files to Save Space

highlighting matched patterns, A Highlighting grep
zless, for compressed files, Compressing Files to Save Space

less program, Programs Are Designed to Work Together, List All Subdirectories with ls -R, "less" is
More, "less" is More, "less" is More, Squash Extra Blank Lines, Numbering Lines, Predefined
Environment Variables, Problems Piping to a Pager

-N option, numbering lines with, Numbering Lines
-s option for squashing extra blank lines, Squash Extra Blank Lines
PAGER environment variable, Predefined Environment Variables
piping ls command output to, List All Subdirectories with ls -R
piping to, Problems Piping to a Pager

less than (<) operator, Syntax, Scalars
less than or equal to (<=) operator, Scalars
lesskey program, "less" is More
letter-sized pages, Formatting Plain Text: enscript
letters, ASCII class for, Defining What Makes Up a Word for Selection Purposes
lexical analyzer (lex), Looking for Closure
lf function, Simple Functions: ls with Options, Simple Functions: ls with Options
libraries, Using Shell Functions in Shell Scripts, Perl Boot Camp, Part 1: Typical Script Anatomy

Perl modules, Perl Boot Camp, Part 1: Typical Script Anatomy
using in scripts, Perl Boot Camp, Part 1: Typical Script Anatomy

shell functions, Using Shell Functions in Shell Scripts
licenses, Citrix: Making Windows Multiuser, Citrix: Making Windows Multiuser

Citrix, Citrix: Making Windows Multiuser
Microsoft, in a WTS environment, Citrix: Making Windows Multiuser

lightweight varieties of Unix, The Core of Unix
limit and ulimit system calls, limit and ulimit
line #\: ;; unexpected error, Missing or Extra esac, ;;, fi, etc.
line command, Overview: Open Files and File Descriptors

line commands in vi, vi Line Commands Versus Character Commands
line editors, Why Line Editors Aren't Dinosaurs (see batch editing)
line function, read: Reading from the Keyboard
line numbers, sed Addressing Basics, Line Numbers Reset Inside Redirected Loops

resetting, Line Numbers Reset Inside Redirected Loops
in sed addresses, sed Addressing Basics

line termination characters, Anyone Can Program the Shell (see newlines)
line termination in Python, Indentation
line-by-line and search using sed, awk, or perl, Compound Searches
linefeeds (Unix), ASCII character for, Anyone Can Program the Shell
lines, Numbering Lines, Counting Lines, Words, and Characters: wc, vi Macro for Splitting Long
Lines, Emacs: The Other Editor, Line Addressing, Joining Lines with join, What Is (or Isn't) Unique?,
Dealing with Repeated Lines, lensort: Sort Lines by Length, lensort: Sort Lines by Length

addressing for batch editing, Line Addressing
comparing for uniqueness, What Is (or Isn't) Unique?
counting with wc command, Counting Lines, Words, and Characters: wc
deleting duplicate, lensort: Sort Lines by Length

Perl script, using, lensort: Sort Lines by Length
deleting duplicates, Dealing with Repeated Lines
deleting in Emacs, Emacs: The Other Editor
joining with join command, Joining Lines with join
macro for wrapping in vi editor, vi Macro for Splitting Long Lines
numbering in file printout, Numbering Lines
sorting by length, lensort: Sort Lines by Length

LINES and COLUMNS environment variables, Terminal Setup: Testing Window Size, Querying
Your xterm Size: resize

resizing/resetting for windows, Querying Your xterm Size: resize
lines of text retained by scrollbar, How Many Lines to Save?
Lingua\:\:EN\:\:NameParse Perl module, Sorting a List of People by Last Name
link count, Differences Between Hard and Symbolic Links
linking files, What's So Complicated About Copying Files, Files with Two or More Names, Files
with Two or More Names, Files with Two or More Names, More About Links, More About Links,
Differences Between Hard and Symbolic Links, Links to a Directory, Creating and Removing Links,
Stale Symbolic Links, Linking Directories, Showing the Actual Filenames for Symbolic Links

creating and removing links, Creating and Removing Links
directories, linking, Linking Directories
directory, links to, Links to a Directory
filenames for symbolic links, showing, Showing the Actual Filenames for Symbolic Links
hard links, More About Links
hard links vs. symbolic links, Differences Between Hard and Symbolic Links
reasons for, Files with Two or More Names, Files with Two or More Names
symbolic links, More About Links, Stale Symbolic Links

stale, Stale Symbolic Links
linkname, ln command and, Creating and Removing Links
links, Searching for Old Files, Finding the (Hard) Links to a File, Copying Directory Trees with cp -

r, How Unix Keeps Track of Files: Inodes, Save Space with a Link, Save Space with a Link, Save
Space: tar and compress a Directory Tree, Local Settings for vi, Finding a Program Name and Giving
Your Program Multiple Names, Finding a Program Name and Giving Your Program Multiple Names,
Save Disk Space and Programming: Multiple Names for a Program, Save Disk Space and
Programming: Multiple Names for a Program, Perl Boot Camp, Part 5: Perl Knows Unix

-links operator (find command), Searching for Old Files
copying, Copying Directory Trees with cp -r
disk space and, Save Space with a Link
to .exrc files, Local Settings for vi
to filenames, Finding a Program Name and Giving Your Program Multiple Names, Save Disk
Space and Programming: Multiple Names for a Program
to files, How Unix Keeps Track of Files: Inodes

inodes and, How Unix Keeps Track of Files: Inodes
hard links, Finding the (Hard) Links to a File

finding to files, Finding the (Hard) Links to a File
optimizing disk space with, Save Space with a Link
to programs, Finding a Program Name and Giving Your Program Multiple Names, Save Disk
Space and Programming: Multiple Names for a Program
tar -l command, printing messages about hard links, Save Space: tar and compress a Directory
Tree
unlinking in Perl, Perl Boot Camp, Part 5: Perl Knows Unix

Linux, What's Special About Unix?, The Core of Unix, There Are Many Shells, The Kernel and
Daemons, The info Command, Terminal Setup: Testing Port, Show Subshell Level with $SHLVL,
There's a Lot to Know About Terminals, Setting Your Erase, Kill, and Interrupt Characters, Defining
Keys and Button Presses with xmodmap, Defining Keys and Button Presses with xmodmap, Color ls,
How to Look at the End of a File: tail, Using jobs Effectively, Linux Virtual Consoles, Scrolling,
Using a Mouse, The /proc Filesystem, A Glimpse at Hardware, A Little Help, etc., A Little Help,
etc., Don't Need a Shell for Your Script? Don't Use One, Shell Lockfile, How Unix Keeps Time,
How to Make Backups to a Local Device, To gzip, or Not to gzip?, What to Back Up, Backing Up to
Tape, Backing Up to Floppies or Zip Disks, To gzip, or Not to gzip?, To gzip, or Not to gzip?,
/usr/bin and Other Software Directories, Using Debian's dselect, Exiting dselect, Installing Software
with Debian's Apt-Get, Upgrading installed packages, Finding and Installing RPM Packaged
Software, Installation and Distutils, Reading Kernel Boot Output, Reading Kernel Boot Output, Basic
Kernel Configuration, Disk Partitioning, Mounting and Unmounting Removable Filesystems, USB
Configuration, Dealing with Sound Cards and Other Annoying Hardware, Decapitating Your Machine
— Serial Consoles, Status and Troubleshooting, Status and Troubleshooting, Status and
Troubleshooting, Status and Troubleshooting, Configuring an Anonymous FTP Server, Gateways and
NAT, Gateways and NAT, Installing and Configuring Samba, VMWare, Keeping Up with Security
Alerts, The Linux proc Filesystem, TCP Wrappers, When Does a User Become a User, When Does a
User Become a User, Forgetting the root Password, Forgetting the root Password, Groups and Group
Ownership, Free SSH with OpenSSH, General and Authentication Problems

/proc filesystem, The Linux proc Filesystem
adding users to system, When Does a User Become a User
automount daemons and devfsd for removable media, Mounting and Unmounting Removable
Filesystems

backups to a local device, How to Make Backups to a Local Device, To gzip, or Not to gzip?,
What to Back Up, Backing Up to Tape, Backing Up to Floppies or Zip Disks, To gzip, or Not to
gzip?, To gzip, or Not to gzip?

compression, advantages/disadvantages of, To gzip, or Not to gzip?
deciding what to back up, What to Back Up
floppies or zip disks, Backing Up to Floppies or Zip Disks
tape, Backing Up to Tape
utilities for, To gzip, or Not to gzip?

bash shell, There Are Many Shells
color names, displaying with GNU ls command, Color ls
Debian Linux, Using Debian's dselect, Exiting dselect, Installing Software with Debian's Apt-
Get, Upgrading installed packages, Reading Kernel Boot Output, Forgetting the root Password

apt-get tool, Installing Software with Debian's Apt-Get, Upgrading installed packages
dselect tool for accessing dpkg installation package, Using Debian's dselect, Exiting dselect
kernel boot output for devices, Reading Kernel Boot Output
single-user mode, Forgetting the root Password

devices on PCIbus, showing, Reading Kernel Boot Output
disk partitions, Disk Partitioning
displaying latest entries from kernel ring buffer, How to Look at the End of a File: tail
enabling gatewaying, Gateways and NAT
groups, changing primary with newgrp, Groups and Group Ownership
HOWTO for kernel configuration, Basic Kernel Configuration
HOWTO for serial consoles, Decapitating Your Machine — Serial Consoles
HZ constant for system time updates, How Unix Keeps Time
ifconfig file output, Status and Troubleshooting
info command, The info Command
installing software with RPM, Finding and Installing RPM Packaged Software
IP masquerading, Gateways and NAT
ipconfig and route files (2.4 kernels), Status and Troubleshooting
listing all processes running on, The Kernel and Daemons
loadkeys command, Setting Your Erase, Kill, and Interrupt Characters, Defining Keys and Button
Presses with xmodmap, Defining Keys and Button Presses with xmodmap

system-level changes to key mappings, Defining Keys and Button Presses with xmodmap
mounting SMB drives onto their local filesystems with smbmnt, Installing and Configuring
Samba
netstart, displaying routing information with, Status and Troubleshooting
nvi-1.79 editor, locking files before editing, Shell Lockfile
OpenSSH, Free SSH with OpenSSH
port, testing for, Terminal Setup: Testing Port
Python, inclusion of, Installation and Distutils
Red Hat and Debian, shortcut to creating periodic processes, A Little Help, etc., A Little Help,
etc.
Red Hat Linux, The /proc Filesystem, A Glimpse at Hardware, Don't Need a Shell for Your
Script? Don't Use One, /usr/bin and Other Software Directories, Configuring an Anonymous FTP
Server, When Does a User Become a User, Forgetting the root Password, General and

Authentication Problems
/contrib directory, sshd.pam file, General and Authentication Problems
/proc filesystem (in Version 6.2), The /proc Filesystem, A Glimpse at Hardware
adduser (or useradd) utility, When Does a User Become a User
Filesystem Hierarchy Standard (FHS), support of, /usr/bin and Other Software Directories
installing chroot with anonftp-* (RPM), Configuring an Anonymous FTP Server
performance issues, shell as interpreter, Don't Need a Shell for Your Script? Don't Use One
single user mode, accessing, Forgetting the root Password

route command, Status and Troubleshooting
security, web site information on, Keeping Up with Security Alerts
signal 15 (termination), Using jobs Effectively
sound card configuration, Dealing with Sound Cards and Other Annoying Hardware
TCP wrappers, TCP Wrappers
USB devices on, USB Configuration
virtual consoles, Show Subshell Level with $SHLVL, There's a Lot to Know About Terminals,
Linux Virtual Consoles, Scrolling, Using a Mouse

switching between, There's a Lot to Know About Terminals
tty-type, scrolling, and copy and paste operations, Scrolling, Using a Mouse

virtual machine running Windows, VMWare
LISP programming language, Emacs Features: A Laundry List

Emacs customization, Emacs Features: A Laundry List
lists, Arrays, References

references to, References
ln command, Creating and Removing Links, Creating and Removing Links, Stale Symbolic Links

-s option, Stale Symbolic Links
s option, Creating and Removing Links

lndir program, Linking Directories
load averages, system, Checking System Load: uptime
load option (xrdb), Setting Resources with xrdb
loadkeys command, Defining Keys and Button Presses with xmodmap
local command, Setting Current Shell Environment: The work Function
local crontab entries, Adding crontab Entries
local dictionary files, The Unix spell Command
local programs, Linking Directories
LOCAL_OPTIONS option (zsh), Shell Function Specifics
locate command, Delving Through a Deep Directory Tree, Using "Fast find" Databases, Using "Fast
find" Databases, Wildcards with "Fast find" Database, Finding Files (Much) Faster with a find
Database

database for, Finding Files (Much) Faster with a find Database
shell wildcards, matching, Wildcards with "Fast find" Database
updating database for, Using "Fast find" Databases

lockfiles, creating, Shell Lockfile
locking files (RCS), RCS Basics
log command (awk), Alphabetical Summary of Commands
log files, GNU tail File Following, Save Space with "Bit Bucket" Log Files and Mailboxes, zsh

Aliases, CVS Basics, More CVS, Installing and Configuring Samba
CVS, CVS Basics
CVS, examining for conflicting changes, More CVS
disk space and, Save Space with "Bit Bucket" Log Files and Mailboxes
global alias for in zsh, zsh Aliases
monitoring with tail -f, GNU tail File Following
smb.conf, settings for, Installing and Configuring Samba

log-file-monitoring programs, How to Look at Files as They Grow
tail -f, How to Look at Files as They Grow

LOGDIR environment variable, Finding (Anyone's) Home Directory, Quickly, Predefined
Environment Variables
logging (xterm), elimination for security reasons, The xterm Menus
logging in, Automatic Setups for Different Terminals, Terminal Setup: Setting and Testing Window
Name, fork and exec

changing login sequence, Automatic Setups for Different Terminals, Terminal Setup: Setting and
Testing Window Name

logging out, Some Gotchas with Job Control, Destroying Processes with kill
background processes in Bourne shells, avoiding termination of, Some Gotchas with Job Control
by killing user's login shell, Destroying Processes with kill

logical expressions, evaluating, Finding Many Things with One Command
logical operators, Syntax
login command, The PATH Environment Variable
login shells, What Happens When You Log In, Shell Setup Files — Which, Where, and Why, Shell
Setup Files — Which, Where, and Why, Shell Setup Files — Which, Where, and Why, Shell Setup
Files — Which, Where, and Why, Login Shells, Interactive Shells, Login Shells, What Goes in Shell
Setup Files?, Making a "Login" Shell, Login xterms and rxvts, Destroying Processes with kill,
Writing a Simple Shell Program, Predefined Environment Variables

bash, Shell Setup Files — Which, Where, and Why
C shell, setting up, Shell Setup Files — Which, Where, and Why
command search table, resetting for scripts, Writing a Simple Shell Program
killing, Destroying Processes with kill
Korn shell, Shell Setup Files — Which, Where, and Why
setup files, Login Shells
setup files, contents of, What Goes in Shell Setup Files?
SHELL environment variable, Predefined Environment Variables
xterm or rxvt, running on, Login xterms and rxvts
zsh shell, setting up, Shell Setup Files — Which, Where, and Why

login(l) command, system-wide setup, Shell Setup Files — Which, Where, and Why
logins, What Happens When You Log In, Highlighting and Color in Shell Prompts, Checklist:
Terminal Hangs When I Log In, Starting Remote X Clients from Interactive Logins, Stopping Remote
Login Sessions, fork and exec, Never Log In as root, Disable logins

disabling, Disable logins
external root login access, Never Log In as root
interactive, Starting Remote X Clients from Interactive Logins

starting remote X clients from, Starting Remote X Clients from Interactive Logins

procedure for terminals (non-network), fork and exec
remote, Stopping Remote Login Sessions

stopping sessions, Stopping Remote Login Sessions
root, Highlighting and Color in Shell Prompts
shells disallowing, What Happens When You Log In
terminal hangs during, Checklist: Terminal Hangs When I Log In

loginsh variable (tcsh shell), Login Shells
loginshell variable, setting, Login Shells
LOGNAME environment variable, Predefined Environment Variables
logout command (C shell), The PATH Environment Variable
logout files, creating for Bourne and Korn shells, Running Commands at Bourne/Korn Shell Logout
logouts, Shell Setup Files — Which, Where, and Why, Stop Accidental Bourne-Shell Logouts

accidental, from Bourne shells, Stop Accidental Bourne-Shell Logouts
bash shell, Shell Setup Files — Which, Where, and Why

long listing (-l option), Finding Oldest or Newest Files with ls -t and ls -u
long listing, ls -l command, Useful ls Aliases
look command, Fast Searches and Spelling Checks with "look", How Do I Spell That Word?, How
Do I Spell That Word?

df options, How Do I Spell That Word?
lookfor shell script, lookfor: Which File Has That Word?
loopback mounts, Loopback Mounts
loops, Anyone Can Program the Shell, A foreach Loop, A foreach Loop, A for Loop, Avoiding C-
Shell Alias Loops, How to Put if-then-else in a C-Shell Alias, Functions with Loops: Internet
Lookup, Loop Control: break and continue, Loops That Test Exit Status, Loop Control: break and
continue, Use with Loops, A while Loop with Several Loop Control Commands, Outputting Text to an
X Window, Line Numbers Reset Inside Redirected Loops, Arrays, Perl Boot Camp, Part 3:
Branching and Looping, Perl Boot Camp, Part 3: Branching and Looping

alias definition, Avoiding C-Shell Alias Loops
basename and dirname used with, Use with Loops
controlling with break and continue, Loop Control: break and continue, Loop Control: break and
continue
endless, Outputting Text to an X Window
exit status of, A while Loop with Several Loop Control Commands
for loops in Bourne-type shells, repeating commands with, A for Loop
foreach loops, repeating commands with variations, A foreach Loop
if-then-else, putting in C shell aliases, How to Put if-then-else in a C-Shell Alias
iterating through arrays, Arrays
parameters for, A foreach Loop
in Perl scripts, Perl Boot Camp, Part 3: Branching and Looping, Perl Boot Camp, Part 3:
Branching and Looping

flow-control operators, Perl Boot Camp, Part 3: Branching and Looping
redirected input/output, line numbers reset in, Line Numbers Reset Inside Redirected Loops
running command and testing exit status, Loops That Test Exit Status
in shell functions, Functions with Loops: Internet Lookup

loosely typed language, Perl Boot Camp, Part 2: Variables and Data Types

lp command, Predefined Environment Variables, lp-Style Printing Commands
LPDEST environment variable, Predefined Environment Variables

lpc commands, lpr-Style Printing Commands, Printer Control with lpc, Printer Control with lpc,
Printer Control with lpc, Printer Control with lpc

exit, Printer Control with lpc
help, Printer Control with lpc
restart, Printer Control with lpc
status, lpr-Style Printing Commands

lpd daemon, Printing Over a Network, Printing to Windows Printers from Unix, Converting Source
Files Automagically Within the Spooler

filter scripts, Converting Source Files Automagically Within the Spooler
running files through filter, Printing to Windows Printers from Unix

LPDEST environment variable, Predefined Environment Variables
lpq command, Printer Queue Watcher: A Restartable Daemon Shell Script
lpr command, Build Strings with { }, Here Document Example #1: Unformatted Form Letters,
Predefined Environment Variables, lpr-Style Printing Commands

for loop, using with, Here Document Example #1: Unformatted Form Letters
PRINTER environment variable, Predefined Environment Variables
printing 10 file copies, shortcut for, Build Strings with { }

lprm command, lpr-Style Printing Commands
lpstat command, lp-Style Printing Commands
lr alias, A csh Alias to List Recently Changed Files
ls command, Internal and External Commands, Wildcards, Checklist: Terminal Hangs When I Log In,
Finding Oldest or Newest Files with ls -t and ls -u, Finding Oldest or Newest Files with ls -t and ls -
u, Finding Oldest or Newest Files with ls -t and ls -u, Finding Oldest or Newest Files with ls -t and
ls -u, List All Subdirectories with ls -R, List All Subdirectories with ls -R, The ls -d Option, Color
ls, Another color ls, Color ls, Color ls, Configuring It, Another color ls, Some GNU ls Features, A
csh Alias to List Recently Changed Files, Showing Hidden Files with ls -A and -a, Showing Hidden
Files with ls -A and -a, Useful ls Aliases, Useful ls Aliases, Useful ls Aliases, Useful ls Aliases,
Useful ls Aliases, Can't Access a File? Look for Spaces in the Name, Showing Nonprintable
Characters in Filenames, Showing Nonprintable Characters in Filenames, Showing Nonprintable
Characters in Filenames, Listing Files by Age and Size, Delving Through a Deep Directory Tree,
Running Commands on What You Find, Searching for Files by Size, Using "Fast find" Databases,
Differences Between Hard and Symbolic Links, How Unix Keeps Track of Files: Inodes, How Unix
Keeps Track of Files: Inodes, Using unlink to Remove a File with a Strange Name, Using unlink to
Remove a File with a Strange Name, Problems Deleting Directories, Counting Lines, Words, and
Characters: wc, Counting Lines, Words, and Characters: wc, Simple Functions: ls with Options,
User, Group, and World, Juggling Permissions, Juggling Permissions

-- color option, Color ls
-A option, Showing Hidden Files with ls -A and -a, Problems Deleting Directories

filenames beginning with . (dot), Problems Deleting Directories
-b option, Showing Nonprintable Characters in Filenames, Using unlink to Remove a File with a
Strange Name

listing filenames with nonASCII characters, Using unlink to Remove a File with a Strange
Name

printing octal values of nonprinting characters, Showing Nonprintable Characters in
Filenames

-c option, Finding Oldest or Newest Files with ls -t and ls -u
-C option (output in columns), List All Subdirectories with ls -R
-d option (listing directories), The ls -d Option
-F (tcsh built-in), Color ls, Configuring It
-i option, How Unix Keeps Track of Files: Inodes
-il option, Running Commands on What You Find
-l option, Checklist: Terminal Hangs When I Log In, Finding Oldest or Newest Files with ls -t
and ls -u, Listing Files by Age and Size, Using "Fast find" Databases, How Unix Keeps Track of
Files: Inodes, Counting Lines, Words, and Characters: wc, User, Group, and World, Juggling
Permissions

character count for files, Counting Lines, Words, and Characters: wc
checking startup files for ownership, Checklist: Terminal Hangs When I Log In
file permissions and, Using "Fast find" Databases
file permissions, listing, User, Group, and World, Juggling Permissions
listing files by last modification time, Listing Files by Age and Size

-lai option, Differences Between Hard and Symbolic Links
-lg option, Juggling Permissions
-Q (quoting) option, Can't Access a File? Look for Spaces in the Name
-q option, Showing Nonprintable Characters in Filenames, Using unlink to Remove a File with a
Strange Name

converting nonprinting characters to ?, Showing Nonprintable Characters in Filenames
nonASCII characters, Using unlink to Remove a File with a Strange Name

-R option (listing subdirectories), List All Subdirectories with ls -R
-s option, Searching for Files by Size
-t option, Finding Oldest or Newest Files with ls -t and ls -u
-u option, Finding Oldest or Newest Files with ls -t and ls -u
aa option, Showing Hidden Files with ls -A and -a
aliases for, A csh Alias to List Recently Changed Files, Useful ls Aliases, Useful ls Aliases,
Useful ls Aliases, Useful ls Aliases, Useful ls Aliases

-C option, Useful ls Aliases
-F option with, Useful ls Aliases
-la (for ls -a or -A), Useful ls Aliases
ll (for ls -l), Useful ls Aliases
lr, A csh Alias to List Recently Changed Files

color, displaying names in, Color ls, Another color ls, Another color ls
-G option, Another color ls

filenames and, Wildcards
find command, using with, Delving Through a Deep Directory Tree
GNU, Some GNU ls Features
piping output to wc command, Counting Lines, Words, and Characters: wc
shell functions with options, Simple Functions: ls with Options
System V Unix, nonprinting characters and, Showing Nonprintable Characters in Filenames

ls flag (for login shell), Login xterms and rxvts

LSCOLORS environment variable, Another color ls
LS_COLORS environment variable, Configuring It, Configuring It, Predefined Environment Variables

setting with dircolors command, Configuring It
lt operator (Perl), Scalars
LyX editor, Formatting Markup Languages — troff, LATEX, HTML, and So On

M

m (ending escape sequence), Trying It
m (map) option (tset command), Setting the Terminal Type When You Log In
m command, marking place in vi editor, Finding Your Place with Undo
M-x in Emacs, Emacs: The Other Editor (see ESC-x in Emacs)
MAC (Ethernet) address, Dynamic Host Configuration Protocol (DHCP)
Mac OS X, What's Special About Unix?, The Core of Unix, Which Shell Am I Running?, The Mac OS
X Terminal Application, Highlighting and Color in Shell Prompts, Running Commands When You
Log Out, The curl Application and One-Step GNU-Darwin Auto-Installer for OS X, Checking Swap
Space, When Does a User Become a User, Enabling Root in Darwin, Enabling Remote Access on
Mac OS X

Darwin, The Core of Unix, The curl Application and One-Step GNU-Darwin Auto-Installer for
OS X, Enabling Root in Darwin

downloading and installing One-Step, The curl Application and One-Step GNU-Darwin
Auto-Installer for OS X
enabling root access to, Enabling Root in Darwin

passwords, storing, Which Shell Am I Running?
SSH on, Enabling Remote Access on Mac OS X
swap space, checking contents of /var/vm with ls, Checking Swap Space
Terminal application, The Mac OS X Terminal Application, Highlighting and Color in Shell
Prompts, Running Commands When You Log Out

color capabilities, Highlighting and Color in Shell Prompts
command-k to delete scrollback buffer, Running Commands When You Log Out

user and group management through Netinfo, When Does a User Become a User
Macintosh, Anyone Can Program the Shell, Defining Keys and Button Presses with xmodmap,
Hacking on Characters with tr

carriage returns in text files, translating to newlines, Hacking on Characters with tr
keyboards, CTRL and CAPS LOCK, Defining Keys and Button Presses with xmodmap
Microsoft Word file, converting for Unix, Anyone Can Program the Shell

macros, Make Your Own Manpages Without Learning troff, Emacs Features: A Laundry List
Emacs, Emacs Features: A Laundry List
troff -man, Make Your Own Manpages Without Learning troff

magic-space tcsh editor function, tcsh Editing
mail, Make More Directories!, Emacs Features: A Laundry List, Remove Mail/News Headers with
behead, Mail — SMTP, POP, and IMAP, Mail — SMTP, POP, and IMAP, User, Group, and World

directory for, Make More Directories!
Emacs facility, Emacs Features: A Laundry List
headers, removing with behead script, Remove Mail/News Headers with behead

permissions for files, User, Group, and World
SMTP (Simple Message Transfer Protocol), Mail — SMTP, POP, and IMAP

mail exchanger (MX) records, Status and Troubleshooting, Mail — SMTP, POP, and IMAP, Domain
Name Service (DNS)

stored by DNS, Domain Name Service (DNS)
mail program, Unix Networking and Communications, Build Strings with { }, Instead of Changing
History Characters, Outputting Text to an X Window, Using Standard Input and Output, Send (Only)
Standard Error Down a Pipe

redirecting input for, Using Standard Input and Output
redirecting standard error to, Send (Only) Standard Error Down a Pipe
sending yourself email copy of fortune, Outputting Text to an X Window
shortcut for multiple addresses, Build Strings with { }
\ (backslash) before history characters, Instead of Changing History Characters

Mail User Agents (MUAs or UAs), Mail — SMTP, POP, and IMAP
mailboxes, disk space and, Save Space with "Bit Bucket" Log Files and Mailboxes
mailto utility, MIME Encoding
Main Options menu (xterm), The xterm Menus
make utility, make Isn't Just for Programmers!, Even More Uses for make, Which make?, Simplifying
the make Process, Simplifying the make Process, Compiling Perl from Scratch, Installing and
Configuring Samba

configuring source code, Compiling Perl from Scratch
installing Samba, Installing and Configuring Samba
make clean command, Simplifying the make Process
make distclean command, Simplifying the make Process
software installation problems with differing versions, Which make?

makealias command, Fix Quoting in csh Aliases with makealias and quote
Makefile.in (configure file), Simplifying the make Process
Makefiles (or makefiles), make Isn't Just for Programmers!, Even More Uses for make, Even More
Uses for make, Compiling Perl from Scratch

for NIS, Even More Uses for make
for Perl, Compiling Perl from Scratch

makewhatis utility, whatis: One-Line Command Summaries
man command, The man Command, The man Command

command-line options, The man Command
MANPATH environment variable, The man Command, Make Your Own Manpages Without Learning
troff, Predefined Environment Variables

adding, Make Your Own Manpages Without Learning troff
manual pages, whereis: Finding Where a Command Is Located, Searching Online Manual Pages,
Searching Online Manual Pages, Dynamic Prompts, Predefined Environment Variables, Perl Boot
Camp, Part 1: Typical Script Anatomy, Perl Boot Camp, Part 1: Typical Script Anatomy, Typesetting
Manpages: nroff

formatted with nroff commands, Typesetting Manpages: nroff
locating for a program, whereis: Finding Where a Command Is Located
MANPATH environment variable, Predefined Environment Variables
Perl, Perl Boot Camp, Part 1: Typical Script Anatomy, Perl Boot Camp, Part 1: Typical Script

Anatomy
perldata manpage for variable interpolation, Perl Boot Camp, Part 1: Typical Script
Anatomy
on Unix system, Perl Boot Camp, Part 1: Typical Script Anatomy

searching, Searching Online Manual Pages
for shell prompts, Dynamic Prompts
types of, Searching Online Manual Pages

map commands, vi, Save Time and Typing with the vi map Commands, What You Lose When You
Use map!, Command Mode Maps, Text-Input Mode Maps, Text-Input Mode Maps, Text-Input Mode
Maps, What You Lose When You Use map!, Keymaps for Pasting into a Window Running vi,
Protecting Keys from Interpretation by ex

(see also keymaps, vi)
arrow key mappings in text-input mode, disadvantages of, What You Lose When You Use map!
command mode maps, Command Mode Maps
text-input mode maps, Text-Input Mode Maps, Text-Input Mode Maps, Text-Input Mode Maps,
Protecting Keys from Interpretation by ex

arrow keys, mapping, Text-Input Mode Maps
disabling temporarily, Text-Input Mode Maps
| (vertical bar), quoting in, Protecting Keys from Interpretation by ex

map() function, Functions
mappings, keyboard events at server level, Defining Keys and Button Presses with xmodmap (see
keysym mappings)
mark command, Marking Your Place with a Shell Variable
markup languages, Formatting Markup Languages — troff, LATEX, HTML, and So On
master password file, File Access Permissions
master word list, ispell program, Adding Words to ispell's Dictionary
match command (awk), Alphabetical Summary of Commands
matching, Communication with Unix (see grep commands pattern matching regular expressions)
max log size directive (smb.conf), Installing and Configuring Samba
maxdepth operator (find command), Removing a Strange File by its i-number
maximum file size, setting in shells, limit and ulimit
memory, Memory Information, Other Checks

information about from meminfo file, Memory Information
virtual memory statistics, checking, Other Checks

menu completion, Menu Completion
menu prompts, A "Menu Prompt" for Naive Users
menus, The xterm Menus, The xterm Menus

xterm, The xterm Menus, The xterm Menus
merge option (xrdb), Setting Resources with xrdb
merging files, RCS Basics, More CVS

in CVS, More CVS
in RCS, RCS Basics

Message Transfer Agents (MTAs), Mail — SMTP, POP, and IMAP, Domain Name Service (DNS)
MX records, use of, Domain Name Service (DNS)

META key in Emacs, Emacs: The Other Editor (see ESC-x in Emacs)

metacharacters, X Event Translations, Show Nonprinting Characters with cat -v or od -c, Show
Nonprinting Characters with cat -v or od -c, Splitting Files by Context: csplit, "Special" Characters
and Operators, "Special" Characters and Operators, Understanding Expressions, Understanding
Expressions, Using Metacharacters in Regular Expressions, Regular Expressions: The Anchor
Characters ̂and $, Regular Expressions: Match Any Character with . (Dot), I Never Meta Character
I Didn't Like, Valid Metacharacters for Different Unix Programs, Examples of Searching and
Replacing, Pattern Matching in case Statements, Perl Boot Camp, Part 4: Pattern Matching

. (dot), Splitting Files by Context: csplit
csplit search patterns, escaping in, Splitting Files by Context: csplit

display by cat -v command, Show Nonprinting Characters with cat -v or od -c
displayed by od -c, Show Nonprinting Characters with cat -v or od -c
in regular expressions, Regular Expressions: The Anchor Characters ̂and $

 ̂and $ anchor characters, Regular Expressions: The Anchor Characters ̂and $
in regular expressions, "Special" Characters and Operators, Understanding Expressions, Using
Metacharacters in Regular Expressions, Regular Expressions: Match Any Character with .
(Dot), I Never Meta Character I Didn't Like, Valid Metacharacters for Different Unix Programs,
Examples of Searching and Replacing, Perl Boot Camp, Part 4: Pattern Matching

. (dot), matching any character with, Regular Expressions: Match Any Character with .
(Dot)
examples of use, I Never Meta Character I Didn't Like
Perl, Perl Boot Camp, Part 4: Pattern Matching
search and replace commands for sed or ex, Examples of Searching and Replacing
valid metacharacters for different Unix programs, Valid Metacharacters for Different Unix
Programs

shell, Understanding Expressions
in shells, "Special" Characters and Operators
wildcard pattern matching in case statements, Pattern Matching in case Statements
in X event translations, X Event Translations

Metaframe (Citrix), Citrix: Making Windows Multiuser, Citrix Metaframe
Metamail utilities, MIME Encoding
methods, Perl Boot Camp, Part 1: Typical Script Anatomy, Everything's an Object

Python, Everything's an Object
Microsoft, Anyone Can Program the Shell, Citrix: Making Windows Multiuser, Citrix: Making
Windows Multiuser, Keeping Up with Security Alerts

licensing, strictness of, Citrix: Making Windows Multiuser
security, Keeping Up with Security Alerts
Windows, Citrix: Making Windows Multiuser (see Windows)
Word (Macintosh) file, converting to Unix, Anyone Can Program the Shell

MIME encoding, MIME Encoding, MIME Encoding
mimencode utility, MIME Encoding
minus sign , under Symbols), Scalars (see - (dash)
MIT (Massachusetts Institute of Technology), The X Window System
mkdir (2) system call, adding directories and their hard links, Links to a Directory
mkdir command, Making Directories Made Easier, Making Directories Made Easier, Making
Directories Made Easier, Making Directories Made Easier, Duplicating a Directory Tree

-m option, Making Directories Made Easier
-p (parents) option, Making Directories Made Easier
history substitution, Making Directories Made Easier

mkfifo command, Named Pipes: FIFOs
modem input, written with send, Dialback
modem output, reading by expect, Dialback
modems, Testing: A Story, Quick Introduction to Hardware, Win Is a Modem Not a Modem?,
Gatewaying from a Personal LAN over a Modem

personal LAN over, gatewaying from, Gatewaying from a Personal LAN over a Modem
testing with Expect program, Testing: A Story

modems, checking for stalled data connections, Stalled Data Connection?
modes, The xterm Menus, Access to Directories, Emacs Features: A Laundry List, Using chmod to
Change File Permission

access permissions after chmod, Using chmod to Change File Permission
editing modes in Emacs, Emacs Features: A Laundry List
for directories, Access to Directories
xterm menus, setting with, The xterm Menus

modification times for files, The Three Unix File Times, Finding Oldest or Newest Files with ls -t
and ls -u, A csh Alias to List Recently Changed Files, Listing Files by Age and Size, newer: Print the
Name of the Newest File, Searching for Old Files

-mtime operator (find command), Searching for Old Files
csh alias to list recently changed, A csh Alias to List Recently Changed Files
finding files by, Listing Files by Age and Size
listing newest file, newer: Print the Name of the Newest File
sorting files by (ls -t), Finding Oldest or Newest Files with ls -t and ls -u

modifiers (in regular expressions), Using Metacharacters in Regular Expressions
modifiers for patterns, Perl Boot Camp, Part 4: Pattern Matching
modules, Sorting a List of People by Last Name, Perl Boot Camp, Part 1: Typical Script Anatomy,
Perl Boot Camp, Part 1: Typical Script Anatomy, What Is Python?, Installation and Distutils, Modules
and Packages, Python and the Web, Python and the Web, Python and the Web, urllib2, htmllib and
HTMLParser, cgi, mod_python, Quick Introduction to Hardware, General and Authentication
Problems

kernel, for device drivers, Quick Introduction to Hardware
PAM (Pluggable Authentication Modules), General and Authentication Problems
Perl, Sorting a List of People by Last Name, Perl Boot Camp, Part 1: Typical Script Anatomy,
Perl Boot Camp, Part 1: Typical Script Anatomy

Audio\:\:SoundFile, Perl Boot Camp, Part 1: Typical Script Anatomy
CPAN (Comprehensive Perl Archive Network), Sorting a List of People by Last Name
use module statement in scripts, Perl Boot Camp, Part 1: Typical Script Anatomy

Python, What Is Python?, Installation and Distutils, Modules and Packages, Python and the Web,
Python and the Web, Python and the Web, urllib2, htmllib and HTMLParser, cgi, mod_python

cgi, cgi
checking your version for, Installation and Distutils
htmllib and HTMLParser, Python and the Web, htmllib and HTMLParser
mod_python, mod_python

urllib, Python and the Web
urllib2, Python and the Web, urllib2

modulus (%) operator, Syntax
mod_python module, Python and the Web, mod_python
month order, sorting in, Month Order
more command, Faking Case-Insensitive Searches

case-insensitive searches, faking, Faking Case-Insensitive Searches
more program, "less" is More, "less" is More, Squash Extra Blank Lines, Managing Processes:
Overall Concepts, checksed, Predefined Environment Variables, Problems Piping to a Pager

-s option for squashing extra blank lines, Squash Extra Blank Lines
PAGER environment variable, Predefined Environment Variables
piping to, Problems Piping to a Pager
sed output, displaying, checksed
starting, Managing Processes: Overall Concepts

MOTD, security and, Importance of MOTD
mount command, Quick Introduction to Hardware, Loopback Mounts

loop option, Loopback Mounts
mounting, Mounting Network Filesystems — NFS, SMBFS

Network File System, Mounting Network Filesystems — NFS, SMBFS
mounting filesystems, Checklist: Terminal Hangs When I Log In, Filesystem Types and /etc/fstab,
Mounting and Unmounting Removable Filesystems

Network File System, Checklist: Terminal Hangs When I Log In
mouse, Emacs Features: A Laundry List, Scrolling, Using a Mouse

copy and past in tty-type virtual terminals with, Scrolling, Using a Mouse
Emacs editors, not having to use in, Emacs Features: A Laundry List

mouse for xterms, Working with xterm and Friends
move command (ex), Useful ex Commands
moving blocks of text delimited by patterns, Moving Blocks of Text by Patterns
moving files and directories, What's So Complicated About Copying Files, What's Really in a
Directory?, What's Really in a Directory?

between filesystems, What's Really in a Directory?
file, moving into another directory, What's Really in a Directory?

moving text with vi editor, Using Buffers to Move or Copy Text
Mozilla browser, closing window by killing its processes, Example #2: A Web Browser
mt command, Backing Up to Tape
MTAs, Mail — SMTP, POP, and IMAP (see Message Transfer Agents)
mtr (Matt's traceroute), Where, Oh Where Did That Packet Go?
MUAs (Mail User Agents), Mail — SMTP, POP, and IMAP
multiline commands, Multiline Commands, Secondary Prompts, Invoking sed

secondary prompts and, Multiline Commands, Secondary Prompts
sed editor, Invoking sed

multiline quoting, Bourne shell, Multiline Quoting, Multiline Quoting
multiline replacement strings, sed editor, Newlines in a sed Replacement
multiline shell prompts, Multiline Shell Prompts
multiple-line patterns, grep using sed, A Multiline Context grep Using sed

multiprocessing on Unix, Job Control in a Nutshell
Multipurpose Internet Mail Extensions, MIME Encoding (see MIME encoding)
munchlist script, Adding Words to ispell's Dictionary
mv command, Can't Access a File? Look for Spaces in the Name, What's Really in a Directory?,
Renaming, Copying, or Comparing a Set of Files, Renaming, Copying, or Comparing a Set of Files,
Who Will Own a New File?, Protect Important Files: Make Them Unwritable, A Loophole:
Modifying Files Without Write Access

-f option, Protect Important Files: Make Them Unwritable
file ownership and, Who Will Own a New File?
i option, Renaming, Copying, or Comparing a Set of Files
modifying file without write permission, A Loophole: Modifying Files Without Write Access
renaming files, Can't Access a File? Look for Spaces in the Name
renaming groups of files and, Renaming, Copying, or Comparing a Set of Files

MX, Status and Troubleshooting (see mail exchanger record)
mx function, Functions with Loops: Internet Lookup
my operator (Perl variable declaration), Perl Boot Camp, Part 1: Typical Script Anatomy

N

n or N (next) commands, sed editor, The Deliberate Scrivener
named buffers, transferring text among with vi editor, Using Buffers to Move or Copy Text
named pipes (FIFOs), Named Pipes: FIFOs
named.conf file, Domain Name Service (DNS)
names, How Unix Systems Remember Their Names, How -name Affects Resources, Finding a
Program Name and Giving Your Program Multiple Names, Domain Name Service (DNS), Installing
and Configuring Samba, When Does a User Become a User

of applications and resources, How -name Affects Resources
computers on network, How Unix Systems Remember Their Names
Domain Name Service (DNS), Domain Name Service (DNS)
of programs, in error messages, Finding a Program Name and Giving Your Program Multiple
Names
SMB peers (NETBIOS), Installing and Configuring Samba
usernames, When Does a User Become a User

nameservers (NS), Status and Troubleshooting
namesort script, Sorting a List of People by Last Name
namespaces in Python, Modules and Packages
naming, Naming Files, What Environment Variables Are Good For, Picking a Name for a New
Command, Picking a Name for a New Command, Picking a Name for a New Command

commands, Picking a Name for a New Command, Picking a Name for a New Command
environment variables, What Environment Variables Are Good For
files, Naming Files
shell scripts, Picking a Name for a New Command

NAT, Internet Protocol (IP) (see Network Address Translation)
natd daemon, Gateways and NAT
navigating Unix filesystem, Getting Around the Filesystem, Using Relative and Absolute Pathnames,

What Good Is a Current Directory?, How Does Unix Find Your Current Directory?, Saving Time
When You Change Directories: cdpath, Loop Control: break and continue, The Shells' pushd and
popd Commands, Nice Aliases for pushd, Quick cds with Aliases, cd by Directory Initials, Finding
(Anyone's) Home Directory, Quickly, Marking Your Place with a Shell Variable, Automatic Setup
When You Enter/Exit a Directory

automatic directory setup, Automatic Setup When You Enter/Exit a Directory
cd, speeding up with aliases, Quick cds with Aliases
changing directories, Saving Time When You Change Directories: cdpath
changing directories with c (shell function), cd by Directory Initials
current directory, What Good Is a Current Directory?, How Does Unix Find Your Current
Directory?

finding, How Does Unix Find Your Current Directory?
finding (anyone's) home directory, Finding (Anyone's) Home Directory, Quickly
loop control, break and continue, Loop Control: break and continue
marking your place with shell variable, Marking Your Place with a Shell Variable
relative and absolute pathnames, Using Relative and Absolute Pathnames
shell pushd and popd commands, The Shells' pushd and popd Commands, Nice Aliases for
pushd

navigation icons for resources shared with SMB network, SWAT and GUI SMB Browsers
nawk utility, Quick Reference: awk, awk System Variables, Versions of awk, Shell Scripts On-the-
Fly from Standard Input

awk variables, support of, awk System Variables
examples, Shell Scripts On-the-Fly from Standard Input
version history, Versions of awk

ndown (network down) script, Closing a Window from a Shell Script
ndown script, Separating Commands with Semicolons
ne (inequality) operator, Scalars
neatening text, Neatening Text with fmt (see editing fmt command)
negative numbers as variable values, Stop Syntax Errors in Numeric Tests
nested command substitution, Nested Command Substitution
nested loops, breaking or continuing, Loop Control: break and continue, Loop Control: break and
continue
nesting, Command Substitution

` ` (backquotes), Command Substitution
NETBIOS name, Installing and Configuring Samba
Netinfo, Mac OS X user/group management with, When Does a User Become a User
Netinfo, storing MacOS X passwords, Which Shell Am I Running?
netpbm package, The Portable Bitmap Package
netscape -remote technique, C-Shell Aliases with Command-Line Arguments
netstat command, Status and Troubleshooting, Check Network Connections
Network Address Translation (NAT), Internet Protocol (IP), Gateways and NAT, Gateways and
NAT, Gatewaying from a Personal LAN over a Modem

for PPP connections, Gatewaying from a Personal LAN over a Modem
private addresses, Gateways and NAT

network cards, kernel boot output for, Reading Kernel Boot Output

network devices, Network Devices — ifconfig
configuring with ifconfig, Network Devices — ifconfig

network devices, configuring, Quick Introduction to Hardware
Network File System, Unix Networking and Communications (see NFS)
Network Information Service (NIS), Which Shell Am I Running?
network interfaces for gateways, Gateways and NAT
network time synchronization, How Unix Keeps Time
networking language (SMB on Windows), Installing and Configuring Samba
networking utilities, Unix Networking and Communications
networks, How Unix Systems Remember Their Names, Separating Commands with Semicolons,
Packing Up and Moving, Printing Over a Network, The Common Unix Printing System (CUPS), Status
and Troubleshooting, Where, Oh Where Did That Packet Go?, Where, Oh Where Did That Packet
Go?, Check Network Connections

(see also connectivity)
archiving files for, Packing Up and Moving
checking connections for security breaches, Check Network Connections
computers, names of, How Unix Systems Remember Their Names
configuration of network devices (ifconfig file), Status and Troubleshooting
diagnosing problems with ping and traceroute, Where, Oh Where Did That Packet Go?
printing over, Printing Over a Network, The Common Unix Printing System (CUPS)

CUPS package, The Common Unix Printing System (CUPS)
starting and disabling for dialup connections, Separating Commands with Semicolons

newer alias (printing newest filename), newer: Print the Name of the Newest File
newgrp command, Groups and Group Ownership, Which Group is Which?
newlines, Anyone Can Program the Shell, When Is a File Not a File?, Multiline Shell Prompts,
Multiline Shell Prompts, X Event Translations, Newlines in an @-Function, Patterns, Hacking on
Characters with tr, Special Characters, How Quoting Works, Newlines in a sed Replacement, Making
Edits Across Line Boundaries, Making Edits Across Line Boundaries, sed Newlines, Quoting, and
Backslashes in a Shell Script, /usr/bin and Other Software Directories

as argument separators, Special Characters
awk procedures, separating, Patterns
in Bourne shell quoting, How Quoting Works
different characters for, When Is a File Not a File?
DOS, converting to Unix, /usr/bin and Other Software Directories
Mac vs. Unix, Anyone Can Program the Shell
quoted in sed, shell interpretation of, sed Newlines, Quoting, and Backslashes in a Shell Script
in sed replacement, Newlines in a sed Replacement, Making Edits Across Line Boundaries,
Making Edits Across Line Boundaries
translating Mac carriage returns to, Hacking on Characters with tr
in vi @-functions, Newlines in an @-Function
\n, Multiline Shell Prompts, Multiline Shell Prompts, X Event Translations

in bash shell prompt, Multiline Shell Prompts
in Bourne-type shells, Multiline Shell Prompts
in event translation tables, X Event Translations

news, Emacs Features: A Laundry List, Remove Mail/News Headers with behead

Emacs facility for, Emacs Features: A Laundry List
removing headers with behead script, Remove Mail/News Headers with behead

next (n or N) commands, sed editor, Making Edits Across Line Boundaries, The Deliberate Scrivener
next command (awk), Alphabetical Summary of Commands
next operator (Perl), Perl Boot Camp, Part 3: Branching and Looping
nextdir command, Using the Stored Lists
NFS (Network File System), Unix Networking and Communications, Checklist: Terminal Hangs
When I Log In, Keeping find from Searching Networked Filesystem, Using tar to a Remote Tape
Drive, Choosing the Access Method, Mounting Network Filesystems — NFS, SMBFS

directories remotely mounted by, hung terminals and, Checklist: Terminal Hangs When I Log In
directories, backups to remote tape drive, Using tar to a Remote Tape Drive
find command, preventing from searching, Keeping find from Searching Networked Filesystem
installing packages residing on server, Choosing the Access Method
mounting, Mounting Network Filesystems — NFS, SMBFS

NFS (Network File Systems), vi File Recovery Versus Networked Filesystems
file recovery, vi -r command vs., vi File Recovery Versus Networked Filesystems

nice command, Some Gotchas with Job Control, System Overloaded? Try Stopping Some Jobs,
Know When to Be "nice" to Other Users...and When Not To, Know When to Be "nice" to Other
Users...and When Not To, BSD C Shell nice, BSD Standalone nice, System V Standalone nice, A nice
Gotcha, Changing a Running Job's Niceness

background processes and, Some Gotchas with Job Control
BSD Unix, BSD C Shell nice, BSD Standalone nice

C shell, BSD C Shell nice
standalone, BSD Standalone nice

foreground jobs and, A nice Gotcha
renice command, System Overloaded? Try Stopping Some Jobs, Know When to Be "nice" to
Other Users...and When Not To, Changing a Running Job's Niceness
System V, System V Standalone nice

standalone, System V Standalone nice
nice numbers, Know When to Be "nice" to Other Users...and When Not To, BSD C Shell nice, BSD
Standalone nice, System V C Shell nice, System V Standalone nice, Changing a Running Job's
Niceness

BSD C shell nice, BSD C Shell nice
BSD standalone nice, BSD Standalone nice
System V C shell nice, System V C Shell nice
System V standalone nice, System V Standalone nice

niceness, Know When to Be "nice" to Other Users...and When Not To, System V C Shell nice
System V, C shell nice, System V C Shell nice

NIS (Network Information Service), Which Shell Am I Running?
nl program (line-numbering), Numbering Lines
nmbd daemon, Installing and Configuring Samba
nobody (generic user for HTTP web pages), Check Processes
noclobber shell variable, Safer File Deletion in Some Directories, Safe I/O Redirection with
noclobber
noglob option, Filename Wildcards in a Nutshell

nohup command, Some Gotchas with Job Control, nohup, Disowning Processes
background processes, avoiding termination of, Some Gotchas with Job Control
disown vs., Disowning Processes

nohup.out file, nohup
nom script, nom: List Files That Don't Match a Wildcard, Trapping Exits Caused by Interrupts

trap command in, Trapping Exits Caused by Interrupts
non-ASCII characters in filenames, deleting files with, Using unlink to Remove a File with a Strange
Name
non-rewinding tape devices, Backing Up to Tape
noninteractive shells, Interactive Shells
nonlogin files, Shell Setup Files — Which, Where, and Why

bash, Shell Setup Files — Which, Where, and Why
nonlogin shells, Shell Setup Files — Which, Where, and Why, Login Shells, Login xterms and rxvts

Bourne shell, .profile file and, Shell Setup Files — Which, Where, and Why
startup files, Login Shells
xterm, configuring for, Login xterms and rxvts

nonprintable characters, Show Nonprinting Characters with cat -v or od -c
displaying with od command, Show Nonprinting Characters with cat -v or od -c

nonprintable characters in filenames, Showing Nonprintable Characters in Filenames
nonprintable or control characters, Programs Are Designed to Work Together
nonprinting characters, Showing Nonprintable Characters in Filenames, Showing Nonprintable
Characters in Filenames, Show Nonprinting Characters with cat -v or od -c, Squash Extra Blank
Lines, Problems Deleting Directories

erasing with sed to eliminate extra blank lines, Squash Extra Blank Lines
filenames with, file deletion and, Problems Deleting Directories
ls command, System V Unix, Showing Nonprintable Characters in Filenames
octal values of, printing with ls -b, Showing Nonprintable Characters in Filenames
showing with cat -v, Show Nonprinting Characters with cat -v or od -c

nonprinting escape sequences in a prompt, Highlighting and Color in Shell Prompts
noremap command (vi), Don't Lose Important Functions with vi Maps: Use noremap
not a tty message, The Controlling Terminal
not equal to (!=) operator, Scalars
NOT operator, Be an Expert on find Search Operators
not operator, Scalars
NOT operator (!), Patterns
NOT operator (!), using with find command, Exact File-Time Comparisons
notification of changed job state, Notification When Jobs Change State
notification of job-state changes, Job Control in a Nutshell
nroff program, Searching Online Manual Pages, Make Your Own Manpages Without Learning troff,
Alternatives to fmt, Typesetting Manpages: nroff

-man macros, Make Your Own Manpages Without Learning troff
commands in, Searching Online Manual Pages
formatting text with sed, Alternatives to fmt

NT domains, Installing and Configuring Samba
NUL characters, Running Commands on What You Find, Show Nonprinting Characters with cat -v or

od -c, What Can You Do with an Empty File?
delimiters, using as, Running Commands on What You Find

null command, Test Exit Status with the if Statement
null or unset variables, errors caused by, Stop Syntax Errors in Numeric Tests
numbering lines, Numbering Lines
numbers, Defining What Makes Up a Word for Selection Purposes

ASCII class for, Defining What Makes Up a Word for Selection Purposes
numeric exit status, Managing Processes: Overall Concepts
numeric mode (chmod), Using chmod to Change File Permission
numeric operators, Scalars
numeric sorting, alphabetic vs., Alphabetic and Numeric Sorting
numeric tests, syntax errors in, Stop Syntax Errors in Numeric Tests
nup (network up) script, Closing a Window from a Shell Script
nup script, Separating Commands with Semicolons
n\\>&m operator, Trapping Exits Caused by Interrupts, n>&m: Swap Standard Output and Standard
Error, Nested Command Substitution

echo commands ending with, Trapping Exits Caused by Interrupts
examples, Nested Command Substitution
redirecting standard output and standard error, n>&m: Swap Standard Output and Standard
Error

O

object oriented programming (OOP) in Perl, Perl Boot Camp, Part 1: Typical Script Anatomy
objects, Filename Extensions, X Resource Syntax, Everything's an Object, Everything's an Object, I/O
and Formatting

file extension, Filename Extensions
Python, Everything's an Object, Everything's an Object, I/O and Formatting

creating, Everything's an Object
file objects, I/O and Formatting

resources in applications, association with, X Resource Syntax
objects, Perl, Perl Boot Camp, Part 1: Typical Script Anatomy, Perl Boot Camp, Part 1: Typical
Script Anatomy

releasing resources with close(), Perl Boot Camp, Part 1: Typical Script Anatomy
octal character strings, Highlighting and Color in Shell Prompts
octal number, Using chmod to Change File Permission

permissions written as, Using chmod to Change File Permission
octal numbers, Showing Nonprintable Characters in Filenames, User, Group, and World

permissions, writing as, User, Group, and World
values of nonprinting characters, Showing Nonprintable Characters in Filenames

od -c command, displalying nonprintable files, Show Nonprinting Characters with cat -v or od -c,
Show Nonprinting Characters with cat -v or od -c
od c command, dumping raw directory contets to screen, What's Really in a Directory?
od command, Using unlink to Remove a File with a Strange Name

-c option, Using unlink to Remove a File with a Strange Name

offset script, offset: Indent Text
oldlinks script, oldlinks: Find Unconnected Symbolic Links
on-disk address of file data blocks, How Unix Keeps Track of Files: Inodes
One-Step (GNU-Darwin auto-installer for OS X), The curl Application and One-Step GNU-Darwin
Auto-Installer for OS X
online documentation, The man Command (see info command manual pages)
online manual source file extension, Filename Extensions
open files, Overview: Open Files and File Descriptors

file descriptors and, Overview: Open Files and File Descriptors
OpenSSH, Free SSH with OpenSSH, General and Authentication Problems

Pluggable Authentication Modules (PAM), problems with, General and Authentication Problems
operating systems, Power Grows on You, The Core of Unix, Filename Wildcards in a Nutshell, Who
Handles Wildcards?, Which make?, Building Bridges

BSD Unix, versions of make utility, Which make?
filename wildcards, Filename Wildcards in a Nutshell, Who Handles Wildcards?

shells emulating operating systems, Who Handles Wildcards?
graphical interfaces, Power Grows on You
interoperability, Building Bridges
POSIX standard for interoprability, The Core of Unix

operators, Shell Setup Files — Which, Where, and Why, Faster Prompt Setting with Built-ins, dirs in
Your Prompt: Better Than $cwd, How to Use find, How to Use find, Looking for Files with
Particular Names, Be an Expert on find Search Operators, Be an Expert on find Search Operators,
The Times That find Finds, Exact File-Time Comparisons, Running Commands on What You Find,
Expanding Ranges, Copying Directory Trees with tar and Pipes, Finding Text That Doesn't Match,
Appending to an Existing File, Operators, Operators, Alphabetical Summary of Commands, "Special"
Characters and Operators, String Editing (Colon) Operators, Here Document Example #1:
Unformatted Form Letters, Understanding Expressions, Understanding Expressions, Parameter
Substitution, Parameter Substitution, Syntax, Syntax, Syntax, Unmatched Operators, Perl Boot Camp,
Part 1: Typical Script Anatomy, Perl Boot Camp, Part 1: Typical Script Anatomy, Scalars, Scalars,
Scalars, Scalars, Scalars, Arrays, Perl Boot Camp, Part 3: Branching and Looping

&&, Copying Directory Trees with tar and Pipes
() (subshell) operator, Shell Setup Files — Which, Where, and Why
<< (here document) operator, Here Document Example #1: Unformatted Form Letters
= (assignment) operator, Perl Boot Camp, Part 1: Typical Script Anatomy
arithmetic, Syntax
array, Arrays
array-expanding, Expanding Ranges
awk utility, Operators, Operators
Boolean, Scalars
in expressions, Understanding Expressions, Understanding Expressions

precedence of, Understanding Expressions
for find command, How to Use find, How to Use find, Looking for Files with Particular Names,
Be an Expert on find Search Operators, Be an Expert on find Search Operators, The Times That
find Finds, Exact File-Time Comparisons, Running Commands on What You Find

-exec, Running Commands on What You Find

-name, Looking for Files with Particular Names
search operators, Be an Expert on find Search Operators, Be an Expert on find Search
Operators
time (-mtime, -atime, and -ctime), The Times That find Finds, Exact File-Time
Comparisons

find command, Finding Text That Doesn't Match
! and -name, Finding Text That Doesn't Match

flow-control, for loops in Perl, Perl Boot Camp, Part 3: Branching and Looping
if command, awk, Alphabetical Summary of Commands
logical, Syntax
numerical, Scalars
parameter substitution (Bourne shell), Parameter Substitution
precedence of, Scalars

Boolean operators in Perl, Scalars
redirect and append (>>), Appending to an Existing File
relational, Syntax, Scalars
in shells, listing with definitions, "Special" Characters and Operators
shift (Perl), Perl Boot Camp, Part 1: Typical Script Anatomy
string, Faster Prompt Setting with Built-ins, Scalars
string editing, Parameter Substitution
unmatched, Unmatched Operators
\: (colon), string editing, String Editing (Colon) Operators
\:gt operator (C shell), dirs in Your Prompt: Better Than $cwd

optimizing disk space, Disk Space Is Cheap, Disk Quotas, Save Space with a Link, Limiting File
Sizes, Compressing Files to Save Space, Compressing Files to Save Space, Save Space: tar and
compress a Directory Tree, Compressing a Directory Tree: Fine-Tuning, Save Space in Executable
Files with strip, Disk Quotas

compressing a directory tree, Save Space: tar and compress a Directory Tree, Compressing a
Directory Tree: Fine-Tuning

fine-tuning, Compressing a Directory Tree: Fine-Tuning
compressing files, Compressing Files to Save Space, Compressing Files to Save Space
executable binaries, stripping, Save Space in Executable Files with strip
limiting files sizes, Limiting File Sizes
links, using, Save Space with a Link
quotas on disk usage, Disk Quotas

opttest script, Standard Command-Line Parsing
or (-o) operator, case command, Testing Two Strings with One case Statement
OR operator, Be an Expert on find Search Operators, Finding Many Things with One Command,
Approximate grep: agrep, Extended Regular Expressions, Syntax

agrep command, searching for multiple patterns, Approximate grep: agrep
evaluating OR expressions, Finding Many Things with One Command
| (logical OR) operator, Syntax
| in extended regular expressions, Extended Regular Expressions

or operator (Boolean or), Scalars
or operator (|), Extended Searching for Text with egrep

OR operator (||), Patterns, Separating Commands with Semicolons
orphans, BSD
out-of-date links, Creating and Removing Links (see symbolic links, stale)
output, Running Commands on What You Find (see input/output standard output)
overriding event translations, X Event Translations
overwrite mode (Emacs), Putting Emacs in Overwrite Mode
overwriting files, Command Evaluation and Accidentally Overwriting Files
ownership, file, How Unix Keeps Track of Files: Inodes, Perl Boot Camp, Part 5: Perl Knows Unix,
Group Permissions in a Directory with the setgid Bit, Groups and Group Ownership, Groups and
Group Ownership, Introduction to File Ownership and Security, Tutorial on File and Directory
Permissions, User, Group, and World, Which Group is Which?, Who Will Own a New File?,
Protecting Files with the Sticky Bit, Why Can't You Change File Ownership?, How to Change File
Ownership Without chown, Server and Client Problems

changing with chown function in Perl, Perl Boot Camp, Part 5: Perl Knows Unix
changing without chown command, How to Change File Ownership Without chown
determining, Who Will Own a New File?
directory, setting sticky bit, Protecting Files with the Sticky Bit
disk quotas and, Why Can't You Change File Ownership?
groups, Groups and Group Ownership, Groups and Group Ownership, Which Group is Which?
groups, determining for, Group Permissions in a Directory with the setgid Bit
permissions, Tutorial on File and Directory Permissions
remote files, scp -p command and, Server and Client Problems
security and, Introduction to File Ownership and Security
user, group, and world, User, Group, and World

P

p (print) command, sed editor, The Deliberate Scrivener
packages, Modules and Packages

Python, Modules and Packages
packed file extension, Filename Extensions
packets, Internet Protocol (IP)
packing files, Using tar to Create and Unpack Archives (see archives compression)
page description languages, Printing Languages — PostScript, PCL, DVI, PDF, Printing Languages —
PostScript, PCL, DVI, PDF

consistency of, Printing Languages — PostScript, PCL, DVI, PDF
page size for printing, Formatting Plain Text: enscript
PAGER environment variable, Predefined Environment Variables
pager programs, checksed

more, checksed
displaying sed output, checksed

pagers, "less" is More, "less" is More, Squash Extra Blank Lines, Use -xv, Problems Piping to a
Pager, Problems Piping to a Pager

-s option to squash extra blank lines, Squash Extra Blank Lines
redirecting input/output to, Problems Piping to a Pager, Problems Piping to a Pager

shell debugging output, piping to, Use -xv
pagers, piping shell loop output to, Searching Online Manual Pages
paircheck script, Looking for Closure
paired item checking, Looking for Closure
PalmOS, The Idea of a Terminal Database

terminal emulators on, The Idea of a Terminal Database
PAM (Pluggable Authentication Modules), General and Authentication Problems
paragraphs, preserving with fmt, Neatening Text with fmt
parameter expansion, Quoting and Command-Line Parameters, Quoting and Command-Line
Parameters

command-line argument quoting, errors caused by, Quoting and Command-Line Parameters
shortcuts, Quoting and Command-Line Parameters

parameter substitution, The Unappreciated Bourne Shell ":" Operator, Parameter Substitution,
Parameter Substitution

examples of, Parameter Substitution
\: (colon) used in, The Unappreciated Bourne Shell ":" Operator
\: used in, Parameter Substitution

parameters, command-line, Setting (and Parsing) Parameters (see command-line arguments)
parent directory, Making Pathnames, Making Directories Made Easier, What's Really in a Directory?,
Links to a Directory, Saving Time When You Change Directories: cdpath

creating, Making Directories Made Easier
links to, Links to a Directory
listing in cdpath variable, Saving Time When You Change Directories: cdpath

parent process, Managing Processes: Overall Concepts, The ps Command
PID for, The ps Command

parent process ID (PPID), Why You Can't Kill a Zombie
parent-child relationships, Parent-Child Relationships

environment variables and, Parent-Child Relationships
parsing, Wildcards Inside Aliases, Standard Command-Line Parsing, Standard Command-Line
Parsing, Setting (and Parsing) Parameters, Watch Your Quoting, Using set and IFS, Using sed, Python
and the Web, htmllib and HTMLParser

command-line, Wildcards Inside Aliases
command-line arguments, Standard Command-Line Parsing, Standard Command-Line Parsing,
Setting (and Parsing) Parameters, Watch Your Quoting
HTML, Python module for, Python and the Web, htmllib and HTMLParser
strings using sed editor, Using sed
strings with set command, Using set and IFS

partitioning disks, Disk Partitioning
passmass script, Automating /bin/passwd
passwd command, Automating /bin/passwd
passwd file, File Access Permissions, When Does a User Become a User, Forgetting the root
Password

root password, resetting, Forgetting the root Password
users, adding entry for, When Does a User Become a User

passwords, Which Shell Am I Running?, Installing and Configuring Samba, Securing Samba, Securing

Samba, Connecting to a Windows VNC server, What We Mean by DoS, Forgetting the root
Password, Which Group is Which?, General and Authentication Problems

access by attackers, What We Mean by DoS
for VNC server, Connecting to a Windows VNC server
empty, General and Authentication Problems

SSH server not allowing, General and Authentication Problems
groups, Which Group is Which?
local resources shared with SMB network, Installing and Configuring Samba
root, forgetting, Forgetting the root Password
Samba, Securing Samba

clear text vs. encrypted, Securing Samba
for SMB server, Securing Samba
system file, Which Shell Am I Running?

paste program, Pasting Things in Columns
pasting text, Using vi Abbreviations as Commands (Cut and Paste Between vi's), Keymaps for Pasting
into a Window Running vi, Scrolling, Using a Mouse

between vi's, Using vi Abbreviations as Commands (Cut and Paste Between vi's)
from window systems into vi, Keymaps for Pasting into a Window Running vi
in tty-type virtual consoles with the mouse, Scrolling, Using a Mouse

pasting text in xterm windows, Simple Copy and Paste in xterm, Working with xclipboard, Tips for
Copy and Paste Between Windows, Tips for Copy and Paste Between Windows

between windows, Tips for Copy and Paste Between Windows, Tips for Copy and Paste
Between Windows
xclipboard, using, Working with xclipboard

patch program, Context diffs, Why Line Editors Aren't Dinosaurs, patch: Generalized Updating of
Files That Differ

context diffs, use of, Context diffs
PATH environment variable, Which Version Am I Using?, FPATH Search Path, FPATH Search Path,
What Environment Variables Are Good For, Predefined Environment Variables, The PATH
Environment Variable, PATH and path, Making #! Search the PATH

command version, getting, Which Version Am I Using?
finding commands, What Environment Variables Are Good For
path shell variable and, PATH and path
searching with #!, Making #! Search the PATH
shell functions, searching for, FPATH Search Path

path shell variable, PATH and path
pathnames, Internal and External Commands, Use Absolute Pathnames in Shell Setup Files, Faster
Prompt Setting with Built-ins, Showing the Actual Filenames for Symbolic Links, Unset PWD Before
Using Emacs, String Editing (Colon) Operators, String Editing (Colon) Operators, Using Relative and
Absolute Pathnames, Using Relative and Absolute Pathnames, File-Naming Wildcards, Maybe You
Shouldn't Use Wildcards in Pathnames, Predefined Environment Variables, With the "$@" Parameter,
Save Disk Space and Programming: Multiple Names for a Program, Introduction to basename and
dirname, Introduction to basename and dirname, Restoring a Few Files, Using GNU tar with a
Remote Tape Drive, With GNU tar, Avoid Absolute Paths with tar, GNU tar Sampler

absolute, Internal and External Commands, Avoid Absolute Paths with tar, GNU tar Sampler

avoiding in archives, GNU tar Sampler
tar utility, avoiding use with, Avoid Absolute Paths with tar

editing, Faster Prompt Setting with Built-ins
Emacs, PWD variable and, Unset PWD Before Using Emacs
filenames stripped from, Introduction to basename and dirname
files archived on tape drives, Restoring a Few Files
GNU tar backups to remote tape drive, Using GNU tar with a Remote Tape Drive
head of, returning with \:h operator, String Editing (Colon) Operators
links to, Showing the Actual Filenames for Symbolic Links
login shell, Predefined Environment Variables
matching with wildcard expressions in GNU tar, With GNU tar
relative, Using Relative and Absolute Pathnames, Using Relative and Absolute Pathnames

(see also relative pathnames)
absolute vs., Using Relative and Absolute Pathnames

script, testing for, Save Disk Space and Programming: Multiple Names for a Program
in shell setup files, Use Absolute Pathnames in Shell Setup Files
stripped from filenames, Introduction to basename and dirname
symbols in, With the "$@" Parameter
tail of, returning with \:t operator, String Editing (Colon) Operators
wildcards in, File-Naming Wildcards, Maybe You Shouldn't Use Wildcards in Pathnames

reasons not to use, Maybe You Shouldn't Use Wildcards in Pathnames
paths, dirs in Your Prompt: Better Than $cwd, Checklist: Terminal Hangs When I Log In, A bin
Directory for Your Programs and Scripts, Shell Search Paths, Controlling Shell Command Searches,
Controlling Shell Command Searches, Controlling Shell Command Searches, Controlling Shell
Command Searches, Configuring the sources.list File, Scalars, Installing and Configuring Samba

changing in shell startup files, Controlling Shell Command Searches
echo $PATH command, finding directory pathnames, A bin Directory for Your Programs and
Scripts
local, sharing with SMB network, Installing and Configuring Samba
in Perl scripts, Scalars
search paths, shells, Shell Search Paths, Controlling Shell Command Searches, Controlling Shell
Command Searches, Controlling Shell Command Searches

(see also search path)
set path command, hung terminals and, Checklist: Terminal Hangs When I Log In
tail of each path in dirs output for C shell prompt, dirs in Your Prompt: Better Than $cwd
in URIs, Configuring the sources.list File

pattern matching, Using Search Patterns and Global Commands, Global Searches, Moving Blocks of
Text by Patterns, Useful Global Commands (with Pattern Matches), Capitalizing Every Word on a
Line, vi Compound Searches, That's an Expression, That's an Expression, Extended Regular
Expressions, Pattern Matching Quick Reference with Examples, Examples of Searching and
Replacing, Pattern Matching Quick Reference with Examples, Pattern Matching Quick Reference with
Examples, Examples of Searching and Replacing, Pattern Matching in case Statements, Testing Two
Strings with One case Statement

(see also regular expressions)
in case statements, Testing Two Strings with One case Statement

compound searches with vi, vi Compound Searches
global commands useful with, Useful Global Commands (with Pattern Matches)
lowercase letters, Capitalizing Every Word on a Line
quick reference, Pattern Matching Quick Reference with Examples, Examples of Searching and
Replacing, Pattern Matching Quick Reference with Examples, Pattern Matching Quick Reference
with Examples, Examples of Searching and Replacing

replacement patterns, Pattern Matching Quick Reference with Examples
search and replace commands, Examples of Searching and Replacing
search patterns, Pattern Matching Quick Reference with Examples

replacement patterns, Extended Regular Expressions
search patterns in vi editor, Using Search Patterns and Global Commands, Global Searches

global searches, Global Searches
wildcards in case statements, Pattern Matching in case Statements

pattern space (sed editor), Hold Space: The Set-Aside Buffer, Making Edits Across Line Boundaries,
Making Edits Across Line Boundaries, The Deliberate Scrivener, Multiline Delete, Multiline Delete

deleting contents with d command, Multiline Delete
deleting portion of with D command, Multiline Delete
edits across line boundaries, Making Edits Across Line Boundaries, Making Edits Across Line
Boundaries

pattern-expansion characters ({ }), Build Strings with { }
pattern-matching operators ~ and !~, Alphabetical Summary of Commands
patterns, Patterns and Procedures, Splitting Files by Context: csplit, Splitting Files by Context: csplit,
Using jobs Effectively, Expect, zsh Aliases, That's an Expression, That's an Expression, Don't
Confuse Regular Expressions with Wildcards, Valid Metacharacters for Different Unix Programs,
The Deliberate Scrivener

(see also regular expressions; replacement patterns; search patterns)
aliases matching a wildcard-type pattern in zsh, zsh Aliases
awk utility, Patterns and Procedures
csplit program, for searches, Splitting Files by Context: csplit, Splitting Files by Context: csplit
job control mechanism, use of, Using jobs Effectively
matching in Expect program, Expect
regular expressions vs. wildcards (file-matching patterns), Don't Confuse Regular Expressions
with Wildcards
replacement, valid regular expression metacharacters for, Valid Metacharacters for Different
Unix Programs
in sed, The Deliberate Scrivener

pausing scripts, Building Software Robots the Easy Way
pbm (portable bitmap) format, The Portable Bitmap Package
pbmplus package, The Portable Bitmap Package
PCL (Printer Command Language), Printing Languages — PostScript, PCL, DVI, PDF
PCs, Defining Keys and Button Presses with xmodmap, Hacking on Characters with tr, Disk
Partitioning, USB Configuration

keyboard, CTRL and CAPS LOCK, Defining Keys and Button Presses with xmodmap
partitioning PC BIOS disk, Disk Partitioning
text files, removing carriage returns from, Hacking on Characters with tr

Universal Serial Bus (USB), support of, USB Configuration
PDF, Printing Languages — PostScript, PCL, DVI, PDF
pdksh (public domain Korn shell), There Are Many Shells, What the Shell Does, Korn-Shell Aliases,
Korn shell, Pass History to Another Shell, ksh Editing

aliases, Korn-Shell Aliases
command-line editing, ksh Editing
FPATH environment variable for shell functions, Korn shell
history file, Pass History to Another Shell

performance, Timing Is Everything, Changing a Running Job's Niceness, Timing Is Everything, Timing
Is Everything, Timing Is Everything, Timing Programs, What Commands Are Running and How Long
Do They Take?, Checking System Load: uptime, Know When to Be "nice" to Other Users...and When
Not To, Beware of Sluggish Performance, Other Checks, Check Processes, Checking Swap Space,
Check Network Connections, Other Checks, Other Checks

displaying running commands, What Commands Are Running and How Long Do They Take?
global and local problems, Timing Is Everything
problems with, checking for security breaches, Beware of Sluggish Performance, Other Checks,
Check Processes, Checking Swap Space, Check Network Connections, Other Checks, Other
Checks

I/O statistics, Other Checks
network connections, Check Network Connections
processes, Check Processes
swap space, Checking Swap Space
virtual memory statistics, Other Checks

process scheduling at lower priority with nice, Know When to Be "nice" to Other Users...and
When Not To
system load, checking with uptime, Checking System Load: uptime
timing processes, Timing Is Everything, Timing Is Everything
timing programs, Timing Programs

period (.) , under Symbols), Understanding Expressions (see . (dot)
PERIOD shell variable, Preprompt, Pre-execution, and Periodic Commands
periodic commands, Preprompt, Pre-execution, and Periodic Commands
periodic execution of programs, Periodic Program Execution: The cron Facility, A Little Help, etc.,
A Little Help, etc., Adding crontab Entries, Including Standard Input Within a cron Entry

crontab entries, adding, Adding crontab Entries
shortcuts to creating, A Little Help, etc., A Little Help, etc.
standard input, including in cron entry, Including Standard Input Within a cron Entry

Perl, oldlinks: Find Unconnected Symbolic Links, Showing the Actual Filenames for Symbolic Links,
Different Versions of grep, Compound Searches, Using unlink to Remove a File with a Strange Name,
Emacs Features: A Laundry List, Alternatives to fmt, offset: Indent Text, Cutting Columns or Fields,
lensort: Sort Lines by Length, Sorting a List of People by Last Name, Sorting a List of People by Last
Name, Regular Expressions: Exceptions in a Character Set, Pattern Matching Quick Reference with
Examples, RCS Basics, High-Octane Shell Scripting, CGI Teaser, High-Octane Shell Scripting,
Checking your Perl Installation, Checking your Perl Installation, Checking your Perl Installation,
Checking your Perl Installation, Checking your Perl Installation, Compiling Perl from Scratch,
Compiling Perl from Scratch, Compiling Perl from Scratch, Perl Boot Camp, Part 1: Typical Script

Anatomy, Perl Boot Camp, Part 1: Typical Script Anatomy, Perl Boot Camp, Part 1: Typical Script
Anatomy, Perl Boot Camp, Part 1: Typical Script Anatomy, Perl Boot Camp, Part 2: Variables and
Data Types, Perl Boot Camp, Part 2: Variables and Data Types, Scalars, Scalars, Arrays, Hashes,
Perl Boot Camp, Part 3: Branching and Looping, Perl Boot Camp, Part 4: Pattern Matching, Perl Boot
Camp, Part 4: Pattern Matching, Perl Boot Camp, Part 5: Perl Knows Unix, What About Perl?

branching and looping, Perl Boot Camp, Part 3: Branching and Looping
bug reports, filing, Checking your Perl Installation
commenting RCS files, RCS Basics
compiling, Compiling Perl from Scratch
configuration information, Checking your Perl Installation
configuring, Compiling Perl from Scratch

Configure shell script, Compiling Perl from Scratch
CPAN, library modules on, Sorting a List of People by Last Name
data types, Perl Boot Camp, Part 2: Variables and Data Types
documentation, Perl Boot Camp, Part 1: Typical Script Anatomy

Plain Old Documentation (POD) system, Perl Boot Camp, Part 1: Typical Script Anatomy
documentation (perldoc system), High-Octane Shell Scripting
fields, cutting, Cutting Columns or Fields
File\:\:Find module, oldlinks: Find Unconnected Symbolic Links
grep, simulating actions of, Different Versions of grep
installation, checking, Checking your Perl Installation
interpreter (perl), Checking your Perl Installation
line-by-line and search using, Compound Searches
modules, Perl Boot Camp, Part 1: Typical Script Anatomy

using in scripts, Perl Boot Camp, Part 1: Typical Script Anatomy
offset script, offset: Indent Text
pattern matching, Perl Boot Camp, Part 4: Pattern Matching (see regular expressions)
programming in Emacs, editing modes for, Emacs Features: A Laundry List
Python vs., What About Perl?
regular expression syntax for ranges, Regular Expressions: Exceptions in a Character Set
regular expressions, Pattern Matching Quick Reference with Examples, Perl Boot Camp, Part 4:
Pattern Matching

documentation for, Pattern Matching Quick Reference with Examples
scripts, Perl Boot Camp, Part 1: Typical Script Anatomy

anatomy of typical, Perl Boot Camp, Part 1: Typical Script Anatomy
sl script, Showing the Actual Filenames for Symbolic Links
sorting lines by length, lensort: Sort Lines by Length
sorting names by surname, script for, Sorting a List of People by Last Name
Text\:\:Autoformat module, Alternatives to fmt
Unix-like operators, Perl Boot Camp, Part 5: Perl Knows Unix
unlink() system call, using, Using unlink to Remove a File with a Strange Name
variables, Perl Boot Camp, Part 1: Typical Script Anatomy, Perl Boot Camp, Part 2: Variables
and Data Types, Scalars, Scalars, Arrays, Hashes

arrays, Arrays
hash, Hashes

scalar, Scalars, Scalars
versions, Checking your Perl Installation, Compiling Perl from Scratch

perl interpreter, Checking your Perl Installation
permissions, Running Commands on What You Find, Searching for Files by Permission, What the
Shell Does, Automatic Setup When You Enter/Exit a Directory, Writing a Simple Shell Program,
Shell Lockfile, Using tar to a Remote Tape Drive, CERT Security Checklists, Group Permissions in a
Directory with the setgid Bit, Add Users to a Group to Deny Permissions, Tutorial on File and
Directory Permissions, User, Group, and World, User, Group, and World, User, Group, and World,
User, Group, and World, User, Group, and World, User, Group, and World, Which Group is Which?,
Protecting Files with the Sticky Bit, Using chmod to Change File Permission, The Handy chmod =
Operator, Protect Important Files: Make Them Unwritable, Protect Important Files: Make Them
Unwritable, A Loophole: Modifying Files Without Write Access, A Directory That People Can
Access but Can't List, A Directory That People Can Access but Can't List, Juggling Permissions,
Shell Scripts Must Be Readable and (Usually) Executable

changes, handling with aliases, Protect Important Files: Make Them Unwritable
changing with chmod, Using chmod to Change File Permission, The Handy chmod = Operator

= operator, The Handy chmod = Operator
for executable files, Writing a Simple Shell Program
execute permission, A Directory That People Can Access but Can't List

without read permission, A Directory That People Can Access but Can't List
files managed by team of people, User, Group, and World
finding files by, Searching for Files by Permission
fully accessible directory within unreadable directory, A Directory That People Can Access but
Can't List
group, in directory with setgid bit, Group Permissions in a Directory with the setgid Bit
group-write, Running Commands on What You Find, Which Group is Which?

searching for and removing, Running Commands on What You Find
groups that deny, Add Users to a Group to Deny Permissions, User, Group, and World
information neither personal nor modifiable, User, Group, and World
lockfiles, Shell Lockfile
managing, Juggling Permissions
modifying files without write access, A Loophole: Modifying Files Without Write Access
octal number, writing as, User, Group, and World
personal information, User, Group, and World
read-only, Protect Important Files: Make Them Unwritable
remote directory backups and, Using tar to a Remote Tape Drive
security and, CERT Security Checklists
set incorrectly, What the Shell Does
shell scripts, Shell Scripts Must Be Readable and (Usually) Executable
sticky bit, Protecting Files with the Sticky Bit
umask command, Automatic Setup When You Enter/Exit a Directory, User, Group, and World

personal directories, Private (Personal) Directories
personal word list, ispell program, Adding Words to ispell's Dictionary
pg program, Problems Piping to a Pager

piping to, Problems Piping to a Pager

pgm (graymap) format, The Portable Bitmap Package
pick script, zap
PID, Managing Processes: Overall Concepts (see process ID)
pid (process ID), Job Control in a Nutshell

killing jobs by, Job Control in a Nutshell
pid (process IDs), Using Job Control from Your Shell
Pike, Rob, zap
ping program, Where, Oh Where Did That Packet Go?
pipelines, Exit Status of Unix Processes, One Argument with a cat Isn't Enough

exit status of, Exit Status of Unix Processes
starting with cat command, One Argument with a cat Isn't Enough

pipes, Programs Are Designed to Work Together, List All Subdirectories with ls -R, Searching for
Files by Type, Using "Fast find" Databases, Copying Directory Trees with tar and Pipes, Copying
Directory Trees with tar and Pipes, The ps Command, Writing a Simple Shell Program, Using
Standard Input and Output, Using Standard Input and Output, Send (Only) Standard Error Down a
Pipe, Problems Piping to a Pager, Problems Piping to a Pager, Redirection in C Shell: Capture
Errors, Too?, Send Output Two or More Places, Redirecting Output to More Than One Place, Named
Pipes: FIFOs

buffering output, Send Output Two or More Places
commands joined with, Writing a Simple Shell Program
copying directory trees, Copying Directory Trees with tar and Pipes, Copying Directory Trees
with tar and Pipes
find output to xargs ls -l, Searching for Files by Type
locate command output to xargs, Using "Fast find" Databases
ls command output, List All Subdirectories with ls -R
ps command in, The ps Command
redirecting input/output, Using Standard Input and Output, Using Standard Input and Output,
Problems Piping to a Pager, Problems Piping to a Pager, Redirection in C Shell: Capture Errors,
Too?, Redirecting Output to More Than One Place, Named Pipes: FIFOs

named pipes (FIFOs), Named Pipes: FIFOs
to pagers, Problems Piping to a Pager, Problems Piping to a Pager
tpipe command, Redirecting Output to More Than One Place
|& operator, Redirection in C Shell: Capture Errors, Too?

redirecting standard error (but not standard output), Send (Only) Standard Error Down a Pipe
pixmaps, The Portable Bitmap Package
pkg_add utility, Installing with FreeBSD Packages
Plan 9 operating system, There Are Many Shells, There Are Many Shells
Pluggable Authentication Modules (PAM), General and Authentication Problems
plus sign, Finding Text That Doesn't Match (see +, under Symbols)
pnm graphic format, The Portable Bitmap Package
Point-to-Point Protocol (PPP), Setting Up a Dialup PPP Session, Gatewaying from a Personal LAN
over a Modem

configuring connection for gatewaying, Gatewaying from a Personal LAN over a Modem
setting up dialup session, Setting Up a Dialup PPP Session

pointers, Working with xterm and Friends, Linking Directories, Status and Troubleshooting

to other files or directories, Linking Directories (see symbolic links)
PTR record for IP address, Status and Troubleshooting
for screen navigation, Working with xterm and Friends

pop operator (Perl), Arrays
popd command, Session Info in Window Title or Status Line, dirs in Your Prompt: Better Than $cwd,
The Shells' pushd and popd Commands, Nice Aliases for pushd, The Shells' pushd and popd
Commands

clearing directory stack with, The Shells' pushd and popd Commands
portable bitmap format, The Portable Bitmap Package
Portable Bitmap Package, The Portable Bitmap Package, The Portable Bitmap Package
portable graymap format, The Portable Bitmap Package
portable pixmap formats, The Portable Bitmap Package
ports, Terminal Setup: Testing Port, Terminal Setup: Searching Terminal Table, Layer 4 Protocols:
TCP, UDP, and ICMP, Layer 4 Protocols: TCP, UDP, and ICMP, /etc/services Is Your Friend,
Gateways and NAT, Gateways and NAT, Firewalls, Server and Client Problems

firewalls and, Firewalls
HTTP requests, Gateways and NAT
IP addresses and, Layer 4 Protocols: TCP, UDP, and ICMP
numbers for, Layer 4 Protocols: TCP, UDP, and ICMP
port forwarding, problems with, Server and Client Problems
SMTP requests, Gateways and NAT
terminal, listing of types, Terminal Setup: Searching Terminal Table
testing port (tty) numbers for terminal setup, Terminal Setup: Testing Port
well-known, database in /etc/services, /etc/services Is Your Friend

POSIX (Portable Operating System Interface), The Core of Unix
Post Office Protocol (POP or POP3), Mail — SMTP, POP, and IMAP
postfix program, Mail — SMTP, POP, and IMAP
PostScript, Filename Extensions, Formatting Plain Text: enscript, Printing Languages — PostScript,
PCL, DVI, PDF, Converting Text Files into a Printing Language

converting text files to, Converting Text Files into a Printing Language
page description language, Printing Languages — PostScript, PCL, DVI, PDF
source file extension (.ps), Filename Extensions
text files, converting to, Formatting Plain Text: enscript

ppm (pixmap) format, The Portable Bitmap Package
pr command, Numbering Lines, Making Text in Columns with pr, Order Lines Across Columns: -l,
One File per Column: -m, One File per Column: -m, One File per Column: -m, One File, Several
Columns: -number, Order Lines Across Columns: -l, Formatting Plain Text: pr

-h (heading) option, One File per Column: -m
-l option (page length), Order Lines Across Columns: -l
-m option (one file per column), One File per Column: -m
-number option for columns, One File, Several Columns: -number
sX option (setting column separator to x), One File per Column: -m
t and n options, Numbering Lines

precedence of operators, Understanding Expressions, Scalars
Boolean operators in Perl, Scalars

predefined environment variables, Predefined Environment Variables, Predefined Environment
Variables
preprompt commands, Preprompt, Pre-execution, and Periodic Commands, Preprompt, Pre-execution,
and Periodic Commands

setting, Preprompt, Pre-execution, and Periodic Commands
previous job, Using jobs Effectively
primary groups, Groups and Group Ownership
primary partitions, Disk Partitioning
print command (awk), Alphabetical Summary of Commands
print function, Scalars
printcap file, Printing Over a Network, Converting Source Files Automagically Within the Spooler

apsfilter, installing, Converting Source Files Automagically Within the Spooler
printenv command, Terminal Setup: Testing Environment Variables, Statistics of Processes by PID,
What Environment Variables Are Good For, Shell Variables

checking for environment changes at different systems, Terminal Setup: Testing Environment
Variables

Printer Command Language (PCL), Printing Languages — PostScript, PCL, DVI, PDF
PRINTER environment variable, Predefined Environment Variables
printer queue, watching for errors (watchq script), Printer Queue Watcher: A Restartable Daemon
Shell Script
printexitvalue shell variable (tcsh), Exit Status of Unix Processes
printf command (awk), Alphabetical Summary of Commands, Centering Lines in a File
printing, Build Strings with { }, String Editing (Colon) Operators, Check Your History First with :p,
Introduction to Printing, The Portable Bitmap Package, Introduction to Printing, Introduction to
Printing, lpr-Style Printing Commands, lp-Style Printing Commands, Printer Control with lpc, Using
Different Printers, Using Symbolic Links for Spooling, Formatting Plain Text: pr, Formatting Plain
Text: enscript, Printing Over a Network, Printing Over Samba, Printing to Unix Printers from
Windows, Printing to Windows Printers from Unix, Introduction to Typesetting, A Bit of Unix
Typesetting History, Typesetting Manpages: nroff, Formatting Markup Languages — troff, LATEX,
HTML, and So On, Printing Languages — PostScript, PCL, DVI, PDF, Converting Text Files into a
Printing Language, Converting Typeset Files into a Printing Language, Converting Source Files
Automagically Within the Spooler, The Common Unix Printing System (CUPS), The Portable Bitmap
Package, The Portable Bitmap Package, SWAT and GUI SMB Browsers, Printing with Samba

commands without executing them (\:p operator), String Editing (Colon) Operators, Check Your
History First with :p
Common Unix Printing System (CUPS), The Common Unix Printing System (CUPS)
files, shortcut for, Build Strings with { }
formatting plain text with enscript, Formatting Plain Text: enscript
formatting plain text with pr, Formatting Plain Text: pr
languages for, Printing Languages — PostScript, PCL, DVI, PDF, Converting Text Files into a
Printing Language, Converting Typeset Files into a Printing Language

converting text files into, Converting Text Files into a Printing Language
converting typeset files into, Converting Typeset Files into a Printing Language

lp-style commands, lp-Style Printing Commands
lpc commands, Printer Control with lpc

lpr-style commands, lpr-Style Printing Commands
markup languages, formatting with, Formatting Markup Languages — troff, LATEX, HTML, and
So On
network, Printing Over a Network
Portable Bitmap Package, The Portable Bitmap Package, The Portable Bitmap Package
printers, configuring to share with SMB network, SWAT and GUI SMB Browsers
over Samba, Printing Over Samba, Printing to Unix Printers from Windows, Printing to
Windows Printers from Unix, Printing with Samba

from Unix to Windows printer, Printing to Windows Printers from Unix
to Unix printers, Printing to Unix Printers from Windows

spooling system, Introduction to Printing, Converting Source Files Automagically Within the
Spooler

converting source files, Converting Source Files Automagically Within the Spooler
lp and lpr, Introduction to Printing

spooling system for, Introduction to Printing, Using Symbolic Links for Spooling
symbolic links, using, Using Symbolic Links for Spooling

typesetting, Introduction to Typesetting, A Bit of Unix Typesetting History, Typesetting
Manpages: nroff

manpages with nroff commands, Typesetting Manpages: nroff
Unix hitory of, A Bit of Unix Typesetting History

using different printers, Using Different Printers
PRINT_EXIT_VALUE option (zsh), Exit Status of Unix Processes
priocntl command, Know When to Be "nice" to Other Users...and When Not To
priority of processes, Know When to Be "nice" to Other Users...and When Not To, Know When to Be
"nice" to Other Users...and When Not To, Changing a Running Job's Niceness

changing with renice command, Changing a Running Job's Niceness
Unix definition of, Know When to Be "nice" to Other Users...and When Not To

priority ordering for processes, Some Gotchas with Job Control, System Overloaded? Try Stopping
Some Jobs

stopped jobs and, System Overloaded? Try Stopping Some Jobs
private addresses, Gateways and NAT
private directories, Private (Personal) Directories
private keys, Secure Shell (SSH) (see public-key cryptography)
procedural programming languages, functions in, Functions
procedures (awk utility), Procedures
process groups, Managing Processes: Overall Concepts, Killing Foreground Jobs, Changing a
Running Job's Niceness

priority of processes in, modifying, Changing a Running Job's Niceness
signals sent from keyboard, Killing Foreground Jobs

process ID (PID), External Commands Send Signals to Set Variables, Picking a Unique Filename
Automatically, Managing Processes: Overall Concepts, Statistics of Processes by PID, Destroying
Processes with kill, Killing All Your Processes, Why You Can't Kill a Zombie, Trapping Exits
Caused by Interrupts

-1, Killing All Your Processes
kill command, feeding to, Destroying Processes with kill

statistics of process by, Statistics of Processes by PID
unique filenames, use in, Picking a Unique Filename Automatically
zmore script (example), Trapping Exits Caused by Interrupts

process substitution, What's Special About the Unix Command Line, nom: List Files That Don't Match
a Wildcard, Redirecting Output to More Than One Place

in nom script example, nom: List Files That Don't Match a Wildcard
tee command, using with, Redirecting Output to More Than One Place

processes, The Kernel and Daemons, Job Control in a Nutshell, How Job Control Works, How Job
Control Works, Using jobs Effectively, Some Gotchas with Job Control, Disowning Processes, fork
and exec, fork and exec, Managing Processes: Overall Concepts, Managing Processes: Overall
Concepts, Managing Processes: Overall Concepts, Managing Processes: Overall Concepts, Managing
Processes: Overall Concepts, Managing Processes: Overall Concepts, The ps Command, The
Controlling Terminal, Tracking Down Processes, BSD, System V, BSD, BSD, BSD, BSD, Why ps
Prints Some Commands in Parentheses, The /proc Filesystem, A Glimpse at Hardware, Statistics of
Processes by PID, A Glimpse at Hardware, What Are Signals?, Killing Foreground Jobs, What Are
Signals?, What Are Signals?, Destroying Processes with kill, Printer Queue Watcher: A Restartable
Daemon Shell Script, Printer Queue Watcher: A Restartable Daemon Shell Script, Killing All Your
Processes, Killing Processes by Name?, Kill Processes Interactively, zap, Processes Out of Control?
Just STOP Them, Cleaning Up an Unkillable Process, The Process Chain to Your Window, The
Process Chain to Your Window, Terminal Windows Without Shells, Close a Window by Killing Its
Process(es), Closing a Window from a Shell Script, Example #1: An xterm Window, Example #2: A
Web Browser, Closing a Window from a Shell Script, Building Software Robots the Easy Way,
Building Software Robots the Easy Way, Building Software Robots the Easy Way, Timing Is
Everything, Timing Is Everything, Know When to Be "nice" to Other Users...and When Not To,
Parent-Child Relationships, Exit Status of Unix Processes, Overview: Open Files and File
Descriptors, Named Pipes: FIFOs, Check Processes

/proc filesystem, The /proc Filesystem, A Glimpse at Hardware, Statistics of Processes by PID,
A Glimpse at Hardware

hardware information, A Glimpse at Hardware
statistics by PID, Statistics of Processes by PID

background, Managing Processes: Overall Concepts (see background processes)
background and foreground, Job Control in a Nutshell
chain leading to your window, The Process Chain to Your Window, The Process Chain to Your
Window
checking for security breaches, Check Processes
cleaning up unkillable, Cleaning Up an Unkillable Process
closing a window by killing its processes, Close a Window by Killing Its Process(es), Closing a
Window from a Shell Script, Example #1: An xterm Window, Example #2: A Web Browser,
Closing a Window from a Shell Script

shell script, using, Closing a Window from a Shell Script
web browser (example), Example #2: A Web Browser
xterm window (example), Example #1: An xterm Window

commands printed in parentheses by ps, Why ps Prints Some Commands in Parentheses
controlling process, Managing Processes: Overall Concepts
controlling terminal, The Controlling Terminal

creating new with fork and exec calls, fork and exec
defined, How Job Control Works
destroying with kill command, Destroying Processes with kill
disowning, Disowning Processes
exit status of, Exit Status of Unix Processes
exit status returned by, Managing Processes: Overall Concepts
foreground, Managing Processes: Overall Concepts (see foreground processes)
interactively killing those matching a pattern, Kill Processes Interactively
killing all, Killing All Your Processes
killing by name, Killing Processes by Name?
killing interactively, zap

zap script, using, zap
listing with ps command, The Kernel and Daemons, The ps Command
managing, overview of, Managing Processes: Overall Concepts, Managing Processes: Overall
Concepts
open files for reading from/writing to, Overview: Open Files and File Descriptors
parent-child relationships, Parent-Child Relationships
priority, lowering with nice command, Know When to Be "nice" to Other Users...and When Not
To
queue by priority, Some Gotchas with Job Control
restarting daemon shell script with kill command, Printer Queue Watcher: A Restartable
Daemon Shell Script, Printer Queue Watcher: A Restartable Daemon Shell Script
scheduling, Building Software Robots the Easy Way, Building Software Robots the Easy Way,
Building Software Robots the Easy Way

at command, running once with, Building Software Robots the Easy Way
regular, periodic execution with cron, Building Software Robots the Easy Way

signals and, What Are Signals?, Killing Foreground Jobs, What Are Signals?, What Are
Signals?

actions in response to signals, What Are Signals?
kill-9 command, sending KILL and STOP signals, What Are Signals?

spawning, fork and exec
stopped vs. terminated, Using jobs Effectively
stopping, Processes Out of Control? Just STOP Them
terminal windows without shells, Terminal Windows Without Shells
timing, Timing Is Everything, Timing Is Everything
tracking down with ps command, Tracking Down Processes, BSD, System V, BSD, BSD, BSD,
BSD

-a option, on BSD systems, BSD
-a option, on System V, System V
-ax option on BSD, BSD
-e option, on System V, BSD
runaway processes, BSD

Unix handling of, How Job Control Works
unrelated, communicating through FIFOs, Named Pipes: FIFOs

profiler (GNU gprof), Timing Is Everything

programming, Power Grows on You
Unix, Power Grows on You

(see also shell scripts)
programming languages, Emacs Features: A Laundry List, Expect, Perl Boot Camp, Part 2: Variables
and Data Types, Functions

Emacs as IDE for, Emacs Features: A Laundry List
functions in, Functions
loosely typed, Perl Boot Camp, Part 2: Variables and Data Types
Tcl, Expect

programming, shell, Writing a Simple Shell Program (see shell scripts)
programming, Unix, Power Grows on You
programs, Communication with Unix, Programs Are Designed to Work Together, Programs Are
Designed to Work Together, Programs Are Designed to Work Together, There Are Many Shells,
Program Waiting for Input?, Aborting Programs, A bin Directory for Your Programs and Scripts,
Answer "Yes" or "No" Forever with yes, Periodic Program Execution: The cron Facility, A Little
Help, etc., A Little Help, etc., Adding crontab Entries, Including Standard Input Within a cron Entry,
Timing Programs, How Shells Run Other Programs, Who Handles Wildcards?, Finding a Program
Name and Giving Your Program Multiple Names, Finding a Program Name and Giving Your Program
Multiple Names, Reading Files with the . and source Commands, Save Disk Space and Programming:
Multiple Names for a Program, Overview: Open Files and File Descriptors

aborting, Aborting Programs
bin directory for, A bin Directory for Your Programs and Scripts
environment, modifying, Reading Files with the . and source Commands
file deletion, Answer "Yes" or "No" Forever with yes
filename wildcards, passing to without shell interpretation, Who Handles Wildcards?
filters, Programs Are Designed to Work Together
links to, Save Disk Space and Programming: Multiple Names for a Program
names of, Finding a Program Name and Giving Your Program Multiple Names, Finding a
Program Name and Giving Your Program Multiple Names

giving multiple names with links, Finding a Program Name and Giving Your Program
Multiple Names
in error messages, Finding a Program Name and Giving Your Program Multiple Names

periodic execution with cron, Periodic Program Execution: The cron Facility, A Little Help,
etc., A Little Help, etc., Adding crontab Entries, Including Standard Input Within a cron Entry

crontab entries, adding, Adding crontab Entries
shortcuts to creating, A Little Help, etc., A Little Help, etc.
standard input, including in cron entry, Including Standard Input Within a cron Entry

redirecting input and output of, Overview: Open Files and File Descriptors
shells running, How Shells Run Other Programs
timing, Timing Programs
Unix, Communication with Unix, Programs Are Designed to Work Together, Programs Are
Designed to Work Together, There Are Many Shells

(see also shells)
as tools, Programs Are Designed to Work Together

waiting for input, Program Waiting for Input?

prompt shell variable, Interactive Shells, Gotchas in set prompt Test, Gotchas in set prompt Test,
Basics of Setting the Prompt

if (! $?prompt) exit test, Gotchas in set prompt Test
setting to see aliases hidden in the ($?prompt) test, Gotchas in set prompt Test

promptpid variable, External Commands Send Signals to Set Variables
prompts, Which Shell Am I Running?, Basics of Setting the Prompt, Preprompt, Pre-execution, and
Periodic Commands, Static Prompts, Dynamic Prompts, Simulating Dynamic Prompts, C-Shell
Prompt Causes Problems in vi, rsh, etc., Faster Prompt Setting with Built-ins, Multiline Shell
Prompts, Session Info in Window Title or Status Line, A "Menu Prompt" for Naive Users,
Highlighting and Color in Shell Prompts, Right-Side Prompts, Show Subshell Level with $SHLVL,
What Good Is a Blank Shell Prompt?, dirs in Your Prompt: Better Than $cwd, External Commands
Send Signals to Set Variables, Preprompt, Pre-execution, and Periodic Commands, Preprompt, Pre-
execution, and Periodic Commands, Managing Processes: Overall Concepts, How Shells Run Other
Programs, Bourne Shell Used Here, Multiline Quoting, A foreach Loop, A for Loop, Multiline
Commands, Secondary Prompts, History in a Nutshell, History by Number, Predefined Environment
Variables, Predefined Environment Variables, Cleaning script Files

$ (dollar sign), in Bourne shell prompts, Bourne Shell Used Here
blank, What Good Is a Blank Shell Prompt?
Bourne-type shells, primary, Predefined Environment Variables
C-shell, stray prompt problems, C-Shell Prompt Causes Problems in vi, rsh, etc.
characters displayed in different sehlls, Which Shell Am I Running?
current directory in, using dirs command output, dirs in Your Prompt: Better Than $cwd
dynamic, Dynamic Prompts, Simulating Dynamic Prompts

simulating, Simulating Dynamic Prompts
external commands sending signals to set variables, External Commands Send Signals to Set
Variables
faster setting with built-ins, Faster Prompt Setting with Built-ins
highlighting and color in, Highlighting and Color in Shell Prompts
history number in, History in a Nutshell, History by Number
menu prompt for naive users, A "Menu Prompt" for Naive Users
modified, script program and, Cleaning script Files
multiline, Multiline Shell Prompts
preprompt commands, setting, Preprompt, Pre-execution, and Periodic Commands
preprompt, preexecution and periodic commands, Preprompt, Pre-execution, and Periodic
Commands
PS1, PS2 variables, Predefined Environment Variables
right-side, Right-Side Prompts
secondary, Multiline Quoting, A foreach Loop, A for Loop, Multiline Commands, Secondary
Prompts

> as, A for Loop
? as, A foreach Loop
Bourne shell quoting and, Multiline Quoting
multiline commands and, Multiline Commands, Secondary Prompts

session info in window title or status line, Session Info in Window Title or Status Line
static, Static Prompts

subshell level, showing, Show Subshell Level with $SHLVL
typing commands at, Managing Processes: Overall Concepts

PROMPT_COMMAND (bash shell variable), Preprompt, Pre-execution, and Periodic Commands
propagating shell functions, Propagating Shell Functions, zsh, Exporting bash Functions, FPATH
Search Path, zsh, Korn shell, zsh

exporting bash functions, Exporting bash Functions
FPATH search path, FPATH Search Path, zsh, Korn shell, zsh

Korn shell, Korn shell
zsh shell, zsh

protocols, Configuring the sources.list File, Configuring the sources.list File, Interruptable gets with
wget, The curl Application and One-Step GNU-Darwin Auto-Installer for OS X

(see also individual protocol names)
curl application, support of, The curl Application and One-Step GNU-Darwin Auto-Installer for
OS X
URI types, Configuring the sources.list File
wget utility, support of, Interruptable gets with wget

prune operator (find command), Removing a Strange File by its i-number
ps command, The Kernel and Daemons, The Kernel and Daemons, The Kernel and Daemons,
Aborting Programs, Starting a Remote Client with rsh and ssh, Searching for Text with grep,
Disowning Processes, The ps Command, The ps Command, The ps Command, The ps Command, The
ps Command, The ps Command, Tracking Down Processes, BSD, Tracking Down Processes, BSD,
BSD, BSD, Why ps Prints Some Commands in Parentheses, Destroying Processes with kill, Killing
Processes by Name?, zap, The Process Chain to Your Window, Check Processes

-a (all) option, Tracking Down Processes, BSD
BSD-derived systems, BSD
System V, Tracking Down Processes

-ag options, displaying all processes on system, zap
-ax option, BSD
-ef options (System V), The ps Command
-el options, The Kernel and Daemons
AIX version of, The ps Command
aux options (Berkeley style), The ps Command
aux options (Berkeley-style), The Kernel and Daemons
aux or -ef options, listing chain of processes, The Process Chain to Your Window
checking current processes for security breaches, Check Processes
checking for application running on remote display, Starting a Remote Client with rsh and ssh
commands printed in parentheses, Why ps Prints Some Commands in Parentheses
displaying programs, Aborting Programs
e (everything) option, BSD
grep, using with, Searching for Text with grep
listing of command output fields, The ps Command
in pipes, The ps Command
runaway shell script, locating, Killing Processes by Name?
showing all jobs with -x or -e options, Disowning Processes
x option, The Kernel and Daemons

zombies, listing, Destroying Processes with kill
PS1 environment variable, Basics of Setting the Prompt, Predefined Environment Variables
PS2 environment variable, Predefined Environment Variables
pseudo-terminal, The Controlling Terminal
pstat utility, Checking Swap Space
psychotherapist program, Emacs, An Absurd Amusement
ptbk script (for incremental backups), On-Demand Incremental Backups of a Project
pty, The Controlling Terminal
public directive (smb.conf), Installing and Configuring Samba
public key cryptography, Secure Shell (SSH), General and Authentication Problems, General and
Authentication Problems, General and Authentication Problems

authentication, not working on SSH, General and Authentication Problems
installing key file on remote host, General and Authentication Problems
passphrase, problems with, General and Authentication Problems
SSL, use of, Secure Shell (SSH)

public-domain version of Korn shell, There Are Many Shells (see pdksh)
punctuation in filenames, Filenames
push operator (Perl), Arrays
pushd command, Session Info in Window Title or Status Line, dirs in Your Prompt: Better Than
$cwd, dirs in Your Prompt: Better Than $cwd, The Shells' pushd and popd Commands, Nice Aliases
for pushd, Nice Aliases for pushd

aliases for, Nice Aliases for pushd
pushing or pulling information, Building Software Robots the Easy Way
put command, Using Buffers to Move or Copy Text, Connecting to SMB Shares from Unix

copying files to remote host from Unix, Connecting to SMB Shares from Unix
restoring text with vi editor, Using Buffers to Move or Copy Text

pwd command, Linking Directories, How Does Unix Find Your Current Directory?
PWD environment variable, Simulating Dynamic Prompts, Unset PWD Before Using Emacs,
Predefined Environment Variables

storing in prompt to give current directory, Simulating Dynamic Prompts
unsetting before using Emacs, Unset PWD Before Using Emacs

Python, What Is Python?, What About Perl?, What Is Python?, Installation and Distutils, Installation
and Distutils, Installation and Distutils, Python Basics, wxPython, Indentation, Functions, Everything's
an Object, Modules and Packages, I/O and Formatting, wxPython, Python and the Web, urllib, urllib2,
htmllib and HTMLParser, cgi, mod_python, What About Perl?

installation, Installation and Distutils, Installation and Distutils, Installation and Distutils
Disutils program and, Installation and Distutils
modules, checking for, Installation and Distutils

overview of language, Python Basics, wxPython, Indentation, Functions, Everything's an Object,
Modules and Packages, I/O and Formatting, wxPython

functions, Functions
GUIs, wxPython
I/O and formatting, I/O and Formatting
indentation, Indentation
modules and packages, Modules and Packages

objects, Everything's an Object
Perl vs., What About Perl?
portability of, What Is Python?
web, interacting with, Python and the Web, urllib, urllib2, htmllib and HTMLParser, cgi,
mod_python

cgi module, cgi
htmllib and HTMLParser modules, htmllib and HTMLParser
mod_python module, mod_python
urllib module, urllib
urllib2 module, urllib2

Q

qmail program, Mail — SMTP, POP, and IMAP
qterm program, Automatic Setups for Different Terminals, Querying Your Terminal Type: qterm,
Querying Your Terminal Type: qterm

+usrtab option, Querying Your Terminal Type: qterm
query option (xrdb), Setting Resources with xrdb
querying terminal type (qterm), Querying Your Terminal Type: qterm
queues, Some Gotchas with Job Control, lpr-Style Printing Commands, Printer Control with lpc

printing jobs, lpr-Style Printing Commands, Printer Control with lpc
processes by priority, Some Gotchas with Job Control

quieting at jobs, Making Your at Jobs Quiet
quit command, Useful ex Commands, Uses of the sed Quit Command

ex, Useful ex Commands
sed, Uses of the sed Quit Command

quit key, Setting Your Erase, Kill, and Interrupt Characters
QUIT signal, nohup, What Are Signals?, Killing Foreground Jobs, Destroying Processes with kill

ignoring in System V with nohup command, nohup
killing processes waiting for NFS resources, Destroying Processes with kill

quota command, Disk Quotas
quota systems for disk usage, Disk Quotas
quote command, Fix Quoting in csh Aliases with makealias and quote
quoting, Tips for Copy and Paste Between Windows, Inserting Binary Characters into Files, Output
Command-Line Arguments One by One, Bourne Shell Quoting, Multiline Quoting, Special Characters,
How Quoting Works, Single Quotes Inside Single Quotes?, Multiline Quoting, Multiline Quoting,
Differences Between Bourne and C Shell Quoting, Special Characters, How Quoting Works, Quoting
Special Characters in Filenames, Verbose and Echo Settings Show Quoting, Here Documents,
"Special" Characters and Operators, How Many Backslashes?, C-Shell Aliases with Command-Line
Arguments, C-Shell Aliases with Command-Line Arguments, How to Put if-then-else in a C-Shell
Alias, Fix Quoting in csh Aliases with makealias and quote, tcsh Editing, Don't Confuse Regular
Expressions with Wildcards, Examples of Searching, Filename Wildcards in a Nutshell, Pattern
Matching in case Statements, Watch Your Quoting, Quoted hereis Document Terminators: sh Versus
csh, Quoting and Command-Line Parameters, Quoting and Command-Line Parameters, With GNU tar

aliases, C-Shell Aliases with Command-Line Arguments, C-Shell Aliases with Command-Line

Arguments, How to Put if-then-else in a C-Shell Alias, Fix Quoting in csh Aliases with
makealias and quote

C shell, How to Put if-then-else in a C-Shell Alias
fixing in csh with makealias and quote, Fix Quoting in csh Aliases with makealias and
quote

in Bourne shell, Bourne Shell Quoting, Multiline Quoting, Special Characters, How Quoting
Works, Single Quotes Inside Single Quotes?, Multiline Quoting, Multiline Quoting

multiline, Multiline Quoting, Multiline Quoting
rules for, How Quoting Works, Single Quotes Inside Single Quotes?
special characters, Special Characters

in C shell, Differences Between Bourne and C Shell Quoting, How Quoting Works, Quoting
Special Characters in Filenames, Quoting and Command-Line Parameters

rules for, How Quoting Works
special characters, Quoting Special Characters in Filenames

in case statement wildcard pattern matching, Pattern Matching in case Statements
command-line arguments, Watch Your Quoting, Quoting and Command-Line Parameters

errors caused by, Quoting and Command-Line Parameters
control characters in Emacs, Inserting Binary Characters into Files
filename arguments containing wildcards, With GNU tar
hereis document terminators, Quoted hereis Document Terminators: sh Versus csh
in C shell, Special Characters

special characters quoting, Special Characters
in shells, How Many Backslashes?

\ (backslashes) quoting, How Many Backslashes?
preventing wildcard expansion with, Filename Wildcards in a Nutshell
quote characters from Windows, formatting for Unix, Tips for Copy and Paste Between
Windows
regular expression special characters to prevent shell expansion of, Don't Confuse Regular
Expressions with Wildcards
regular expressions used with grep or egrep, Examples of Searching
in shells, Verbose and Echo Settings Show Quoting, Here Documents, "Special" Characters and
Operators

here documents, Here Documents
showing with verbose and echo settings, Verbose and Echo Settings Show Quoting
special characters and their meanings, "Special" Characters and Operators

showing results with showargs, Output Command-Line Arguments One by One
special characters in key bindings, tcsh Editing

QWERTY keyboards, Defining Keys and Button Presses with xmodmap, Defining Keys and Button
Presses with xmodmap
qx() function, Perl Boot Camp, Part 5: Perl Knows Unix

R

rand command (awk), Alphabetical Summary of Commands
random numbers in nawk (srand), Alphabetical Summary of Commands

ranges, Expanding Ranges, Hacking on Characters with tr, Hacking on Characters with tr, Build
Strings with { }, Regular Expressions: Specifying a Range of Characters with [...], Regular
Expressions: Exceptions in a Character Set

.. (integer-range) operator in zsh, Build Strings with { }
character ranges (hyphen-separated), Hacking on Characters with tr
character ranges in regular expressions, Hacking on Characters with tr, Regular Expressions:
Specifying a Range of Characters with [...]
expanding, Expanding Ranges
Perl regular expression syntax for, Regular Expressions: Exceptions in a Character Set

rc shell, There Are Many Shells
rcp command, Unix Networking and Communications, Copying Directory Trees with cp -r

-r option, Copying Directory Trees with cp -r
RCS (Revision Control System), Finding File Types, Search RCS Files with rcsgrep, rcsegrep.fast,
Emacs Features: A Laundry List, One File per Column: -m, Managing and Sharing Files with RCS
and CVS, RCS Basics, List RCS Revision Numbers with rcsrevs, RCS Basics, RCS Basics, RCS
Basics, RCS Basics, List RCS Revision Numbers with rcsrevs

archiving files, Managing and Sharing Files with RCS and CVS
ci (checkin) command, RCS Basics
co (checkout command), RCS Basics

-p option, sending file to standard output, RCS Basics
comparing directory with subdirectory, using pr, One File per Column: -m
Emacs support for, Emacs Features: A Laundry List
file utility, recognizing archives with, Finding File Types
listing revision numbers with rcsrevs script, List RCS Revision Numbers with rcsrevs
merging two or more file versions with rcsmerge and co -j, RCS Basics
searching files with rcsgrep commands, Search RCS Files with rcsgrep, rcsegrep.fast
unlocking files, RCS Basics

rcsdiff command, Context diffs, List RCS Revision Numbers with rcsrevs
rcsegrep.fast script, rcsegrep.fast
rcsgrep command, Different Versions of grep, Search RCS Files with rcsgrep, rcsegrep.fast, List
RCS Revision Numbers with rcsrevs

-a option, List RCS Revision Numbers with rcsrevs
rcsgrep script, rcsgrep, rcsegrep, rcsfgrep
RD (Receive Data) light, Stalled Data Connection?
rdesktop (RDP client for Unix), rdesktop
read command, Useful ex Commands, A for Loop, read: Reading from the Keyboard, Standard Input
to a for Loop

ex editor, Useful ex Commands
reading from the keyboard, read: Reading from the Keyboard
while loops using, Standard Input to a for Loop

read permission, Access to Directories, Searching for Files by Permission, Tutorial on File and
Directory Permissions, Using chmod to Change File Permission, A Directory That People Can
Access but Can't List, Shell Scripts Must Be Readable and (Usually) Executable

changing with chmod, Using chmod to Change File Permission
for directories, Access to Directories, Tutorial on File and Directory Permissions

execute permission without, A Directory That People Can Access but Can't List
finding files by, Searching for Files by Permission
shell scripts, Shell Scripts Must Be Readable and (Usually) Executable

read-only files, Protect Important Files: Make Them Unwritable
read-only functions, Shell Function Specifics
reading files, access time and, The Three Unix File Times
reading from terminals, Managing Processes: Overall Concepts

process groups and, Managing Processes: Overall Concepts
reading-tar process, Copying Directory Trees with tar and Pipes
readline command, Setting Your Erase, Kill, and Interrupt Characters
Readline library, bash Editing, Predefined Environment Variables

inputrc file, bash Editing
setup filename, choosing, Predefined Environment Variables

recomment script, The recomment Script
recovering files, vi File Recovery Versus Networked Filesystems, Be Careful with vi -r Recovered
Buffers, Backup and Auto-Save Files, The cpio Tape Archiver

cpio tape archive, The cpio Tape Archiver
Emacs, using, Backup and Auto-Save Files
vi -r command, vi File Recovery Versus Networked Filesystems, Be Careful with vi -r
Recovered Buffers

recovered buffers, cautions about, Be Careful with vi -r Recovered Buffers
recursion, tracing depth of, Functions Calling Functions: Factorials
recursive aliases, Avoiding C-Shell Alias Loops
recursive functions, Functions Calling Functions: Factorials, Functions Calling Functions: Factorials
recursive permission changing, Using chmod to Change File Permission
recursive searching with grep, Custom -exec Tests Applied
Red Hat Linux, Defining Keys and Button Presses with xmodmap (see Linux)
redirect operator (>>), Appending to an Existing File
redirecting input and output, Periodic Program Execution: The cron Facility, Command Evaluation
and Accidentally Overwriting Files, Is It "2>&1 file" or "> file 2>&1"? Why?, Overview: Open
Files and File Descriptors, Overview: Open Files and File Descriptors, n>&m: Swap Standard
Output and Standard Error, Use -xv, Line Numbers Reset Inside Redirected Loops, Using Standard
Input and Output, What Can You Do with an Empty File?, Using Standard Input and Output, Using
Standard Input and Output, One Argument with a cat Isn't Enough, Send (Only) Standard Error Down
a Pipe, Problems Piping to a Pager, Problems Piping to a Pager, Redirection in C Shell: Capture
Errors, Too?, Safe I/O Redirection with noclobber, The () Subshell Operators, Send Output Two or
More Places, Redirecting Output to More Than One Place, Named Pipes: FIFOs, What Can You Do
with an Empty File?

C shell, Redirection in C Shell: Capture Errors, Too?
cat command, One Argument with a cat Isn't Enough
commands combined with grouping (()) operator, The () Subshell Operators
cron system output, Periodic Program Execution: The cron Facility
to /dev/null, What Can You Do with an Empty File?
FIFOs, using, Named Pipes: FIFOs
line numbers in redirected loops, Line Numbers Reset Inside Redirected Loops

to multiple processes, Redirecting Output to More Than One Place
noclobber, using, Safe I/O Redirection with noclobber
pagers, piping to, Problems Piping to a Pager, Problems Piping to a Pager
of programs, Overview: Open Files and File Descriptors
shell capabilities, Overview: Open Files and File Descriptors
shell output and errors into temporary file, Use -xv
standard error (only), piping, Send (Only) Standard Error Down a Pipe
standard input and standard output, using, Using Standard Input and Output, Using Standard Input
and Output
standard output and standard error, Is It "2>&1 file" or "> file 2>&1"? Why?, n>&m: Swap
Standard Output and Standard Error

Bourne shells, Is It "2>&1 file" or "> file 2>&1"? Why?
standard output, shell processing of, Command Evaluation and Accidentally Overwriting Files
tee program, Send Output Two or More Places

redo operator (Perl), Perl Boot Camp, Part 3: Branching and Looping
references (Perl), Perl Boot Camp, Part 1: Typical Script Anatomy, References, References

dereferencing, References
reformatting text from one window before pasting it into another, Tips for Copy and Paste Between
Windows
registry settings for clear text SMB passwords, Securing Samba
regular expressions, lookfor: Which File Has That Word?, Searching for Text with grep, Finding Text
That Doesn't Match, Extended Searching for Text with egrep, Approximate grep: agrep, Approximate
grep: agrep, Narrowing a Search Quickly, Using Search Patterns and Global Commands, Patterns,
Alphabetical Summary of Commands, Alphabetical Summary of Commands, "Special" Characters
and Operators, That's an Expression, Examples of Searching and Replacing, Don't Confuse Regular
Expressions with Wildcards, Don't Confuse Regular Expressions with Wildcards, Understanding
Expressions, Understanding Expressions, Understanding Expressions, Using Metacharacters in
Regular Expressions, Using Metacharacters in Regular Expressions, Regular Expressions: Matching a
Character with a Character Set, Regular Expressions: Specifying a Range of Characters with [...],
Regular Expressions: Repeating Character Sets with *, Regular Expressions: Matching a Specific
Number of Sets with \ { and \ }, Regular Expressions: Matching Words with \ < and \ >, Regular
Expressions: Remembering Patterns with \ (, \), and \1, Regular Expressions: Potential Problems,
Extended Regular Expressions, Extended Regular Expressions, Getting Regular Expressions Right,
Just What Does a Regular Expression Match?, Just What Does a Regular Expression Match?,
Limiting the Extent of a Match, I Never Meta Character I Didn't Like, Valid Metacharacters for
Different Unix Programs, Pattern Matching Quick Reference with Examples, Examples of Searching
and Replacing, Pattern Matching Quick Reference with Examples, Pattern Matching Quick Reference
with Examples, Examples of Searching, Examples of Searching and Replacing, sed Addressing
Basics, sed Addressing Basics, Delimiting a Regular Expression, Searching for Patterns Split Across
Lines, Searching for Patterns Split Across Lines, Testing Characters in a String with expr, Matching
with expr, Without GNU tar, Perl Boot Camp, Part 4: Pattern Matching, Perl Boot Camp, Part 4:
Pattern Matching

(see also pattern matching)
agrep command, Approximate grep: agrep, Approximate grep: agrep
awk utility, Patterns

egrep command, lookfor: Which File Has That Word?, Extended Searching for Text with egrep
examples of, I Never Meta Character I Didn't Like
expr command, Testing Characters in a String with expr, Matching with expr

matching parts of strings, Matching with expr
testing character strings, Testing Characters in a String with expr

expressions, understanding, Understanding Expressions
extended, Extended Regular Expressions, Extended Regular Expressions

alternation mechanism, Extended Regular Expressions
filename-matching patterns vs., Don't Confuse Regular Expressions with Wildcards
finding lines that don't match a pattern, Finding Text That Doesn't Match
globally substituting for each match, Alphabetical Summary of Commands
limiting extent of match, Limiting the Extent of a Match
matching a character with a character set, Regular Expressions: Matching a Character with a
Character Set
matching specific number of sets with \{ \}, Regular Expressions: Matching a Specific Number
of Sets with \ { and \ }
matching words with \< \\\>, Regular Expressions: Matching Words with \ < and \ >
metacharacters, "Special" Characters and Operators, Understanding Expressions, Using
Metacharacters in Regular Expressions, Valid Metacharacters for Different Unix Programs

for different Unix programs, Valid Metacharacters for Different Unix Programs
pattern context, Getting Regular Expressions Right
pattern matching, quick reference, Pattern Matching Quick Reference with Examples, Examples
of Searching and Replacing, Pattern Matching Quick Reference with Examples, Pattern Matching
Quick Reference with Examples, Examples of Searching, Examples of Searching and Replacing

replacement patterns, Pattern Matching Quick Reference with Examples
search and replace commands, Examples of Searching and Replacing
search patterns, Pattern Matching Quick Reference with Examples, Examples of Searching

Perl, Perl Boot Camp, Part 4: Pattern Matching, Perl Boot Camp, Part 4: Pattern Matching
metacharacters in, Perl Boot Camp, Part 4: Pattern Matching

potential problem areas, Regular Expressions: Potential Problems
range of characters, specifying with [], Regular Expressions: Specifying a Range of Characters
with [...]
repeated patterns, matching with \(\), Regular Expressions: Remembering Patterns with \ (, \),
and \1
repeating character sets with *, Regular Expressions: Repeating Character Sets with *
retrieving only matched text with xgrep script, Just What Does a Regular Expression Match?
sed editor, Narrowing a Search Quickly, sed Addressing Basics, sed Addressing Basics,
Delimiting a Regular Expression, Searching for Patterns Split Across Lines, Searching for
Patterns Split Across Lines

addresses, sed Addressing Basics, sed Addressing Basics
delimiting, Delimiting a Regular Expression
searching for patterns split across lines, Searching for Patterns Split Across Lines,
Searching for Patterns Split Across Lines

sequence of characters, describing, Understanding Expressions
showmatch script, testing with, Just What Does a Regular Expression Match?

simple vs. extended, Using Metacharacters in Regular Expressions
substituting for matches in nawk, Alphabetical Summary of Commands
tar archive files, matching filenames of, Without GNU tar
wildcards vs., Don't Confuse Regular Expressions with Wildcards

rehash command, A bin Directory for Your Programs and Scripts, Controlling Shell Command
Searches, Writing a Simple Shell Program

resetting command search table, Writing a Simple Shell Program
relational operators, Alphabetical Summary of Commands, Syntax, Scalars

if command, awk, Alphabetical Summary of Commands
relative pathnames, Making Pathnames, Use Absolute Pathnames in Shell Setup Files, Stale Symbolic
Links, Showing the Actual Filenames for Symbolic Links, Using Relative and Absolute Pathnames,
Using Relative and Absolute Pathnames, What Good Is a Current Directory?

creating, Using Relative and Absolute Pathnames
current directory and, What Good Is a Current Directory?
links, avoiding invalidation of, Stale Symbolic Links
in shell setup files, Use Absolute Pathnames in Shell Setup Files
symbolic links to, Showing the Actual Filenames for Symbolic Links

remainder, modulus (%) operator, Syntax
remote access, Disallow rlogin and rsh, Protecting Access Through SSH, Protecting Access Through
SSH

conrolling, Protecting Access Through SSH (see ssh)
disallowing for security, Disallow rlogin and rsh
rsh, Protecting Access Through SSH (see rsh)

remote clients, starting for X window systems, Starting Remote X Clients, Starting a Remote Client
with rsh and ssh
Remote Desktop Protocol (RDP), Citrix: Making Windows Multiuser, rdesktop

client for Unix (rdesktop), rdesktop
remote directories, hung terminals and, Checklist: Terminal Hangs When I Log In
remote files, Emacs Features: A Laundry List, Build Strings with { }

Emacs, opening with, Emacs Features: A Laundry List
shortcut for copying, Build Strings with { }

remote logins, Session Info in Window Title or Status Line, Stopping Remote Login Sessions
status line updates, Session Info in Window Title or Status Line
stopping sessions, Stopping Remote Login Sessions

remote restoration of backup files, Remote Restoring
remote shells, Setup Files Aren't Read When You Want?, Setup Files Aren't Read When You Want?

(see also rsh; ssh)
setup files for, Setup Files Aren't Read When You Want?

remote tape drive, tar backups to, Using tar to a Remote Tape Drive, Using GNU tar with a Remote
Tape Drive
remove option (xrdb), Setting Resources with xrdb
removing, With a Loop, Choosing Packages for Installation or Removal

command-line arguments, With a Loop
software packages, dependency conflicts caused by, Choosing Packages for Installation or
Removal

removing files, The Cycle of Creation and Destruction, Using find to Clear Out Unneeded Files, rm
and Its Dangers, Tricks for Making rm Safer, Answer "Yes" or "No" Forever with yes, Remove
Some, Leave Some, A Faster Way to Remove Files Interactively, Safer File Deletion in Some
Directories, Safe Delete: Pros and Cons, Deletion with Prejudice: rm -f, Deleting Files with Odd
Names, Removing Every File but One, Handling a Filename Starting with a Dash (-), Using unlink to
Remove a File with a Strange Name, Removing a Strange File by its i-number, Problems Deleting
Directories, Deleting Stale Files, Removing Every File but One, Using find to Clear Out Unneeded
Files, Instead of Removing a File, Empty It, Protecting Files with the Sticky Bit

confirmation before deletion, Answer "Yes" or "No" Forever with yes
deleting directories, Problems Deleting Directories
deleting files with odd names, Deleting Files with Odd Names, Removing Every File but One,
Handling a Filename Starting with a Dash (-), Using unlink to Remove a File with a Strange
Name, Removing a Strange File by its i-number

eight-bit filenames, Using unlink to Remove a File with a Strange Name
filenames starting with - (dash), Handling a Filename Starting with a Dash (-)
i-numbers, using, Removing a Strange File by its i-number

directory sticky bit permission and, Protecting Files with the Sticky Bit
emptying files instead of, Instead of Removing a File, Empty It
excluding some files from, Removing Every File but One
find command and, Using find to Clear Out Unneeded Files
interactively, with file-deletion script or alias, A Faster Way to Remove Files Interactively
rm command, rm and Its Dangers, Tricks for Making rm Safer, Deletion with Prejudice: rm -f

-f option (no confirmation), Deletion with Prejudice: rm -f
dangers of, rm and Its Dangers
safety techniques for, Tricks for Making rm Safer

safe delete program, Safe Delete: Pros and Cons
safer file deletion in some directories, Safer File Deletion in Some Directories
selective deletion of, Remove Some, Leave Some
stale files, deleting, Deleting Stale Files

rename function, Perl Boot Camp, Part 5: Perl Knows Unix
renaming files, Can't Access a File? Look for Spaces in the Name, Showing Nonprintable Characters
in Filenames, What's So Complicated About Copying Files, Renaming, Copying, or Comparing a Set
of Files, Renaming a List of Files Interactively, Who Will Own a New File?, Protecting Files with
the Sticky Bit, A Loophole: Modifying Files Without Write Access

directory sticky bit permission and, Protecting Files with the Sticky Bit
groups of, What's So Complicated About Copying Files, Renaming, Copying, or Comparing a
Set of Files
interactively, Renaming a List of Files Interactively
mv command, using, Can't Access a File? Look for Spaces in the Name
with nonprinting characters in names, Showing Nonprintable Characters in Filenames
ownership and, Who Will Own a New File?
write access and, A Loophole: Modifying Files Without Write Access

renice command, System Overloaded? Try Stopping Some Jobs, Know When to Be "nice" to Other
Users...and When Not To, Changing a Running Job's Niceness
rep command, vis command vs., Repeating a Time-Varying Command

repeat command, Get Back What You Deleted with Numbered Buffers, Repeating Commands, The
Shells' pushd and popd Commands

. (dot), in vi, Get Back What You Deleted with Numbered Buffers
clearing directory stack with popd, The Shells' pushd and popd Commands

repeating commands, Repeating Commands, A foreach Loop, A for Loop, A foreach Loop, A for
Loop, Repeating a Command with Copy-and-Paste, Repeating a Time-Varying Command, The
Lessons of History, History Substitutions, History Substitutions, Repeating a Cycle of Commands

at set intervals, Repeating a Time-Varying Command
copy and paste, using, Repeating a Command with Copy-and-Paste
cycle of commands, Repeating a Cycle of Commands
with history substitution, History Substitutions, History Substitutions
with variations, A foreach Loop, A for Loop, A foreach Loop, A for Loop

for loop, using, A for Loop
foreach loop, using, A foreach Loop

replacement patterns, Valid Metacharacters for Different Unix Programs, Pattern Matching Quick
Reference with Examples, Delimiting a Regular Expression

sed editor, delimiting, Delimiting a Regular Expression
special characters in, Pattern Matching Quick Reference with Examples
valid regular expression metacharacters for, Valid Metacharacters for Different Unix Programs

replacements, Global Searches, Confirming Substitutions in vi, Useful Global Commands (with
Pattern Matches), Useful ex Commands, Useful ex Commands, Newlines in a sed Replacement,
Referencing the Search String in a Replacement, Referencing Portions of a Search String, Search and
Replacement: One Match Among Many

(see also substitution commands)
confirming in vi editor, Confirming Substitutions in vi
global, with vi editor, Global Searches
patterns, matching for, Useful Global Commands (with Pattern Matches)
sed editor, Newlines in a sed Replacement, Referencing the Search String in a Replacement,
Referencing Portions of a Search String, Search and Replacement: One Match Among Many

newlines in, Newlines in a sed Replacement
referencing portions of search string in, Referencing Portions of a Search String
referencing the search string in, Referencing the Search String in a Replacement
specifying one match among many possible matches, Search and Replacement: One Match
Among Many

repositories, CVS archives, CVS Basics, CVS Basics, More CVS
modifications, commiting and pushing into, CVS Basics
setting up, More CVS

reprint character (CTRL-r), Reprinting Your Command Line with CTRL-r
requote shell script, Tips for Copy and Paste Between Windows, Tips for Copy and Paste Between
Windows

fmt width option, Tips for Copy and Paste Between Windows
resize command, Terminal Setup: Testing Window Size, Querying Your xterm Size: resize, Querying
Your xterm Size: resize

c or u options to force use of C- or Bourne-shell syntax, Querying Your xterm Size: resize
xterm windows, Querying Your xterm Size: resize

resources, X Resource Syntax, X Resource Syntax, X Resource Syntax, X Event Translations, Setting
X Resources: Overview, Listing the Current Resources for a Client: appres, Setting X Resources:
Overview, Setting X Resources: Overview, Setting Resources with the -xrm Option, How -name
Affects Resources, Setting Resources with xrdb, Setting Resources with xrdb, Setting Resources with
xrdb, Setting Resources with xrdb, Listing the Current Resources for a Client: appres, System
Overloaded? Try Stopping Some Jobs

overloaded, System Overloaded? Try Stopping Some Jobs
removing definitions, Setting Resources with xrdb
setting for X Window System, X Resource Syntax, X Resource Syntax, X Resource Syntax, X
Event Translations, Setting X Resources: Overview, Listing the Current Resources for a Client:
appres, Setting X Resources: Overview, Setting Resources with the -xrm Option, How -name
Affects Resources, Setting Resources with xrdb, Setting Resources with xrdb, Setting Resources
with xrdb, Listing the Current Resources for a Client: appres

-name, effect on resources, How -name Affects Resources
appres (application resource) utility, Listing the Current Resources for a Client: appres
event translations, overview, X Event Translations
querying resource database, Setting Resources with xrdb
resource database manager, X Resource Syntax
resources file (example), Setting X Resources: Overview
xrdb utility, using, Setting Resources with xrdb, Setting Resources with xrdb
xrm command-line option, Setting Resources with the -xrm Option

setting for X Window system, Setting X Resources: Overview
resource database manager, Setting X Resources: Overview

RESOURCE_MANAGER property, Setting Resources with xrdb
restart command (lpc), Printer Control with lpc
restoring files, Restoring Files from Tape with tar, Restoring Files from Tape with tar, Using tar to a
Remote Tape Drive, RCS Basics

(see also backups; tar utility)
RCS, using, RCS Basics
from remote tape drives, Using tar to a Remote Tape Drive
from tape with tar, Restoring Files from Tape with tar

restricted command access (rsh) shell, What the Shell Does
restricted shell, Starting a Remote Client with rsh and ssh
RETURN characters (in .exrc file for vi editor), Setting Up vi with the .exrc File
return command, Alphabetical Summary of Commands, Setting Current Shell Environment: The work
Function

awk utility, Alphabetical Summary of Commands
shell function, use in, Setting Current Shell Environment: The work Function

reverse order, command history listed in, History by Number
reversing patch, patch: Generalized Updating of Files That Differ
reversing sort order, Reverse Sort
revision control, Tricks for Making rm Safer (see CVS RCS)
revision control programs, Filenames

file versions and, Filenames
Revision Control System, Managing and Sharing Files with RCS and CVS (see RCS)

revnum shell variable, List RCS Revision Numbers with rcsrevs
rftp script, Automating /bin/passwd
Rich Site Summary files, collecting, Building Software Robots the Easy Way
right-side prompts, Right-Side Prompts
rlogin utility, Tip for Changing Account Setup: Keep a Shell Ready, Terminal Setup: Testing Port,
Stalled Data Connection?, Starting Remote X Clients from Interactive Logins, Disallow rlogin and
rsh, Enabling Remote Access on Mac OS X

disabling for security reasons, Disallow rlogin and rsh
enabling on Mac OS X, Enabling Remote Access on Mac OS X
logging in to host again from same terminal, Tip for Changing Account Setup: Keep a Shell
Ready
network ports for, Terminal Setup: Testing Port
stalled connection with, Stalled Data Connection?

rm command, Differences Between Hard and Symbolic Links, Creating and Removing Links, rm and
Its Dangers, Tricks for Making rm Safer, Answer "Yes" or "No" Forever with yes, Safer File
Deletion in Some Directories, Deletion with Prejudice: rm -f, Handling a Filename Starting with a
Dash (-), Using unlink to Remove a File with a Strange Name, Using unlink to Remove a File with a
Strange Name, Problems Deleting Directories, Problems Deleting Directories, Removing Every File
but One, Trapping Exits Caused by Interrupts, Protect Important Files: Make Them Unwritable

-f option, Deletion with Prejudice: rm -f, Trapping Exits Caused by Interrupts, Protect Important
Files: Make Them Unwritable
-i option, Answer "Yes" or "No" Forever with yes, Safer File Deletion in Some Directories,
Using unlink to Remove a File with a Strange Name

confirmation of deletions, Answer "Yes" or "No" Forever with yes
creating -i file for, Safer File Deletion in Some Directories

-r option, Problems Deleting Directories
excluding files from deletion, Removing Every File but One
filenames beginning with - (dash), Handling a Filename Starting with a Dash (-)
filenames beginning with . (dot), Problems Deleting Directories
linked files, deleting, Differences Between Hard and Symbolic Links
links, removing, Creating and Removing Links
rf option, Using unlink to Remove a File with a Strange Name
safety techniques for, Tricks for Making rm Safer

rmdir (remove directory) command, Problems Deleting Directories
rmstar variable (tcsh shell), Tricks for Making rm Safer
root access, Highlighting and Color in Shell Prompts, Forgetting the root Password, Never Log In as
root, Providing Superpowers with sudo, Enabling Root in Darwin

enabling in Darwin, Enabling Root in Darwin
logins, Highlighting and Color in Shell Prompts
logins, external, Never Log In as root
password, forgetting, Forgetting the root Password
providing with sudo application, Providing Superpowers with sudo

root directory, Making Pathnames, /usr/bin and Other Software Directories
subdirectories located directly off, /usr/bin and Other Software Directories

root of a filename (\:r string editing operator), String Editing (Colon) Operators

root servers (DNS), Domain Name Service (DNS)
rot program, Rotating Text
route command, Status and Troubleshooting
routers, Gateways and NAT, Firewalls

DSL, firewalls, Firewalls
functioning as gateways, Gateways and NAT

routing, Where, Oh Where Did That Packet Go?, Firewalls
diagnosing routes with traceroute, Where, Oh Where Did That Packet Go?
packets, preventing with firewalls, Firewalls

routing tables, displaying with netstart -r, Status and Troubleshooting
RPM, finding and installing packaged software, Finding and Installing RPM Packaged Software
rprnt key, Setting Your Erase, Kill, and Interrupt Characters
rsh, Unix Networking and Communications, Starting a Remote Client with rsh and ssh, Starting a
Remote Client with rsh and ssh, Starting a Remote Client with rsh and ssh, Copying Directory Trees
with tar and Pipes, Change Many Files by Editing Just One, Stopping Remote Login Sessions, What
the Shell Does, Using tar to a Remote Tape Drive, Using GNU tar with a Remote Tape Drive,
Disallow rlogin and rsh, Enabling Remote Access on Mac OS X

disabling for security reasons, Disallow rlogin and rsh
display option, Starting a Remote Client with rsh and ssh
enabling on Mac OS X, Enabling Remote Access on Mac OS X
n option, Starting a Remote Client with rsh and ssh
remote tape drive, accessing with GNU tar, Using GNU tar with a Remote Tape Drive
restoring files from remote tape drives, Using tar to a Remote Tape Drive
rsync program, Change Many Files by Editing Just One
running reading- or writing-tar on remote system, Copying Directory Trees with tar and Pipes
starting remote X clients, Starting a Remote Client with rsh and ssh
stopping sessions, Stopping Remote Login Sessions

rsync command, Change Many Files by Editing Just One, Periodic Program Execution: The cron
Facility
run-parts script, A Little Help, etc.
runaway processes, BSD, Killing Processes by Name?

killing by name, Killing Processes by Name?
runsed script, runsed
rusers command, Setting (and Parsing) Parameters
rxvt terminal program, Working with xterm and Friends, Login xterms and rxvts, VT Fonts Menu

fonts and command-line options, VT Fonts Menu
login shell, running, Login xterms and rxvts

S

safe delete program, Safe Delete: Pros and Cons
safer rm command, techniques for, Tricks for Making rm Safer
Samba, Mounting Network Filesystems — NFS, SMBFS, Printing Over Samba, Printing to Unix
Printers from Windows, Printing to Windows Printers from Unix, Installing and Configuring Samba,
Installing and Configuring Samba, Installing and Configuring Samba, Installing and Configuring

Samba, Installing and Configuring Samba, Securing Samba, Securing Samba, SWAT and GUI SMB
Browsers, Connecting to SMB Shares from Unix

connecting to SMB shares from Unix, Connecting to SMB Shares from Unix
installing and configuring, Installing and Configuring Samba, Installing and Configuring Samba,
Installing and Configuring Samba, Installing and Configuring Samba

configuration script for daemons (smb.conf), Installing and Configuring Samba
NETBIOS names (SMB peer names), Installing and Configuring Samba
running SMB daemons, Installing and Configuring Samba

mounting SMB-shared filesystems, Mounting Network Filesystems — NFS, SMBFS
printing over, Printing Over Samba, Printing to Unix Printers from Windows, Printing to
Windows Printers from Unix

from Windows to Unix printers, Printing to Unix Printers from Windows
to Windows printer from Unix, Printing to Windows Printers from Unix

project web site, Installing and Configuring Samba
security, Securing Samba, Securing Samba

security settings in smb.conf, Securing Samba
swat tool, SWAT and GUI SMB Browsers

sash shell, What the Shell Does
save lines (-sl option) for xterms, How Many Lines to Save?
SAVEHIST environment variable, Picking Up Where You Left Off
savehist shell variable, Picking Up Where You Left Off
saveLines (xterm resource), How Many Lines to Save?
saving command lines to file, Anyone Can Program the Shell
scalar variables in Perl, Perl Boot Camp, Part 1: Typical Script Anatomy, Scalars, Scalars, Scalars,
Scalars, Scalars, Scalars

Boolean operators used with, Scalars
comparing with relational operators, Scalars
numerical operators used with, Scalars
string operators used with, Scalars

sched command, Right-Side Prompts
scheduler program, Timing Is Everything, Know When to Be "nice" to Other Users...and When Not
To

process priority, lowering with nice, Know When to Be "nice" to Other Users...and When Not
To

scheduling processes, Building Software Robots the Easy Way, Building Software Robots the Easy
Way, Building Software Robots the Easy Way

at command, running once with, Building Software Robots the Easy Way
regular, periodic execution with cron, Building Software Robots the Easy Way

scientific notation, Alphabetic and Numeric Sorting
scp command, Unix Networking and Communications, On-Demand Incremental Backups of a Project,
Secure Shell (SSH), General and Authentication Problems, Server and Client Problems

copying archives, On-Demand Incremental Backups of a Project
problems and solutions on SSH, General and Authentication Problems, Server and Client
Problems

screen editors, The Idea of a Terminal Database

screens, Running Commands When You Log Out, The DISPLAY Environment Variable
clearing, Running Commands When You Log Out

script program, Faster Prompt Setting with Built-ins, Copy What You Do with script, Copy What You
Do with script, Cleaning script Files

cleaning files, Cleaning script Files
ending, Copy What You Do with script

script.tidy script, Cleaning script Files
scripting languages, Scripting, Everyone Should Learn Some Shell Programming, High-Octane Shell
Scripting, What About Perl?

Perl, High-Octane Shell Scripting (see Perl)
Python, What About Perl? (see Python)
shell scripts vs., Everyone Should Learn Some Shell Programming

scripts, Anyone Can Program the Shell, A bin Directory for Your Programs and Scripts, Finding
Oldest or Newest Files with ls -t and ls -u, oldlinks: Find Unconnected Symbolic Links, Finding Files
(Much) Faster with a find Database, lookfor: Which File Has That Word?, rcsegrep.fast, A Multiline
Context grep Using sed, A Highlighting grep, A Faster Way to Remove Files Interactively, Using find
to Clear Out Unneeded Files, Adding Words to ispell's Dictionary, Adding Words to ispell's
Dictionary, Counting Lines, Words, and Characters: wc, Find a a Doubled Word, Looking for
Closure, Why Line Editors Aren't Dinosaurs, Writing Editing Scripts, And Why Not?, Rotating Text,
Alternatives to fmt, Remove Mail/News Headers with behead, offset: Indent Text, Centering Lines in
a File, Splitting Files by Context: csplit, Splitting Files by Context: csplit, Hacking on Characters
with tr, Encoding "Binary" Files into ASCII, MIME Encoding, Text Conversion with dd, Cutting
Columns or Fields, Making Text in Columns with pr, Order Lines Across Columns: -l, Make Columns
Automatically with column, Straightening Jagged Columns, Pasting Things in Columns, Joining Lines
with join, What Is (or Isn't) Unique?, Rotating Text, lensort: Sort Lines by Length, Sorting a List of
People by Last Name, Building Software Robots the Easy Way, A Little Help, etc., Default
Commands, Output Command-Line Arguments One by One, Verbose and Echo Settings Show
Quoting, Separating Commands with Semicolons, Dialback, Automating /bin/passwd, Sourceable
Scripts, Sourceable Scripts, Just What Does a Regular Expression Match?, Just What Does a Regular
Expression Match?, The vgrep Script, nom: List Files That Don't Match a Wildcard, checksed,
runsed, Order of Commands in a Script, Hold Space: The Set-Aside Buffer, Hold Space: The Set-
Aside Buffer, Searching for Patterns Split Across Lines, Searching for Patterns Split Across Lines,
Writing a Simple Shell Program, Everyone Should Learn Some Shell Programming, Shell Script
"Wrappers" for awk, sed, etc., Standard Command-Line Parsing, Don't Need a Shell for Your Script?
Don't Use One, A Shell Can Read a Script from Its Standard Input, but..., Outputting Text to an X
Window, On-Demand Incremental Backups of a Project, List RCS Revision Numbers with rcsrevs,
High-Octane Shell Scripting, Perl Boot Camp, Part 1: Typical Script Anatomy, cgi, Printing to
Windows Printers from Unix, Care and Feeding of SUID and SGID Scripts, Protect Important Files:
Make Them Unwritable, cx, cw, c-w: Quick File Permission Changes

#! notation on first line, Default Commands, Verbose and Echo Settings Show Quoting
turning on verbose and echo settings, Verbose and Echo Settings Show Quoting

batch editing, Why Line Editors Aren't Dinosaurs, Writing Editing Scripts
writing, Writing Editing Scripts

bin directory for, A bin Directory for Your Programs and Scripts
buildhash, Adding Words to ispell's Dictionary

CGI, Python module for, cgi
cgrep, A Multiline Context grep Using sed, Searching for Patterns Split Across Lines, Searching
for Patterns Split Across Lines
checksed, checksed
cleanup, Using find to Clear Out Unneeded Files
converting characters in files, Anyone Can Program the Shell
count.it, Counting Lines, Words, and Characters: wc
dialback, Dialback
editing, And Why Not?, Rotating Text, Alternatives to fmt, Remove Mail/News Headers with
behead, offset: Indent Text, Centering Lines in a File, Splitting Files by Context: csplit, Splitting
Files by Context: csplit, Hacking on Characters with tr, Encoding "Binary" Files into ASCII,
MIME Encoding, Text Conversion with dd, Cutting Columns or Fields, Making Text in Columns
with pr, Order Lines Across Columns: -l, Make Columns Automatically with column,
Straightening Jagged Columns, Pasting Things in Columns, Joining Lines with join, What Is (or
Isn't) Unique?, Rotating Text

behead script, removing mail/news headers, Remove Mail/News Headers with behead
centering lines, Centering Lines in a File
columns, making automatically with column, Make Columns Automatically with column
cutting columns or fields, Cutting Columns or Fields
encoding binary files into ASCII, Encoding "Binary" Files into ASCII, MIME Encoding
fmt.sh, Alternatives to fmt
indenting text with offset script, offset: Indent Text
joining lines with join, Joining Lines with join
pasting data into columns, Pasting Things in Columns
rotating text with rot, Rotating Text
splitting files by context, Splitting Files by Context: csplit, Splitting Files by Context: csplit
straightening, Straightening Jagged Columns
text conversion with dd, Text Conversion with dd
text in columns with pr, Making Text in Columns with pr, Order Lines Across Columns: -l
translating characters with tr, Hacking on Characters with tr
uniq command, What Is (or Isn't) Unique?

Expect program, Automating /bin/passwd
file permissions, changing, Protect Important Files: Make Them Unwritable, cx, cw, c-w: Quick
File Permission Changes

cx and cw scripts, cx, cw, c-w: Quick File Permission Changes
file-deletion, A Faster Way to Remove Files Interactively
file-time comparisons in, Finding Oldest or Newest Files with ls -t and ls -u
hgrep, A Highlighting grep
lensort, lensort: Sort Lines by Length
lookfor shell script, lookfor: Which File Has That Word?
munchlist, Adding Words to ispell's Dictionary
namesort, Sorting a List of People by Last Name
ndown and nup, Separating Commands with Semicolons
nom, nom: List Files That Don't Match a Wildcard
opttest, Standard Command-Line Parsing

paircheck, Looking for Closure
pausing, Building Software Robots the Easy Way
Perl, High-Octane Shell Scripting (see Perl)
ptbk, On-Demand Incremental Backups of a Project
rcsegrep.fast, rcsegrep.fast
rcsrevs, List RCS Revision Numbers with rcsrevs
run-parts, A Little Help, etc.
running without the shell, Don't Need a Shell for Your Script? Don't Use One
runsed, runsed
sed editor, Order of Commands in a Script, Hold Space: The Set-Aside Buffer, Hold Space: The
Set-Aside Buffer

hold space, using, Hold Space: The Set-Aside Buffer, Hold Space: The Set-Aside Buffer
order of commands, Order of Commands in a Script

shell, Writing a Simple Shell Program (see shell scripts)
shell script wrappers for, Shell Script "Wrappers" for awk, sed, etc.
shells reading from standard input, A Shell Can Read a Script from Its Standard Input, but...
showargs, Output Command-Line Arguments One by One
showmatch, Just What Does a Regular Expression Match?
smbprint, Printing to Windows Printers from Unix
sourceable, Sourceable Scripts, Sourceable Scripts
SUID and SGID, Care and Feeding of SUID and SGID Scripts
unconnected symbolic links, finding, oldlinks: Find Unconnected Symbolic Links
updatedb or locate.updatedb shell script, Finding Files (Much) Faster with a find Database
vgrep, The vgrep Script
writeway.pl, Perl Boot Camp, Part 1: Typical Script Anatomy
writing in other scripting languages, Everyone Should Learn Some Shell Programming
ww.sh, Find a a Doubled Word
xgrep, Just What Does a Regular Expression Match?
xwrist, Outputting Text to an X Window

SCROLL LOCK button, Output Stopped?
scrollbars (xterm), Working with Scrollbars, How Many Lines to Save?
scrolling error messages, Problems Piping to a Pager
scrolling in tty-type virtual consoles, Scrolling, Using a Mouse
SD (Send Data) light, Stalled Data Connection?
sdiff command, Side-by-Side diffs: sdiff, Side-by-Side diffs: sdiff, Choosing Sides with sdiff

-w option, Side-by-Side diffs: sdiff
building one file from two compared files, Choosing Sides with sdiff

search access to directories, Access to Directories, User, Group, and World
search and replace, Confirming Substitutions in vi, Confirming Substitutions in vi, Examples of
Searching and Replacing

(see also replacement patterns; search patterns)
regular expressions used in sed or ex, Examples of Searching and Replacing
undoing in vi editor, Confirming Substitutions in vi

search operators with find command, Be an Expert on find Search Operators, Be an Expert on find
Search Operators

search path, Internal and External Commands, What Goes in Shell Setup Files?, A .cshrc.$HOST File
for Per Host Setup, A bin Directory for Your Programs and Scripts, Shell Search Paths, Controlling
Shell Command Searches, Controlling Shell Command Searches, FPATH Search Path, zsh, Korn
shell, zsh, Writing a Simple Shell Program, Predefined Environment Variables

configuring in shell setup files, What Goes in Shell Setup Files?
in .cshrc.$HOST file, A .cshrc.$HOST File for Per Host Setup
FPATH (for functions), FPATH Search Path, zsh, Korn shell, zsh

Korn shell, Korn shell
zsh shell, zsh

PATH environment variable, Predefined Environment Variables
setting for shells, Controlling Shell Command Searches, Controlling Shell Command Searches
updating with rehash, A bin Directory for Your Programs and Scripts

search patterns, Using Search Patterns and Global Commands, Global Searches, Useful Global
Commands (with Pattern Matches), vi Compound Searches, Splitting Files by Context: csplit,
Splitting Files by Context: csplit, Valid Metacharacters for Different Unix Programs, Examples of
Searching, Delimiting a Regular Expression, Searching for Patterns Split Across Lines, Searching for
Patterns Split Across Lines

csplit program, Splitting Files by Context: csplit, Splitting Files by Context: csplit
for ed, ex, and sed, regular expression metacharacters in, Valid Metacharacters for Different
Unix Programs
global commands with, Useful Global Commands (with Pattern Matches)
regular expressions in (examples), Examples of Searching
sed editor, Delimiting a Regular Expression, Searching for Patterns Split Across Lines,
Searching for Patterns Split Across Lines

delimiting, Delimiting a Regular Expression
split across lines, Searching for Patterns Split Across Lines, Searching for Patterns Split
Across Lines

vi editor, Using Search Patterns and Global Commands, Global Searches, vi Compound
Searches

compund searches, vi Compound Searches
global searches, Global Searches

search permission, Tutorial on File and Directory Permissions, Tutorial on File and Directory
Permissions

(see also execute permission)
search strings in sed, referencing portions of in replacement, Referencing Portions of a Search String
search wraps, stopping in vi, Counting Occurrences; Stopping Search Wraps
search.el file, Rational Searches
searching, Searching Online Manual Pages, Different Versions of grep, A Highlighting grep, Fast
Searches and Spelling Checks with "look", Find a a Doubled Word, Rational Searches, Unset PWD
Before Using Emacs

for doubled word typing errors, Find a a Doubled Word
in Emacs, Rational Searches, Unset PWD Before Using Emacs

PWD variable and, Unset PWD Before Using Emacs
grep commands, using, Different Versions of grep, A Highlighting grep
look program, using, Fast Searches and Spelling Checks with "look"

manual pages, Searching Online Manual Pages
secondary prompts, Multiline Quoting, A foreach Loop, A for Loop, Multiline Commands, Secondary
Prompts

> (greater than sign) as, A for Loop
? (question mark) as, A foreach Loop
Bourne shell quoting and, Multiline Quoting
multiline commands and, Multiline Commands, Secondary Prompts

sections in documentation, The man Command
secure keyboard mode (xterm), The xterm Menus
Secure Shell (SSH), Secure Shell (SSH) (see ssh)
Secure Sockets Layer, Secure Shell (SSH) (see SSL)
security, What Happens When You Log In, The xterm Menus, Starting a Remote Client with rsh and
ssh, A bin Directory for Your Programs and Scripts, Mounting Network Filesystems — NFS,
SMBFS, Securing Samba, Securing Samba, Understanding Points of Vulnerability, TCP Wrappers,
Understanding Points of Vulnerability, CERT Security Checklists, Keeping Up with Security Alerts,
What We Mean by Buffer Overflow, Beware of Sluggish Performance, Other Checks, Check
Processes, Checking Swap Space, Check Network Connections, Other Checks, Other Checks,
Intruder Detection, Importance of MOTD, The Linux proc Filesystem, Disabling inetd, Disallow
rlogin and rsh, TCP Wrappers, Introduction to File Ownership and Security, Introduction to File
Ownership and Security, Protecting Files with the Sticky Bit, Protect Important Files: Make Them
Unwritable, A Loophole: Modifying Files Without Write Access, Juggling Permissions

bin directory, preventing unauthorized file operations, A bin Directory for Your Programs and
Scripts
buffer overflow, What We Mean by Buffer Overflow
CERT checklists, CERT Security Checklists
disallowing rlogin and rsh, Disallow rlogin and rsh
files, Introduction to File Ownership and Security, Introduction to File Ownership and Security,
Protecting Files with the Sticky Bit, Protect Important Files: Make Them Unwritable, A
Loophole: Modifying Files Without Write Access, Juggling Permissions

(see also permissions)
making them unwritable, Protect Important Files: Make Them Unwritable
managing permissions, Juggling Permissions
modifying files without write access, A Loophole: Modifying Files Without Write Access
sticky bit permission, Protecting Files with the Sticky Bit

host listings in .rhosts file or /etc/hosts.equiv file, Starting a Remote Client with rsh and ssh
inetd daemon, disabling, Disabling inetd
intruder detection, Intruder Detection
keeping up with security alerts, Keeping Up with Security Alerts
Linux /proc filesystem, viewing current state of system, The Linux proc Filesystem
login program, checks performed by, What Happens When You Log In
MOTD, importance of, Importance of MOTD
NFS and, Mounting Network Filesystems — NFS, SMBFS
performance problems, checking, Beware of Sluggish Performance, Other Checks, Check
Processes, Checking Swap Space, Check Network Connections, Other Checks, Other Checks

I/O statistics, Other Checks

network connections, Check Network Connections
processes, Check Processes
swap space, Checking Swap Space
virtual memory statistics, Other Checks

Samba, Securing Samba, Securing Samba
security settings in smb.conf, Securing Samba

TCP wrapper programs, checking logs, TCP Wrappers
vulnerabilities, Understanding Points of Vulnerability
xterm, The xterm Menus

sed editor, Terminal Setup: Testing Remote Hostname and X Display, Tips for Copy and Paste
Between Windows, newer: Print the Name of the Newest File, Duplicating a Directory Tree, Squash
Extra Blank Lines, Numbering Lines, Different Versions of grep, A Multiline Context grep Using sed,
Compound Searches, Why Line Editors Aren't Dinosaurs, Running Editing Scripts Within vi,
Alternatives to fmt, Multiline Commands, Secondary Prompts, Fix Quoting in csh Aliases with
makealias and quote, Valid Metacharacters for Different Unix Programs, Pattern Matching Quick
Reference with Examples, Examples of Searching and Replacing, sed
Sermon^H^H^H^H^H^HSummary, Two Things You Must Know About sed, Two Things You Must
Know About sed, Invoking sed, Invoking sed, Invoking sed, Invoking sed, Testing and Using a sed
Script: checksed, runsed, checksed, runsed, sed Addressing Basics, sed Addressing Basics, Order of
Commands in a Script, One Thing at a Time, Delimiting a Regular Expression, Newlines in a sed
Replacement, Referencing the Search String in a Replacement, Referencing Portions of a Search
String, Search and Replacement: One Match Among Many, Transformations on Text, Hold Space:
The Set-Aside Buffer, Hold Space: The Set-Aside Buffer, Hold Space: The Set-Aside Buffer, Hold
Space: The Set-Aside Buffer, Hold Space: The Set-Aside Buffer, Transforming Part of a Line,
Transforming Part of a Line, Making Edits Across Line Boundaries, Making Edits Across Line
Boundaries, The Deliberate Scrivener, The Deliberate Scrivener, The Deliberate Scrivener, The
Deliberate Scrivener, Searching for Patterns Split Across Lines, Searching for Patterns Split Across
Lines, Multiline Delete, Making Edits Everywhere Except..., The sed Test Command, Uses of the sed
Quit Command, sed Newlines, Quoting, and Backslashes in a Shell Script, Shell Script "Wrappers"
for awk, sed, etc., Don't Need a Shell for Your Script? Don't Use One, Using sed, Using sed, Cleaning
script Files

-e option, Invoking sed
-f option, Invoking sed, Don't Need a Shell for Your Script? Don't Use One
-n option, Invoking sed, The Deliberate Scrivener, Using sed
addressing, sed Addressing Basics
command line, Invoking sed
commands, operations of (deliberate scrivener analogy), The Deliberate Scrivener, The
Deliberate Scrivener
dedent script, Tips for Copy and Paste Between Windows
delete commands, sed Addressing Basics, Multiline Delete
delimiting regular expressions, Delimiting a Regular Expression
edit non-matching lines, Making Edits Everywhere Except...
extra blank lines, squashing, Squash Extra Blank Lines
files, not changing by editing, Two Things You Must Know About sed
fmt.sh script, Alternatives to fmt

general-purpose batch editing, Running Editing Scripts Within vi
global commands, Two Things You Must Know About sed
grep program, multiline context, A Multiline Context grep Using sed
grep programs, Different Versions of grep
hold (h or H) commands, Hold Space: The Set-Aside Buffer
hold space, Hold Space: The Set-Aside Buffer, Hold Space: The Set-Aside Buffer
line-by-line and search using, Compound Searches
line-numbering with, Numbering Lines
lq command, newer: Print the Name of the Newest File
makealias and quote aliases, Fix Quoting in csh Aliases with makealias and quote
mkdir command, inserting into find command output, Duplicating a Directory Tree
multiple matches on a line, Search and Replacement: One Match Among Many
newlines in a replacement, Newlines in a sed Replacement
newlines quoting and backslashes, shell interpretation of, sed Newlines, Quoting, and
Backslashes in a Shell Script
order of commands in a script, Order of Commands in a Script
parsing strings, Using sed
pattern space, Hold Space: The Set-Aside Buffer, Making Edits Across Line Boundaries,
Making Edits Across Line Boundaries

making edits across line boundaries, Making Edits Across Line Boundaries, Making Edits
Across Line Boundaries

print (p) command, The Deliberate Scrivener
quit (q) command, Uses of the sed Quit Command
referencing portions of a search string, Referencing Portions of a Search String
referencing the search string in a replacement, Referencing the Search String in a Replacement
regular expressions used in, Valid Metacharacters for Different Unix Programs, Pattern
Matching Quick Reference with Examples, Examples of Searching and Replacing

documentation for, Pattern Matching Quick Reference with Examples
metacharacters, Valid Metacharacters for Different Unix Programs
search and replace commands, Examples of Searching and Replacing

searching for patterns split across lines, Searching for Patterns Split Across Lines, Searching for
Patterns Split Across Lines
substitute command, Cleaning script Files
test (t) command, The sed Test Command
testing and using a script, Testing and Using a sed Script: checksed, runsed, checksed, runsed

checksed script, checksed
runsed script, runsed

transformation on text, Transformations on Text
using from command line, Multiline Commands, Secondary Prompts
wrapping sed scripts in shell scripts, Shell Script "Wrappers" for awk, sed, etc.
writing scripts, One Thing at a Time
x (exchange) command, Hold Space: The Set-Aside Buffer
y (transform) command, Transforming Part of a Line, Transforming Part of a Line

SEGV (segmentation violation) signal, What Are Signals?
selecting text in xterms, Simple Copy and Paste in xterm, Defining What Makes Up a Word for

Selection Purposes, Problems with Large Selections
word selection, changing word definition for, Defining What Makes Up a Word for Selection
Purposes
xclipboard, problems with large selections, Problems with Large Selections

selection of fonts, enabling for xterm, Enabling Escape Sequence and Selection
send command, Dialback
sendmail program, MIME Encoding, Mail — SMTP, POP, and IMAP
Server Message Block File System (SMBFS), Mounting Network Filesystems — NFS, SMBFS
server number (X Window System), The DISPLAY Environment Variable
servers, Starting Remote X Clients from Interactive Logins, Python and the Web, mod_python,
Configuring an Anonymous FTP Server, Mail — SMTP, POP, and IMAP, Mail — SMTP, POP, and
IMAP, Domain Name Service (DNS), Dynamic Host Configuration Protocol (DHCP), Gateways and
NAT, Sharing Desktops with VNC, General and Authentication Problems, Server and Client
Problems, Server and Client Problems

access control, Starting Remote X Clients from Interactive Logins
anonymous FTP, Configuring an Anonymous FTP Server
Apache, running Python in, Python and the Web, mod_python
DHCP, Dynamic Host Configuration Protocol (DHCP)
DNS, Domain Name Service (DNS)
IMAP, Mail — SMTP, POP, and IMAP
NAT (Network Address Translation), Gateways and NAT
POP, Mail — SMTP, POP, and IMAP
SSH, General and Authentication Problems

empty passwords, problems with, General and Authentication Problems
SSH, problems with, Server and Client Problems, Server and Client Problems
VNC (Virtual Network Computing), Sharing Desktops with VNC

services, /etc/services Is Your Friend, The Director of Operations: inetd, Installing and Configuring
Samba

/etc/services file, /etc/services Is Your Friend
inetd file, managing Internet services, The Director of Operations: inetd
SMB, verifying, Installing and Configuring Samba

Session Message Block (SMB) protocol, Installing and Configuring Samba
sessions, information about in window title or status line, Session Info in Window Title or Status
Line
set command, Terminal Setup: Testing Window Size, Checklist: Terminal Hangs When I Log In,
Verbose and Echo Settings Show Quoting, Instead of Changing History Characters, What Environment
Variables Are Good For, Shell Variables, Standard Command-Line Parsing, Setting Options,
(Avoiding?) set with No Arguments, Making a for Loop with Multiple Variables, Using set and IFS,
Shell Lockfile, Use -xv

+H option, disabling history substitution in bash, Instead of Changing History Characters
-x option, turning on echo flag, Verbose and Echo Settings Show Quoting
-xv option, Use -xv
listing shell variables, Shell Variables
listing shell variables and functions, What Environment Variables Are Good For
lockfiles, creating, Shell Lockfile

multiple variables in for loop, Making a for Loop with Multiple Variables
with no arguments, (Avoiding?) set with No Arguments
opttest script (example), Standard Command-Line Parsing
parsing single-line strings with, Using set and IFS
window size, Terminal Setup: Testing Window Size
xv option, Checklist: Terminal Hangs When I Log In

hung terminals and, Checklist: Terminal Hangs When I Log In
set directory command, Out of Temporary Space? Use Another Directory
set noglob command, Setting the Terminal Type When You Log In
set notify command, Job Control in a Nutshell
set path command, Checklist: Terminal Hangs When I Log In
setgid bit, group permissions for directory, Group Permissions in a Directory with the setgid Bit
setprompt alias, dirs in Your Prompt: Better Than $cwd
setprompt function, Faster Prompt Setting with Built-ins
setstatline alias, Session Info in Window Title or Status Line
settitle alias, Session Info in Window Title or Status Line
setup files (multiple) for vi and ex, Per-File Setups in Separate Files
setup files for shells, Shell Setup Files — Which, Where, and Why (see configuration files)
SGID bit for directories, Access to Directories
SGID scripts, Care and Feeding of SUID and SGID Scripts
SGML, Formatting Markup Languages — troff, LATEX, HTML, and So On
sh (Bourne shell), There Are Many Shells, There Are Many Shells, Filename Extensions, Filename
Extensions, Searching Online Manual Pages, Shell Setup Files — Which, Where, and Why,
Automatic Setups for Different Terminals, Terminal Setup: Testing TERM, Terminal Setup: Testing
Port, Static Prompts, External Commands Send Signals to Set Variables, External Commands Send
Signals to Set Variables, Running Commands at Bourne/Korn Shell Logout, Stop Accidental Bourne-
Shell Logouts, Setting the Terminal Type When You Log In, Checklist: Terminal Hangs When I Log
In, Checklist: Terminal Hangs When I Log In, Using the Stored Lists, Renaming, Copying, or
Comparing a Set of Files, Safe Delete: Pros and Cons, Using Job Control from Your Shell, Some
Gotchas with Job Control, nohup, Managing Processes: Overall Concepts, Killing Foreground Jobs,
Terminal Windows Without Shells, Making Your at Jobs Quiet, What the Shell Does, Controlling
Shell Command Searches, Is It "2>&1 file" or "> file 2>&1"? Why?, Bourne Shell Quoting, Multiline
Quoting, Special Characters, How Quoting Works, Single Quotes Inside Single Quotes?, Multiline
Quoting, Multiline Quoting, Verbose and Echo Settings Show Quoting, "Special" Characters and
Operators, Repeating Commands, A for Loop, Multiline Commands, Secondary Prompts, Introduction
to Shell Aliases, Setting and Unsetting Bourne-Type Aliases, Simulated Bourne Shell Functions and
Aliases, What if a Wildcard Doesn't Match?, Writing a Simple Shell Program, Writing a Simple Shell
Program, Predefined Environment Variables, Beyond the Basics, Making #! Search the PATH,
Parameter Substitution, Tips for Debugging Shell Scripts, Using Standard Input and Output, Send
(Only) Standard Error Down a Pipe

#!, seraching the PATH with, Making #! Search the PATH
-c option, Terminal Windows Without Shells
.profile file, Shell Setup Files — Which, Where, and Why
aliases, Introduction to Shell Aliases, Setting and Unsetting Bourne-Type Aliases
arrays, Using the Stored Lists

at command output, quieting, Making Your at Jobs Quiet
background processing, Using Job Control from Your Shell, Some Gotchas with Job Control
case statements, Automatic Setups for Different Terminals, Terminal Setup: Testing TERM,
Terminal Setup: Testing Port

port name, testing, Terminal Setup: Testing Port
testing TERM variable, Terminal Setup: Testing TERM

date formats, External Commands Send Signals to Set Variables
debugging scripts, Tips for Debugging Shell Scripts
for loop, A for Loop
hangups in, nohup
loading changed PATH, Controlling Shell Command Searches
logouts, Running Commands at Bourne/Korn Shell Logout, Stop Accidental Bourne-Shell
Logouts

accidental, Stop Accidental Bourne-Shell Logouts
running commands at, Running Commands at Bourne/Korn Shell Logout

multiline commands, Multiline Commands, Secondary Prompts
piping output of shell loops to pagers, Searching Online Manual Pages
prompts, Static Prompts, Predefined Environment Variables

primary prompt, Predefined Environment Variables
quoting in, Renaming, Copying, or Comparing a Set of Files, Bourne Shell Quoting, Multiline
Quoting, Special Characters, How Quoting Works, Single Quotes Inside Single Quotes?,
Multiline Quoting, Multiline Quoting, Verbose and Echo Settings Show Quoting

multiline, Multiline Quoting, Multiline Quoting
rules for, How Quoting Works, Single Quotes Inside Single Quotes?
showing with verbose and echo settings, Verbose and Echo Settings Show Quoting
special characters, Special Characters

reading .profile file, Checklist: Terminal Hangs When I Log In
reading arguments, Is It "2>&1 file" or "> file 2>&1"? Why?
redirecting standard I/O, Using Standard Input and Output, Send (Only) Standard Error Down a
Pipe (see redirecting input and output)

standard error, Send (Only) Standard Error Down a Pipe
repeating commands, Repeating Commands
safe delete program, Safe Delete: Pros and Cons
script file extension, Filename Extensions, Filename Extensions
scripts, writing, Writing a Simple Shell Program, Writing a Simple Shell Program, Beyond the
Basics

(see also shell scripts)
simulated shell functions and aliases, Simulated Bourne Shell Functions and Aliases
special characters/operators in, "Special" Characters and Operators
string editing operators, Parameter Substitution
su stucklogin command, Checklist: Terminal Hangs When I Log In
TERM variable, setting with tset command, Setting the Terminal Type When You Log In
trap command, External Commands Send Signals to Set Variables, Killing Foreground Jobs
wildcards, failing to match, What if a Wildcard Doesn't Match?

sh command, Aborting Programs, Renaming, Copying, or Comparing a Set of Files, Bourne Shell

Used Here, Use -xv
-xv options, Use -xv
starting Bourne shell with, Bourne Shell Used Here
v option, Renaming, Copying, or Comparing a Set of Files

sharing, Installing and Configuring Samba, Sharing Desktops with VNC
desktops with VNC, Sharing Desktops with VNC
directories and printers with Windows network, Installing and Configuring Samba (see Samba)

sharing directories and printers with Windows network, Printing Over Samba
printing over Samba, Printing Over Samba

shebang line in scripts, #! characters, Perl Boot Camp, Part 1: Typical Script Anatomy
SHELL environment variable, Querying Your xterm Size: resize, Predefined Environment Variables

resize command and, Querying Your xterm Size: resize
shell escapes, Shell Escapes: Running One UnixCommand While Using Another, Subshells

starting a subshell, Subshells
shell functions, Internal and External Commands, Find a a Doubled Word, Which One Will bash
Use?, Which One Will the C Shell Use?, Introduction to Shell Aliases, Setting and Unsetting Bourne-
Type Aliases, Shell Function Basics, Simulated Bourne Shell Functions and Aliases, Simple
Functions: ls with Options, Functions with Loops: Internet Lookup, Setting Current Shell
Environment: The work Function, Functions Calling Functions: Factorials, Functions Calling
Functions: Factorials, Shell Function Specifics, Propagating Shell Functions, Exporting bash
Functions, FPATH Search Path, zsh, cd by Directory Initials, What Environment Variables Are Good
For, Reading Files with the . and source Commands, Using Shell Functions in Shell Scripts

C shell, determining whether to use, Which One Will the C Shell Use?
c, changing directories with, cd by Directory Initials
custom commands in, Introduction to Shell Aliases
functions calling functions, Functions Calling Functions: Factorials, Functions Calling Functions:
Factorials
listing, What Environment Variables Are Good For
loops in, Functions with Loops: Internet Lookup
ls with options, Simple Functions: ls with Options
propagating, Propagating Shell Functions, Exporting bash Functions, FPATH Search Path, zsh

exporting bash functions, Exporting bash Functions
FPATH search path, FPATH Search Path, zsh

putting arguments inside a Bourne-type alias, Setting and Unsetting Bourne-Type Aliases
simulating with . (dot) command, Reading Files with the . and source Commands
specific shells, information on, Shell Function Specifics
using in shell scripts, Using Shell Functions in Shell Scripts
work, setting current shell environment, Setting Current Shell Environment: The work Function
ww function, finding doubled words, Find a a Doubled Word

shell metacharacters, Understanding Expressions (see wildcards)
shell parameters, with simulated functions, Simulated Bourne Shell Functions and Aliases
shell prompts, Faster Prompt Setting with Built-ins (see prompts)
shell scripts, Anyone Can Program the Shell, Anyone Can Program the Shell, Interactive Shells, Tips
for Copy and Paste Between Windows, A bin Directory for Your Programs and Scripts, Finding
Oldest or Newest Files with ls -t and ls -u, lookfor: Which File Has That Word?, Deleting Stale

Files, Save Space in Executable Files with strip, Subshells, Statistics of Processes by PID, Printer
Queue Watcher: A Restartable Daemon Shell Script, Killing Processes by Name?, zap, Closing a
Window from a Shell Script, The at Command, Interactive Use Versus Shell Scripts, "Special"
Characters and Operators, Sourceable Scripts, Sourceable Scripts, Sourceable Scripts, Sourceable
Scripts, Functions with Loops: Internet Lookup, Finding (Anyone's) Home Directory, Quickly,
Writing a Simple Shell Program, Writing a Simple Shell Program, Writing a Simple Shell Program,
Writing a Simple Shell Program, Writing a Simple Shell Program, Everyone Should Learn Some
Shell Programming, What Environment Variables Are Good For, The DISPLAY Environment
Variable, Parent-Child Relationships, Shell Variables, Shell Variables, Test String Values with
Bourne-Shell case, Pattern Matching in case Statements, Test String Values with Bourne-Shell case,
Pattern Matching in case Statements, Exit Status of Unix Processes, Looping Until a Command Fails,
Test Exit Status with the if Statement, Test Exit Status with the if Statement, Test Exit Status with the
if Statement, Test Exit Status with the if Statement, Test Exit Status with the if Statement, Testing
Your Success, Loops That Test Exit Status, Set Exit Status of a Shell (Script), Trapping Exits Caused
by Interrupts, Shell Script "Wrappers" for awk, sed, etc., Handling Command-Line Arguments in
Shell Scripts, Handling Arguments with while and shift, Picking a Name for a New Command,
Reading Files with the . and source Commands, Using Shell Functions in Shell Scripts, Beyond the
Basics, The Story of : # #!, The Story of : # #!, The Story of : # #!, Don't Need a Shell for Your
Script? Don't Use One, Making #! Search the PATH, The exec Command, The Unappreciated Bourne
Shell ":" Operator, Parameter Substitution, Save Disk Space and Programming: Multiple Names for a
Program, Finding the Last Command-Line Argument, Standard Input to a for Loop, Making a for Loop
with Multiple Variables, Using basename and dirname, A while Loop with Several Loop Control
Commands, A Shell Can Read a Script from Its Standard Input, but..., Shell Scripts On-the-Fly from
Standard Input, Shell Scripts On-the-Fly from Standard Input, Turn Off echo for "Secret" Answers,
Quick Reference: expr, Testing Characters in a String with expr, Grabbing Parts of a String, Nested
Command Substitution, Testing Two Strings with One case Statement, Shell Lockfile, Tips for
Debugging Shell Scripts, Bourne Shell Debugger Shows a Shell Variable, RCS Basics, High-Octane
Shell Scripting, Named Pipes: FIFOs, cx, cw, c-w: Quick File Permission Changes, Shell Scripts
Must Be Readable and (Usually) Executable

#!, searching the PATH with, Making #! Search the PATH
arguments passed to, Anyone Can Program the Shell
basename and dirname, using, Using basename and dirname
bin directory for, A bin Directory for Your Programs and Scripts
bkedit, Test Exit Status with the if Statement
case statements, Test String Values with Bourne-Shell case, Pattern Matching in case Statements,
Test String Values with Bourne-Shell case, Pattern Matching in case Statements

pattern matching in, Pattern Matching in case Statements
testing string values with, Test String Values with Bourne-Shell case

closing window from, Closing a Window from a Shell Script
command lines as scripts, Writing a Simple Shell Program
command-line arguments, handling, Handling Command-Line Arguments in Shell Scripts,
Handling Arguments with while and shift
commenting, The Story of : # #!
commenting RCS files, RCS Basics
conditional expressions in if statements, Test Exit Status with the if Statement, Test Exit Status

with the if Statement
dater, Named Pipes: FIFOs
debugging, Tips for Debugging Shell Scripts
environment variables, What Environment Variables Are Good For, The DISPLAY Environment
Variable
exec command, The exec Command
exit status of Unix processes, Exit Status of Unix Processes, Looping Until a Command Fails,
Test Exit Status with the if Statement, Test Exit Status with the if Statement, Loops That Test Exit
Status

loops, testing with, Loops That Test Exit Status
testing with if statement, Test Exit Status with the if Statement, Test Exit Status with the if
Statement

exit status, setting, Set Exit Status of a Shell (Script)
exits caused by interrupts, trapping, Trapping Exits Caused by Interrupts
expr command, Quick Reference: expr
finding last command-line argument, Finding the Last Command-Line Argument
for loop with multiple variables, Making a for Loop with Multiple Variables
with GNU tar, archiving deleted files on tape, Deleting Stale Files
hardcoding users' home directory pathnames, Finding (Anyone's) Home Directory, Quickly
interactive use vs, Interactive Use Versus Shell Scripts
last-access times, Finding Oldest or Newest Files with ls -t and ls -u
limitations of, Sourceable Scripts
lockfiles, creating from, Shell Lockfile
lookfor, lookfor: Which File Has That Word?
making executable, cx, cw, c-w: Quick File Permission Changes
multiple names for, Save Disk Space and Programming: Multiple Names for a Program
naming, Picking a Name for a New Command
nested command substitution, Nested Command Substitution
for noninteractive shells, Interactive Shells
parameter substitution, Parameter Substitution
parent-child relationships, Parent-Child Relationships
Perl, using, High-Octane Shell Scripting (see Perl)
permissions, Writing a Simple Shell Program, Shell Scripts Must Be Readable and (Usually)
Executable
reading from standard input, Shell Scripts On-the-Fly from Standard Input, Shell Scripts On-the-
Fly from Standard Input
regular expressions metacharacters in, "Special" Characters and Operators
requote, Tips for Copy and Paste Between Windows
runaway, killing by name, Killing Processes by Name?
running, The Story of : # #!
running as a daemon, Printer Queue Watcher: A Restartable Daemon Shell Script
scripts without the shell, Don't Need a Shell for Your Script? Don't Use One
scripts written in other scripting languages vs, Everyone Should Learn Some Shell Programming
shell functions vs., Functions with Loops: Internet Lookup
shell functions, using in, Using Shell Functions in Shell Scripts

shell reading script from standard input, A Shell Can Read a Script from Its Standard Input, but...
shell variables, Shell Variables, Shell Variables
showenv, Statistics of Processes by PID
simple, examples of, Writing a Simple Shell Program
sourceable, Sourceable Scripts, Sourceable Scripts
sourcing, Sourceable Scripts, Reading Files with the . and source Commands
standard input to a for loop, Standard Input to a for Loop
strings, working with, Grabbing Parts of a String
stripper, Save Space in Executable Files with strip
submitting for execution at a later time, The at Command
testing character strings with expr, Testing Characters in a String with expr
testing for success, Testing Your Success
testing two strings with a case statement, Testing Two Strings with One case Statement
turning off echo, Turn Off echo for "Secret" Answers
variables set by, Bourne Shell Debugger Shows a Shell Variable
while loop with several loop control commands, A while Loop with Several Loop Control
Commands
wrappers for awk, sed and other scripts, Shell Script "Wrappers" for awk, sed, etc.
writing simple, Writing a Simple Shell Program
zap, zap
\: (Bourne shell) operator, The Unappreciated Bourne Shell ":" Operator
\:, #, and #!, The Story of : # #!

shell variables, A .cshrc.$HOST File for Per Host Setup, eval: When You Need Another Chance,
Multiline Quoting, Picking Up Where You Left Off, Changing History Characters with histchars,
Saving Time When You Change Directories: cdpath, Marking Your Place with a Shell Variable,
Marking Your Place with a Shell Variable, What Environment Variables Are Good For, What
Environment Variables Are Good For, PATH and path, Shell Variables, Shell Variables, Shell
Variables, Shell Variables, Shell Variables, Shell Variables, Shell Variables, Shell Variables, Shell
Variables, Shell Variables, Exit Status of Unix Processes, Using set and IFS, Using sed, Bourne Shell
Debugger Shows a Shell Variable, Quoting and Command-Line Parameters, Cleaning script Files,
List RCS Revision Numbers with rcsrevs, Safe I/O Redirection with noclobber

$ (dollar sign), preceding name with, Shell Variables
cdable_vars, Marking Your Place with a Shell Variable
cdpath, Saving Time When You Change Directories: cdpath
in .cshrc.$HOST file, A .cshrc.$HOST File for Per Host Setup
current directory, storing in, Marking Your Place with a Shell Variable
environment variables vs., What Environment Variables Are Good For, Shell Variables
eval command and, eval: When You Need Another Chance
histchars, Changing History Characters with histchars
history, Shell Variables
IFS (internal field separator), Using set and IFS
iterating over arguments, Quoting and Command-Line Parameters
listing with set command, What Environment Variables Are Good For, Shell Variables
multiline quoting in Bourne shell and, Multiline Quoting
names, Shell Variables

noclobber, Safe I/O Redirection with noclobber
path, PATH and path
printexitvalue, Exit Status of Unix Processes
printing value of individual with echo, Shell Variables
read-only, Shell Variables
revnum, List RCS Revision Numbers with rcsrevs
savehist (C shell), Picking Up Where You Left Off
set by shell scripts, debugging, Bourne Shell Debugger Shows a Shell Variable
setting, Shell Variables
setting with combined use of sed and eval, Using sed
storing control characters in, Cleaning script Files

shell wrappers, Testing and Using a sed Script: checksed, runsed, Searching for Patterns Split Across
Lines

invoking sed scripts from, Testing and Using a sed Script: checksed, runsed
sed script embedded in, Searching for Patterns Split Across Lines

shells, Communication with Unix, Communication with Unix, Communication with Unix,
Communication with Unix, Programs Are Designed to Work Together, There Are Many Shells, Which
Shell Am I Running?, Anyone Can Program the Shell, Anyone Can Program the Shell, Internal and
External Commands, Internal and External Commands, Filename Extensions, Wildcards, What
Happens When You Log In, Writing a Simple Manpage with the -man Macros, What Happens When
You Log In, The Mac OS X Terminal Application, Shell Setup Files — Which, Where, and Why,
Shell Setup Files — Which, Where, and Why, Login Shells, Interactive Shells, Login Shells,
Interactive Shells, What Goes in Shell Setup Files?, Tip for Changing Account Setup: Keep a Shell
Ready, Setup Files Aren't Read When You Want?, Automatic Setups for Different Terminals,
Terminal Setup: Setting and Testing Window Name, A .cshrc.$HOST File for Per Host Setup,
Making a "Login" Shell, Highlighting and Color in Shell Prompts, Checklist: Terminal Hangs When I
Log In, Starting a Remote Client with rsh and ssh, Delving Through a Deep Directory Tree,
Wildcards with "Fast find" Database, Using Shell Arrays to Browse Directories, Expanding Ranges,
Expanding Ranges, limit and ulimit, Emacs: The Other Editor, Emacs Features: A Laundry List, Job
Control in a Nutshell, Using Job Control from Your Shell, System Overloaded? Try Stopping Some
Jobs, Disowning Processes, Stopping Remote Login Sessions, fork and exec, Managing Processes:
Overall Concepts, Managing Processes: Overall Concepts, Subshells, Destroying Processes with kill,
Killing All Your Processes, Processes Out of Control? Just STOP Them, The Process Chain to Your
Window, The Process Chain to Your Window, The Process Chain to Your Window, Terminal
Windows Without Shells, Know When to Be "nice" to Other Users...and When Not To, What the
Shell Does, What's a Shell, Anyway?, Types of Shells, Command Evaluation and Accidentally
Overwriting Files, "Special" Characters and Operators, "Special" Characters and Operators,
Introduction to Shell Aliases, Fix Quoting in csh Aliases with makealias and quote, Conclusion, The
Lessons of History, The Lessons of History, Pass History to Another Shell, Shell Command-Line
Editing, The Shells' pushd and popd Commands, Nice Aliases for pushd, Don't Confuse Regular
Expressions with Wildcards, File-Naming Wildcards, File-Naming Wildcards, Who Handles
Wildcards?, Who Handles Wildcards?, Who Handles Wildcards?, sed Newlines, Quoting, and
Backslashes in a Shell Script, Predefined Environment Variables, Don't Need a Shell for Your
Script? Don't Use One, Don't Need a Shell for Your Script? Don't Use One, The exec Command,
Overview: Open Files and File Descriptors, A Shell Can Read a Script from Its Standard Input,

but..., Shell Scripts On-the-Fly from Standard Input, Shell Scripts On-the-Fly from Standard Input
-v (verbose) option, Shell Scripts On-the-Fly from Standard Input
aliases, Introduction to Shell Aliases, Fix Quoting in csh Aliases with makealias and quote
archives, filename extension, Filename Extensions
arrays, Using Shell Arrays to Browse Directories, Expanding Ranges, Expanding Ranges

expanding ranges, Expanding Ranges
built-in commands, Communication with Unix, Internal and External Commands
command argument lists, providing, Delving Through a Deep Directory Tree
command-line editing, Highlighting and Color in Shell Prompts, The Lessons of History, Shell
Command-Line Editing

calculating prompt string width, Highlighting and Color in Shell Prompts
commands for working with functions, Conclusion
as controlling process, Managing Processes: Overall Concepts
curly braces ({ }) in, Wildcards, Who Handles Wildcards?
debugging, Checklist: Terminal Hangs When I Log In (see debugging)
defined, What's a Shell, Anyway?
determining which is running, Which Shell Am I Running?
disowning jobs, Disowning Processes
Emacs, running in, Emacs: The Other Editor, Emacs Features: A Laundry List
exiting to close a window, The Process Chain to Your Window
filename-matching patterns, Don't Confuse Regular Expressions with Wildcards
history mechanism, The Lessons of History (see history of commands)
interactive, Login Shells, Interactive Shells
interpretation of commands, Command Evaluation and Accidentally Overwriting Files (see
commands)
interpreting the command line, Communication with Unix
job control, Using Job Control from Your Shell (see job control)
kill command, built-in, Processes Out of Control? Just STOP Them
killing, Destroying Processes with kill
limiting file sizes, limit and ulimit
metacharacters in, "Special" Characters and Operators
passing command history to, Pass History to Another Shell
priority, setting with nice, Know When to Be "nice" to Other Users...and When Not To
as processes, Managing Processes: Overall Concepts
programming, Anyone Can Program the Shell, Anyone Can Program the Shell

(see also shell scripts)
pushd and popd commands, The Shells' pushd and popd Commands, Nice Aliases for pushd
quoting in, sed Newlines, Quoting, and Backslashes in a Shell Script (see quoting)
reading scripts from standard input, A Shell Can Read a Script from Its Standard Input, but...,
Shell Scripts On-the-Fly from Standard Input
redirecting standard I/O, Overview: Open Files and File Descriptors (see redirecting input and
output)
relationship with kernel, utilities, and applications, Communication with Unix
remote login sessions, stopping, Stopping Remote Login Sessions
remote, running, Starting a Remote Client with rsh and ssh

replacing one with another, using exec, The exec Command
replacing with exec command, fork and exec
running scripts without, Don't Need a Shell for Your Script? Don't Use One
setting up, What Happens When You Log In, Writing a Simple Manpage with the -man Macros,
What Happens When You Log In, The Mac OS X Terminal Application, Shell Setup Files —
Which, Where, and Why, Shell Setup Files — Which, Where, and Why, Login Shells, Interactive
Shells, What Goes in Shell Setup Files?, Tip for Changing Account Setup: Keep a Shell Ready,
Setup Files Aren't Read When You Want?, Automatic Setups for Different Terminals, Terminal
Setup: Setting and Testing Window Name, A .cshrc.$HOST File for Per Host Setup, Making a
"Login" Shell

.cshrc.$HOST file for per host setup, A .cshrc.$HOST File for Per Host Setup
account setup, changing, Tip for Changing Account Setup: Keep a Shell Ready
contents of setup files, What Goes in Shell Setup Files?
interactive shells, Interactive Shells
login shells, Login Shells, Making a "Login" Shell
logins, What Happens When You Log In
Mac OS X Terminal application, The Mac OS X Terminal Application
reading setup files at different times, Setup Files Aren't Read When You Want?
setup files, understanding, Shell Setup Files — Which, Where, and Why, Shell Setup Files
— Which, Where, and Why
terminals, automatic setups for, Automatic Setups for Different Terminals, Terminal Setup:
Setting and Testing Window Name

setup files, Internal and External Commands, Predefined Environment Variables
PATH environemt variable, Predefined Environment Variables

special characters and their meanings, "Special" Characters and Operators
specialized, based on languages such as Python, TCL, Perl, What the Shell Does
stopping jobs on, System Overloaded? Try Stopping Some Jobs
subshells, Subshells
suspending with suspend command, Job Control in a Nutshell
terminal windows without, Terminal Windows Without Shells
types of, There Are Many Shells, Types of Shells
understanding # as comment, Don't Need a Shell for Your Script? Don't Use One
Unix programs working independently of, Programs Are Designed to Work Together
wildcards, Wildcards with "Fast find" Database, File-Naming Wildcards, File-Naming
Wildcards, Who Handles Wildcards?, Who Handles Wildcards?

(see also wildcards)
handling of, Who Handles Wildcards?, Who Handles Wildcards?
matching with fast find commands, Wildcards with "Fast find" Database

without job control, using 0 (zero) PID to kill all processes, Killing All Your Processes
X window, using from, The Process Chain to Your Window, The Process Chain to Your
Window

shift command, Using the Stored Lists, With a Loop, Handling Arguments with while and shift,
Handling Arguments with while and shift, How to Unset All Command-Line Parameters

removing command-line arguments, With a Loop
unsetting command-line parameters, How to Unset All Command-Line Parameters

in while loops, Handling Arguments with while and shift, Handling Arguments with while and
shift

shift operator (Perl), Perl Boot Camp, Part 1: Typical Script Anatomy, Arrays
SHLVL variable, Login Shells
shorthand substitution command (^xy^yx), History Substitutions
showargs script, Output Command-Line Arguments One by One
showenv shell script, Statistics of Processes by PID
showmatch script, Just What Does a Regular Expression Match?
shutdown program, The Kernel and Daemons
side-by-side file comparisons (sdiff command), Side-by-Side diffs: sdiff
Sierra, Mike, Multiline Shell Prompts
signals, Managing Processes: Overall Concepts, What Are Signals?, Killing Foreground Jobs, What
Are Signals?, What Are Signals?, What Are Signals?, Destroying Processes with kill, Printer Queue
Watcher: A Restartable Daemon Shell Script, Printer Queue Watcher: A Restartable Daemon Shell
Script, Killing All Your Processes, Killing Processes by Name?, Kill Processes Interactively,
Processes Out of Control? Just STOP Them, Cleaning Up an Unkillable Process, Trapping Exits
Caused by Interrupts, Trapping Exits Caused by Interrupts

common, listing of, What Are Signals?
distribution of, using process groups, Managing Processes: Overall Concepts
handling, What Are Signals?
kill command, using with, Destroying Processes with kill, Printer Queue Watcher: A Restartable
Daemon Shell Script, Printer Queue Watcher: A Restartable Daemon Shell Script, Killing All
Your Processes, Killing Processes by Name?, Kill Processes Interactively, Processes Out of
Control? Just STOP Them, Cleaning Up an Unkillable Process

killing all processes, Killing All Your Processes
killing processes by name, Killing Processes by Name?
killing processes interactively, Kill Processes Interactively
restarting daemon shell script, Printer Queue Watcher: A Restartable Daemon Shell Script,
Printer Queue Watcher: A Restartable Daemon Shell Script
STOP signal, Processes Out of Control? Just STOP Them
unkillable processes, Cleaning Up an Unkillable Process

numbers, variations among systems, What Are Signals?
for trap commands, Trapping Exits Caused by Interrupts, Trapping Exits Caused by Interrupts

simulating dynamic prompts, Simulating Dynamic Prompts
sin command (awk), Alphabetical Summary of Commands
single quotes, How Quoting Works (see ', under Symbols)
single user mode, Forgetting the root Password
site-packages directory, Installation and Distutils
size, Querying Your xterm Size: resize, The Simple Way to Pick a Font, VT Fonts Menu, Listing Files
by Age and Size, Making an Arbitrary-Size File for Testing

finding files by, Listing Files by Age and Size
fonts, The Simple Way to Pick a Font, VT Fonts Menu
limits for files, Making an Arbitrary-Size File for Testing
xterm windows, Querying Your xterm Size: resize

sl script, Showing the Actual Filenames for Symbolic Links

sleep command, Running Commands When You Log Out, Building Software Robots the Easy Way,
Waiting a Little While: sleep, Separating Commands with Semicolons, Outputting Text to an X
Window

endless while loop, using in, Outputting Text to an X Window
forcing shell to wait before exiting, Running Commands When You Log Out
in strings of commands separated by semicolons (;), Separating Commands with Semicolons
uses of, Waiting a Little While: sleep

sleeping, The Kernel and Daemons
slocate command, Using "Fast find" Databases, Finding Files (Much) Faster with a find Database
SMB (Session Message Block) protocol, Installing and Configuring Samba
smb.conf files, Installing and Configuring Samba, Installing and Configuring Samba, Installing and
Configuring Samba, Securing Samba, Printing with Samba

default printer, sharing with SMB network, Printing with Samba
defaults, leaving in place, Installing and Configuring Samba
security directive, Securing Samba
sharing local directory with SMB network, Installing and Configuring Samba

smbclient program, Installing and Configuring Samba, Printing with Samba, Connecting to SMB
Shares from Unix

connecting to SMB printer, Printing with Samba
smbd daemon, Installing and Configuring Samba
SMBFS (Servr Message Block File System), Mounting Network Filesystems — NFS, SMBFS
smbfs tool, Mounting Network Filesystems — NFS, SMBFS
smbmnt command, Installing and Configuring Samba
smbpasswd utility, Securing Samba
smbprint script, Printing to Windows Printers from Unix
SMTP (Simple Message Transfer Protocol), Mail — SMTP, POP, and IMAP
sockets, Status and Troubleshooting, Secure Shell (SSH), Check Network Connections

displaying active with netstart, Status and Troubleshooting
returning activity on with netstat, Check Network Connections
Secure Sockets Layer, Secure Shell (SSH) (see SSL)

soft disk quota limits, Disk Quotas
soft links, More About Links (see symbolic links)
soft mounting of NFS, Checklist: Terminal Hangs When I Log In
software installation, /usr/bin and Other Software Directories, /usr/bin and Other Software
Directories, The Challenges of Software Installation on Unix, Which make?, Simplifying the make
Process, Using Debian's dselect, Exiting dselect, Choosing the Access Method, Choosing the Access
Method, Updating Information on Available Packages, Choosing Packages for Installation or
Removal, Choosing Packages for Installation or Removal, Exiting the Select Function, Installing
Packages, Configuring Packages, Removing Packages, Exiting dselect, Installing Software with
Debian's Apt-Get, Configuring the sources.list File, Interruptable gets with wget, The curl
Application and One-Step GNU-Darwin Auto-Installer for OS X, Installation with FreeBSD Ports,
Installing with FreeBSD Packages, Finding and Installing RPM Packaged Software

/usr/bin and other directories for, /usr/bin and Other Software Directories
challenges of, The Challenges of Software Installation on Unix
curl application, using, The curl Application and One-Step GNU-Darwin Auto-Installer for OS

X
Debian apt-get tool, using, Installing Software with Debian's Apt-Get, Configuring the
sources.list File

configuring sources.list file, Configuring the sources.list File
Debian dselect tool, using, Using Debian's dselect, Exiting dselect, Choosing the Access
Method, Choosing the Access Method, Updating Information on Available Packages, Choosing
Packages for Installation or Removal, Choosing Packages for Installation or Removal, Exiting
the Select Function, Installing Packages, Configuring Packages, Removing Packages, Exiting
dselect

access method, choosing, Choosing the Access Method, Choosing the Access Method
choosing packages for installation or removal, Choosing Packages for Installation or
Removal, Choosing Packages for Installation or Removal
configuring packages, Configuring Packages
exiting, Exiting dselect
exiting select function, Exiting the Select Function
installing packages, Installing Packages
removing packages, Removing Packages
updating information on available packages, Updating Information on Available Packages

FreeBSD packages, using, Installing with FreeBSD Packages
FreeBSD Ports, using, Installation with FreeBSD Ports
GNU wget utility, using, Interruptable gets with wget
make utility, versions of, Which make?
RPM, using, Finding and Installing RPM Packaged Software
simplifying the make process, Simplifying the make Process

software robots, Building Software Robots the Easy Way
Solaris, Disk Partitioning, Mounting and Unmounting Removable Filesystems, Decapitating Your
Machine — Serial Consoles, When Does a User Become a User, Forgetting the root Password, Free
SSH with OpenSSH

adding users to system, When Does a User Become a User
disk device naming scheme, Disk Partitioning
OpenSSH, Free SSH with OpenSSH
serial consoles, Decapitating Your Machine — Serial Consoles
single user mode, entering, Forgetting the root Password
vold daemon for removable media, Mounting and Unmounting Removable Filesystems

sort command, Inside spell, Sort Fields: How sort Sorts, Changing the sort Field Delimiter,
Alphabetic and Numeric Sorting, Alphabetic and Numeric Sorting, Alphabetic and Numeric Sorting,
Dealing with Repeated Lines, Ignoring Blanks, Case-Insensitive Sorts, Dictionary Order, Month
Order, Reverse Sort

-b option (ignoring blanks), Alphabetic and Numeric Sorting, Ignoring Blanks
-d option (dictionary order), Dictionary Order
-g option, sorting numbers in scientific notation, Alphabetic and Numeric Sorting
-M option (month order), Month Order
-r option (reverse order), Reverse Sort
-t option, changing sort field delimiter, Changing the sort Field Delimiter
-u option, eliminating duplicate lines, Dealing with Repeated Lines

alphabetic vs. numeric, Alphabetic and Numeric Sorting
case-insensitive sorts, Case-Insensitive Sorts
fields, Sort Fields: How sort Sorts
u option, Inside spell

sorting, Finding Oldest or Newest Files with ls -t and ls -u, Sort Fields: How sort Sorts, Reverse
Sort, lensort: Sort Lines by Length, Sorting a List of People by Last Name

files, Finding Oldest or Newest Files with ls -t and ls -u
by last name (namesort script), Sorting a List of People by Last Name
lines by length (lensort script), lensort: Sort Lines by Length
sort command, Sort Fields: How sort Sorts, Reverse Sort

sound cards, Quick Introduction to Hardware, Dealing with Sound Cards and Other Annoying
Hardware
source code, locating for programs, whereis: Finding Where a Command Is Located
source command, Shell Setup Files — Which, Where, and Why, Useful ex Commands, Sourceable
Scripts, Pass History to Another Shell, Reading Files with the . and source Commands

-h (history) option, Pass History to Another Shell
ex editor, Useful ex Commands
reading aliases file into C shell, Shell Setup Files — Which, Where, and Why
scripts, using on, Sourceable Scripts
shell scripts, using on, Reading Files with the . and source Commands

source filename, How to Put if-then-else in a C-Shell Alias
sourceable scripts, Sourceable Scripts, Sourceable Scripts
sources.list file, Choosing the Access Method, Configuring the sources.list File, Configuring the
sources.list File, Configuring the sources.list File

components, Configuring the sources.list File
configuring, Configuring the sources.list File
distribution, Configuring the sources.list File

spawning processes, fork and exec
special characters, Filenames, Dynamic Prompts, Faster Prompt Setting with Built-ins, Showing
Nonprintable Characters in Filenames, Deleting Files with Odd Names, Removing a Strange File by
its i-number, Special Characters, Special Characters, Quoting Special Characters in Filenames,
"Special" Characters and Operators, Don't Confuse Regular Expressions with Wildcards

in Bourne shell (sh), Special Characters
C shell, Special Characters
C shell filenames, quotiing in, Quoting Special Characters in Filenames
in filenames, Filenames, Showing Nonprintable Characters in Filenames, Deleting Files with
Odd Names, Removing a Strange File by its i-number

deleting files, Deleting Files with Odd Names, Removing a Strange File by its i-number
in shell prompts, Dynamic Prompts, Faster Prompt Setting with Built-ins
in shells, listing with definitions, "Special" Characters and Operators, Don't Confuse Regular
Expressions with Wildcards

spell checking, Fast Searches and Spelling Checks with "look", The Unix spell Command, Adding
Words to ispell's Dictionary, The Unix spell Command, The Unix spell Command, Check Spelling
Interactively with ispell, Check Spelling Interactively with ispell, How Do I Spell That Word?, How
Do I Spell That Word?, How Do I Spell That Word?, Inside spell, Inside spell, Inside spell, Inside

spell, Inside spell, Inside spell, Inside spell, Inside spell, Adding Words to ispell's Dictionary,
Adding Words to ispell's Dictionary, Adding Words to ispell's Dictionary, The sed Test Command

aspell utility, Check Spelling Interactively with ispell
ispell program, Check Spelling Interactively with ispell, How Do I Spell That Word?, Adding
Words to ispell's Dictionary, Adding Words to ispell's Dictionary, Adding Words to ispell's
Dictionary

-a option, How Do I Spell That Word?, Adding Words to ispell's Dictionary
-d option, providing master spelling list, Adding Words to ispell's Dictionary
adding words to dictionary, Adding Words to ispell's Dictionary

look command, Fast Searches and Spelling Checks with "look", How Do I Spell That Word?
sed editor, corrector program, The sed Test Command
spell command, The Unix spell Command, The Unix spell Command, How Do I Spell That
Word?, Inside spell, Inside spell, Inside spell, Inside spell, Inside spell, Inside spell, Inside
spell, Inside spell

-v option, Inside spell
-x option, Inside spell
b option (British usage), Inside spell
dictionary files for special words and terms, The Unix spell Command
spellhist file, Inside spell
spellprog program, Inside spell
stop list for typical misspellings, Inside spell

split command, Alphabetical Summary of Commands, Splitting Files at Fixed Points: split, Use with
Loops

awk, Alphabetical Summary of Commands
loops using, Use with Loops
variants of, Splitting Files at Fixed Points: split

split function, Variables and Array Assignments
splitting strings, Using set and IFS, Using set and IFS

IFS, places in which it can't be used, Using set and IFS
into fields, Using set and IFS

SPOOL (Simultaneous Printing Off and On Line), Introduction to Printing
spooling system for printing, Introduction to Printing, lpr-Style Printing Commands, Using Symbolic
Links for Spooling, Printing Over a Network, Converting Source Files Automagically Within the
Spooler

converting source files within, Converting Source Files Automagically Within the Spooler
lpd daemon, Printing Over a Network
lpr-style commands, lpr-Style Printing Commands
symbolic links, Using Symbolic Links for Spooling

spreadsheet modes in Emacs, Emacs Features: A Laundry List
sprintf command (awk), Alphabetical Summary of Commands
sqrt command (awk), Alphabetical Summary of Commands
srand command (nawk), Alphabetical Summary of Commands
ssh, Unix Networking and Communications, Terminal Setup: Testing Port, Stalled Data Connection?,
Starting Remote X Clients from Interactive Logins, Starting a Remote Client with rsh and ssh, Starting
a Remote Client with rsh and ssh, Copying Directory Trees with tar and Pipes, Change Many Files by

Editing Just One, Stopping Remote Login Sessions, Using tar to a Remote Tape Drive, Using GNU tar
with a Remote Tape Drive, On-Demand Incremental Backups of a Project, Secure Shell (SSH),
Secure Shell (SSH), Enabling Remote Access on Mac OS X, Server and Client Problems, Enabling
Remote Access on Mac OS X, Protecting Access Through SSH, Free SSH with OpenSSH, SSH
Problems and Solutions, General and Authentication Problems, Key and Agent Problems, Server and
Client Problems, Server and Client Problems

-agent option, copying archives without password, On-Demand Incremental Backups of a
Project
-keygen option, Secure Shell (SSH)
backups to remote tape drive, Using tar to a Remote Tape Drive, Using GNU tar with a Remote
Tape Drive

accessing with GNU tar, Using GNU tar with a Remote Tape Drive
differences from rsh, Starting a Remote Client with rsh and ssh
enabling on Mac OS X, Enabling Remote Access on Mac OS X
interactive login, Starting Remote X Clients from Interactive Logins
OpenSSH, Free SSH with OpenSSH
port numbers for, Terminal Setup: Testing Port
problems and solutions, SSH Problems and Solutions, General and Authentication Problems,
Key and Agent Problems, Server and Client Problems, Server and Client Problems

general and authentication, General and Authentication Problems
key and agent problems, Key and Agent Problems
server and client problems, Server and Client Problems, Server and Client Problems

protecting access through, Protecting Access Through SSH
rsync program, Change Many Files by Editing Just One
running reading- or writing-tar on remote system, Copying Directory Trees with tar and Pipes
scp file copy mechanism, Secure Shell (SSH)
stalled data connection with, Stalled Data Connection?
starting remote X clients, Starting a Remote Client with rsh and ssh
suspending jobs, Stopping Remote Login Sessions

sshd daemon, Secure Shell (SSH), General and Authentication Problems, General and Authentication
Problems, General and Authentication Problems, Server and Client Problems

.pam file, General and Authentication Problems
mail checking, disabling, General and Authentication Problems
printing, disabling for, General and Authentication Problems
problems with, Server and Client Problems

SSL (Secure Sockets Layer), Python and the Web, Secure Shell (SSH)
Python support for, Python and the Web

stacks, The Shells' pushd and popd Commands, Nice Aliases for pushd, What We Mean by Buffer
Overflow

directory, The Shells' pushd and popd Commands, Nice Aliases for pushd
function parameter buffers, overflowing, What We Mean by Buffer Overflow

stale files, deleting, Deleting Stale Files
stale symbolic links, Stale Symbolic Links
stalled data connections, Stalled Data Connection?
standard error, Interactive Shells, Is It "2>&1 file" or "> file 2>&1"? Why?, Functions Calling

Functions: Factorials, Overview: Open Files and File Descriptors, n>&m: Swap Standard Output and
Standard Error, Use -xv, I/O and Formatting, Using Standard Input and Output, Using Standard Input
and Output, Using Standard Input and Output, Send (Only) Standard Error Down a Pipe, Problems
Piping to a Pager, Problems Piping to a Pager, Redirection in C Shell: Capture Errors, Too?,
Combining Several Commands

combining with stdout and piping to pagers, Problems Piping to a Pager
grep command output, Problems Piping to a Pager
for interactive and noninteractive shells, Interactive Shells
redirecting, Is It "2>&1 file" or "> file 2>&1"? Why?, n>&m: Swap Standard Output and
Standard Error, Using Standard Input and Output, Send (Only) Standard Error Down a Pipe,
Redirection in C Shell: Capture Errors, Too?, Combining Several Commands

() subshell operators, using, Combining Several Commands
Bourne and C shells, Using Standard Input and Output
Bourne-type shells, Is It "2>&1 file" or "> file 2>&1"? Why?
in C shell, Redirection in C Shell: Capture Errors, Too?
to a pipe, Send (Only) Standard Error Down a Pipe

shell debugging output, piping to pager, Use -xv
sys.stderr file object (Python), I/O and Formatting
writing debugging messages to, Functions Calling Functions: Factorials
writing to via /dev/stderr, Using Standard Input and Output

standard input, Programs Are Designed to Work Together, Compressing Files to Save Space,
Including Standard Input Within a cron Entry, Command Evaluation and Accidentally Overwriting
Files, Standard Input to a for Loop, Overview: Open Files and File Descriptors, A Shell Can Read a
Script from Its Standard Input, but..., A Shell Can Read a Script from Its Standard Input, but..., Shell
Scripts On-the-Fly from Standard Input, Shell Scripts On-the-Fly from Standard Input, I/O and
Formatting, Using Standard Input and Output, Using Standard Input and Output, Combining Several
Commands, Send Output Two or More Places

compressing/uncompressing files from, Compressing Files to Save Space
to a for loop, Standard Input to a for Loop
including directly on cron command line, Including Standard Input Within a cron Entry
reading scripts from, Shell Scripts On-the-Fly from Standard Input
redirecting, Using Standard Input and Output, Using Standard Input and Output, Combining
Several Commands, Send Output Two or More Places

() subshell operators, using, Combining Several Commands
tee program, using, Send Output Two or More Places

shell handling of, Command Evaluation and Accidentally Overwriting Files
shells reading scripts from, A Shell Can Read a Script from Its Standard Input, but..., A Shell
Can Read a Script from Its Standard Input, but..., Shell Scripts On-the-Fly from Standard Input
sys.stdin file object (Python), I/O and Formatting

standard output, Programs Are Designed to Work Together, Interactive Shells, Setting the Terminal
Type When You Log In, Compressing Files to Save Space, Command Evaluation and Accidentally
Overwriting Files, Is It "2>&1 file" or "> file 2>&1"? Why?, Overview: Open Files and File
Descriptors, n>&m: Swap Standard Output and Standard Error, Use -xv, Use -xv, RCS Basics, I/O
and Formatting, Using Standard Input and Output, Using Standard Input and Output, Problems Piping
to a Pager, Problems Piping to a Pager, Redirection in C Shell: Capture Errors, Too?, Combining

Several Commands, Redirecting Output to More Than One Place, What Can You Do with an Empty
File?

combining with stderr and piping to pagers, Problems Piping to a Pager
compressing/uncompressing files from, Compressing Files to Save Space
for interactive and noninteractive shells, Interactive Shells
normal and debugging, splitting into two files, Use -xv
printing terminal type output for tset command, Setting the Terminal Type When You Log In
RCS file, sending to, RCS Basics
redirecting, Is It "2>&1 file" or "> file 2>&1"? Why?, n>&m: Swap Standard Output and
Standard Error, Using Standard Input and Output, Using Standard Input and Output, Problems
Piping to a Pager, Redirection in C Shell: Capture Errors, Too?, Combining Several Commands,
Redirecting Output to More Than One Place, What Can You Do with an Empty File?

() subshell operators, using, Combining Several Commands
Bourne-type shells, Is It "2>&1 file" or "> file 2>&1"? Why?
in C shell, Redirection in C Shell: Capture Errors, Too?
piping to pager program, Problems Piping to a Pager
to /dev/null file, What Can You Do with an Empty File?
to multiple processes, Redirecting Output to More Than One Place

shell debugging, piping to pager, Use -xv
shell handling of, Command Evaluation and Accidentally Overwriting Files
sys.stdout file object (Python), I/O and Formatting

starting anchor ()̂ in regular expressions, Regular Expressions: The Anchor Characters ̂and $
startup command for vi and ex editors, Local Settings for vi
startup files for shells, changing path in, Controlling Shell Command Searches
statements in Python lambdas, Functions
static IP addresses, Internet Protocol (IP)
static prompts, Static Prompts
statistics, Kernel and System Statistics, Statistics of the Current Process, Statistics of Processes by
PID

current process, Statistics of the Current Process
kernel and system (/proc/stat file), Kernel and System Statistics
processes by PID, Statistics of Processes by PID

status, Alphabetical Summary of Commands, Setting Current Shell Environment: The work Function,
Exit Status of Unix Processes

command execution, in nawk, Alphabetical Summary of Commands
exit status of Unix processes, Exit Status of Unix Processes
returning to calling shell, Setting Current Shell Environment: The work Function

status command (lpc), Printer Control with lpc
status file, information on current process, Statistics of Processes by PID
status lines, session info in, Session Info in Window Title or Status Line
stderr, Overview: Open Files and File Descriptors (see standard error)
stdin, Overview: Open Files and File Descriptors (see standard input)
stdout, Overview: Open Files and File Descriptors (see standard output)
stem-derivative rules for spelling words, Inside spell
sticky bit, Protecting Files with the Sticky Bit

stop command, Job Control in a Nutshell, System Overloaded? Try Stopping Some Jobs
stop list, spelling, Inside spell
STOP signal, What Are Signals?, Processes Out of Control? Just STOP Them

stopping out of control processes, Processes Out of Control? Just STOP Them
stopped jobs, Job Control in a Nutshell, Job Control in a Nutshell, Job Control in a Nutshell, Using
jobs Effectively, The "Current Job" Isn't Always What You Expect

continuing in background, Job Control in a Nutshell
current job and, The "Current Job" Isn't Always What You Expect
listing with their job numbers, Job Control in a Nutshell
putting into foreground, Job Control in a Nutshell
termination vs., Using jobs Effectively

stopping, System Overloaded? Try Stopping Some Jobs, Stopping Remote Login Sessions
jobs, System Overloaded? Try Stopping Some Jobs
remote login sessions, Stopping Remote Login Sessions

stream editor, Two Things You Must Know About sed (see sed editor)
string concatenation (.) operator, Scalars
string operators, Faster Prompt Setting with Built-ins
strings, Searching for Text with grep, Alphabetical Summary of Commands, Build Strings with { },
String Editing (Colon) Operators, Understanding Expressions, Understanding Expressions, test:
Testing Files and Strings, Using Shell Functions in Shell Scripts, Testing Characters in a String with
expr, Grabbing Parts of a String, Matching with expr, Using echo with awk or cut, Using set and IFS,
Using sed, Testing Two Strings with One case Statement, Stop Syntax Errors in String Tests, Perl
Boot Camp, Part 2: Variables and Data Types, Scalars, I/O and Formatting

building with { }, Build Strings with { }
comparing for pattern matching, Understanding Expressions
editing with \: (colon) operators, String Editing (Colon) Operators
grabbing parts of, Grabbing Parts of a String, Matching with expr, Using echo with awk or cut,
Using set and IFS, Using sed

echo, using with awk or cut, Using echo with awk or cut
matching with expr, Matching with expr
parsing using sed editor, Using sed
parsing with set and IFS, Using set and IFS

matching a regular expression, finding with grep, Searching for Text with grep
Perl, Perl Boot Camp, Part 2: Variables and Data Types, Scalars

operators for, Scalars
Python, I/O and Formatting
substr command, awk, Alphabetical Summary of Commands
testing, test: Testing Files and Strings, Using Shell Functions in Shell Scripts, Testing Characters
in a String with expr, Testing Two Strings with One case Statement, Stop Syntax Errors in String
Tests

case statement, using, Testing Two Strings with One case Statement
characters with expr, Testing Characters in a String with expr
errors in syntax, Stop Syntax Errors in String Tests
for zero length, Using Shell Functions in Shell Scripts

strings utility, Show Nonprinting Characters with cat -v or od -c, Finding Words Inside Binary Files

strip command, Save Space in Executable Files with strip
stripper script, Save Space in Executable Files with strip
stty command, Terminal Setup: Testing Window Size, Setting the Terminal Type When You Log In,
Find Out Terminal Settings with stty, Setting Your Erase, Kill, and Interrupt Characters, Setting Your
Erase, Kill, and Interrupt Characters, Job Control in a Nutshell, Stop Background Output with stty
tostop, Using set and IFS

-g option, Using set and IFS
parsing output using set and IFS, Using set and IFS

control keys, setting, Setting Your Erase, Kill, and Interrupt Characters
data rate for dialup terminals, Setting the Terminal Type When You Log In
erase, kill, and interrupt characters, Setting Your Erase, Kill, and Interrupt Characters
finding out terminal settings with, Find Out Terminal Settings with stty
stty tostop command, Job Control in a Nutshell, Stop Background Output with stty tostop

su command, Tip for Changing Account Setup: Keep a Shell Ready, Checklist: Terminal Hangs When
I Log In, Checklist: Terminal Hangs When I Log In, Subshells, Substitute Identity with su

account changes, testing, Tip for Changing Account Setup: Keep a Shell Ready
starting a subshell, Subshells
su f stucklogin, Checklist: Terminal Hangs When I Log In
su stucklogin, Checklist: Terminal Hangs When I Log In
substituting identify with, Substitute Identity with su

sub command (awk), Alphabetical Summary of Commands
subdirectories, List All Subdirectories with ls -R, Delving Through a Deep Directory Tree, /usr/bin
and Other Software Directories

listing with ls -R, List All Subdirectories with ls -R
root, in FHS standard, /usr/bin and Other Software Directories
searching for in directories with find command, Delving Through a Deep Directory Tree

subprocesses, Managing Processes: Overall Concepts, Killing Processes by Name?, Introduction to
Shell Aliases, Overview: Open Files and File Descriptors

aliases and, Introduction to Shell Aliases
file descriptors given to, Overview: Open Files and File Descriptors
killing parent processes by name, Killing Processes by Name?

subroutines, Reading Files with the . and source Commands, Perl Boot Camp, Part 1: Typical Script
Anatomy, Perl Boot Camp, Part 1: Typical Script Anatomy

dot (.) command compared to, Reading Files with the . and source Commands
in Perl, Perl Boot Camp, Part 1: Typical Script Anatomy, Perl Boot Camp, Part 1: Typical
Script Anatomy

user defined, Perl Boot Camp, Part 1: Typical Script Anatomy
subshells, Shell Setup Files — Which, Where, and Why, Shell Setup Files — Which, Where, and
Why, Login Shells, Gotchas in set prompt Test, Session Info in Window Title or Status Line, Show
Subshell Level with $SHLVL, Subshells, Watch Your Quoting, Shell Lockfile, The () Subshell
Operators, How to tee Several Commands into One Place

() operators, Shell Setup Files — Which, Where, and Why, The () Subshell Operators, How to
tee Several Commands into One Place
CSHRC_READ environment variable, setting for, Gotchas in set prompt Test
environment variables, inheritance of, Shell Setup Files — Which, Where, and Why

levels, showing in prompt, Show Subshell Level with $SHLVL
setting command-line arguments, Watch Your Quoting
startup files, Login Shells
status line updates, Session Info in Window Title or Status Line
umask command, running in, Shell Lockfile

substitution commands, Useful ex Commands, Alphabetical Summary of Commands, Alphabetical
Summary of Commands, History Substitutions, Two Things You Must Know About sed, Delimiting a
Regular Expression, Newlines in a sed Replacement, Referencing Portions of a Search String, Search
and Replacement: One Match Among Many, Cleaning script Files

delimiting search pattern from replacement string, Delimiting a Regular Expression
ex editor, Useful ex Commands
gsub command in nawk, Alphabetical Summary of Commands
history substitution, using in, History Substitutions
sed editor, Two Things You Must Know About sed, Newlines in a sed Replacement,
Referencing Portions of a Search String, Search and Replacement: One Match Among Many,
Cleaning script Files

-g (global) flag, Two Things You Must Know About sed
newlines in a replacement, Newlines in a sed Replacement
referencing portions of a search string in the replacement, Referencing Portions of a Search
String
script.tidy using in, Cleaning script Files
specifying one match among many possibilities, Search and Replacement: One Match
Among Many

sub command, nawk, Alphabetical Summary of Commands
substitutions, confirming in vi editor, Confirming Substitutions in vi
substr command (awk), Alphabetical Summary of Commands
success or failure of commands, indication in exit status, Exit Status of Unix Processes
sudo application, Providing Superpowers with sudo
SUID scripts, Care and Feeding of SUID and SGID Scripts
SunOS, Using Standard Input and Output, Which Group is Which?

groups, Which Group is Which?
redirecting standard I/O, Using Standard Input and Output

superuser, Dynamic Prompts, Highlighting and Color in Shell Prompts, Private (Personal)
Directories, Destroying Processes with kill, Controlling Shell Command Searches, When Does a
User Become a User, Providing Superpowers with sudo, Who Will Own a New File?

configuring, paths set by parent process and, Controlling Shell Command Searches
file ownership, changing, Who Will Own a New File?
killing others' processes, Destroying Processes with kill
private directories, access to, Private (Personal) Directories
shell prompt for, Highlighting and Color in Shell Prompts
sudo application, Providing Superpowers with sudo
tcsh and zsh shell prompts, Dynamic Prompts
UID and GID of zero, When Does a User Become a User

susp key, Setting Your Erase, Kill, and Interrupt Characters
suspend command, Job Control in a Nutshell, Subshells

suspending, Job Control in a Nutshell, Job Control in a Nutshell, Using Job Control from Your Shell
background jobs with stop command, Job Control in a Nutshell
current foreground job with CTRL-z command, Job Control in a Nutshell, Using Job Control
from Your Shell

swap space, checking for security breaches, Checking Swap Space
swapinfo utility, Checking Swap Space
swat tool, Installing and Configuring Samba, SWAT and GUI SMB Browsers, Printing with Samba

configuring smb.conf file installation, Installing and Configuring Samba
printers, selecting for sharing, Printing with Samba

symbolic links, Useful ls Aliases, oldlinks: Find Unconnected Symbolic Links, Running Commands
on What You Find, Searching for Files by Type, More About Links, Differences Between Hard and
Symbolic Links, Differences Between Hard and Symbolic Links, Creating and Removing Links, Stale
Symbolic Links, Linking Directories, Showing the Actual Filenames for Symbolic Links, Copying
Directory Trees with cp -r, Save Space with "Bit Bucket" Log Files and Mailboxes, Save Space with
a Link, Save Space with a Link, Automatic Setup When You Enter/Exit a Directory, Using Symbolic
Links for Spooling

copying, Copying Directory Trees with cp -r
directories, linking, Linking Directories
disk space and, Save Space with a Link
filenames for, showing, Showing the Actual Filenames for Symbolic Links
files as, Useful ls Aliases
finding for every directory owned by a group, Running Commands on What You Find
finding unconnected, oldlinks: Find Unconnected Symbolic Links
finding with find -type command, Searching for Files by Type
hard links vs., Differences Between Hard and Symbolic Links
saving disk space wiwth, Save Space with a Link
spooling, using for, Using Symbolic Links for Spooling
stale, Creating and Removing Links, Stale Symbolic Links
syntax of, Differences Between Hard and Symbolic Links
to .enter and .exit files, Automatic Setup When You Enter/Exit a Directory
to /dev/null, Save Space with "Bit Bucket" Log Files and Mailboxes

replacing log files with, Save Space with "Bit Bucket" Log Files and Mailboxes
symbolic mode (chmod), Using chmod to Change File Permission
symbols, Defining Keys and Button Presses with xmodmap, With the "$@" Parameter, With the "$@"
Parameter

(see also special characters; Symbols section)
in filenames and pathnames, With the "$@" Parameter
for keys on the keyboard (keysyms), Defining Keys and Button Presses with xmodmap

symlinks, More About Links (see symbolic links)
sync program, The Kernel and Daemons
synchronizing, Change Many Files by Editing Just One, How Unix Keeps Time

filesystems (rsync program), Change Many Files by Editing Just One
time on networks, How Unix Keeps Time

syntax-checking program, Looking for Closure
sys.stderr file object (Python), I/O and Formatting

sys.stdin file object (Python), I/O and Formatting
sys.stdout file object (Python), I/O and Formatting
system, Which Shell Am I Running?, Shell Setup Files — Which, Where, and Why, Shell Setup Files
— Which, Where, and Why, Some Gotchas with Job Control, System Overloaded? Try Stopping
Some Jobs, Kernel and System Statistics, Periodic Program Execution: The cron Facility, Timing Is
Everything, Changing a Running Job's Niceness, Timing Programs, Checking System Load: uptime,
Understanding Points of Vulnerability

cron jobs, running on, Periodic Program Execution: The cron Facility
environment variables for shells, Shell Setup Files — Which, Where, and Why, Shell Setup
Files — Which, Where, and Why

C shells, Shell Setup Files — Which, Where, and Why
load, checking with uptime, Checking System Load: uptime
overloaded with background processes, Some Gotchas with Job Control, System Overloaded?
Try Stopping Some Jobs
password file contents, Which Shell Am I Running?
performance and profiling, Timing Is Everything, Changing a Running Job's Niceness
security vulnerabilities, Understanding Points of Vulnerability
statistics on (/proc/stat file), Kernel and System Statistics
time, Timing Programs

system calls, Communication with Unix, Using unlink to Remove a File with a Strange Name, limit
and ulimit, fork and exec, How the Shell Executes Other Commands

exec and fork, fork and exec
fork and exec, How the Shell Executes Other Commands
limit and ulimit (limiting file sizes), limit and ulimit
unlink(), in Perl, Using unlink to Remove a File with a Strange Name

system command (nawk), Alphabetical Summary of Commands
system function, Perl Boot Camp, Part 5: Perl Knows Unix
System V, The man Command, Starting a Remote Client with rsh and ssh, Showing Nonprintable
Characters in Filenames, Find a a Doubled Word, Just the Words, Please, Hacking on Characters
with tr, The ps Command, System V, BSD, What Are Signals?, Destroying Processes with kill, Know
When to Be "nice" to Other Users...and When Not To, System V C Shell nice, How Many
Backslashes?, lp-Style Printing Commands, Groups and Group Ownership, Which Group is Which?

<defunct> status, Destroying Processes with kill
command version, getting, The man Command
echo command, shell quoting and, How Many Backslashes?
groups, Groups and Group Ownership
groups (Release 4), Which Group is Which?
ls command, nonprinting characters and, Showing Nonprintable Characters in Filenames
nice command, System V C Shell nice
printing commands, lp-Style Printing Commands
priority system (Release 4), Know When to Be "nice" to Other Users...and When Not To
ps command, The ps Command, System V, BSD

-a option, System V
-e option, BSD
-ef options, The ps Command

signals, What Are Signals?
systems derived from, rsh on, Starting a Remote Client with rsh and ssh
tr command, Find a a Doubled Word, Just the Words, Please, Hacking on Characters with tr

-cs options, Just the Words, Please
character ranges in, Hacking on Characters with tr
piping ww function output to, Find a a Doubled Word

system variables (awk), awk System Variables
system word file, How Do I Spell That Word?
system-level key mappings, Defining Keys and Button Presses with xmodmap

T

t (test) command, sed editor, The sed Test Command
T-shell, There Are Many Shells (see tcsh shell)
table of contents, tar files, Using tar to Create and Unpack Archives, Using tar to Create and Unpack
Archives
tables, Alternatives to fmt, Make Columns Automatically with column

column -t command, Make Columns Automatically with column
creating with nroff and sed, Alternatives to fmt

tabs, Can't Access a File? Look for Spaces in the Name, Problems with diff and Tabstops, Show
Nonprinting Characters with cat -v or od -c, Keymaps for Pasting into a Window Running vi, Special
Characters, Here Documents, Don't Match Useless Files in Filename Completion

as argument separators, Special Characters
filenames ending in, Can't Access a File? Look for Spaces in the Name
TAB characters, Problems with diff and Tabstops, Show Nonprinting Characters with cat -v or
od -c, Keymaps for Pasting into a Window Running vi, Here Documents

added by diff command, Problems with diff and Tabstops
displaying with cat -t and -e options, Show Nonprinting Characters with cat -v or od -c
stripping in Bourne shell, Here Documents
window systems running vi, Keymaps for Pasting into a Window Running vi

TAB key, file completion and, Don't Match Useless Files in Filename Completion
tail command, How to Look at the End of a File: tail, Finer Control on tail, Finer Control on tail,
Finer Control on tail, Finer Control on tail, How to Look at Files as They Grow, GNU tail File
Following, GNU tail File Following, Rotating Text, Statistics of Processes by PID, Use -xv,
Redirection in C Shell: Capture Errors, Too?

-f option, How to Look at Files as They Grow, Statistics of Processes by PID, Use -xv,
Redirection in C Shell: Capture Errors, Too?

log file, monitoring with, Use -xv
monitoring file growth, How to Look at Files as They Grow

-l (lines) option, Finer Control on tail
-n option, Finer Control on tail
-r (reverse) option, Finer Control on tail, Rotating Text

comparison with rot command, Rotating Text
c option (count characters) or b option (count blocks), Finer Control on tail
GNU version, GNU tail File Following, GNU tail File Following

follow option, GNU tail File Following
follow=name and retry options, GNU tail File Following

tail of a path name, dirs in Your Prompt: Better Than $cwd, String Editing (Colon) Operators
dirs output for C shell prompt, dirs in Your Prompt: Better Than $cwd
\:t operator, String Editing (Colon) Operators

talk utility, Unix Networking and Communications, What tty Am I On?
tape, backups to, Backing Up to Tape, Restoring Files from Tape with tar, Remote Restoring, Using
tar to a Remote Tape Drive, Using GNU tar with a Remote Tape Drive, The cpio Tape Archiver

cpio program, The cpio Tape Archiver
remote tape drives, Using tar to a Remote Tape Drive, Using GNU tar with a Remote Tape
Drive

using GNU tar, Using GNU tar with a Remote Tape Drive
using tar, Using tar to a Remote Tape Drive

restoring files with tar, Restoring Files from Tape with tar, Remote Restoring
remote restoring, Remote Restoring

tar utility, Filename Extensions, Copying Directory Trees with tar and Pipes, Copying Directory
Trees with tar and Pipes, Copying Directory Trees with tar and Pipes, Deleting Stale Files, Save
Space: tar and compress a Directory Tree, Save Space: tar and compress a Directory Tree, Save
Space: tar and compress a Directory Tree, Save Space: tar and compress a Directory Tree, Save
Space: tar and compress a Directory Tree, Save Space: tar and compress a Directory Tree, Save
Space: tar and compress a Directory Tree, uuencoding, My Favorite Is !$, Who Handles Wildcards?,
tar in a Nutshell, More Ways to Back Up, More Ways to Back Up, More Ways to Back Up, Backing
Up to Tape, To gzip, or Not to gzip?, Restoring Files from Tape with tar, Restoring a Few Files,
Restoring a Few Files, Remote Restoring, Using tar to a Remote Tape Drive, Using Wildcards with
tar, With GNU tar, Wildcard Gotchas in GNU tar, Avoid Absolute Paths with tar, Getting tar's
Arguments in the Right Order, Packing Up and Moving, Using tar to Create and Unpack Archives,
Using tar to Create and Unpack Archives, Using tar to Create and Unpack Archives, GNU tar
Sampler, Using Standard Input and Output

absolute pathnames, avoiding, Avoid Absolute Paths with tar
backing up to tape, Backing Up to Tape
compression, arguments for and against, To gzip, or Not to gzip?
copying directory trees, Copying Directory Trees with tar and Pipes
disk space optimization and, Save Space: tar and compress a Directory Tree
encoding tarfiles into 7-bit, uuencoding
filename extensions, Filename Extensions
filename wildcards and, Who Handles Wildcards?
functions, Using tar to Create and Unpack Archives
GNU tar command, Deleting Stale Files, GNU tar Sampler

-c and -T options, Deleting Stale Files
features of, GNU tar Sampler

making backups, tar in a Nutshell
online archives, creating, Packing Up and Moving
remote tape drive, using for backups, Using tar to a Remote Tape Drive
restoring files from tape, Restoring Files from Tape with tar, Restoring a Few Files, Remote
Restoring

remote restoring, Remote Restoring
restoring a few files, Restoring a Few Files

tar command, Copying Directory Trees with tar and Pipes, Copying Directory Trees with tar and
Pipes, Save Space: tar and compress a Directory Tree, Save Space: tar and compress a
Directory Tree, Save Space: tar and compress a Directory Tree, Save Space: tar and compress a
Directory Tree, Save Space: tar and compress a Directory Tree, Save Space: tar and compress a
Directory Tree, More Ways to Back Up, More Ways to Back Up, More Ways to Back Up,
Restoring a Few Files, Getting tar's Arguments in the Right Order, Using tar to Create and
Unpack Archives, Using tar to Create and Unpack Archives

-c (create) option, More Ways to Back Up
-f (file) option, More Ways to Back Up
-I option to run bzip2, Save Space: tar and compress a Directory Tree
-l option (for links), Save Space: tar and compress a Directory Tree
-t option, Restoring a Few Files
-t or -tv options, listing files in archive, Save Space: tar and compress a Directory Tree
-v (verbose) option, Copying Directory Trees with tar and Pipes, More Ways to Back Up
-z option to run gzip, Save Space: tar and compress a Directory Tree
C option, Copying Directory Trees with tar and Pipes
command-line arguments, order of, Getting tar's Arguments in the Right Order
extracting all files from archive, Save Space: tar and compress a Directory Tree
extracting some files from archive, Save Space: tar and compress a Directory Tree
options, Using tar to Create and Unpack Archives, Using tar to Create and Unpack Archives

unpacking archives, My Favorite Is !$, Using Standard Input and Output
wildcards, using, Using Wildcards with tar, With GNU tar, Wildcard Gotchas in GNU tar

with GNU tar, With GNU tar, Wildcard Gotchas in GNU tar
Tcl, Expect
tclsh shell, There Are Many Shells
TCP, TCP/IP — IP Addresses and Ports, TCP Wrappers

wrapper programs, TCP Wrappers
TCP/IP, Internet Protocol (IP), Layer 4 Protocols: TCP, UDP, and ICMP, Installing and Configuring
Samba

IP addresses and ports, Internet Protocol (IP)
addresses, Internet Protocol (IP)

SMB traffic, mapping onto, Installing and Configuring Samba
TCP, UDP, and ICMP, Layer 4 Protocols: TCP, UDP, and ICMP

tcpd daemon, TCP Wrappers
tcpdump program, Where, Oh Where Did That Packet Go?
tcp_wrappers package, The Director of Operations: inetd
tcsh shell, There Are Many Shells, Which Shell Am I Running?, Shell Setup Files — Which, Where,
and Why, Login Shells, Terminal Setup: Setting and Testing Window Name, Static Prompts, Session
Info in Window Title or Status Line, Session Info in Window Title or Status Line, Highlighting and
Color in Shell Prompts, Right-Side Prompts, Preprompt, Pre-execution, and Periodic Commands,
Checklist: Terminal Hangs When I Log In, Checklist: Terminal Hangs When I Log In, Checklist:
Terminal Hangs When I Log In, Color ls, Configuring It, Useful ls Aliases, Renaming, Copying, or
Comparing a Set of Files, Tricks for Making rm Safer, limit and ulimit, System Overloaded? Try

Stopping Some Jobs, Managing Processes: Overall Concepts, What the Shell Does, Types of Shells,
"Special" Characters and Operators, Build Strings with { }, Automatic Completion, Command-
Specific Completion, Introduction to Shell Aliases, C-Shell Aliases with Command-Line Arguments,
C-Shell Aliases with Command-Line Arguments, The Lessons of History, C Shells, Pass History to
Another Shell, Pass History to Another Shell, Pass History to Another Shell, tcsh Editing, zsh Editing,
What if a Wildcard Doesn't Match?, What Environment Variables Are Good For, Exit Status of Unix
Processes, Exit Status of Unix Processes

(see also C shell)
> in the prompt, Which Shell Am I Running?
aliases, Introduction to Shell Aliases, C-Shell Aliases with Command-Line Arguments, C-Shell
Aliases with Command-Line Arguments

with command-line arguments, C-Shell Aliases with Command-Line Arguments, C-Shell
Aliases with Command-Line Arguments

command history, The Lessons of History
command-line editing, tcsh Editing, zsh Editing
completion features, Automatic Completion, Command-Specific Completion

command-specific, Command-Specific Completion
configuration files, Shell Setup Files — Which, Where, and Why
current directory, updating in status line, Session Info in Window Title or Status Line
cwdcmd alias for status line updates, Session Info in Window Title or Status Line
exit status of previous command, Exit Status of Unix Processes
highlighting in, Highlighting and Color in Shell Prompts
history, Pass History to Another Shell (see history of commands)
history file, C Shells, Pass History to Another Shell

timestamp-comments in, Pass History to Another Shell
limiting file size, limit and ulimit
loginsh variable, Login Shells
ls -F built-in command, Color ls, Configuring It, Useful ls Aliases

LS_COLORS environment variable, Configuring It
pre-prompt commands, Preprompt, Pre-execution, and Periodic Commands
printexitvalue shell variable, Exit Status of Unix Processes
prompt, setting, Static Prompts
quotation marks around filenames, Renaming, Copying, or Comparing a Set of Files
right-side prompts, Right-Side Prompts
rmstar variable, confirming file deletions, Tricks for Making rm Safer
set echo verbose command, Checklist: Terminal Hangs When I Log In
special characters/operators, "Special" Characters and Operators
stop command, System Overloaded? Try Stopping Some Jobs
su f stucklogin command, Checklist: Terminal Hangs When I Log In, Checklist: Terminal Hangs
When I Log In
wildcards, What if a Wildcard Doesn't Match?, What Environment Variables Are Good For
window name, setting and testing, Terminal Setup: Setting and Testing Window Name
{ } (pattern-expansion characters), building strings with, Build Strings with { }

tee program, Send Output Two or More Places, How to tee Several Commands into One Place,
Redirecting Output to More Than One Place

collecting output of several commands into one file, How to tee Several Commands into One
Place
process substitution, using with, Redirecting Output to More Than One Place

Tek Options menu (xterm), The xterm Menus
teletype, Communication with Unix
telnet utility, Unix Networking and Communications, Tip for Changing Account Setup: Keep a Shell
Ready, Stalled Data Connection?, Stopping Remote Login Sessions, Enabling Remote Access on Mac
OS X

enabling on Mac OS X, Enabling Remote Access on Mac OS X
logging in to host again from same terminal, Tip for Changing Account Setup: Keep a Shell
Ready
stalled connection with, Stalled Data Connection?
suspending jobs, Stopping Remote Login Sessions

temporary files, Picking a Unique Filename Automatically, Out of Temporary Space? Use Another
Directory, Handling Lots of Text with Temporary Files, History by Number, Finding (Anyone's)
Home Directory, Quickly, Trapping Exits Caused by Interrupts, Use -xv, Checking Swap Space

filenames ending with ~, Finding (Anyone's) Home Directory, Quickly
handling text with, Handling Lots of Text with Temporary Files
history numbers, using to locate and remove, History by Number
redirecting output to, Use -xv
swap space on hard disk, Checking Swap Space
traps, using to clean up, Trapping Exits Caused by Interrupts
unique filename generation for, Picking a Unique Filename Automatically
vi editor, running out of space for, Out of Temporary Space? Use Another Directory

TERM (terminate) signal, Using jobs Effectively, nohup, What Are Signals?, Destroying Processes
with kill, Printer Queue Watcher: A Restartable Daemon Shell Script, killall -i

ignoring with nohup command, nohup
kill command, using with, Destroying Processes with kill
killall command, sending with, killall -i

TERM environment variable, Automatic Setups for Different Terminals, The Idea of a Terminal
Database, Setting the Terminal Type When You Log In, Predefined Environment Variables, Test
String Values with Bourne-Shell case

setting with tset command, Setting the Terminal Type When You Log In
testing with case statement, Test String Values with Bourne-Shell case

termcap database, Highlighting and Color in Shell Prompts, The Idea of a Terminal Database
termcap entries, Command Mode Maps
TERMCAP environment variable, Setting the Terminal Type When You Log In, Querying Your xterm
Size: resize, Predefined Environment Variables

resetting with resize command, Querying Your xterm Size: resize
terminal driver, eating backslashes before special characters, How Many Backslashes?
terminal emulators, The X Window System, The X Window System, The Idea of a Terminal
Database, Setting Your Erase, Kill, and Interrupt Characters

(see also xterm)
terminal settings and, Setting Your Erase, Kill, and Interrupt Characters

Terminal program (Mac OS X), Highlighting and Color in Shell Prompts, Running Commands When

You Log Out
color capabilities, Highlighting and Color in Shell Prompts
command-k to delete scrollback buffer, Running Commands When You Log Out

terminal type, What Goes in Shell Setup Files?
setting in shell setup files, What Goes in Shell Setup Files?

terminals, The Kernel and Daemons, What tty Am I On?, Who's On?, The Mac OS X Terminal
Application, Shell Setup Files — Which, Where, and Why, Automatic Setups for Different Terminals,
Terminal Setup: Testing Remote Hostname and X Display, Terminal Setup: Testing Port, Terminal
Setup: Testing Environment Variables, Terminal Setup: Searching Terminal Table, Terminal Setup:
Testing Window Size, Terminal Setup: Setting and Testing Window Name, A .cshrc.$HOST File for
Per Host Setup, Session Info in Window Title or Status Line, Session Info in Window Title or Status
Line, Highlighting and Color in Shell Prompts, Show Subshell Level with $SHLVL, There's a Lot to
Know About Terminals, Don't Quote Arguments to xterm -e, The Idea of a Terminal Database, The
Idea of a Terminal Database, The Idea of a Terminal Database, The Idea of a Terminal Database,
Setting the Terminal Type When You Log In, Querying Your Terminal Type: qterm, Querying Your
xterm Size: resize, Checklist: Terminal Hangs When I Log In, Aborting Programs, Find Out Terminal
Settings with stty, Setting Your Erase, Kill, and Interrupt Characters, Working with xterm and
Friends, Linux Virtual Consoles, Managing Processes: Overall Concepts, The Controlling Terminal,
Cleaning Up an Unkillable Process, Terminal Windows Without Shells, What Environment Variables
Are Good For, Predefined Environment Variables, Overview: Open Files and File Descriptors,
Outputting Text to an X Window, Using Standard Input and Output, Citrix: Making Windows
Multiuser, Hob

/dev/tty file, Overview: Open Files and File Descriptors
automatic setup, Terminal Setup: Testing Remote Hostname and X Display, Terminal Setup:
Testing Port, Terminal Setup: Testing Environment Variables, Terminal Setup: Searching
Terminal Table, Terminal Setup: Testing Window Size, Terminal Setup: Setting and Testing
Window Name

environment variables, testing, Terminal Setup: Testing Environment Variables
terminal table, searching, Terminal Setup: Searching Terminal Table
testing port (tty) numbers, Terminal Setup: Testing Port
testing remote hostname and X display, Terminal Setup: Testing Remote Hostname and X
Display
testing window size, Terminal Setup: Testing Window Size
window name, setting and testing, Terminal Setup: Setting and Testing Window Name

automatic setups, Automatic Setups for Different Terminals
capabilities of, The Idea of a Terminal Database (see termcap database)
configuring, There's a Lot to Know About Terminals, Don't Quote Arguments to xterm -e, Setting
the Terminal Type When You Log In, Querying Your Terminal Type: qterm, Querying Your
xterm Size: resize, Checklist: Terminal Hangs When I Log In, Aborting Programs, Find Out
Terminal Settings with stty, Setting Your Erase, Kill, and Interrupt Characters, Working with
xterm and Friends

erase, kill, and interrupt characters, Setting Your Erase, Kill, and Interrupt Characters
finding terminal settings with stty command, Find Out Terminal Settings with stty
querying terminal type with qterm, Querying Your Terminal Type: qterm
size of xterm windows, Querying Your xterm Size: resize

terminal hangs at login, fixing, Checklist: Terminal Hangs When I Log In, Aborting
Programs
terminal type, setting, Setting the Terminal Type When You Log In
xterm, Working with xterm and Friends

controlling terminal, The Controlling Terminal
escape sequences for nonprinting characters, Highlighting and Color in Shell Prompts
Gnome, The Kernel and Daemons
Linux virtual consoles, Show Subshell Level with $SHLVL, Linux Virtual Consoles
login and nonlogin shells, Shell Setup Files — Which, Where, and Why
Mac OS X, The Mac OS X Terminal Application
outputting text from command line into, Outputting Text to an X Window
reading from, process groups and, Managing Processes: Overall Concepts
reading/writing from, Using Standard Input and Output
screen editors vs., The Idea of a Terminal Database
settings in .cshrc.$HOST file, A .cshrc.$HOST File for Per Host Setup
status line, Session Info in Window Title or Status Line
status line, current directory information, Session Info in Window Title or Status Line
TERM environment varialbe, What Environment Variables Are Good For
termcap database, The Idea of a Terminal Database
TERMCAP environment variable, Predefined Environment Variables
terminfo database, The Idea of a Terminal Database
tty number for current users, Who's On?
tty types, What tty Am I On?
unkillable processes, Cleaning Up an Unkillable Process
windows without shells, Terminal Windows Without Shells
WTS, connecting to with Citrix, Citrix: Making Windows Multiuser, Hob

terminating, Using jobs Effectively, What Are Signals?, Loop Control: break and continue
loops, Loop Control: break and continue
processes, What Are Signals?

signals for, What Are Signals?
processes, stopping vs., Using jobs Effectively

terminating lines, Anyone Can Program the Shell (see newlines)
terminfo database, Highlighting and Color in Shell Prompts, The Idea of a Terminal Database,
Querying Your xterm Size: resize

resizing windows, Querying Your xterm Size: resize
terminfo entries, Command Mode Maps
test (t) command, sed editor, The sed Test Command
test command, Handling Arguments with while and shift, test: Testing Files and Strings, test: Testing
Files and Strings, Testing Two Strings with One case Statement, Stop Syntax Errors in Numeric
Tests, Stop Syntax Errors in String Tests, Cleaning script Files

-a and -o (and and or) operators, Testing Two Strings with One case Statement
numeric tests, errors in, Stop Syntax Errors in Numeric Tests
sed editor, Cleaning script Files

script.tidy using in, Cleaning script Files
string tests, syntax errors, Stop Syntax Errors in String Tests

versions of, test: Testing Files and Strings
in while loops, Handling Arguments with while and shift

testing, Setting the Terminal Type When You Log In, Using -exec to Create Custom Tests, Testing: A
Story, Test Exit Status with the if Statement, Test Exit Status with the if Statement, Testing Characters
in a String with expr, Testing Two Strings with One case Statement

character strings using expr, Testing Characters in a String with expr
exit status with if statement, Test Exit Status with the if Statement, Test Exit Status with the if
Statement
find command results, Using -exec to Create Custom Tests
interactive programs with Expect, Testing: A Story
strings with case statement, Testing Two Strings with One case Statement
terminal type with tset command, Setting the Terminal Type When You Log In

TEX, Formatting Markup Languages — troff, LATEX, HTML, and So On, Formatting Markup
Languages — troff, LATEX, HTML, and So On

CTAN, Formatting Markup Languages — troff, LATEX, HTML, and So On
typesetting with, Formatting Markup Languages — troff, LATEX, HTML, and So On

text, Setting the Titlebar and Icon Text, Working with xclipboard, Working with xclipboard,
Problems with Large Selections, Tips for Copy and Paste Between Windows, Tips for Copy and
Paste Between Windows, A Highlighting grep, Looking for Closure, The vi Editor: Why So Much
Material?, Keymaps for Pasting into a Window Running vi, Emacs Features: A Laundry List,
Handling Lots of Text with Temporary Files, Transformations on Text, Outputting Text to an X
Window, Outputting Text to an X Window, What Can You Do with an Empty File?, Introduction to
Printing, Formatting Plain Text: pr, Formatting Plain Text: enscript, Converting Text Files into a
Printing Language

analyzing, Looking for Closure
paired items, checking, Looking for Closure

converting files into printing language, Converting Text Files into a Printing Language
copying and pasting between windows running vi, Keymaps for Pasting into a Window Running
vi
copying and pasting in xterms, Working with xclipboard, Working with xclipboard, Problems
with Large Selections, Tips for Copy and Paste Between Windows, Tips for Copy and Paste
Between Windows

between windows, Tips for Copy and Paste Between Windows, Tips for Copy and Paste
Between Windows
large selections with xclipboard, problems with, Problems with Large Selections
xclipboard, using, Working with xclipboard, Working with xclipboard

editing features in Emacs, Emacs Features: A Laundry List
editors for, The vi Editor: Why So Much Material? (see editors)
empty files and, What Can You Do with an Empty File?
formatting for phototypesetters, Introduction to Printing
formatting with enscript command, Formatting Plain Text: enscript
formatting with pr command, Formatting Plain Text: pr
handling with temporary files, Handling Lots of Text with Temporary Files
highlighting with hgrep, A Highlighting grep
outputting to an X window, Outputting Text to an X Window, Outputting Text to an X Window

titlebars and icons, setting xterms for, Setting the Titlebar and Icon Text
transformations on, using sed editor, Transformations on Text

text files, Filename Extensions, When Is a File Not a File?
filename extension, Filename Extensions
newline character in, When Is a File Not a File?

text processing, Looking for Closure, Neatening Text with fmt, Clean Up Program Comment Blocks,
Remove Mail/News Headers with behead, offset: Indent Text, Splitting Files by Context: csplit,
Splitting Files by Context: csplit, Text Conversion with dd, Cutting Columns or Fields, Making Text
in Columns with pr, Order Lines Across Columns: -l, Make Columns Automatically with column,
Straightening Jagged Columns, Rotating Text

columns, Making Text in Columns with pr, Order Lines Across Columns: -l, Make Columns
Automatically with column

making automatically with column, Make Columns Automatically with column
making with pr, Making Text in Columns with pr, Order Lines Across Columns: -l

converting with dd utility, Text Conversion with dd
indenting text, offset: Indent Text
neatening text with fmt, Neatening Text with fmt
paired item checking, Looking for Closure
re-formatting comment lines, Clean Up Program Comment Blocks
removing mail/news headers, Remove Mail/News Headers with behead
rotating text, Rotating Text
selecting and cutting columns, Cutting Columns or Fields
splitting files by context, Splitting Files by Context: csplit, Splitting Files by Context: csplit
straightening jagged columns, Straightening Jagged Columns

Text widget commands, editing text sent to xclilpboard, Working with xclipboard
textual analysis, Just the Words, Please

words, extracting, Just the Words, Please
Text\:\:Autoformat Perl module, Alternatives to fmt
TFTP (Trivial File Transfer Protocol), What We Mean by DoS
then statement, Test Exit Status with the if Statement, The Unappreciated Bourne Shell ":" Operator

empty, creating with \: operator, The Unappreciated Bourne Shell ":" Operator
tilde (~) operator, Use Absolute Pathnames in Shell Setup Files
time, What Happens When You Log In, The Three Unix File Times, Finding Oldest or Newest Files
with ls -t and ls -u, Execution Scheduling, Avoiding Other at and cron Jobs, History by Number,
History by Number, How Unix Keeps Time

(see also date and time; timestamps)
fields in crontab entries, Execution Scheduling
file changes and modifications, The Three Unix File Times, Finding Oldest or Newest Files with
ls -t and ls -u

finding oldest or newest files by, Finding Oldest or Newest Files with ls -t and ls -u
of login, recording, What Happens When You Log In
picking to run at jobs, Avoiding Other at and cron Jobs
showing with history command, History by Number
on Unix systems, How Unix Keeps Time

time command, Timing Is Everything, Timing Programs, Don't Need a Shell for Your Script? Don't

Use One
time daemon, How Unix Keeps Time
time operators, find command (-mtime, -atime, and -ctime), The Times That find Finds, Exact File-
Time Comparisons
Time to go now.... message, Waiting a Little While: sleep
timeout keyword, Expect
timestamps, The Three Unix File Times, Finding Oldest or Newest Files with ls -t and ls -u, A csh
Alias to List Recently Changed Files, Listing Files by Age and Size, Exact File-Time Comparisons,
Context diffs, make Isn't Just for Programmers!, How Unix Keeps Track of Files: Inodes, History by
Number, runsed

arbitrary, creating files with, Exact File-Time Comparisons
comparing with make program, make Isn't Just for Programmers!
inode information, How Unix Keeps Track of Files: Inodes
kept by tcsh and zsh with their history, History by Number
listing with diff commands, Context diffs
listing/finding files by, Finding Oldest or Newest Files with ls -t and ls -u, A csh Alias to List
Recently Changed Files, Listing Files by Age and Size
sed editor and, runsed

timex command, Timing Programs
timezones, TZ variable for, Predefined Environment Variables
timing programs, Timing Programs
tip program, Dialback
titlebars in xterm, Setting the Titlebar and Icon Text
tolower command (awk), Alphabetical Summary of Commands
toolkits (X Window), X Resource Syntax
top command, The ps Command, Timing Is Everything
top-level domains (TLDs), Domain Name Service (DNS)
touch command, Exact File-Time Comparisons, Safer File Deletion in Some Directories

-i file, creating for file deletion, Safer File Deletion in Some Directories
creating file with arbitrary timestamp, Exact File-Time Comparisons

toupper command (awk), Alphabetical Summary of Commands
tpipe command, Redirecting Output to More Than One Place
tr command, Anyone Can Program the Shell, Find a a Doubled Word, Just the Words, Please,
Filtering Text Through a Unix Command, Hacking on Characters with tr, Hacking on Characters with
tr, Hacking on Characters with tr, Hacking on Characters with tr, Statistics of Processes by PID,
Cleaning script Files

-cs options, listing words in a file, Just the Words, Please
-d option, deleting characters in strings, Hacking on Characters with tr
Berkeley vs. System V, Hacking on Characters with tr
converting characters, Anyone Can Program the Shell
filtering vi text through to convert case, Filtering Text Through a Unix Command
NUL-separated entries from environ file, translating to newline-separated lines, Statistics of
Processes by PID
squeeze option, Hacking on Characters with tr
storing control characters in shell variables, Cleaning script Files

traceroute program, Where, Oh Where Did That Packet Go?
tracked aliases, Controlling Shell Command Searches, Korn-Shell Aliases
transform command (y), sed editor, Transformations on Text, Transforming Part of a Line,
Transforming Part of a Line
translation tables, X Event Translations, X Event Translations, X Event Translations

example, X Event Translations
syntax for specifying as a resource, X Event Translations

Transport Control Protocol, TCP/IP — IP Addresses and Ports (see TCP TCP/IP)
trap command, External Commands Send Signals to Set Variables, Killing Foreground Jobs, Printer
Queue Watcher: A Restartable Daemon Shell Script, Trapping Exits Caused by Interrupts, Trapping
Exits Caused by Interrupts

exits caused by interrupted scripts, Trapping Exits Caused by Interrupts
signals for, Trapping Exits Caused by Interrupts

trapping signals, What Are Signals?
trash directory, Safe Delete: Pros and Cons
trees, directory, Save Space: tar and compress a Directory Tree (see under directories)
troff, A Bit of Unix Typesetting History, Formatting Markup Languages — troff, LATEX, HTML, and
So On
troubleshooting, C-Shell Prompt Causes Problems in vi, rsh, etc., Stalled Data Connection?

stalled data connections, Stalled Data Connection?
stray prompt problems, C-Shell Prompt Causes Problems in vi, rsh, etc.

true (exit status) utility, Exit Status of Unix Processes
true command, The Unappreciated Bourne Shell ":" Operator
true or false values in Perl, Scalars
trusted-host authentication, problems with, General and Authentication Problems
tset command, Automatic Setups for Different Terminals, Setting the Terminal Type When You Log
In, Setting the Terminal Type When You Log In, Setting the Terminal Type When You Log In, Setting
the Terminal Type When You Log In, Setting Your Erase, Kill, and Interrupt Characters

key settings, changes in, Setting Your Erase, Kill, and Interrupt Characters
m (map) option, Setting the Terminal Type When You Log In, Setting the Terminal Type When
You Log In
Q (quiet) option, Setting the Terminal Type When You Log In

TSTP (stop) signal, What Are Signals?
tty, Communication with Unix
tty command, What tty Am I On?, The Controlling Terminal
tty number, Who's On?, The Controlling Terminal

displaying with usernames, Who's On?
in ps listing, The Controlling Terminal

tty serial port, for activity monitoring, fork and exec
tty-type virtual consoles, What Are They?
ttys and ttytab files, Terminal Setup: Searching Terminal Table
twm window manager, Setting up VNC on Unix
type command, Which Version Am I Using?, Which One Will bash Use?
typescript file, Copy What You Do with script
typeset -f command, listing functions you've defined, Conclusion

typesetting, Introduction to Printing, Introduction to Typesetting, A Bit of Unix Typesetting History,
Typesetting Manpages: nroff, Converting Typeset Files into a Printing Language

converting typeset files into printing language, Converting Typeset Files into a Printing Language
manpages with nroff, Typesetting Manpages: nroff
overview, Introduction to Typesetting
Unix history of, A Bit of Unix Typesetting History

typos, fixing with vi abbreviations, Fixing Typos with vi Abbreviations
TZ (timezone) environment variable, Predefined Environment Variables

U

UAs (User Agents), Mail — SMTP, POP, and IMAP
uc operator, Scalars
UDP (User Datagram Protocol), TCP/IP — IP Addresses and Ports, Layer 4 Protocols: TCP, UDP,
and ICMP
UIDs, Managing Processes: Overall Concepts (see user IDs)
ulimit -f command, limit and ulimit
umask command, Subshells, Automatic Setup When You Enter/Exit a Directory, Shell Lockfile,
Setting an Exact umask, User, Group, and World

default mode for newly created files, Setting an Exact umask
permission values, setting, User, Group, and World
setting in shell scripts, Subshells
subshell, running in, Shell Lockfile

umount command, Mounting and Unmounting Removable Filesystems
unalias command, Setting and Unsetting Bourne-Type Aliases
uname -n command, How Unix Systems Remember Their Names
uncompressing files, Compressing Files to Save Space, Compressing Files to Save Space

bunzip2 program, Compressing Files to Save Space
underscore (_) in filenames, Filenames
undoing, Get Back What You Deleted with Numbered Buffers, Confirming Substitutions in vi, Finding
Your Place with Undo, Emacs: The Other Editor

actions in Emacs editor, Emacs: The Other Editor
deletions with vi editor, Get Back What You Deleted with Numbered Buffers
edits in vi editor, Finding Your Place with Undo
search and replace commands with vi editor, Confirming Substitutions in vi

unformatted manpage files, Searching Online Manual Pages
uniq command, Find a a Doubled Word, What Is (or Isn't) Unique?, Dealing with Repeated Lines

sort -u vs., Dealing with Repeated Lines
testing for duplicate terms, Find a a Doubled Word

Universal Serial Bus (USB), USB Configuration
Unix, About Unix Versions, What's Special About Unix?, Power Grows on You, Communication with
Unix, Unix Networking and Communications, Know When to Be "nice" to Other Users...and When
Not To

advantages of, What's Special About Unix?, Power Grows on You
communicating with, Communication with Unix

networking and communications utilities, Unix Networking and Communications
priority, definition of, Know When to Be "nice" to Other Users...and When Not To
versions of, About Unix Versions

unkillable processes, cleaning up, Cleaning Up an Unkillable Process
unless statements, Perl Boot Camp, Part 3: Branching and Looping
unlimit coredumpsize command, limit and ulimit
unlink function, Perl Boot Camp, Part 5: Perl Knows Unix
unlink() system call, Using unlink to Remove a File with a Strange Name
unlocking files (RCS), RCS Basics
unmatched pieces of code, errors caused by, Missing or Extra esac, ;;, fi, etc.
unset -f command, deleting definition of function, Conclusion
unset variables, errors caused by, Stop Syntax Errors in Numeric Tests
unsetenv command, What Environment Variables Are Good For
unshift operator (Perl), Arrays
until loops, Loop Control: break and continue, Looping Until a Command Succeeds, Looping Until a
Command Fails, test: Testing Files and Strings, Shell Lockfile

nonzero exit status, Shell Lockfile
test command used with, test: Testing Files and Strings
testing exit status in Bourne shells, Looping Until a Command Succeeds
while loops vs., Looping Until a Command Fails

updatedb shell script, Finding Files (Much) Faster with a find Database
updating, Even More Uses for make, CVS Basics, More CVS, Updating information on available
packages

CVS files, CVS Basics, More CVS
distributed database, Even More Uses for make
information on available packages with apt-get, Updating information on available packages

upgrading installed packages with apt-get, Upgrading installed packages
uppercase, Typing in Uppercase Without CAPS LOCK (see case)
uptime command, Preprompt, Pre-execution, and Periodic Commands, Timing Is Everything,
Checking System Load: uptime
URI for software package source, Configuring the sources.list File
urllib module, Python and the Web
urllib2 module, Python and the Web, urllib2
URLs for Java applet VNC desktops, Connecting to a Windows VNC server
USB (Universal Serial Bus), USB Configuration
Usenet, Unix Networking and Communications, Emacs Features: A Laundry List, Encoding "Binary"
Files into ASCII

eight-bit text, encoding into seven-bit, Encoding "Binary" Files into ASCII
GNUS client in Emacs, Emacs Features: A Laundry List

User Agents (UAs), Mail — SMTP, POP, and IMAP
User Datagram Protocol, TCP/IP — IP Addresses and Ports (see UDP)
user defined subroutines (Perl), Perl Boot Camp, Part 1: Typical Script Anatomy
USER environment variable, Predefined Environment Variables
user IDs (UIDs), Managing Processes: Overall Concepts, When Does a User Become a User

in passwd file, When Does a User Become a User

user interfaces, Communication with Unix (see GUIs)
user time, Timing Programs
user-based access control, Starting a Remote Client with rsh and ssh
user-space tools to configure devices, Quick Introduction to Hardware
useradd utility, When Does a User Become a User
username field in crontab entries, Execution Scheduling
users, Static Prompts, Destroying Processes with kill, What to Back Up, RCS Basics, Unix
User/Group Infrastructure, When Does a User Become a User, When Does a User Become a User,
When Does a User Become a User, When Does a User Become a User, Group Permissions in a
Directory with the setgid Bit, Groups and Group Ownership, Groups and Group Ownership, Add
Users to a Group to Deny Permissions, Care and Feeding of SUID and SGID Scripts, Substitute
Identity with su, Providing Superpowers with sudo, Disable logins, User, Group, and World

backing up directories, What to Back Up
login shell, killing, Destroying Processes with kill
RCS files, listing for, RCS Basics
UID, When Does a User Become a User
Unix user/group infrastructure, Unix User/Group Infrastructure, When Does a User Become a
User, When Does a User Become a User, Group Permissions in a Directory with the setgid Bit,
Groups and Group Ownership, Groups and Group Ownership, Add Users to a Group to Deny
Permissions, Care and Feeding of SUID and SGID Scripts, Substitute Identity with su, Providing
Superpowers with sudo, Disable logins, User, Group, and World

adding to Unix systems, When Does a User Become a User, When Does a User Become a
User
disabling logins, Disable logins
file ownerhsip and, User, Group, and World
group permissions in directory with setgid bit, Group Permissions in a Directory with the
setgid Bit
groups and group ownership, Groups and Group Ownership, Groups and Group Ownership
groups that deny permissions, Add Users to a Group to Deny Permissions
substitute identity with su, Substitute Identity with su
SUID and SGID scripts, Care and Feeding of SUID and SGID Scripts
superpowers with sudo application, Providing Superpowers with sudo

usernames, Static Prompts, When Does a User Become a User
in shell prompt, Static Prompts

users command, Setting (and Parsing) Parameters
utilities, Communication with Unix, Everyone Should Learn Some Shell Programming, Everyone
Should Learn Some Shell Programming

(see also individual utility or command names)
combining, Everyone Should Learn Some Shell Programming
relationship with kernel, shell, and applications, Communication with Unix

UUCP (Unix-to-Unix copy), Unix Networking and Communications
uudecode command, uuencoding
uuencode utility, uuencoding
uuencoding, Encoding "Binary" Files into ASCII
uuname -l command, How Unix Systems Remember Their Names

V

values function (Perl), Hashes
values, Python objects, Everything's an Object
variable substitutions, Anyone Can Program the Shell, How Quoting Works, String Editing (Colon)
Operators, String Editing (Colon) Operators, String Editing (Colon) Operators

Bourne shell quoting and, How Quoting Works
editing by shells, String Editing (Colon) Operators
editing with \: (colon) string editing operators, String Editing (Colon) Operators, String Editing
(Colon) Operators

variable-length records, converting to/from fixed length, Text Conversion with dd
variable-width columns, creating with column utility, Make Columns Automatically with column
variables, Anyone Can Program the Shell, X Resource Syntax, awk System Variables, What
Environment Variables Are Good For, Shell Variables, Shell Variables, Making a for Loop with
Multiple Variables, Making a for Loop with Multiple Variables, Quoting and Command-Line
Parameters, Perl Boot Camp, Part 1: Typical Script Anatomy, Everything's an Object, Everything's an
Object

awk utility, awk System Variables
class variables (Python), Everything's an Object
environment, What Environment Variables Are Good For (see environment variables)
inheritance of, Shell Variables
instance variables (Python), Everything's an Object
multiple, creating for loops with, Making a for Loop with Multiple Variables
Perl, Perl Boot Camp, Part 1: Typical Script Anatomy (see Perl)
resource (X Window System), X Resource Syntax
scanning contents with eval, Making a for Loop with Multiple Variables
set to word lists, Quoting and Command-Line Parameters
shell, Shell Variables (see shell variables)
substitution of, Anyone Can Program the Shell (see variable substitutions)

varying commands while repeating them, Repeating Commands
Vaults of Parnassus (Python repository), Installation and Distutils
verbose option (Bourne shell), Shell Scripts On-the-Fly from Standard Input
verbose shell variable, Verbose and Echo Settings Show Quoting
version control systems, Emacs Features: A Laundry List, More Ways to Back Up, Managing and
Sharing Files with RCS and CVS, RCS Basics, List RCS Revision Numbers with rcsrevs, CVS
Basics

CVS, CVS Basics
Emacs support of, Emacs Features: A Laundry List
RCS, RCS Basics, List RCS Revision Numbers with rcsrevs
saving every file version, More Ways to Back Up

versions, About Unix Versions, Which Version Am I Using?, Checking your Perl Installation,
Compiling Perl from Scratch

of commands, Which Version Am I Using?
Perl, Checking your Perl Installation, Compiling Perl from Scratch

verifying on your system, Compiling Perl from Scratch

UNIX, About Unix Versions
vgrep script, The vgrep Script
vi editor, The Idea of a Terminal Database, Tips for Copy and Paste Between Windows, The vi
Editor: Why So Much Material?, Editing Multiple Files with vi, Edits Between Files, Local Settings
for vi, Local Settings for vi, Using Buffers to Move or Copy Text, Get Back What You Deleted with
Numbered Buffers, Using Search Patterns and Global Commands, Global Searches, Confirming
Substitutions in vi, Keep Your Original File, Write to a New File, Saving Part of a File, Appending
to an Existing File, Moving Blocks of Text by Patterns, Moving Blocks of Text by Patterns, Useful
Global Commands (with Pattern Matches), Counting Occurrences; Stopping Search Wraps,
Capitalizing Every Word on a Line, Per-File Setups in Separate Files, Filtering Text Through a Unix
Command, vi File Recovery Versus Networked Filesystems, Be Careful with vi -r Recovered
Buffers, Shell Escapes: Running One UnixCommand While Using Another, vi Compound Searches, vi
Word Abbreviation, Fixing Typos with vi Abbreviations, Using vi Abbreviations as Commands (Cut
and Paste Between vi's), Fixing Typos with vi Abbreviations, vi Line Commands Versus Character
Commands, Out of Temporary Space? Use Another Directory, Neatening Lines, Finding Your Place
with Undo, Setting Up vi with the .exrc File, Save Time and Typing with the vi map Commands, File-
Backup Macros, Save Time and Typing with the vi map Commands, What You Lose When You Use
map!, Command Mode Maps, vi @-Functions, Newlines in an @-Function, Keymaps for Pasting into
a Window Running vi, Protecting Keys from Interpretation by ex, Maps for Repeated Edits, More
Examples of Mapping Keys in vi, Repeating a vi Keymap, Typing in Uppercase Without CAPS
LOCK, Text-Input Mode Cursor Motion with No Arrow Keys, Don't Lose Important Functions with
vi Maps: Use noremap, vi Macro for Splitting Long Lines, File-Backup Macros, Running Editing
Scripts Within vi, Centering Lines in a File, Hacking on Characters with tr, Job Control and
autowrite: Real Timesavers!, Killing Foreground Jobs, Command Substitution, vi Editing Mode,
Regular Expressions: The Anchor Characters ̂and $, Delimiting a Regular Expression, Who Will
Own a New File?

abbreviations, vi Word Abbreviation, Fixing Typos with vi Abbreviations, Using vi
Abbreviations as Commands (Cut and Paste Between vi's), Fixing Typos with vi Abbreviations

commands, using as, Using vi Abbreviations as Commands (Cut and Paste Between vi's)
fixing typos with, Fixing Typos with vi Abbreviations

appending to existing file, Appending to an Existing File
autowrite option, Job Control and autowrite: Real Timesavers!
capitalizing words, Capitalizing Every Word on a Line
centering lines of text, Centering Lines in a File
command-line editing, vi Editing Mode
compound searches, vi Compound Searches
confirming substitutions in, Confirming Substitutions in vi
counting occurrences and stopping search wraps, Counting Occurrences; Stopping Search Wraps
custom commands, creating, Save Time and Typing with the vi map Commands, File-Backup
Macros, Save Time and Typing with the vi map Commands, What You Lose When You Use
map!, vi @-Functions, Newlines in an @-Function, Keymaps for Pasting into a Window Running
vi, Protecting Keys from Interpretation by ex, Maps for Repeated Edits, More Examples of
Mapping Keys in vi, Repeating a vi Keymap, Typing in Uppercase Without CAPS LOCK, Text-
Input Mode Cursor Motion with No Arrow Keys, Don't Lose Important Functions with vi Maps:
Use noremap, vi Macro for Splitting Long Lines, File-Backup Macros

@-functions, vi @-Functions, Newlines in an @-Function
cursor motion in text-input mode without arrow keys, Text-Input Mode Cursor Motion with
No Arrow Keys
file-backup macros, File-Backup Macros
keymaps for pasting into window running vi, Keymaps for Pasting into a Window Running
vi
macro for splitting long lines, vi Macro for Splitting Long Lines
map commands, Save Time and Typing with the vi map Commands, What You Lose When
You Use map!
mapping keys in vi, further examples, More Examples of Mapping Keys in vi
maps for repeated edits, Maps for Repeated Edits
noremap command, Don't Lose Important Functions with vi Maps: Use noremap
protecting keys from interpretation by ex, Protecting Keys from Interpretation by ex
repeating a keymap, Repeating a vi Keymap
typing in uppercase without CAPS LOCK, Typing in Uppercase Without CAPS LOCK

defining alternate vi environments, Local Settings for vi
deleting text blocks by patterns, Moving Blocks of Text by Patterns
development of, The Idea of a Terminal Database
file ownership, Who Will Own a New File?
file recovery with vi -r, vi File Recovery Versus Networked Filesystems, Be Careful with vi -r
Recovered Buffers

recovered buffers, cautions about, Be Careful with vi -r Recovered Buffers
filtering text through Unix command, Filtering Text Through a Unix Command, Neatening Lines

fmt command, neatening lines with, Neatening Lines
grep command, command substitution with, Command Substitution
keys available for user-defined commands, Command Mode Maps
line vs. character commands, vi Line Commands Versus Character Commands
local settings for, Local Settings for vi
marking place with m command, Finding Your Place with Undo
moving blocks of text by patterns, Moving Blocks of Text by Patterns
multiple setup files, Per-File Setups in Separate Files
pattern matches, global commands with, Useful Global Commands (with Pattern Matches)
recovering past deletions in numbered buffers, Get Back What You Deleted with Numbered
Buffers
regular expressions in search and replacement patterns, delimiting, Delimiting a Regular
Expression
requote script, using, Tips for Copy and Paste Between Windows
running ex scripts, Running Editing Scripts Within vi
saving old and new version of file, Keep Your Original File, Write to a New File
saving part of a file, Saving Part of a File
search patterns and global commands, using, Using Search Patterns and Global Commands,
Global Searches

global searches, Global Searches
setting up with .exrc file, Setting Up vi with the .exrc File
shell escapes, Shell Escapes: Running One UnixCommand While Using Another

signals, ignoring, Killing Foreground Jobs
switching between files, Editing Multiple Files with vi, Edits Between Files, Using Buffers to
Move or Copy Text

buffers, using to copy or move text, Using Buffers to Move or Copy Text
transferring text with yank buffers, Edits Between Files

temporary space, running out of, Out of Temporary Space? Use Another Directory
translating strings with tr -d command, Hacking on Characters with tr
 ̂and $ characters, use of, Regular Expressions: The Anchor Characters ̂and $

vim editor, The vi Editor: Why So Much Material?
virtual consoles (Linux), Show Subshell Level with $SHLVL, There's a Lot to Know About
Terminals, Linux Virtual Consoles, What Are They?, Scrolling, Using a Mouse

switching between, There's a Lot to Know About Terminals, What Are They?
tty-type, scrolling and copy and paste, Scrolling, Using a Mouse

virtual machine running Windows, VMWare
virtual memory statistics, Other Checks
Virtual Network Computing, Sharing Desktops with VNC (see VNC)
vis command, Repeating Commands, Repeating a Time-Varying Command, Repeating a Time-
Varying Command, Repeating a Time-Varying Command, Repeating a Time-Varying Command

-d option, Repeating a Time-Varying Command
-s option, Repeating a Time-Varying Command
C shell history compared to, Repeating a Time-Varying Command
variations of (display, rep, watch), Repeating a Time-Varying Command

VISUAL environment variable, Predefined Environment Variables
Vixie cron, Periodic Program Execution: The cron Facility, Execution Scheduling, Execution
Scheduling, A Little Help, etc.

crontab file, creating, Execution Scheduling
Linux shortcuts to cron tasks, A Little Help, etc.
month and day names in crontab entry time fields, Execution Scheduling

vmstat command, Other Checks
vmware program, VMWare
VNC (Virtual Network Computing), Sharing Desktops with VNC, Connecting to a Windows VNC
server, Setting up VNC on Unix

connecting to Windows VNC server, Connecting to a Windows VNC server
setting up on Unix, Setting up VNC on Unix

vold daemon, Mounting and Unmounting Removable Filesystems
VT Fonts menu (xterm), The xterm Menus, The xterm Menus, VT Fonts Menu, Enabling Escape
Sequence and Selection

Escape Sequences and Selection, enabling, Enabling Escape Sequence and Selection
VT Options menu (xterm), Working with Scrollbars, The xterm Menus, The xterm Menus

enabling scrollbars, Working with Scrollbars
mode toggles, The xterm Menus

vulnerabilities, Understanding Points of Vulnerability, Keeping Up with Security Alerts, Keeping Up
with Security Alerts, What We Mean by Buffer Overflow, A Loophole: Modifying Files Without
Write Access

buffer overflow, What We Mean by Buffer Overflow

CERT web site information on, Keeping Up with Security Alerts
file modification without write access, A Loophole: Modifying Files Without Write Access
Microsoft security bulletins about, Keeping Up with Security Alerts

W

W3 mode (Emacs), Emacs Features: A Laundry List
wait command, Why You Can't Kill a Zombie, Exit Status of Unix Processes

in background jobs, Exit Status of Unix Processes
warning or error messages, What Are Signals?, Perl Boot Camp, Part 1: Typical Script Anatomy

Perl (-w option), Perl Boot Camp, Part 1: Typical Script Anatomy
signals as, What Are Signals?

watch command, Repeating a Time-Varying Command
watchq script, Printer Queue Watcher: A Restartable Daemon Shell Script
wc (word count) command, Counting Lines, Words, and Characters: wc, Counting Lines, Words, and
Characters: wc, Counting Lines, Words, and Characters: wc

c, -l, and w options, Counting Lines, Words, and Characters: wc
whitespace in output, Counting Lines, Words, and Characters: wc

web browsers, Example #2: A Web Browser (see browsers)
Web, described, Unix Networking and Communications
web-browser mode (Emacs), Emacs Features: A Laundry List
webjump feature, Emacs, Emacs Features: A Laundry List
well-known ports, database of, /etc/services Is Your Friend
werase key, Setting Your Erase, Kill, and Interrupt Characters
wfcmgr program, Citrix Metaframe
wget utility, Interruptable gets with wget, Interruptable gets with wget

options, Interruptable gets with wget
What You See Is What You Mean (WYSIWYM) editing, Formatting Markup Languages — troff,
LATEX, HTML, and So On
whatis command, whatis: One-Line Command Summaries
wheel (superuser group), When Does a User Become a User, Groups and Group Ownership
whence command, Which Version Am I Using?
whereis command, whereis: Finding Where a Command Is Located, whereis: Finding Where a
Command Is Located, Starting a Remote Client with rsh and ssh, Picking a Name for a New
Command

options, whereis: Finding Where a Command Is Located
rsh, checking version of, Starting a Remote Client with rsh and ssh
testing command names, Picking a Name for a New Command

which command, Which Version Am I Using?, Gotchas in set prompt Test, Starting a Remote Client
with rsh and ssh, Picking a Name for a New Command

alternatives to, Which Version Am I Using?
checking for existing command names, Picking a Name for a New Command
rsh, checking version of, Starting a Remote Client with rsh and ssh
setting the prompt variable, Gotchas in set prompt Test

while command (awk), Alphabetical Summary of Commands

while loops, Loop Control: break and continue, Looping Until a Command Fails, With a Loop,
Handling Arguments with while and shift, Handling Arguments with while and shift, test: Testing
Files and Strings, The Unappreciated Bourne Shell ":" Operator, Standard Input to a for Loop, A
while Loop with Several Loop Control Commands, Outputting Text to an X Window, Bourne Shell
Debugger Shows a Shell Variable, Perl Boot Camp, Part 1: Typical Script Anatomy, Perl Boot
Camp, Part 4: Pattern Matching

/g pattern modifier and, Perl Boot Camp, Part 4: Pattern Matching
asking for variable names and displaying values, Bourne Shell Debugger Shows a Shell
Variable
case, shift, and test commands, using with, Handling Arguments with while and shift
endless, The Unappreciated Bourne Shell ":" Operator, Outputting Text to an X Window
handling command-line arguments, Handling Arguments with while and shift
in Perl script, Perl Boot Camp, Part 1: Typical Script Anatomy
read command used in, Standard Input to a for Loop
with several loop control commands, A while Loop with Several Loop Control Commands
stepping through command-line arguments, With a Loop
test command used with, test: Testing Files and Strings
testing exit status, Looping Until a Command Fails

whitespace, Communication with Unix, When Is a File Not a File?, Defining What Makes Up a Word
for Selection Purposes, Defining What Makes Up a Word for Selection Purposes, Tips for Copy and
Paste Between Windows, Can't Access a File? Look for Spaces in the Name, Running Commands on
What You Find, Show Nonprinting Characters with cat -v or od -c, Squash Extra Blank Lines,
Problems Deleting Directories, Counting Lines, Words, and Characters: wc, Emacs Features: A
Laundry List, Ignoring Blanks, Quoting Special Characters in Filenames, Here Documents, Simple
Functions: ls with Options, Perl Boot Camp, Part 4: Pattern Matching

blank lines, squashing extra with cat -s, Squash Extra Blank Lines
displaying in a line with cat command, Show Nonprinting Characters with cat -v or od -c
in filenames, Can't Access a File? Look for Spaces in the Name, Running Commands on What
You Find, Problems Deleting Directories, Quoting Special Characters in Filenames

finding files with, Running Commands on What You Find, Problems Deleting Directories
ignoring in sort command, Ignoring Blanks
leading, removing in Emacs from series of lines, Emacs Features: A Laundry List
matching in Perl regular expressions with \s, Perl Boot Camp, Part 4: Pattern Matching
newline character, When Is a File Not a File?
removing from text with dedent script, Tips for Copy and Paste Between Windows
separating command arguments, Communication with Unix
shell functions, spaces in, Simple Functions: ls with Options
SPACE characters, ASCII, Defining What Makes Up a Word for Selection Purposes
TAB characters, Defining What Makes Up a Word for Selection Purposes, Here Documents

ASCII, Defining What Makes Up a Word for Selection Purposes
stripping in Bourne shell scripts, Here Documents

wc command output, Counting Lines, Words, and Characters: wc
who am i command, Terminal Setup: Testing Remote Hostname and X Display
who command, Who's On?, Who's On?, Command Substitution, Writing a Simple Shell Program,
Setting (and Parsing) Parameters

examples, Writing a Simple Shell Program
GNU version, Who's On?

whois command, Domain Name Service (DNS)
wildcards, Wildcards, Wildcards, Some GNU ls Features, Using "Fast find" Databases, Wildcards
with "Fast find" Database, rm and Its Dangers, Problems Deleting Directories, Wildcards Inside
Aliases, Use Wildcards to Create Files?, Using !$ for Safety with Wildcards, Don't Confuse Regular
Expressions with Wildcards, Don't Confuse Regular Expressions with Wildcards, File-Naming
Wildcards, File-Naming Wildcards, Filename Wildcards in a Nutshell, Filename Wildcards in a
Nutshell, Filename Wildcards in a Nutshell, Filename Wildcards in a Nutshell, Who Handles
Wildcards?, Who Handles Wildcards?, What if a Wildcard Doesn't Match?, Maybe You Shouldn't
Use Wildcards in Pathnames, Getting a List of Matching Files with grep -l, Getting a List of
Nonmatching Files, The vgrep Script, nom: List Files That Don't Match a Wildcard, Test String
Values with Bourne-Shell case, Pattern Matching in case Statements, Handling Command-Line
Arguments with a for Loop, Watch Your Quoting, Using Wildcards with tar, With GNU tar, Wildcard
Gotchas in GNU tar

!$ sequence for safety with, Using !$ for Safety with Wildcards
in aliases, Wildcards Inside Aliases
in case statements, Test String Values with Bourne-Shell case, Pattern Matching in case
Statements
deleting files, use in, rm and Its Dangers
for dot files, Problems Deleting Directories
file creation and, Use Wildcards to Create Files?
file-naming, File-Naming Wildcards, File-Naming Wildcards, Filename Wildcards in a
Nutshell, Filename Wildcards in a Nutshell, Filename Wildcards in a Nutshell, Filename
Wildcards in a Nutshell, Who Handles Wildcards?, Who Handles Wildcards?, What if a
Wildcard Doesn't Match?, Maybe You Shouldn't Use Wildcards in Pathnames, Getting a List of
Matching Files with grep -l, Getting a List of Nonmatching Files, The vgrep Script, nom: List
Files That Don't Match a Wildcard

expansion by shells, Filename Wildcards in a Nutshell
failing to match, What if a Wildcard Doesn't Match?
file name and extension as separate entities, Filename Wildcards in a Nutshell
grep -c, listing nonmatching files, Getting a List of Nonmatching Files
grep -l command, listing matching files, Getting a List of Matching Files with grep -l
in pathnames, File-Naming Wildcards
listing of, Filename Wildcards in a Nutshell, Filename Wildcards in a Nutshell
nom script, listing nonmatching files, nom: List Files That Don't Match a Wildcard
pathnames, not using in, Maybe You Shouldn't Use Wildcards in Pathnames
shell handling of, Who Handles Wildcards?, Who Handles Wildcards?
vgrep script, listing nonmatching files, The vgrep Script

in for loops, Handling Command-Line Arguments with a for Loop
limiting searches with, Using "Fast find" Databases
ls command, using shell wildcard pattern, Some GNU ls Features
regular expressions vs., Don't Confuse Regular Expressions with Wildcards
set command using, Watch Your Quoting
shell expansion of, Don't Confuse Regular Expressions with Wildcards

shell, matching with fast find commands, Wildcards with "Fast find" Database
tar, using with, Using Wildcards with tar, With GNU tar, Wildcard Gotchas in GNU tar

GNU tar, With GNU tar, Wildcard Gotchas in GNU tar
windows, The Kernel and Daemons, The Kernel and Daemons, Terminal Setup: Testing Window
Size, Session Info in Window Title or Status Line, Preprompt, Pre-execution, and Periodic
Commands, Emacs Features: A Laundry List, Managing Processes: Overall Concepts, The Process
Chain to Your Window, The Process Chain to Your Window, Terminal Windows Without Shells,
Close a Window by Killing Its Process(es), Closing a Window from a Shell Script, Example #1: An
xterm Window, Example #2: A Web Browser, Closing a Window from a Shell Script, Outputting
Text to an X Window, Setting up VNC on Unix

(see also terminals; X Window System; xterm)
chain of processes leading to, The Process Chain to Your Window, The Process Chain to Your
Window
closing by killing window processes, Close a Window by Killing Its Process(es), Closing a
Window from a Shell Script, Example #1: An xterm Window, Example #2: A Web Browser,
Closing a Window from a Shell Script

shell script, using, Closing a Window from a Shell Script
web browser (example), Example #2: A Web Browser
xterm window (example), Example #1: An xterm Window

Emacs, Emacs Features: A Laundry List
Gnome, on Linux, The Kernel and Daemons
Linux, listing on, The Kernel and Daemons
session info in title, Session Info in Window Title or Status Line
starting new from shell, Managing Processes: Overall Concepts
terminal without shells, Terminal Windows Without Shells
testing size for, Terminal Setup: Testing Window Size
twm window manager on VNC, Setting up VNC on Unix
xmessage, setting to fit text, Outputting Text to an X Window

Windows, Tips for Copy and Paste Between Windows, wxPython, Disk Partitioning, Mounting
Network Filesystems — NFS, SMBFS, Printing Over Samba, Printing to Unix Printers from
Windows, Printing to Windows Printers from Unix, Introduction to Typesetting, Building Bridges,
Hob, Installing and Configuring Samba, Securing Samba, SWAT and GUI SMB Browsers, Printing
with Samba, Connecting to SMB Shares from Unix, Sharing Desktops with VNC, Setting up VNC on
Unix, Of Emulators and APIs, Citrix: Making Windows Multiuser, Keeping Up with Security Alerts

connecting Unix machines to, Building Bridges, Hob, Installing and Configuring Samba,
Securing Samba, SWAT and GUI SMB Browsers, Printing with Samba, Connecting to SMB
Shares from Unix, Sharing Desktops with VNC, Setting up VNC on Unix, Of Emulators and
APIs, Citrix: Making Windows Multiuser

Citrix, connecting to WTS server, Citrix: Making Windows Multiuser
connecting to SMB shares from Unix, Connecting to SMB Shares from Unix
emulators and APIs, Of Emulators and APIs
printing with Samba, Printing with Samba
Samba, installing and configuring, Installing and Configuring Samba
securing Samba, Securing Samba
sharing desktops with VNC, Sharing Desktops with VNC, Setting up VNC on Unix

swat and GUI SMB browsers, SWAT and GUI SMB Browsers
dual-booting with Unix, Disk Partitioning
printing over Samba, Printing Over Samba, Printing to Unix Printers from Windows, Printing to
Windows Printers from Unix

from Unix to Windows printer, Printing to Windows Printers from Unix
to Unix printers, Printing to Unix Printers from Windows

Python interface to wxWindows toolkit, wxPython
quote characters, formatting for Unix, Tips for Copy and Paste Between Windows
security bulletins from Microsoft, Keeping Up with Security Alerts
SMB-shared filesystems, mounting on Unix, Mounting Network Filesystems — NFS, SMBFS
WYSIWYG editors, typesetting with, Introduction to Typesetting

wine program, emulating Windows API, Wine
Winmodems,, Win Is a Modem Not a Modem?
WINNAME environment variable, Terminal Setup: Setting and Testing Window Name
wish shell, There Are Many Shells
word lists, Inside spell, Adding Words to ispell's Dictionary, Adding Words to ispell's Dictionary,
Quoting and Command-Line Parameters

ispell program, Adding Words to ispell's Dictionary, Adding Words to ispell's Dictionary
munchlist script, Adding Words to ispell's Dictionary

spell command, in spellhist file, Inside spell
variables set to, Quoting and Command-Line Parameters

word vectors, Which One Will the C Shell Use?
WORDLIST environment variable, Check Spelling Interactively with ispell, Adding Words to
ispell's Dictionary

overriding default personal word list, Adding Words to ispell's Dictionary
words, Defining What Makes Up a Word for Selection Purposes, Counting Lines, Words, and
Characters: wc, Find a a Doubled Word, Just the Words, Please, vi Word Abbreviation, Fixing
Typos with vi Abbreviations, Using vi Abbreviations as Commands (Cut and Paste Between vi's),
Fixing Typos with vi Abbreviations, String Editing (Colon) Operators, Regular Expressions:
Matching Words with \ < and \ >

abbreviation in vi editor, vi Word Abbreviation, Fixing Typos with vi Abbreviations, Using vi
Abbreviations as Commands (Cut and Paste Between vi's), Fixing Typos with vi Abbreviations

commands, using as, Using vi Abbreviations as Commands (Cut and Paste Between vi's)
fixing typos with, Fixing Typos with vi Abbreviations

breaking string into with \:x operator, String Editing (Colon) Operators
counting with wc command, Counting Lines, Words, and Characters: wc
doubled, Find a a Doubled Word
extracting, Just the Words, Please
matching with \< \\\> in regular expressions, Regular Expressions: Matching Words with \ < and
\ >
selection, Defining What Makes Up a Word for Selection Purposes

in xterm, Defining What Makes Up a Word for Selection Purposes
work function, Setting Current Shell Environment: The work Function, Shell Function Specifics
workgroups, Installing and Configuring Samba
working area (CVS), CVS Basics, CVS Basics, More CVS

repository for, CVS Basics
updating workspace, More CVS

workstations, The Kernel and Daemons, Dynamic Host Configuration Protocol (DHCP), Gateways
and NAT

configuring with DHCP, Dynamic Host Configuration Protocol (DHCP)
display, The Kernel and Daemons
private NAT for, Gateways and NAT

world (file ownership), User, Group, and World
World Wide Web, described, Unix Networking and Communications
world-write file permissions, User, Group, and World, Protecting Files with the Sticky Bit

sticky bit, setting for directory, Protecting Files with the Sticky Bit
wrappers, Shell Script "Wrappers" for awk, sed, etc., TCP Wrappers

shell script, for other scripts, Shell Script "Wrappers" for awk, sed, etc.
TCP, checking logs in intruder detection, TCP Wrappers

wrapping lines in vi, macro for, vi Macro for Splitting Long Lines
write command, Unix Networking and Communications, What tty Am I On?, Useful ex Commands,
Printer Queue Watcher: A Restartable Daemon Shell Script

ex editor, Useful ex Commands
running from a daemon, Printer Queue Watcher: A Restartable Daemon Shell Script

write permission, Access to Directories, Searching for Files by Permission, Tutorial on File and
Directory Permissions, Which Group is Which?, Protecting Files with the Sticky Bit, Protecting Files
with the Sticky Bit, Using chmod to Change File Permission, Protect Important Files: Make Them
Unwritable, Protect Important Files: Make Them Unwritable, cx, cw, c-w: Quick File Permission
Changes, A Loophole: Modifying Files Without Write Access

changing with chmod, Using chmod to Change File Permission
denying, Protect Important Files: Make Them Unwritable
for directories, Access to Directories, Tutorial on File and Directory Permissions, Protecting
Files with the Sticky Bit

implications of, Tutorial on File and Directory Permissions
renaming or removing files, Protecting Files with the Sticky Bit

directories, renaming or removing files, Protecting Files with the Sticky Bit
files, modifying without, A Loophole: Modifying Files Without Write Access
finding files by, Searching for Files by Permission
group, Which Group is Which?
script for adding, editing file, then removing, Protect Important Files: Make Them Unwritable
scripts for changing, cx, cw, c-w: Quick File Permission Changes

writewav.pl script, Perl Boot Camp, Part 1: Typical Script Anatomy
writing output to terminal, enabling/disabling for background jobs, Stop Background Output with stty
tostop
writing-tar process, Copying Directory Trees with tar and Pipes
wtmp file, login information, What Happens When You Log In
WTS (Windows Terminal Services), connecting to with Citrix, Citrix: Making Windows Multiuser,
Hob
ww function, Find a a Doubled Word
ww.sh script, Find a a Doubled Word

wxPython GUI, wxPython
WYSIWYG (What You See Is What You Get) editing programs, Why Line Editors Aren't Dinosaurs
WYSIWYM editors, Formatting Markup Languages — troff, LATEX, HTML, and So On

X

x (exchange) command, sed, Hold Space: The Set-Aside Buffer, The Deliberate Scrivener
X toolkit, X Resource Syntax
X Window System, The X Window System, Automatic Setups for Different Terminals, Terminal
Setup: Testing Remote Hostname and X Display, Terminal Setup: Testing Window Size, Setting Your
Erase, Kill, and Interrupt Characters, Defining Keys and Button Presses with xmodmap, Using xev to
Learn Keysym Mappings, X Resource Syntax, X Resource Syntax, X Event Translations, X Event
Translations, Setting X Resources: Overview, Listing the Current Resources for a Client: appres,
Starting Remote X Clients, Starting Remote X Clients, Starting a Remote Client with rsh and ssh,
Starting Remote X Clients from Interactive Logins, Starting a Remote Client with rsh and ssh, The
Process Chain to Your Window, The Process Chain to Your Window, Close a Window by Killing Its
Process(es), The DISPLAY Environment Variable, The DISPLAY Environment Variable, Outputting
Text to an X Window, Outputting Text to an X Window, Server and Client Problems

closing window by killing its processes, Close a Window by Killing Its Process(es)
defining keys and button presses with xmodmap, Defining Keys and Button Presses with
xmodmap
DISPLAY environment variable, The DISPLAY Environment Variable
keysym mappings, using xev to learn, Using xev to Learn Keysym Mappings
outputting text into terminal with xmessage, Outputting Text to an X Window, Outputting Text to
an X Window
remote logins, Starting Remote X Clients
resize command, Terminal Setup: Testing Window Size
resources, X Resource Syntax, X Resource Syntax, X Event Translations, X Event Translations,
Setting X Resources: Overview, Listing the Current Resources for a Client: appres

event translations, overview, X Event Translations, X Event Translations
setting, Setting X Resources: Overview, Listing the Current Resources for a Client: appres
syntax of, X Resource Syntax, X Resource Syntax

server and screen numbers, The DISPLAY Environment Variable
shell, using from an xterm, The Process Chain to Your Window, The Process Chain to Your
Window
starting remote clients, Starting Remote X Clients, Starting a Remote Client with rsh and ssh,
Starting Remote X Clients from Interactive Logins, Starting a Remote Client with rsh and ssh

from interactive logins, Starting Remote X Clients from Interactive Logins
with rsh and ssh, Starting a Remote Client with rsh and ssh

testing window size, Automatic Setups for Different Terminals
who am i command, Terminal Setup: Testing Remote Hostname and X Display
X forwarding, problems with, Server and Client Problems
xmodmap command, Setting Your Erase, Kill, and Interrupt Characters

xargs command, Delving Through a Deep Directory Tree, Running Commands on What You Find,
Running Commands on What You Find, Duplicating a Directory Tree, Using "Fast find" Databases,

grepping a Directory Tree, lookfor: Which File Has That Word?, Compound Searches
-0 option, Running Commands on What You Find
-exec operator (find command) vs., Running Commands on What You Find
completed filenames, passing to with sed, Duplicating a Directory Tree
egrep arguments, handling, grepping a Directory Tree
egrep, using with, lookfor: Which File Has That Word?
find command, using with, Delving Through a Deep Directory Tree
grep output, pipelining, Compound Searches
piping locate output to, Using "Fast find" Databases

xargs utility, Dealing with Too Many Arguments, Dealing with Too Many Arguments, Dealing with
Too Many Arguments

-n option, Dealing with Too Many Arguments
-p option, Dealing with Too Many Arguments

xauth command, Starting a Remote Client with rsh and ssh
copying access code to remote machine, Starting a Remote Client with rsh and ssh

xclipboard, Listing the Current Resources for a Client: appres
setting up xterm to use, Listing the Current Resources for a Client: appres

xclipboard window, Working with xclipboard, Problems with Large Selections
large text selections, problems with, Problems with Large Selections

XEmacs (Lucent Emacs), Emacs Features: A Laundry List
xev utility, Using xev to Learn Keysym Mappings
xgrep script, Just What Does a Regular Expression Match?
xhost command, Starting Remote X Clients from Interactive Logins, Starting a Remote Client with rsh
and ssh

executing before rsh, Starting a Remote Client with rsh and ssh
xmessage utility, Outputting Text to an X Window, Outputting Text to an X Window
XML, Formatting Markup Languages — troff, LATEX, HTML, and So On
xmodmap program, Setting Your Erase, Kill, and Interrupt Characters, Defining Keys and Button
Presses with xmodmap, Using xev to Learn Keysym Mappings

defining keys and button presses, Defining Keys and Button Presses with xmodmap
xrdb utility, X Resource Syntax, Setting X Resources: Overview, Setting Resources with xrdb,
Setting Resources with xrdb, Setting Resources with xrdb, Setting Resources with xrdb, Setting
Resources with xrdb, Setting Resources with xrdb, Setting Resources with xrdb, Setting Resources
with xrdb

backup option, Setting Resources with xrdb
edit option, Setting Resources with xrdb
load option, Setting Resources with xrdb
merge option, Setting Resources with xrdb
query option, Setting Resources with xrdb
removing definitions, Setting Resources with xrdb

xterm, The X Window System, Shell Setup Files — Which, Where, and Why, Terminal Setup:
Testing Window Size, Session Info in Window Title or Status Line, Highlighting and Color in Shell
Prompts, Preprompt, Pre-execution, and Periodic Commands, Querying Your xterm Size: resize,
Working with xterm and Friends, Don't Quote Arguments to xterm -e, Login xterms and rxvts,
Working with Scrollbars, How Many Lines to Save?, Simple Copy and Paste in xterm, Defining What

Makes Up a Word for Selection Purposes, Setting the Titlebar and Icon Text, The Simple Way to Pick
a Font, The xterm Menus, Changing Fonts Dynamically, Working with xclipboard, Tips for Copy and
Paste Between Windows, Running a Single Command with xterm -e, Don't Quote Arguments to xterm
-e, Managing Processes: Overall Concepts, The Process Chain to Your Window, The Process Chain
to Your Window, Terminal Windows Without Shells, Example #1: An xterm Window, Repeating a
Command with Copy-and-Paste, Copy What You Do with script

-e option, Running a Single Command with xterm -e, Don't Quote Arguments to xterm -e
built-in logger, Copy What You Do with script
chain of processes leading to window, The Process Chain to Your Window, The Process Chain
to Your Window
closing window by killing its processes, Example #1: An xterm Window
color, Highlighting and Color in Shell Prompts
configuring, Working with xterm and Friends, Don't Quote Arguments to xterm -e, Login xterms
and rxvts, Working with Scrollbars, How Many Lines to Save?, Simple Copy and Paste in
xterm, Defining What Makes Up a Word for Selection Purposes, Setting the Titlebar and Icon
Text, The Simple Way to Pick a Font, The xterm Menus, Changing Fonts Dynamically, Working
with xclipboard, Tips for Copy and Paste Between Windows

copy and paste, Simple Copy and Paste in xterm
copy and paste between windows, Tips for Copy and Paste Between Windows
fonts, changing dynamically, Changing Fonts Dynamically
fonts, selecting, The Simple Way to Pick a Font
login shell, Login xterms and rxvts
menus, The xterm Menus
saved lines, How Many Lines to Save?
scrollbars, Working with Scrollbars
titlebar and icon text, Setting the Titlebar and Icon Text
words, defining for text selection, Defining What Makes Up a Word for Selection Purposes
xclipboard, Working with xclipboard

copy and paste, Repeating a Command with Copy-and-Paste
login shells, Shell Setup Files — Which, Where, and Why
size of windows, Terminal Setup: Testing Window Size, Querying Your xterm Size: resize
starting windows, Managing Processes: Overall Concepts
terminal window without shells, Terminal Windows Without Shells
window title, Session Info in Window Title or Status Line, Preprompt, Pre-execution, and
Periodic Commands

showing command line in, Preprompt, Pre-execution, and Periodic Commands
xwrist script, Outputting Text to an X Window

Y

y (transform) command, sed editor, Transformations on Text, Transforming Part of a Line,
Transforming Part of a Line
yank buffers, Get Back What You Deleted with Numbered Buffers
yes command, Making an Arbitrary-Size File for Testing

Z

Z shell, There Are Many Shells (see zsh)
zap script (interactively killing processes), zap
zcat command, Compressing Files to Save Space
ZDOTDIR environment variable, Shell Setup Files — Which, Where, and Why, Shell Setup Files —
Which, Where, and Why
zero string length, testing for, Using Shell Functions in Shell Scripts
zeros in /dev/zero file, What Can You Do with an Empty File?
Zip disks, Backing Up to Floppies or Zip Disks, Mounting and Unmounting Removable Filesystems

backing up to, Backing Up to Floppies or Zip Disks
mounting, Mounting and Unmounting Removable Filesystems

zless command (less for compressed files), Compressing Files to Save Space
zmore script, Trapping Exits Caused by Interrupts, With the "$@" Parameter, Handling Command-
Line Arguments with a for Loop

arguments for, With the "$@" Parameter
for loops in, Handling Command-Line Arguments with a for Loop

zombies, BSD, Destroying Processes with kill, Why You Can't Kill a Zombie
zsh (Z shell), There Are Many Shells, Shell Setup Files — Which, Where, and Why, Shell Setup
Files — Which, Where, and Why, Making a "Login" Shell, Static Prompts, Dynamic Prompts,
Simulating Dynamic Prompts, Right-Side Prompts, Show Subshell Level with $SHLVL, Preprompt,
Pre-execution, and Periodic Commands, Using the Stored Lists, Expanding Ranges, limit and ulimit,
Disowning Processes, Disowning Processes, The Process Chain to Your Window, What the Shell
Does, "Special" Characters and Operators, Build Strings with { }, String Editing (Colon) Operators,
Automatic Completion, Command-Specific Completion, Repeating Commands, A foreach Loop,
Multiline Commands, Secondary Prompts, Introduction to Shell Aliases, Setting and Unsetting
Bourne-Type Aliases, zsh Aliases, Functions Calling Functions: Factorials, Shell Function Specifics,
Shell Function Specifics, zsh, History by Number, Picking Up Where You Left Off, bash, ksh, zsh,
Pass History to Another Shell, zsh Editing, Changing History Characters with histchars, The Shells'
pushd and popd Commands, Filename Wildcards in a Nutshell, What if a Wildcard Doesn't Match?,
Shell Variables, Exit Status of Unix Processes, Exit Status of Unix Processes, Using Standard Input
and Output, Send Output Two or More Places

&! and &| operators for background processes, Disowning Processes
aliases, Introduction to Shell Aliases, Setting and Unsetting Bourne-Type Aliases, zsh Aliases
arrays, Using the Stored Lists, Expanding Ranges

expanding ranges, Expanding Ranges
bg_nice option, The Process Chain to Your Window
built-in arithmetic, Functions Calling Functions: Factorials
cd +n and cd -n commands, moving directory in stack, The Shells' pushd and popd Commands
command-line editing, zsh Editing
completion features, Automatic Completion, Command-Specific Completion

command-specific, Command-Specific Completion
configuration files, Shell Setup Files — Which, Where, and Why
disown command, Disowning Processes
editing history substitutions, String Editing (Colon) Operators

environment variable for shell function, changing, Shell Function Specifics
exit status of command line, reversing, Exit Status of Unix Processes
fc -l command, listing previous commands with, History by Number
foreach loop, A foreach Loop
FPATH search path for shell functions, zsh
globbing (wildcard expansion), Filename Wildcards in a Nutshell
histchars variable, Changing History Characters with histchars
history file, bash, ksh, zsh
limiting file size, limit and ulimit
login shells, creating, Making a "Login" Shell
MULTIOS option, Send Output Two or More Places
options, resetting for shell functions, Shell Function Specifics
passing command history to, Pass History to Another Shell
pre-prompt commands, Preprompt, Pre-execution, and Periodic Commands
PRINT_EXIT_VALUE option, Exit Status of Unix Processes
prompts, Static Prompts, Dynamic Prompts, Simulating Dynamic Prompts, Right-Side Prompts,
Multiline Commands, Secondary Prompts

%!, getting history number with, Dynamic Prompts
dynamic, Simulating Dynamic Prompts
right-side, Right-Side Prompts
secondary, showing names of continuing constructs, Multiline Commands, Secondary
Prompts
setting, Static Prompts

redirecting standard I/O, Using Standard Input and Output
repeating commands with repeat loop, Repeating Commands
SAVEHIST variable, Picking Up Where You Left Off
shell variables, read-only, Shell Variables
SHLVL environment variable, Show Subshell Level with $SHLVL
special characters/operators, "Special" Characters and Operators
wildcards, failing to match, What if a Wildcard Doesn't Match?
{ } (pattern-expansion characters), building strings with, Build Strings with { }

About the Authors

is a long time user of the Unix operating system. He has acted as a Unix consultant, courseware
developer, and instructor. He is one of the originating authors of Unix Power Tools and the author of
Learning the Unix Operating System by O'Reilly.

Shelley Powers is an independent contractor, currently living in St. Louis, who specializes in
technology architecture and software development. She's authored several computer books, including
Developing ASP Components, Unix Power Tools 3rd edition, Essential Blogging, and Practical RDF.
In addition, Shelley has also written several articles related primarily to web technology, many for
O'Reilly. Shelley's web site network is at http://burningbird.net, and her weblog is Burningbird, at
http://weblog.burningbird.net.

http://burningbird.net
http://weblog.burningbird.net

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution
channels. Distinctive covers complement our distinctive approach to technical topics, breathing
personality and life into potentially dry subjects.

The image on the cover of Unix Power Tools, Third Edition, is an AC Dyno-Mite DC drill made by
the Millers Falls Company, circa 1950.

Jeffrey Holcomb was the production editor for Unix Power Tools, Third Edition. Leanne Soylemez
and Jeffrey Holcomb were the copyeditors. Mary Brady, Linley Dolby, and Claire Cloutier provided
quality control. Genevieve d'Entremont, Julie Flanagan, Andrew Savikas, Brian Sawyer, and Sue
Willing were the compositors. Ellen Troutman-Zaig wrote the index.

Edie Freedman designed the cover of this book. Emma Colby produced the cover layout with
QuarkXPress 4.1 using Adobe's ITC Garamond font.

David Futato designed the interior layout. This book was converted to FrameMaker 5.5.6 with a
format conversion tool created by Erik Ray, Jason McIntosh, Neil Walls, and Mike Sierra that uses
Perl and XML technologies. The text font is Linotype Birka; the heading font is Adobe Helvetica
Neue Condensed; and the code font is LucasFont's TheSans Mono Condensed. The illustrations that
appear in the book were produced by Robert Romano and Jessamyn Read using Macromedia
FreeHand 9 and Adobe Photoshop 6. This colophon was written by Jeffrey Holcomb.

The online edition of this book was created by the Safari production group (John Chodacki, Becki
Maisch, and Madeleine Newell) using a set of Frame-to-XML conversion and cleanup tools written
and maintained by Erik Ray, Benn Salter, John Chodacki, and Jeff Liggett.

	A Note Regarding Supplemental Files
	How to Use This Book
	Preface
	A Book for Browsing
	Like an Almanac
	Like a News Magazine
	Like a Hypertext Database
	Programs on the Web
	About Unix Versions
	Cross-References
	What's New in the Third Edition
	Typefaces and Other Conventions
	The Authors
	The Fine Print
	Request for Comments
	Acknowledgments for the First Edition
	Acknowledgments for the Second Edition
	Acknowledgments for the Third Edition

	I. Basic Unix Environment
	1. Introduction
	1.1. What's Special About Unix?
	1.2. Power Grows on You
	1.3. The Core of Unix
	1.4. Communication with Unix
	1.5. Programs Are Designed to Work Together
	1.6. There Are Many Shells
	1.7. Which Shell Am I Running?
	1.8. Anyone Can Program the Shell
	1.9. Internal and External Commands
	1.10. The Kernel and Daemons
	1.11. Filenames
	1.12. Filename Extensions
	1.13. Wildcards
	1.14. The Tree Structure of the Filesystem
	1.15. Your Home Directory
	1.16. Making Pathnames
	1.17. File Access Permissions
	1.18. The Superuser �⠀刀漀漀琀)
	1.19. When Is a File Not a File?
	1.20. Scripting
	1.21. Unix Networking and Communications
	1.22. The X Window System

	2. Getting Help
	2.1. The man Command
	2.2. whatis: One-Line Command Summaries
	2.3. whereis: Finding Where a Command Is Located
	2.4. Searching Online Manual Pages
	2.5. How Unix Systems Remember Their Names
	2.6. Which Version Am I Using?
	2.7. What tty Am I On?
	2.8. Who's On?
	2.9. The info Command

	II. Customizing Your Environment
	3. Setting Up Your Unix Shell
	3.1. What Happens When You Log In
	3.2. The Mac OS X Terminal Application
	3.3. Shell Setup Files — Which, Where, and Why
	3.4. Login Shells, Interactive Shells
	3.4.1. Login Shells
	3.4.2. Interactive Shells

	3.5. What Goes in Shell Setup Files?
	3.6. Tip for Changing Account Setup: Keep a Shell Ready
	3.7. Use Absolute Pathnames in Shell Setup Files
	3.8. Setup Files Aren't Read When You Want?
	3.9. Gotchas in set prompt Test
	3.10. Automatic Setups for Different Terminals
	3.11. Terminal Setup: Testing TERM
	3.12. Terminal Setup: Testing Remote Hostname and X Display
	3.13. Terminal Setup: Testing Port
	3.14. Terminal Setup: Testing Environment Variables
	3.15. Terminal Setup: Searching Terminal Table
	3.16. Terminal Setup: Testing Window Size
	3.17. Terminal Setup: Setting and Testing Window Name
	3.18. A .cshrc.$HOST File for Per Host Setup
	3.19. Making a "Login" Shell
	3.20. RC Files
	3.21. Make Your Own Manpages Without Learning troff
	3.22. Writing a Simple Manpage with the -man Macros

	4. Interacting with Your Environment
	4.1. Basics of Setting the Prompt
	4.2. Static Prompts
	4.3. Dynamic Prompts
	4.4. Simulating Dynamic Prompts
	4.5. C-Shell Prompt Causes Problems in vi, rsh, etc.
	4.6. Faster Prompt Setting with Built-ins
	4.7. Multiline Shell Prompts
	4.8. Session Info in Window Title or Status Line
	4.9. A "Menu Prompt" for Naive Users
	4.10. Highlighting and Color in Shell Prompts
	4.11. Right-Side Prompts
	4.12. Show Subshell Level with $SHLVL
	4.13. What Good Is a Blank Shell Prompt?
	4.14. dirs in Your Prompt: Better Than $cwd
	4.15. External Commands Send Signals to Set Variables
	4.16. Preprompt, Pre-execution, and Periodic Commands
	4.17. Running Commands When You Log Out
	4.18. Running Commands at Bourne/Korn Shell Logout
	4.19. Stop Accidental Bourne-Shell Logouts

	5. Getting the Most out of Terminals, xterm, and X Windows
	5.1. There's a Lot to Know About Terminals
	5.2. The Idea of a Terminal Database
	5.3. Setting the Terminal Type When You Log In
	5.4. Querying Your Terminal Type: qterm
	5.5. Querying Your xterm Size: resize
	5.6. Checklist: Terminal Hangs When I Log In
	5.6.1. Output Stopped?
	5.6.2. Job Stopped?
	5.6.3. Program Waiting for Input?
	5.6.4. Stalled Data Connection?
	5.6.5. Aborting Programs

	5.7. Find Out Terminal Settings with stty
	5.8. Setting Your Erase, Kill, and Interrupt Characters
	5.9. Working with xterm and Friends
	5.10. Login xterms and rxvts
	5.11. Working with Scrollbars
	5.12. How Many Lines to Save?
	5.13. Simple Copy and Paste in xterm
	5.14. Defining What Makes Up a Word for Selection Purposes
	5.15. Setting the Titlebar and Icon Text
	5.16. The Simple Way to Pick a Font
	5.17. The xterm Menus
	5.18. Changing Fonts Dynamically
	5.18.1. VT Fonts Menu
	5.18.2. Enabling Escape Sequence and Selection

	5.19. Working with xclipboard
	5.20. Problems with Large Selections
	5.21. Tips for Copy and Paste Between Windows
	5.22. Running a Single Command with xterm -e
	5.23. Don't Quote Arguments to xterm -e

	6. Your X Environment
	6.1. Defining Keys and Button Presses with xmodmap
	6.2. Using xev to Learn Keysym Mappings
	6.3. X Resource Syntax
	6.4. X Event Translations
	6.5. Setting X Resources: Overview
	6.6. Setting Resources with the -xrm Option
	6.7. How -name Affects Resources
	6.8. Setting Resources with xrdb
	6.9. Listing the Current Resources for a Client: appres
	6.10. Starting Remote X Clients
	6.10.1. Starting Remote X Clients from Interactive Logins
	6.10.2. Starting a Remote Client with rsh and ssh

	III. Working with Files and Directories
	7. Directory Organization
	7.1. What? Me, Organized?
	7.2. Many Homes
	7.3. Access to Directories
	7.4. A bin Directory for Your Programs and Scripts
	7.5. Private �⠀倀攀爀猀漀渀愀氀) Directories
	7.6. Naming Files
	7.7. Make More Directories!
	7.8. Making Directories Made Easier

	8. Directories and Files
	8.1. Everything but the find Command
	8.2. The Three Unix File Times
	8.3. Finding Oldest or Newest Files with ls -t and ls -u
	8.4. List All Subdirectories with ls -R
	8.5. The ls -d Option
	8.6. Color ls
	8.6.1. Trying It
	8.6.2. Configuring It
	8.6.3. The -- color Option
	8.6.4. Another color ls

	8.7. Some GNU ls Features
	8.8. A csh Alias to List Recently Changed Files
	8.9. Showing Hidden Files with ls -A and -a
	8.10. Useful ls Aliases
	8.11. Can't Access a File? Look for Spaces in the Name
	8.12. Showing Nonprintable Characters in Filenames
	8.13. Counting Files by Types
	8.14. Listing Files by Age and Size
	8.15. newer: Print the Name of the Newest File
	8.16. oldlinks: Find Unconnected Symbolic Links
	8.17. Picking a Unique Filename Automatically

	9. Finding Files with find
	9.1. How to Use find
	9.2. Delving Through a Deep Directory Tree
	9.3. Don't Forget -print
	9.4. Looking for Files with Particular Names
	9.5. Searching for Old Files
	9.6. Be an Expert on find Search Operators
	9.7. The Times That find Finds
	9.8. Exact File-Time Comparisons
	9.9. Running Commands on What You Find
	9.10. Using -exec to Create Custom Tests
	9.11. Custom -exec Tests Applied
	9.12. Finding Many Things with One Command
	9.13. Searching for Files by Type
	9.14. Searching for Files by Size
	9.15. Searching for Files by Permission
	9.16. Searching by Owner and Group
	9.17. Duplicating a Directory Tree
	9.18. Using "Fast find" Databases
	9.19. Wildcards with "Fast find" Database
	9.20. Finding Files �⠀䴀甀挀栀) Faster with a find Database
	9.21. grepping a Directory Tree
	9.22. lookfor: Which File Has That Word?
	9.23. Using Shell Arrays to Browse Directories
	9.23.1. Using the Stored Lists
	9.23.2. Expanding Ranges

	9.24. Finding the �⠀䠀愀爀搀) Links to a File
	9.25. Finding Files with -prune
	9.26. Quick finds in the Current Directory
	9.27. Skipping Parts of a Tree in find
	9.28. Keeping find from Searching Networked Filesystem

	10. Linking, Renaming, and Copying Files
	10.1. What's So Complicated About Copying Files
	10.2. What's Really in a Directory?
	10.3. Files with Two or More Names
	10.4. More About Links
	10.4.1. Differences Between Hard and Symbolic Links
	10.4.2. Links to a Directory

	10.5. Creating and Removing Links
	10.6. Stale Symbolic Links
	10.7. Linking Directories
	10.8. Showing the Actual Filenames for Symbolic Links
	10.9. Renaming, Copying, or Comparing a Set of Files
	10.10. Renaming a List of Files Interactively
	10.11. One More Way to Do It
	10.12. Copying Directory Trees with cp -r
	10.13. Copying Directory Trees with tar and Pipes

	11. Comparing Files
	11.1. Checking Differences with diff
	11.2. Comparing Three Different Versions with diff3
	11.3. Context diffs
	11.4. Side-by-Side diffs: sdiff
	11.5. Choosing Sides with sdiff
	11.6. Problems with diff and Tabstops
	11.7. cmp and diff
	11.8. Comparing Two Files with comm
	11.9. More Friendly comm Output
	11.10. make Isn't Just for Programmers!
	11.11. Even More Uses for make

	12. Showing What's in a File
	12.1. Cracking the Nut
	12.2. What Good Is a cat?
	12.3. "less" is More
	12.4. Show Nonprinting Characters with cat -v or od -c
	12.5. What's in That Whitespace?
	12.6. Finding File Types
	12.7. Squash Extra Blank Lines
	12.8. How to Look at the End of a File: tail
	12.9. Finer Control on tail
	12.10. How to Look at Files as They Grow
	12.11. GNU tail File Following
	12.12. Printing the Top of a File
	12.13. Numbering Lines

	13. Searching Through Files
	13.1. Different Versions of grep
	13.2. Searching for Text with grep
	13.3. Finding Text That Doesn't Match
	13.4. Extended Searching for Text with egrep
	13.5. grepping for a List of Patterns
	13.6. Approximate grep: agrep
	13.7. Search RCS Files with rcsgrep
	13.7.1. rcsgrep, rcsegrep, rcsfgrep
	13.7.2. rcsegrep.fast

	13.8. GNU Context greps
	13.9. A Multiline Context grep Using sed
	13.10. Compound Searches
	13.11. Narrowing a Search Quickly
	13.12. Faking Case-Insensitive Searches
	13.13. Finding a Character in a Column
	13.14. Fast Searches and Spelling Checks with "look"
	13.15. Finding Words Inside Binary Files
	13.16. A Highlighting grep

	14. Removing Files
	14.1. The Cycle of Creation and Destruction
	14.2. How Unix Keeps Track of Files: Inodes
	14.3. rm and Its Dangers
	14.4. Tricks for Making rm Safer
	14.5. Answer "Yes" or "No" Forever with yes
	14.6. Remove Some, Leave Some
	14.7. A Faster Way to Remove Files Interactively
	14.8. Safer File Deletion in Some Directories
	14.9. Safe Delete: Pros and Cons
	14.10. Deletion with Prejudice: rm -f
	14.11. Deleting Files with Odd Names
	14.12. Using Wildcards to Delete Files with Strange Names
	14.13. Handling a Filename Starting with a Dash �⠀ⴀ)
	14.14. Using unlink to Remove a File with a Strange Name
	14.15. Removing a Strange File by its i-number
	14.16. Problems Deleting Directories
	14.17. Deleting Stale Files
	14.18. Removing Every File but One
	14.19. Using find to Clear Out Unneeded Files

	15. Optimizing Disk Space
	15.1. Disk Space Is Cheap
	15.2. Instead of Removing a File, Empty It
	15.3. Save Space with "Bit Bucket" Log Files and Mailboxes
	15.4. Save Space with a Link
	15.5. Limiting File Sizes
	15.5.1. limit and ulimit
	15.5.2. Other Ideas

	15.6. Compressing Files to Save Space
	15.7. Save Space: tar and compress a Directory Tree
	15.8. How Much Disk Space?
	15.9. Compressing a Directory Tree: Fine-Tuning
	15.10. Save Space in Executable Files with strip
	15.11. Disk Quotas

	IV. Basic Editing
	16. Spell Checking, Word Counting, and Textual Analysis
	16.1. The Unix spell Command
	16.2. Check Spelling Interactively with ispell
	16.3. How Do I Spell That Word?
	16.4. Inside spell
	16.5. Adding Words to ispell's Dictionary
	16.6. Counting Lines, Words, and Characters: wc
	16.7. Find a a Doubled Word
	16.8. Looking for Closure
	16.9. Just the Words, Please

	17. vi Tips and Tricks
	17.1. The vi Editor: Why So Much Material?
	17.2. What We Cover
	17.3. Editing Multiple Files with vi
	17.4. Edits Between Files
	17.5. Local Settings for vi
	17.6. Using Buffers to Move or Copy Text
	17.7. Get Back What You Deleted with Numbered Buffers
	17.8. Using Search Patterns and Global Commands
	17.8.1. Global Searches

	17.9. Confirming Substitutions in vi
	17.10. Keep Your Original File, Write to a New File
	17.11. Saving Part of a File
	17.12. Appending to an Existing File
	17.13. Moving Blocks of Text by Patterns
	17.14. Useful Global Commands �⠀眀椀琀栀 倀愀琀琀攀爀渀 䴀愀琀挀栀攀猀)
	17.15. Counting Occurrences; Stopping Search Wraps
	17.16. Capitalizing Every Word on a Line
	17.17. Per-File Setups in Separate Files
	17.18. Filtering Text Through a Unix Command
	17.19. vi File Recovery Versus Networked Filesystems
	17.20. Be Careful with vi -r Recovered Buffers
	17.21. Shell Escapes: Running One UnixCommand While Using Another
	17.22. vi Compound Searches
	17.23. vi Word Abbreviation
	17.24. Using vi Abbreviations as Commands �⠀䌀甀琀 愀渀搀 倀愀猀琀攀 䈀攀琀眀攀攀渀 瘀椀✀猀)
	17.25. Fixing Typos with vi Abbreviations
	17.26. vi Line Commands Versus Character Commands
	17.27. Out of Temporary Space? Use Another Directory
	17.28. Neatening Lines
	17.29. Finding Your Place with Undo
	17.30. Setting Up vi with the .exrc File

	18. Creating Custom Commands in vi
	18.1. Why Type More Than You Have To?
	18.2. Save Time and Typing with the vi map Commands
	18.2.1. Command Mode Maps
	18.2.2. Text-Input Mode Maps

	18.3. What You Lose When You Use map!
	18.4. vi @-Functions
	18.4.1. Defining and Using Simple @-Functions
	18.4.2. Combining @-Functions
	18.4.3. Reusing a Definition
	18.4.4. Newlines in an @-Function

	18.5. Keymaps for Pasting into a Window Running vi
	18.6. Protecting Keys from Interpretation by ex
	18.7. Maps for Repeated Edits
	18.8. More Examples of Mapping Keys in vi
	18.9. Repeating a vi Keymap
	18.10. Typing in Uppercase Without CAPS LOCK
	18.11. Text-Input Mode Cursor Motion with No Arrow Keys
	18.12. Don't Lose Important Functions with vi Maps: Use noremap
	18.13. vi Macro for Splitting Long Lines
	18.14. File-Backup Macros

	19. GNU Emacs
	19.1. Emacs: The Other Editor
	19.2. Emacs Features: A Laundry List
	19.3. Customizations and How to Avoid Them
	19.4. Backup and Auto-Save Files
	19.5. Putting Emacs in Overwrite Mode
	19.6. Command Completion
	19.7. Mike's Favorite Timesavers
	19.8. Rational Searches
	19.9. Unset PWD Before Using Emacs
	19.10. Inserting Binary Characters into Files
	19.11. Using Word-Abbreviation Mode
	19.11.1. Trying Word Abbreviations for One Session
	19.11.2. Making Word Abbreviations Part of Your Startup

	19.12. Directories for Emacs Hacks
	19.13. An Absurd Amusement

	20. Batch Editing
	20.1. Why Line Editors Aren't Dinosaurs
	20.2. Writing Editing Scripts
	20.3. Line Addressing
	20.4. Useful ex Commands
	20.5. Running Editing Scripts Within vi
	20.6. Change Many Files by Editing Just One
	20.7. ed/ex Batch Edits: A Typical Example
	20.8. Batch Editing Gotcha: Editors Fail on Big Files
	20.9. patch: Generalized Updating of Files That Differ
	20.10. Quick Reference: awk
	20.10.1. Command-Line Syntax
	20.10.2. Patterns and Procedures
	20.10.3. awk System Variables
	20.10.4. Operators
	20.10.5. Variables and Array Assignments
	20.10.6. Group Listing of awk Commands
	20.10.7. Alphabetical Summary of Commands

	20.11. Versions of awk

	21. You Can't Quite Call This Editing
	21.1. And Why Not?
	21.2. Neatening Text with fmt
	21.3. Alternatives to fmt
	21.4. Clean Up Program Comment Blocks
	21.4.1. The recomment Script
	21.4.2. fmt -p

	21.5. Remove Mail/News Headers with behead
	21.6. Low-Level File Butchery with dd
	21.7. offset: Indent Text
	21.8. Centering Lines in a File
	21.9. Splitting Files at Fixed Points: split
	21.10. Splitting Files by Context: csplit
	21.11. Hacking on Characters with tr
	21.12. Encoding "Binary" Files into ASCII
	21.12.1. uuencoding
	21.12.2. MIME Encoding

	21.13. Text Conversion with dd
	21.14. Cutting Columns or Fields
	21.15. Making Text in Columns with pr
	21.15.1. One File per Column: -m
	21.15.2. One File, Several Columns: -number
	21.15.3. Order Lines Across Columns: -l

	21.16. Make Columns Automatically with column
	21.17. Straightening Jagged Columns
	21.18. Pasting Things in Columns
	21.19. Joining Lines with join
	21.20. What Is �⠀漀爀 䤀猀渀✀琀) Unique?
	21.21. Rotating Text

	22. Sorting
	22.1. Putting Things in Order
	22.2. Sort Fields: How sort Sorts
	22.3. Changing the sort Field Delimiter
	22.4. Confusion with Whitespace Field Delimiters
	22.5. Alphabetic and Numeric Sorting
	22.6. Miscellaneous sort Hints
	22.6.1. Dealing with Repeated Lines
	22.6.2. Ignoring Blanks
	22.6.3. Case-Insensitive Sorts
	22.6.4. Dictionary Order
	22.6.5. Month Order
	22.6.6. Reverse Sort

	22.7. lensort: Sort Lines by Length
	22.8. Sorting a List of People by Last Name

	V. Processes and the Kernel
	23. Job Control
	23.1. Job Control in a Nutshell
	23.2. Job Control Basics
	23.2.1. How Job Control Works
	23.2.2. Using Job Control from Your Shell

	23.3. Using jobs Effectively
	23.4. Some Gotchas with Job Control
	23.5. The "Current Job" Isn't Always What You Expect
	23.6. Job Control and autowrite: Real Timesavers!
	23.7. System Overloaded? Try Stopping Some Jobs
	23.8. Notification When Jobs Change State
	23.9. Stop Background Output with stty tostop
	23.10. nohup
	23.11. Disowning Processes
	23.12. Linux Virtual Consoles
	23.12.1. What Are They?
	23.12.2. Scrolling, Using a Mouse

	23.13. Stopping Remote Login Sessions

	24. Starting, Stopping, and Killing Processes
	24.1. What's in This Chapter
	24.2. fork and exec
	24.3. Managing Processes: Overall Concepts
	24.4. Subshells
	24.5. The ps Command
	24.6. The Controlling Terminal
	24.7. Tracking Down Processes
	24.7.1. System V
	24.7.2. BSD

	24.8. Why ps Prints Some Commands in Parentheses
	24.9. The /proc Filesystem
	24.9.1. Memory Information
	24.9.2. Kernel and System Statistics
	24.9.3. Statistics of the Current Process
	24.9.4. Statistics of Processes by PID
	24.9.5. A Glimpse at Hardware

	24.10. What Are Signals?
	24.11. Killing Foreground Jobs
	24.12. Destroying Processes with kill
	24.13. Printer Queue Watcher: A Restartable Daemon Shell Script
	24.14. Killing All Your Processes
	24.15. Killing Processes by Name?
	24.16. Kill Processes Interactively
	24.16.1. killall -i
	24.16.2. zap

	24.17. Processes Out of Control? Just STOP Them
	24.18. Cleaning Up an Unkillable Process
	24.19. Why You Can't Kill a Zombie
	24.20. The Process Chain to Your Window
	24.21. Terminal Windows Without Shells
	24.22. Close a Window by Killing Its Process�⠀攀猀)
	24.22.1. Example #1: An xterm Window
	24.22.2. Example #2: A Web Browser
	24.22.3. Closing a Window from a Shell Script

	25. Delayed Execution
	25.1. Building Software Robots the Easy Way
	25.2. Periodic Program Execution: The cron Facility
	25.2.1. Execution Scheduling
	25.2.2. A Little Help, etc.

	25.3. Adding crontab Entries
	25.4. Including Standard Input Within a cron Entry
	25.5. The at Command
	25.6. Making Your at Jobs Quiet
	25.7. Checking and Removing Jobs
	25.8. Avoiding Other at and cron Jobs
	25.9. Waiting a Little While: sleep

	26. System Performance and Profiling
	26.1. Timing Is Everything
	26.2. Timing Programs
	26.3. What Commands Are Running and How Long Do They Take?
	26.4. Checking System Load: uptime
	26.5. Know When to Be "nice" to Other Users...and When Not To
	26.5.1. BSD C Shell nice
	26.5.2. BSD Standalone nice
	26.5.3. System V C Shell nice
	26.5.4. System V Standalone nice

	26.6. A nice Gotcha
	26.7. Changing a Running Job's Niceness

	VI. Scripting
	27. Shell Interpretation
	27.1. What the Shell Does
	27.2. How the Shell Executes Other Commands
	27.3. What's a Shell, Anyway?
	27.3.1. How Shells Run Other Programs
	27.3.2. Interactive Use Versus Shell Scripts
	27.3.3. Types of Shells
	27.3.4. Shell Search Paths
	27.3.5. Bourne Shell Used Here
	27.3.6. Default Commands

	27.4. Command Evaluation and Accidentally Overwriting Files
	27.5. Output Command-Line Arguments One by One
	27.6. Controlling Shell Command Searches
	27.7. Wildcards Inside Aliases
	27.8. eval: When You Need Another Chance
	27.9. Which One Will bash Use?
	27.10. Which One Will the C Shell Use?
	27.11. Is It "2>&1 file" or "> file 2>&1"? Why?
	27.12. Bourne Shell Quoting
	27.12.1. Special Characters
	27.12.2. How Quoting Works
	27.12.3. Single Quotes Inside Single Quotes?
	27.12.4. Multiline Quoting

	27.13. Differences Between Bourne and C Shell Quoting
	27.13.1. Special Characters
	27.13.2. How Quoting Works

	27.14. Quoting Special Characters in Filenames
	27.15. Verbose and Echo Settings Show Quoting
	27.16. Here Documents
	27.17. "Special" Characters and Operators
	27.18. How Many Backslashes?

	28. Saving Time on the Command Line
	28.1. What's Special About the Unix Command Line
	28.2. Reprinting Your Command Line with CTRL-r
	28.3. Use Wildcards to Create Files?
	28.4. Build Strings with { }
	28.5. String Editing �⠀䌀漀氀漀渀) Operators
	28.6. Automatic Completion
	28.6.1. General Example: Filename Completion
	28.6.2. Menu Completion
	28.6.3. Command-Specific Completion
	28.6.4. Editor Functions for Completion

	28.7. Don't Match Useless Files in Filename Completion
	28.8. Repeating Commands
	28.9. Repeating and Varying Commands
	28.9.1. A foreach Loop
	28.9.2. A for Loop

	28.10. Repeating a Command with Copy-and-Paste
	28.11. Repeating a Time-Varying Command
	28.12. Multiline Commands, Secondary Prompts
	28.13. Here Document Example #1: Unformatted Form Letters
	28.14. Command Substitution
	28.15. Handling Lots of Text with Temporary Files
	28.16. Separating Commands with Semicolons
	28.17. Dealing with Too Many Arguments
	28.18. Expect
	28.18.1. Dialback
	28.18.2. Automating /bin/passwd
	28.18.3. Testing: A Story
	28.18.4. Other Problems

	29. Custom Commands
	29.1. Creating Custom Commands
	29.2. Introduction to Shell Aliases
	29.3. C-Shell Aliases with Command-Line Arguments
	29.4. Setting and Unsetting Bourne-Type Aliases
	29.5. Korn-Shell Aliases
	29.6. zsh Aliases
	29.7. Sourceable Scripts
	29.8. Avoiding C-Shell Alias Loops
	29.9. How to Put if-then-else in a C-Shell Alias
	29.10. Fix Quoting in csh Aliases with makealias and quote
	29.11. Shell Function Basics
	29.11.1. Simple Functions: ls with Options
	29.11.2. Functions with Loops: Internet Lookup
	29.11.3. Setting Current Shell Environment: The work Function
	29.11.4. Functions Calling Functions: Factorials
	29.11.5. Conclusion

	29.12. Shell Function Specifics
	29.13. Propagating Shell Functions
	29.13.1. Exporting bash Functions
	29.13.2. FPATH Search Path

	29.14. Simulated Bourne Shell Functions and Aliases

	30. The Use of History
	30.1. The Lessons of History
	30.2. History in a Nutshell
	30.3. My Favorite Is !$
	30.4. My Favorite Is !:n*
	30.5. My Favorite Is ^^
	30.6. Using !$ for Safety with Wildcards
	30.7. History by Number
	30.8. History Substitutions
	30.9. Repeating a Cycle of Commands
	30.10. Running a Series of Commands on a File
	30.11. Check Your History First with :p
	30.12. Picking Up Where You Left Off
	30.12.1. bash, ksh, zsh
	30.12.2. C Shells

	30.13. Pass History to Another Shell
	30.14. Shell Command-Line Editing
	30.14.1. vi Editing Mode
	30.14.2. Emacs Editing Mode
	30.14.3. tcsh Editing
	30.14.4. ksh Editing
	30.14.5. bash Editing
	30.14.6. zsh Editing

	30.15. Changing History Characters with histchars
	30.16. Instead of Changing History Characters

	31. Moving Around in a Hurry
	31.1. Getting Around the Filesystem
	31.2. Using Relative and Absolute Pathnames
	31.3. What Good Is a Current Directory?
	31.4. How Does Unix Find Your Current Directory?
	31.5. Saving Time When You Change Directories: cdpath
	31.6. Loop Control: break and continue
	31.7. The Shells' pushd and popd Commands
	31.8. Nice Aliases for pushd
	31.9. Quick cds with Aliases
	31.10. cd by Directory Initials
	31.11. Finding �⠀䄀渀礀漀渀攀✀猀) Home Directory, Quickly
	31.12. Marking Your Place with a Shell Variable
	31.13. Automatic Setup When You Enter/Exit a Directory

	32. Regular Expressions �⠀倀愀琀琀攀爀渀 䴀愀琀挀栀椀渀最)
	32.1. That's an Expression
	32.2. Don't Confuse Regular Expressions with Wildcards
	32.3. Understanding Expressions
	32.4. Using Metacharacters in Regular Expressions
	32.5. Regular Expressions: The Anchor Characters ^ and $
	32.6. Regular Expressions: Matching a Character with a Character Set
	32.7. Regular Expressions: Match Any Character with . �⠀䐀漀琀)
	32.8. Regular Expressions: Specifying a Range of Characters with [...]
	32.9. Regular Expressions: Exceptions in a Character Set
	32.10. Regular Expressions: Repeating Character Sets with *
	32.11. Regular Expressions: Matching a Specific Number of Sets with � { and � }
	32.12. Regular Expressions: Matching Words with � < and � >
	32.13. Regular Expressions: Remembering Patterns with � �⠀Ⰰ � ), and �1
	32.14. Regular Expressions: Potential Problems
	32.15. Extended Regular Expressions
	32.16. Getting Regular Expressions Right
	32.17. Just What Does a Regular Expression Match?
	32.18. Limiting the Extent of a Match
	32.19. I Never Meta Character I Didn't Like
	32.20. Valid Metacharacters for Different Unix Programs
	32.21. Pattern Matching Quick Reference with Examples
	32.21.1. Examples of Searching
	32.21.2. Examples of Searching and Replacing

	33. Wildcards
	33.1. File-Naming Wildcards
	33.2. Filename Wildcards in a Nutshell
	33.3. Who Handles Wildcards?
	33.4. What if a Wildcard Doesn't Match?
	33.5. Maybe You Shouldn't Use Wildcards in Pathnames
	33.6. Getting a List of Matching Files with grep -l
	33.7. Getting a List of Nonmatching Files
	33.7.1. Using grep -c
	33.7.2. The vgrep Script

	33.8. nom: List Files That Don't Match a Wildcard

	34. The sed Stream Editor
	34.1. sed Sermon^H^H^H^H^H^HSummary
	34.2. Two Things You Must Know About sed
	34.3. Invoking sed
	34.4. Testing and Using a sed Script: checksed, runsed
	34.4.1. checksed
	34.4.2. runsed

	34.5. sed Addressing Basics
	34.6. Order of Commands in a Script
	34.7. One Thing at a Time
	34.8. Delimiting a Regular Expression
	34.9. Newlines in a sed Replacement
	34.10. Referencing the Search String in a Replacement
	34.11. Referencing Portions of a Search String
	34.12. Search and Replacement: One Match Among Many
	34.13. Transformations on Text
	34.14. Hold Space: The Set-Aside Buffer
	34.15. Transforming Part of a Line
	34.16. Making Edits Across Line Boundaries
	34.17. The Deliberate Scrivener
	34.18. Searching for Patterns Split Across Lines
	34.19. Multiline Delete
	34.20. Making Edits Everywhere Except...
	34.21. The sed Test Command
	34.22. Uses of the sed Quit Command
	34.23. Dangers of the sed Quit Command
	34.24. sed Newlines, Quoting, and Backslashes in a Shell Script

	35. Shell Programming for the Uninitiated
	35.1. Writing a Simple Shell Program
	35.2. Everyone Should Learn Some Shell Programming
	35.3. What Environment Variables Are Good For
	35.4. Parent-Child Relationships
	35.5. Predefined Environment Variables
	35.6. The PATH Environment Variable
	35.7. PATH and path
	35.8. The DISPLAY Environment Variable
	35.9. Shell Variables
	35.10. Test String Values with Bourne-Shell case
	35.11. Pattern Matching in case Statements
	35.12. Exit Status of Unix Processes
	35.13. Test Exit Status with the if Statement
	35.14. Testing Your Success
	35.15. Loops That Test Exit Status
	35.15.1. Looping Until a Command Succeeds
	35.15.2. Looping Until a Command Fails

	35.16. Set Exit Status of a Shell �⠀匀挀爀椀瀀琀)
	35.17. Trapping Exits Caused by Interrupts
	35.18. read: Reading from the Keyboard
	35.19. Shell Script "Wrappers" for awk, sed, etc.
	35.20. Handling Command-Line Arguments in Shell Scripts
	35.20.1. With the "$@" Parameter
	35.20.2. With a Loop
	35.20.3. Counting Arguments with $#

	35.21. Handling Command-Line Arguments with a for Loop
	35.22. Handling Arguments with while and shift
	35.23. Loop Control: break and continue
	35.24. Standard Command-Line Parsing
	35.25. The Bourne Shell set Command
	35.25.1. Setting Options
	35.25.2. Setting �⠀愀渀搀 倀愀爀猀椀渀最) Parameters
	35.25.3. �⠀䄀瘀漀椀搀椀渀最㼀) set with No Arguments
	35.25.4. Watch Your Quoting
	35.25.5. Can't Set $0

	35.26. test: Testing Files and Strings
	35.27. Picking a Name for a New Command
	35.28. Finding a Program Name and Giving Your Program Multiple Names
	35.29. Reading Files with the . and source Commands
	35.30. Using Shell Functions in Shell Scripts

	36. Shell Programming for the Initiated
	36.1. Beyond the Basics
	36.2. The Story of : # #!
	36.3. Don't Need a Shell for Your Script? Don't Use One
	36.4. Making #! Search the PATH
	36.5. The exec Command
	36.6. The Unappreciated Bourne Shell ":" Operator
	36.7. Parameter Substitution
	36.8. Save Disk Space and Programming: Multiple Names for a Program
	36.9. Finding the Last Command-Line Argument
	36.10. How to Unset All Command-Line Parameters
	36.11. Standard Input to a for Loop
	36.12. Making a for Loop with Multiple Variables
	36.13. Using basename and dirname
	36.13.1. Introduction to basename and dirname
	36.13.2. Use with Loops

	36.14. A while Loop with Several Loop Control Commands
	36.15. Overview: Open Files and File Descriptors
	36.16. n>&m: Swap Standard Output and Standard Error
	36.17. A Shell Can Read a Script from Its Standard Input, but...
	36.18. Shell Scripts On-the-Fly from Standard Input
	36.19. Quoted hereis Document Terminators: sh Versus csh
	36.20. Turn Off echo for "Secret" Answers
	36.21. Quick Reference: expr
	36.21.1. Syntax
	36.21.2. Examples

	36.22. Testing Characters in a String with expr
	36.23. Grabbing Parts of a String
	36.23.1. Matching with expr
	36.23.2. Using echo with awk or cut
	36.23.3. Using set and IFS
	36.23.4. Using sed

	36.24. Nested Command Substitution
	36.25. Testing Two Strings with One case Statement
	36.26. Outputting Text to an X Window
	36.27. Shell Lockfile

	37. Shell Script Debugging and Gotchas
	37.1. Tips for Debugging Shell Scripts
	37.1.1. Use -xv
	37.1.2. Unmatched Operators
	37.1.3. Exit Early
	37.1.4. Missing or Extra esac, ;;, fi, etc.
	37.1.5. Line Numbers Reset Inside Redirected Loops

	37.2. Bourne Shell Debugger Shows a Shell Variable
	37.3. Stop Syntax Errors in Numeric Tests
	37.4. Stop Syntax Errors in String Tests
	37.5. Quoting and Command-Line Parameters
	37.6. How Unix Keeps Time
	37.7. Copy What You Do with script
	37.8. Cleaning script Files
	37.9. Making an Arbitrary-Size File for Testing

	VII. Extending and Managing Your Environment
	38. Backing Up Files
	38.1. What Is This "Backup" Thing?
	38.2. tar in a Nutshell
	38.3. Make Your Own Backups
	38.4. More Ways to Back Up
	38.5. How to Make Backups to a Local Device
	38.5.1. What to Back Up
	38.5.2. Backing Up to Tape
	38.5.3. Backing Up to Floppies or Zip Disks
	38.5.4. To gzip, or Not to gzip?

	38.6. Restoring Files from Tape with tar
	38.6.1. Restoring a Few Files
	38.6.2. Remote Restoring

	38.7. Using tar to a Remote Tape Drive
	38.8. Using GNU tar with a Remote Tape Drive
	38.9. On-Demand Incremental Backups of a Project
	38.10. Using Wildcards with tar
	38.10.1. Without GNU tar
	38.10.2. With GNU tar
	38.10.3. Wildcard Gotchas in GNU tar

	38.11. Avoid Absolute Paths with tar
	38.12. Getting tar's Arguments in the Right Order
	38.13. The cpio Tape Archiver
	38.14. Industrial Strength Backups

	39. Creating and Reading Archives
	39.1. Packing Up and Moving
	39.2. Using tar to Create and Unpack Archives
	39.3. GNU tar Sampler
	39.4. Managing and Sharing Files with RCS and CVS
	39.5. RCS Basics
	39.6. List RCS Revision Numbers with rcsrevs
	39.7. CVS Basics
	39.8. More CVS

	40. Software Installation
	40.1. /usr/bin and Other Software Directories
	40.2. The Challenges of Software Installation on Unix
	40.3. Which make?
	40.4. Simplifying the make Process
	40.5. Using Debian's dselect
	40.5.1. Choosing the Access Method
	40.5.2. Updating Information on Available Packages
	40.5.3. Choosing Packages for Installation or Removal
	40.5.4. Exiting the Select Function
	40.5.5. Installing Packages
	40.5.6. Configuring Packages
	40.5.7. Removing Packages
	40.5.8. Exiting dselect

	40.6. Installing Software with Debian's Apt-Get
	40.6.1. Configuring the sources.list File
	40.6.2. Using apt-get

	40.7. Interruptable gets with wget
	40.8. The curl Application and One-Step GNU-Darwin Auto-Installer for OS X
	40.9. Installation with FreeBSD Ports
	40.10. Installing with FreeBSD Packages
	40.11. Finding and Installing RPM Packaged Software

	41. Perl
	41.1. High-Octane Shell Scripting
	41.2. Checking your Perl Installation
	41.3. Compiling Perl from Scratch
	41.4. Perl Boot Camp, Part 1: Typical Script Anatomy
	41.5. Perl Boot Camp, Part 2: Variables and Data Types
	41.5.1. Scalars
	41.5.2. Arrays
	41.5.3. Hashes
	41.5.4. References

	41.6. Perl Boot Camp, Part 3: Branching and Looping
	41.7. Perl Boot Camp, Part 4: Pattern Matching
	41.8. Perl Boot Camp, Part 5: Perl Knows Unix
	41.9. Perl Boot Camp, Part 6: Modules
	41.10. Perl Boot Camp, Part 7: perldoc
	41.11. CPAN
	41.11.1. Installing Modules the Easy Way
	41.11.2. Installing Modules the Hard Way
	41.11.3. Browsing the CPAN Web Site

	41.12. Make Custom grep Commands �⠀攀琀挀⸀) with Perl
	41.13. Perl and the Internet
	41.13.1. Be Your Own Web Browser with LWP
	41.13.2. Sending Mail with Mail::Sendmail
	41.13.3. CGI Teaser

	42. Python
	42.1. What Is Python?
	42.2. Installation and Distutils
	42.3. Python Basics
	42.3.1. Indentation
	42.3.2. Functions
	42.3.3. Everything's an Object
	42.3.4. Modules and Packages
	42.3.5. I/O and Formatting
	42.3.6. wxPython

	42.4. Python and the Web
	42.5. urllib
	42.6. urllib2
	42.7. htmllib and HTMLParser
	42.8. cgi
	42.9. mod_python
	42.10. What About Perl?

	VIII. Communication and Connectivity
	43. Redirecting Input and Output
	43.1. Using Standard Input and Output
	43.2. One Argument with a cat Isn't Enough
	43.3. Send �⠀伀渀氀礀) Standard Error Down a Pipe
	43.4. Problems Piping to a Pager
	43.5. Redirection in C Shell: Capture Errors, Too?
	43.6. Safe I/O Redirection with noclobber
	43.7. The �⠀ ) Subshell Operators
	43.7.1. Combining Several Commands
	43.7.2. Temporary Change of Directory and Environment

	43.8. Send Output Two or More Places
	43.9. How to tee Several Commands into One Place
	43.10. Redirecting Output to More Than One Place
	43.11. Named Pipes: FIFOs
	43.12. What Can You Do with an Empty File?

	44. Devices
	44.1. Quick Introduction to Hardware
	44.2. Reading Kernel Boot Output
	44.3. Basic Kernel Configuration
	44.4. Disk Partitioning
	44.5. Filesystem Types and /etc/fstab
	44.6. Mounting and Unmounting Removable Filesystems
	44.7. Loopback Mounts
	44.8. Network Devices — ifconfig
	44.9. Mounting Network Filesystems — NFS, SMBFS
	44.10. Win Is a Modem Not a Modem?
	44.11. Setting Up a Dialup PPP Session
	44.12. USB Configuration
	44.13. Dealing with Sound Cards and Other Annoying Hardware
	44.14. Decapitating Your Machine — Serial Consoles

	45. Printing
	45.1. Introduction to Printing
	45.2. Introduction to Printing on Unix
	45.2.1. lpr-Style Printing Commands
	45.2.2. lp-Style Printing Commands

	45.3. Printer Control with lpc
	45.4. Using Different Printers
	45.5. Using Symbolic Links for Spooling
	45.6. Formatting Plain Text: pr
	45.7. Formatting Plain Text: enscript
	45.8. Printing Over a Network
	45.9. Printing Over Samba
	45.9.1. Printing to Unix Printers from Windows
	45.9.2. Printing to Windows Printers from Unix

	45.10. Introduction to Typesetting
	45.11. A Bit of Unix Typesetting History
	45.12. Typesetting Manpages: nroff
	45.13. Formatting Markup Languages — troff, LATEX, HTML, and So On
	45.14. Printing Languages — PostScript, PCL, DVI, PDF
	45.15. Converting Text Files into a Printing Language
	45.16. Converting Typeset Files into a Printing Language
	45.17. Converting Source Files Automagically Within the Spooler
	45.18. The Common Unix Printing System �⠀䌀唀倀匀)
	45.19. The Portable Bitmap Package

	46. Connectivity
	46.1. TCP/IP — IP Addresses and Ports
	46.1.1. Internet Protocol �⠀䤀倀)
	46.1.2. Layer 4 Protocols: TCP, UDP, and ICMP

	46.2. /etc/services Is Your Friend
	46.3. Status and Troubleshooting
	46.4. Where, Oh Where Did That Packet Go?
	46.5. The Director of Operations: inetd
	46.6. Secure Shell �⠀匀匀䠀)
	46.7. Configuring an Anonymous FTP Server
	46.8. Mail — SMTP, POP, and IMAP
	46.9. Domain Name Service �⠀䐀一匀)
	46.10. Dynamic Host Configuration Protocol �⠀䐀䠀䌀倀)
	46.11. Gateways and NAT
	46.12. Firewalls
	46.13. Gatewaying from a Personal LAN over a Modem

	47. Connecting to MS Windows
	47.1. Building Bridges
	47.2. Installing and Configuring Samba
	47.3. Securing Samba
	47.4. SWAT and GUI SMB Browsers
	47.5. Printing with Samba
	47.6. Connecting to SMB Shares from Unix
	47.7. Sharing Desktops with VNC
	47.7.1. Connecting to a Windows VNC server
	47.7.2. Setting up VNC on Unix

	47.8. Of Emulators and APIs
	47.8.1. VMWare
	47.8.2. Wine

	47.9. Citrix: Making Windows Multiuser
	47.9.1. Citrix Metaframe
	47.9.2. rdesktop
	47.9.3. Hob

	IX. Security
	48. Security Basics
	48.1. Understanding Points of Vulnerability
	48.2. CERT Security Checklists
	48.3. Keeping Up with Security Alerts
	48.4. What We Mean by Buffer Overflow
	48.5. What We Mean by DoS
	48.6. Beware of Sluggish Performance
	48.6.1. Check Processes
	48.6.2. Checking Swap Space
	48.6.3. Check Network Connections
	48.6.4. Other Checks

	48.7. Intruder Detection
	48.8. Importance of MOTD
	48.9. The Linux proc Filesystem
	48.10. Disabling inetd
	48.11. Disallow rlogin and rsh
	48.12. TCP Wrappers

	49. Root, Group, and User Management
	49.1. Unix User/Group Infrastructure
	49.2. When Does a User Become a User
	49.3. Forgetting the root Password
	49.4. Setting an Exact umask
	49.5. Group Permissions in a Directory with the setgid Bit
	49.6. Groups and Group Ownership
	49.7. Add Users to a Group to Deny Permissions
	49.8. Care and Feeding of SUID and SGID Scripts
	49.9. Substitute Identity with su
	49.10. Never Log In as root
	49.11. Providing Superpowers with sudo
	49.12. Enabling Root in Darwin
	49.13. Disable logins

	50. File Security, Ownership, and Sharing
	50.1. Introduction to File Ownership and Security
	50.2. Tutorial on File and Directory Permissions
	50.2.1. User, Group, and World
	50.2.2. Which Group is Which?

	50.3. Who Will Own a New File?
	50.4. Protecting Files with the Sticky Bit
	50.5. Using chmod to Change File Permission
	50.6. The Handy chmod = Operator
	50.7. Protect Important Files: Make Them Unwritable
	50.8. cx, cw, c-w: Quick File Permission Changes
	50.9. A Loophole: Modifying Files Without Write Access
	50.10. A Directory That People Can Access but Can't List
	50.11. Juggling Permissions
	50.12. File Verification with md5sum
	50.13. Shell Scripts Must Be Readable and �⠀唀猀甀愀氀氀礀) Executable
	50.14. Why Can't You Change File Ownership?
	50.15. How to Change File Ownership Without chown

	51. SSH
	51.1. Enabling Remote Access on Mac OS X
	51.2. Protecting Access Through SSH
	51.3. Free SSH with OpenSSH
	51.4. SSH Problems and Solutions
	51.5. General and Authentication Problems
	51.6. Key and Agent Problems
	51.7. Server and Client Problems

	Glossary
	Index

