Shelley Powers, Jerry Peek, Tim 0°Reilly & Mike Loukides
O'REILLY"

UNIX Power Tools, 3rd Edition

Table of Contents
A Note Regarding Supplemental Files
How to Use This Book
Preface
A Book for Browsing
Like an Almanac

Like a News Magazine
Like a Hypertext Database

Programs on the Web
About Unix Versions

Cross-References
What's New in the Third Edition
Typefaces and Other Conventions
The Authors
The Fine Print
Request for Comments
Acknowledgments for the First Edition
Acknowledgments for the Second Edition
Acknowledgments for the Third Edition
1. Basic Unix Environment
1. Introduction
1.1. What's Special About Unix?
1.2. Power Grows on You
1.3. The Core of Unix
1.4. Communication with Unix

1.5. Programs Are Designed to Work Together
1.6. There Are Many Shells

1.7. Which Shell Am I Running?
1.8. Anyone Can Program the Shell

1.9. Internal and External Commands
1.10. The Kernel and Daemons

1.11. Filenames

1.12. Filename Extensions

1.13. Wildcards

1.14. The Tree Structure of the Filesystem
1.15. Your Home Directory

1.16. Making Pathnames

1.17. File Access Permissions

1.18. The Superuser (Root)

1.19. When Is a File Not a File?

1.20. Scriptin
1.21. Unix Networking and Communications

1.22. The X Window System
2. Getting Help
2.1. The man Command
2.2. whatis: One-Line Command Summaries
2.3. whereis: Finding Where a Command Is Located

2.4. Searching Online Manual Pages

2.5. How Unix Systems Remember Their Names
2.6. Which Version Am I Using?

2.7. What tty Am [On?
2.8. Who's On?
2.9. The info Command
1. Customizing Your Environment
3. Setting Up Your Unix Shell
3.1. What Happens When You Log In
3.2. The Mac OS X Terminal Application
3.3. Shell Setup Files — Which, Where, and Why
3.4. Login Shells, Interactive Shells
3.4.1. Login Shells
3.4.2. Interactive Shells
3.5. What Goes in Shell Setup Files?
3.6. Tip for Changing Account Setup: Keep a Shell Ready
3.7. Use Absolute Pathnames in Shell Setup Files
3.8. Setup Files Aren't Read When You Want?
3.9. Gotchas in set prompt Test

3.10. Automatic Setups for Different Terminals

3.11. Terminal Setup: Testing TERM

3.12. Terminal Setup: Testing Remote Hostname and X Display
3.13. Terminal Setup: Testing Port

3.14. Terminal Setup: Testing Environment Variables

3.15. Terminal Setup: Searching Terminal Table

3.16. Terminal Setup: Testing Window Size
3.17. Terminal Setup: Setting and Testing Window Name

3.18. A .cshrc.$HOST File for Per Host Setup

3.19. Making a "Login" Shell

3.20. RC Files

3.21. Make Your Own Manpages Without [earning troff

3.22. Writing a Simple Manpage with the -man Macros
4. Interacting with Your Environment

4.1. Basics of Setting the Prompt

4.2. Static Prompts

4.3. Dynamic Prompts

4.4. Simulating Dynamic Prompts
4.5. C-Shell Prompt Causes Problems in vi, rsh, etc.

4.6. Faster Prompt Setting with Built-ins
4.7. Multiline Shell Prompts

4.8. Session Info in Window Title or Status Line

4.9. A "Menu Prompt" for Naive Users

4.10. Highlighting and Color in Shell Prompts

4.11. Right-Side Prompts

4.12. Show Subshell Level with $SSHLVL

4.13. What Good Is a Blank Shell Prompt?

4.14. dirs in Your Prompt: Better Than $cwd

4.15. External Commands Send Signals to Set Variables
4.16. Preprompt, Pre-execution, and Periodic Commands

4.17. Running Commands When You Log Out
4.18. Running Commands at Bourne/Korn Shell Logout
4.19. Stop Accidental Bourne-Shell Logouts

5. Getting the Most out of Terminals, xterm, and X Windows
5.1. There's a Lot to Know About Terminals
5.2. The Idea of a Terminal Database
5.3. Setting the Terminal Type When You Log In

5.4. Querying Your Terminal Type: gterm
5.5. Querying Your xterm Size: resize

5.6. Checklist: Terminal Hangs When I Log In
5.6.1. Output Stopped?
5.6.2. Job Stopped?
5.6.3. Program Waiting for Input?
5.6.4. Stalled Data Connection?
5.6.5. Aborting Programs
5.7. Find Out Terminal Settings with stty
5.8. Setting Your Erase, Kill, and Interrupt Characters
5.9. Working with xterm and Friends
5.10. Login xterms and rxvts
5.11. Working with Scrollbars

5.12. How Many Lines to Save?
5.13. Simple Copy and Paste in xterm

5.14. Defining What Makes Up a Word for Selection Purposes
5.15. Setting the Titlebar and Icon Text

5.16. The Simple Way to Pick a Font
5.17. The xterm Menus

5.18. Changing Fonts Dynamically
5.18.1. VT Fonts Menu
5.18.2. Enabling Escape Sequence and Selection
5.19. Working with xclipboard
5.20. Problems with [arge Selections
5.21. Tips for Copy and Paste Between Windows
5.22. Running a Single Command with xterm -e
5.23. Don't Quote Arguments to xterm -e
6. Your X Environment

6.1. Defining Keys and Button Presses with xmodmap

6.2. Using xev to Learn Keysym Mappings
6.3. X Resource Syntax

6.4. X Event Translations
6.5. Setting X Resources: Overview
6.6. Setting Resources with the -xrm Option
6.7. How -name Affects Resources
6.8. Setting Resources with xrdb
6.9. Listing the Current Resources for a Client: appres
6.10. Starting Remote X Clients
6.10.1. Starting Remote X Clients from Interactive Logins
6.10.2. Starting a Remote Client with rsh and ssh
II. Working with Files and Directories
7. Directory Organization
7.1. What? Me, Organized?
7.2. Many Homes
7.3. Access to Directories
7.4. A bin Directory for Your Programs and Scripts
7.5. Private (Personal) Directories
7.6. Naming Files
7.7. Make More Directories!
7.8. Making Directories Made Easier
8. Directories and Files
8.1. Everything but the find Command
8.2. The Three Unix File Times
8.3. Finding Oldest or Newest Files with Is -t and Is -u
8.4. List All Subdirectories with Is -R
8.5. The 1Is -d Option
8.6. Color Is

8.6.1. Trying It

8.6.2. Configuring It
8.6.3. The -- color Option

8.6.4. Another color Is
8.7. Some GNU Is Features
8.8. A csh Alias to List Recently Changed Files
8.9. Showing Hidden Files with Is -A and -a
8.10. Useful Is Aliases
8.11. Can't Access a File? Look for Spaces in the Name

8.12. Showing Nonprintable Characters in Filenames

8.13. Counting Files by Types
8.14. Listing Files by Age and Size

8.15. newer: Print the Name of the Newest File

8.16. oldlinks: Find Unconnected Symbolic Links

8.17. Picking a Unique Filename Automatically
9. Finding Files with find

9.1. How to Use find

9.2. Delving Through a Deep Directory Tree

9.3. Don't Forget -print

9.4. Looking for Files with Particular Names

9.5. Searching for Old Files

9.6. Be an Expert on find Search Operators

9.7. The Times That find Finds

9.8. Exact File-Time Comparisons

9.9. Running Commands on What You Find

9.10. Using -exec to Create Custom Tests

9.11. Custom -exec Tests Applied

9.12. Finding Many Things with One Command

9.13. Searching for Files by Type

9.14. Searching for Files by Size

9.15. Searching for Files by Permission

9.16. Searching by Owner and Group

9.17. Duplicating a Directory Tree

9.18. Using "Fast find" Databases

9.19. Wildcards with "Fast find" Database

9.20. Finding Files (Much) Faster with a find Database

9.21. grepping a Directory Tree

9.22. lookfor: Which File Has That Word?

9.23. Using Shell Arrays to Browse Directories
9.23.1. Using the Stored Lists

9.23.2. Expanding Ranges

9.24. Finding the (Hard) Links to a File
9.25. Finding Files with -prune

9.26. Quick finds in the Current Directory

9.27. Skipping Parts of a Tree in find

9.28. Keeping find from Searching Networked Filesystem
10. Linking, Renaming, and Copying Files

10.1. What's So Complicated About Copying Files

10.2. What's Really in a Directory?

10.3. Files with Two or More Names

10.4. More About Links

10.4.1. Differences Between Hard and Symbolic Links

10.4.2. Links to a Directory
10.5. Creating and Removing Links

10.6. Stale Symbolic Links
10.7. Linking Directories
10.8. Showing the Actual Filenames for Symbolic Links

10.9. Renaming, Copying, or Comparing a Set of Files
10.10. Renaming a List of Files Interactively

10.11. One More Way to Do It
10.12. Copying Directory Trees with cp -r
10.13. Copying Directory Trees with tar and Pipes

11. Comparing Files
11.1. Checking Differences with diff
11.2. Comparing Three Different Versions with diff3
11.3. Context diffs
11.4. Side-by-Side diffs: sdiff
11.5. Choosing Sides with sdiff
11.6. Problems with diff and Tabstops
11.7. cmp and diff
11.8. Comparing Two Files with comm
11.9. More Friendly comm Output
11.10. make Isn't Just for Programmers!
11.11. Even More Uses for make

12. Showing What's in a File
12.1. Cracking the Nut
12.2. What Good Is a cat?
12.3. "less" is More
12.4. Show Nonprinting Characters with cat -v or od -c
12.5. What's in That Whitespace?
12.6. Finding File Types
12.7. Squash Extra Blank Lines
12.8. How to L.ook at the End of a File: tail
12.9. Finer Control on tail
12.10. How to Look at Files as They Grow
12.11. GNU tail File Following
12.12. Printing the Top of a File

12.13. Numbering Lines
13. Searching Through Files
13.1. Different Versions of grep

13.2. Searching for Text with grep
13.3. Finding Text That Doesn't Match

13.4. Extended Searching for Text with egrep
13.5. grepping for a List of Patterns

13.6. Approximate grep: agrep
13.7. Search RCS Files with rcsgrep
13.7.1. rcsgrep, resegrep, resfgrep

13.7.2. rcsegrep.fast
13.8. GNU Context greps

13.9. A Multiline Context grep Using sed

13.10. Compound Searches

13.11. Narrowing a Search Quickly

13.12. Faking Case-Insensitive Searches

13.13. Finding a Character in a Column

13.14. Fast Searches and Spelling Checks with "look"
13.15. Finding Words Inside Binary Files

13.16. A Highlighting grep

14. Removing Files
14.1. The Cycle of Creation and Destruction
14.2. How Unix Keeps Track of Files: Inodes
14.3. rm and Its Dangers
14.4. Tricks for Making rm Safer
14.5. Answer "Yes" or "No" Forever with yes
14.6. Remove Some, Leave Some
14.7. A Faster Way to Remove Files Interactively
14.8. Safer File Deletion in Some Directories
14.9. Safe Delete: Pros and Cons
14.10. Deletion with Prejudice: rm -f
14.11. Deleting Files with Odd Names
14.12. Using Wildcards to Delete Files with Strange Names

14.13. Handling a Filename Starting with a Dash (-)

14.14. Using unlink to Remove a File with a Strange Name
14.15. Removing a Strange File by its i-number

14.16. Problems Deleting Directories
14.17. Deleting Stale Files
14.18. Removing Every File but One
14.19. Using find to Clear Out Unneeded Files
15. Optimizing Disk Space
15.1. Disk Space Is Cheap
15.2. Instead of Removing a File, Empty It
15.3. Save Space with "Bit Bucket" Log Files and Mailboxes

15.4. Save Space with a Link

15.5. Limiting File Sizes
15.5.1. limit and ulimit

15.5.2. Other Ideas
15.6. Compressing Files to Save Space

15.7. Save Space: tar and compress a Directory Tree
15.8. How Much Disk Space?

15.9. Compressing a Directory Tree: Fine-Tuning
15.10. Save Space in Executable Files with strip
15.11. Disk Quotas

IV. Basic Editing

16. Spell Checking, Word Counting, and Textual Analysis

16.1. The Unix spell Command
16.2. Check Spelling Interactively with ispell
16.3. How Do I Spell That Word?
16.4. Inside spell
16.5. Adding Words to ispell's Dictionary
16.6. Counting Lines, Words, and Characters: wc
16.7. Find a a Doubled Word
16.8. Looking for Closure
16.9. Just the Words, Please

17. vi Tips and Tricks
17.1. The vi Editor: Why So Much Material?
17.2. What We Cover
17.3. Editing Multiple Files with vi
17.4. Edits Between Files
17.5. Local Settings for vi
17.6. Using Buffers to Move or Copy Text
17.7. Get Back What You Deleted with Numbered Buffers
17.8. Using Search Patterns and Global Commands
17.8.1. Global Searches
17.9. Confirming Substitutions in vi
17.10. Keep Your Original File, Write to a New File
17.11. Saving Part of a File
17.12. Appending to an Existing File
17.13. Moving Blocks of Text by Patterns
17.14. Useful Global Commands (with Pattern Matches)

17.15. Counting Occurrences; Stopping Search Wraps

17.16. Capitalizing Every Word on a Line
17.17. Per-File Setups in Separate Files

17.18. Filtering Text Through a Unix Command

17.19. vi File Recovery Versus Networked Filesystems

17.20. Be Careful with vi -r Recovered Buffers

17.21. Shell Escapes: Running One UnixCommand While Using Another
17.22. vi Compound Searches

17.23. vi Word Abbreviation

17.24. Using vi Abbreviations as Commands (Cut and Paste Between vi's)
17.25. Fixing Typos with vi Abbreviations

17.26. vi Line Commands Versus Character Commands

17.27. Out of Temporary Space? Use Another Directory

17.28. Neatening Lines

17.29. Finding Your Place with Undo

17.30. Setting Up vi with the .exrc File

18. Creating Custom Commands in vi

18.1. Why Type More Than You Have To?

18.2. Save Time and Typing with the vi map Commands
18.2.1. Command Mode Maps
18.2.2. Text-Input Mode Maps

18.3. What You Lose When You Use map!

18.4. vi (@-Functions
18.4.1. Defining and Using Simple (@-Functions
18.4.2. Combining (@-Functions
18.4.3. Reusing a Definition
18.4.4. Newlines in an (@-Function

18.5. Keymaps for Pasting into a Window Running vi

18.6. Protecting Keys from Interpretation by ex

18.7. Maps for Repeated Edits

18.8. More Examples of Mapping Keys in vi

18.9. Repeating a vi Keymap

18.10. Typing in Uppercase Without CAPS LOCK

18.11. Text-Input Mode Cursor Motion with No Arrow Keys

18.12. Don't Lose Important Functions with vi Maps: Use noremap
18.13. vi Macro for Splitting Long Lines

18.14. File-Backup Macros
19. GNU Emacs
19.1. Emacs: The Other Editor
19.2. Emacs Features: A Laundry List
19.3. Customizations and How to Avoid Them
19.4. Backup and Auto-Save Files
19.5. Putting Emacs in Overwrite Mode
19.6. Command Completion
19.7. Mike's Favorite Timesavers
19.8. Rational Searches
19.9. Unset PWD Before Using Emacs
19.10. Inserting Binary Characters into Files
19.11. Using Word-Abbreviation Mode
19.11.1. Trying Word Abbreviations for One Session
19.11.2. Making Word Abbreviations Part of Your Startup
19.12. Directories for Emacs Hacks
19.13. An Absurd Amusement
20. Batch Editing

20.1. Why Line Editors Aren't Dinosaurs
20.2. Writing Editing Scripts

20.3. Line Addressing

20.4. Useful ex Commands

20.5. Running Editing Scripts Within vi

20.6. Change Many Files by Editing Just One

20.7. ed/ex Batch Edits: A Typical Example
20.8. Batch Editing Gotcha: Editors Fail on Big Files

20.9. patch: Generalized Updating of Files That Differ
20.10. Quick Reference: awk

20.10.1. Command-Line Syntax

20.10.2. Patterns and Procedures

20.10.3. awk System Variables

20.10.4. Operators

20.10.5. Variables and Array Assignments
20.10.6. Group Listing of awk Commands

20.10.7. Alphabetical Summary of Commands
20.11. Versions of awk
21. You Can't Quite Call This Editing
21.1. And Why Not?

21.2. Neatening Text with fimt
21.3. Alternatives to fimt

21.4. Clean Up Program Comment Blocks
21.4.1. The recomment Script
21.4.2. fmt -p
21.5. Remove Mail/News Headers with behead
21.6. Low-lLevel File Butchery with dd
21.7. offset: Indent Text
21.8. Centering Lines in a File
21.9. Splitting Files at Fixed Points: split
21.10. Splitting Files by Context: csplit
21.11. Hacking on Characters with tr
21.12. Encoding "Binary" Files into ASCII
21.12.1. uuencoding
21.12.2. MIME Encoding
21.13. Text Conversion with dd
21.14. Cutting Columns or Fields

21.15. Making Text in Columns with pr

21.15.1. One File per Column: -m
21.15.2. One File, Several Columns: -number

21.15.3. Order Lines Across Columns: -1
21.16. Make Columns Automatically with column
21.17. Straightening Jagged Columns
21.18. Pasting Things in Columns

21.19. Joining Lines with join
21.20. What Is (or Isn't) Unique?

21.21. Rotating Text

22. Sorting
22.1. Putting Things in Order
22.2. Sort Fields: How sort Sorts
22.3. Changing the sort Field Delimiter

22.4. Confusion with Whitespace Field Delimiters
22.5. Alphabetic and Numeric Sorting

22.6. Miscellaneous sort Hints
22.6.1. Dealing with Repeated Lines
22.6.2. Ignoring Blanks
22.6.3. Case-Insensitive Sorts
22.6.4. Dictionary Order
22.6.5. Month Order
22.6.6. Reverse Sort

22.7. lensort: Sort Lines by Length

22.8. Sorting a List of People by Last Name

V. Processes and the Kernel
23. Job Control
23.1. Job Control in a Nutshell

23.2. Job Control Basics

23.2.1. How Job Control Works

23.2.2. Using Job Control from Your Shell
23.3. Using jobs Effectively
23.4. Some Gotchas with Job Control
23.5. The "Current Job" Isn't Always What You Expect
23.6. Job Control and autowrite: Real Timesavers!
23.7. System Overloaded? Try Stopping Some Jobs
23.8. Notification When Jobs Change State
23.9. Stop Background Output with stty tostop
23.10. nohup
23.11. Disowning Processes
23.12. Linux Virtual Consoles

23.12.1. What Are They?

23.12.2. Scrolling, Using a Mouse

23.13. Stopping Remote Login Sessions

24. Starting, Stopping, and Killing Processes
24.1. What's in This Chapter

24.2. fork and exec
24.3. Managing Processes: Overall Concepts
24.4. Subshells
24.5. The ps Command
24.6. The Controlling Terminal
24.7. Tracking Down Processes
24.7.1. System V
24.7.2. BSD
24.8. Why ps Prints Some Commands in Parentheses
24.9. The /proc Filesystem
24.9.1. Memory Information
24.9.2. Kernel and System Statistics
24.9.3. Statistics of the Current Process
24.9.4. Statistics of Processes by PID
24.9.5. A Glimpse at Hardware
24.10. What Are Signals?
24.11. Killing Foreground Jobs
24.12. Destroying Processes with kill
24.13. Printer Queue Watcher: A Restartable Daemon Shell Script
24.14. Killing All Your Processes
24.15. Killing Processes by Name?
24.16. Kill Processes Interactively
24.16.1. killall -1
24.16.2. zap
24.17. Processes Out of Control? Just STOP Them
24.18. Cleaning Up an Unkillable Process
24.19. Why You Can't Kill a Zombie

24.20. The Process Chain to Your Window
24.21. Terminal Windows Without Shells
24.22. Close a Window by Killing Its Process(es)

24.22.1. Example #1: An xterm Window

24.22.2. Example #2: A Web Browser
24.22.3. Closing a Window from a Shell Script

235. Delayed Execution
25.1. Building Software Robots the Easy Way
25.2. Periodic Program Execution: The cron Facility
25.2.1. Execution Scheduling
25.2.2. A Little Help, etc.
25.3. Adding crontab Entries
25.4. Including Standard Input Within a cron Entry
235.5. The at Command
25.6. Making Your at Jobs Quiet
235.7. Checking and Removing Jobs
25.8. Avoiding Other at and cron Jobs
25.9. Waiting a Little While: sleep
26. System Performance and Profiling
26.1. Timing Is Everything
26.2. Timing Programs
26.3. What Commands Are Running and How Long Do They Take?

26.4. Checking System Load: uptime
26.5. Know When to Be "nice" to Other Users...and When Not To

26.5.1. BSD C Shell nice

26.5.2. BSD Standalone nice

26.5.3. System V C Shell nice

26.5.4. System V Standalone nice
26.6. A nice Gotcha

26.7. Changing a Running Job's Niceness

VL Scripting
27. Shell Interpretation

27.1. What the Shell Does
27.2. How the Shell Executes Other Commands
27.3. What's a Shell, Anyway?
27.3.1. How Shells Run Other Programs
27.3.2. Interactive Use Versus Shell Scripts
27.3.3. Types of Shells
27.3.4. Shell Search Paths
27.3.5. Bourne Shell Used Here
27.3.6. Default Commands
27.4. Command Evaluation and Accidentally Overwriting Files
27.5. Output Command-Line Arguments One by One
27.6. Controlling Shell Command Searches
27.7. Wildcards Inside Aliases

27.8. eval: When You Need Another Chance
27.9. Which One Will bash Use?
27.10. Which One Will the C Shell Use?
27.11. Is It "2>&1 file" or "> file 2>&1"? Why?
27.12. Bourne Shell Quoting
27.12.1. Special Characters
27.12.2. How Quoting Works
27.12.3. Single Quotes Inside Single Quotes?
27.12.4. Multiline Quoting
27.13. Differences Between Bourne and C Shell Quoting
27.13.1. Special Characters
27.13.2. How Quoting Works
27.14. Quoting Special Characters in Filenames
27.15. Verbose and Echo Settings Show Quoting
27.16. Here Documents
27.17. "Special" Characters and Operators

27.18. How Many Backslashes?

28. Saving Time on the Command Line
28.1. What's Special About the Unix Command Line
28.2. Reprinting Your Command Line with CTRL-r
28.3. Use Wildcards to Create Files?
28.4. Build Strings with { }
28.5. String Editing (Colon) Operators

28.6. Automatic Completion

28.6.1. General Example: Filename Completion
28.6.2. Menu Completion

28.6.3. Command-Specific Completion

28.6.4. Editor Functions for Completion
28.7. Don't Match Useless Files in Filename Completion
28.8. Repeating Commands

28.9. Repeating and Varying Commands
28.9.1. A foreach Loop

28.9.2. A for Loop
28.10. Repeating a Command with Copy-and-Paste

28.11. Repeating a Time-Varying Command

28.12. Multiline Commands, Secondary Prompts
28.13. Here Document Example #1: Unformatted Form Letters

28.14. Command Substitution
28.15. Handling Lots of Text with Temporary Files
28.16. Separating Commands with Semicolons
28.17. Dealing with Too Many Arguments
28.18. Expect

28.18.1. Dialback

28.18.2. Automating /bin/passwd

28.18.3. Testing: A Story

28.18.4. Other Problems
29. Custom Commands
29.1. Creating Custom Commands
29.2. Introduction to Shell Aliases

29.3. C-Shell Aliases with Command-Line Arguments

29.4. Setting and Unsetting Bourne-Type Aliases
29.5. Korn-Shell Aliases

29.6. zsh Aliases
29.7. Sourceable Scripts
29.8. Avoiding C-Shell Alias Loops
29.9. How to Put if-then-else in a C-Shell Alias
29.10. Fix Quoting in csh Aliases with makealias and quote
29.11. Shell Function Basics
29.11.1. Simple Functions: Is with Options
29.11.2. Functions with Loops: Internet Lookup
29.11.3. Setting Current Shell Environment: The work Function
29.11.4. Functions Calling Functions: Factorials
29.11.5. Conclusion
29.12. Shell Function Specifics
29.13. Propagating Shell Functions
29.13.1. Exporting bash Functions
29.13.2. FPATH Search Path
29.14. Simulated Bourne Shell Functions and Aliases
30. The Use of History
30.1. The Lessons of History
30.2. History in a Nutshell
30.3. My Favorite Is !$
30.4. My Favorite Is !:n*
30.5. My Favorite Is ™
30.6. Using !$ for Safety with Wildcards
30.7. History by Number
30.8. History Substitutions
30.9. Repeating a Cycle of Commands
30.10. Running a Series of Commands on a File
30.11. Check Your History First with :p
30.12. Picking Up Where You Left Off
30.12.1. bash, ksh, zsh
30.12.2. C Shells
30.13. Pass History to Another Shell
30.14. Shell Command-Line Editing
30.14.1. vi Editing Mode
30.14.2. Emacs Editing Mode
30.14.3. tcsh Editing
30.14.4. ksh Editing
30.14.5. bash Editing

30.14.6. zsh Editing
30.15. Changing History Characters with histchars
30.16. Instead of Changing History Characters
31. Moving Around in a Hurry
31.1. Getting Around the Filesystem
31.2. Using Relative and Absolute Pathnames
31.3. What Good Is a Current Directory?
31.4. How Does Unix Find Your Current Directory?
31.5. Saving Time When You Change Directories: cdpath
31.6. Loop Control: break and continue
31.7. The Shells' pushd and popd Commands
31.8. Nice Aliases for pushd
31.9. Quick cds with Aliases
31.10. cd by Directory Initials
31.11. Finding (Anyone's) Home Directory, Quickl
31.12. Marking Your Place with a Shell Variable

31.13. Automatic Setup When You Enter/Exit a Directory
32. Regular Expressions (Pattern Matching)

32.1. That's an Expression

32.2. Don't Confuse Regular Expressions with Wildcards

32.3. Understanding Expressions

32.4. Using Metacharacters in Regular Expressions

32.5. Regular Expressions: The Anchor Characters " and $

32.6. Regular Expressions: Matching a Character with a Character Set
32.7. Regular Expressions: Match Any Character with . (Dot)

32.8. Regular Expressions: Specifying a Range of Characters with [...]
32.9. Regular Expressions: Exceptions in a Character Set

32.10. Regular Expressions: Repeating Character Sets with *

32.11. Regular Expressions: Matching a Specific Number of Sets with \ { and \
32.12. Regular Expressions: Matching Words with \ < and \ >

32.13. Regular Expressions: Remembering Patterns with \ (, \), and \1
32.14. Regular Expressions: Potential Problems

32.15. Extended Regular Expressions

32.16. Getting Regular Expressions Right

32.17. Just What Does a Regular Expression Match?

32.18. Limiting the Extent of a Match

32.19. I Never Meta Character I Didn't Like

32.20. Valid Metacharacters for Different Unix Programs

32.21. Pattern Matching Quick Reference with Examples
32.21.1. Examples of Searching
32.21.2. Examples of Searching and Replacing
33. Wildcards
33.1. File-Naming Wildcards
33.2. Filename Wildcards in a Nutshell
33.3. Who Handles Wildcards?

33.4. What if a Wildcard Doesn't Match?
33.5. Maybe You Shouldn't Use Wildcards in Pathnames

33.6. Getting a List of Matching Files with grep -1

33.7. Getting a List of Nonmatching Files
33.7.1. Using grep -¢

33.7.2. The vgrep Script
33.8. nom: List Files That Don't Match a Wildcard
34. The sed Stream Editor
34.1. sed Sermon"H"H”"H"H"H”"HSummary
34.2. Two Things You Must Know About sed
34.3. Invoking sed
34.4. Testing and Using a sed Script: checksed, runsed
34.4.1. checksed
34.4.2. runsed
34.5. sed Addressing Basics
34.6. Order of Commands in a Script

34.7. One Thing at a Time

34.8. Delimiting a Regular Expression
34.9. Newlines in a sed Replacement

34.10. Referencing the Search String in a Replacement
34.11. Referencing Portions of a Search String

34.12. Search and Replacement: One Match Among Many
34.13. Transformations on Text

34.14. Hold Space: The Set-Aside Buffer

34.15. Transforming Part of a Line

34.16. Making Edits Across Line Boundaries
34.17. The Deliberate Scrivener

34.18. Searching for Patterns Split Across Lines
34.19. Multiline Delete

34.20. Making Edits Everywhere Except...
34.21. The sed Test Command

34.22. Uses of the sed Quit Command

34.23. Dangers of the sed Quit Command

34.24. sed Newlines, Quoting, and Backslashes in a Shell Script
35. Shell Programming for the Uninitiated

35.1. Writing a Simple Shell Program

35.2. Everyone Should Learn Some Shell Programming

35.3. What Environment Variables Are Good For

35.4. Parent-Child Relationships

35.5. Predefined Environment Variables

35.6. The PATH Environment Variable

35.7. PATH and path

35.8. The DISPIAY Environment Variable

35.9. Shell Variables

35.10. Test String Values with Bourne-Shell case

35.11. Pattern Matching in case Statements
35.12. Exit Status of Unix Processes

35.13. Test Exit Status with the if Statement
35.14. Testing Your Success

35.15. Loops That Test Exit Status

35.15.1. Looping Until a Command Succeeds

35.15.2. Looping Until a Command Fails
35.16. Set Exit Status of a Shell (Script)

35.17. Trapping Exits Caused by Interrupts

35.18. read: Reading from the Keyboard

35.19. Shell Script "Wrappers" for awk, sed, etc.

35.20. Handling Command-Line Arguments in Shell Scripts
35.20.1. With the "$@" Parameter
35.20.2. With a Loop
35.20.3. Counting Arguments with $#

35.21. Handling Command-Line Arguments with a for Loop
35.22. Handling Arguments with while and shift
35.23. Loop Control: break and continue

35.24. Standard Command-Line Parsing
35.25. The Bourne Shell set Command

35.25.1. Setting Options
35.25.2. Setting (and Parsing) Parameters
35.25.3. (Avoiding?) set with No Arguments
35.25.4. Watch Your Quoting
35.25.5. Can't Set $0

35.26. test: Testing Files and Strings

35.27. Picking a Name for a New Command
35.28. Finding a Program Name and Giving Your Program Multiple Names
35.29. Reading Files with the . and source Commands

35.30. Using Shell Functions in Shell Scripts
36. Shell Programming for the Initiated

36.1. Beyond the Basics
36.2. The Story of : # #!
36.3. Don't Need a Shell for Your Script? Don't Use One
36.4. Making #! Search the PATH
36.5. The exec Command
36.6. The Unappreciated Bourne Shell ":" Operator
36.7. Parameter Substitution
36.8. Save Disk Space and Programming: Multiple Names for a Program
36.9. Finding the Last Command-Line Argument
36.10. How to Unset All Command-Line Parameters
36.11. Standard Input to a for Loop
36.12. Making a for Loop with Multiple Variables
36.13. Using basename and dirname

36.13.1. Introduction to basename and dirname

36.13.2. Use with Loops
36.14. A while Loop with Several Loop Control Commands
36.15. Overview: Open Files and File Descriptors
36.16. n>&m: Swap Standard Output and Standard Error
36.17. A Shell Can Read a Script from Its Standard Input, but...

36.18. Shell Scripts On-the-Fly from Standard Input

36.19. Quoted hereis Document Terminators: sh Versus csh
36.20. Turn Off echo for "Secret" Answers

36.21. Quick Reference: expr

36.21.1. Syntax

36.21.2. Examples
36.22. Testing Characters in a String with expr
36.23. Grabbing Parts of a String

36.23.1. Matching with expr

36.23.2. Using echo with awk or cut

36.23.3. Using set and IFS

36.23.4. Using sed
36.24. Nested Command Substitution
36.25. Testing Two Strings with One case Statement
36.26. Outputting Text to an X Window
36.27. Shell Lockfile

37. Shell Script Debugging and Gotchas
37.1. Tips for Debugging Shell Scripts

37.1.1. Use -xv

37.1.2. Unmatched Operators

37.1.3. Exit Early

37.1.4. Missing or Extra esac, ;;, fi, etc.

37.1.5. Line Numbers Reset Inside Redirected Loops
37.2. Bourne Shell Debugger Shows a Shell Variable
37.3. Stop Syntax Errors in Numeric Tests
37.4. Stop Syntax Errors in String Tests
37.5. Quoting and Command-Line Parameters
37.6. How Unix Keeps Time
37.7. Copy What You Do with script
37.8. Cleaning script Files
37.9. Making an Arbitrary-Size File for Testing

VII. Extending and Managing Your Environment

38. Backing Up Files
38.1. What Is This "Backup" Thing?
38.2. tar in a Nutshell
38.3. Make Your Own Backups
38.4. More Ways to Back Up
38.5. How to Make Backups to a Local Device
38.5.1. What to Back Up

38.5.2. Backing Up to Tape

38.5.3. Backing Up to Floppies or Zip Disks
38.5.4. To gzip, or Not to gzip?

38.6. Restoring Files from Tape with tar
38.6.1. Restoring a Few Files
38.6.2. Remote Restoring
38.7. Using tar to a Remote Tape Drive
38.8. Using GNU tar with a Remote Tape Drive
38.9. On-Demand Incremental Backups of a Project
38.10. Using Wildcards with tar
38.10.1. Without GNU tar
38.10.2. With GNU tar
38.10.3. Wildcard Gotchas in GNU tar
38.11. Avoid Absolute Paths with tar
38.12. Getting tar's Arguments in the Right Order
38.13. The cpio Tape Archiver
38.14. Industrial Strength Backups
39. Creating and Reading Archives
39.1. Packing Up and Moving
39.2. Using tar to Create and Unpack Archives
39.3. GNU tar Sampler
39.4. Managing and Sharing Files with RCS and CVS
39.5. RCS Basics
39.6. List RCS Revision Numbers with rcsrevs
39.7. CVS Basics
39.8. More CVS
40. Software Installation
40.1. /usr/bin and Other Software Directories
40.2. The Challenges of Software Installation on Unix
40.3. Which make?
40.4. Simplifying the make Process
40.5. Using Debian's dselect
40.5.1. Choosing the Access Method
40.5.2. Updating Information on Available Packages
40.5.3. Choosing Packages for Installation or Removal
40.5.4. Exiting the Select Function
40.5.5. Installing Packages
40.5.6. Configuring Packages
40.5.7. Removing Packages
40.5.8. Exiting dselect
40.6. Installing Software with Debian's Apt-Get
40.6.1. Configuring the sources.list File
40.6.2. Using apt-get
40.7. Interruptable gets with wget
40.8. The curl Application and One-Step GNU-Darwin Auto-Installer for OS X
40.9. Installation with FreeBSD Ports

40.10. Installing with FreeBSD Packages
40.11. Finding and Installing RPM Packaged Software
41. Perl
41.1. High-Octane Shell Scripting
41.2. Checking your Perl Installation
41.3. Compiling Perl from Scratch
41.4. Perl Boot Camp, Part 1: Typical Script Anatomy
41.5. Perl Boot Camp, Part 2: Variables and Data Types
41.5.1. Scalars
41.5.2. Arrays
41.5.3. Hashes
41.5.4. References

41.6. Perl Boot Camp, Part 3: Branching and Looping
41.7. Perl Boot Camp, Part 4: Pattern Matching

41.8. Perl Boot Camp, Part 5: Perl Knows Unix

41.9. Perl Boot Camp, Part 6: Modules

41.10. Perl Boot Camp, Part 7: perldoc
41.11. CPAN

41.11.1. Installing Modules the Easy Way
41.11.2. Installing Modules the Hard Way
41.11.3. Browsing the CPAN Web Site

41.12. Make Custom grep Commands (etc.) with Perl

41.13. Perl and the Internet
41.13.1. Be Your Own Web Browser with LWP
41.13.2. Sending Mail with Mail::Sendmail
41.13.3. CGI Teaser

42. Python

42.1. What Is Python?

42.2. Installation and Distutils

42.3. Python Basics
42.3.1. Indentation
42.3.2. Functions
42.3.3. Everything's an Object
42.3.4. Modules and Packages
42.3.5. I/O and Formatting
42.3.6. wxPython

42.4. Python and the Web

42.5. urllib

42.6. urllib2

42.7. htmllib and HTMIL Parser

42.8. cgi

42.9. mod python

42.10. What About Perl?

VIII. Communication and Connectivity
43. Redirecting Input and Output

43.1. Using Standard Input and Output
43.2. One Argument with a cat Isn't Enough
43.3. Send (Only) Standard Error Down a Pipe
43.4. Problems Piping to a Pager
43.5. Redirection in C Shell: Capture Errors, Too?
43.6. Safe I/0O Redirection with noclobber
43.7. The () Subshell Operators
43.7.1. Combining Several Commands
43.7.2. Temporary Change of Directory and Environment
43.8. Send Output Two or More Places
43.9. How to tee Several Commands into One Place
43.10. Redirecting Output to More Than One Place
43.11. Named Pipes: FIFOs
43.12. What Can You Do with an Empty File?
44. Devices
44.1. Quick Introduction to Hardware
44.2. Reading Kernel Boot Output
44.3. Basic Kernel Configuration
44 4. Disk Partitioning
44.5. Filesystem Types and /etc/fstab
44.6. Mounting and Unmounting Removable Filesystems
44.7. Loopback Mounts
44.8. Network Devices — ifconfig
44.9. Mounting Network Filesystems — NFS, SMBFS
44.10. Win Is a Modem Not a Modem?
44.11. Setting Up a Dialup PPP Session
44.12. USB Configuration

44.13. Dealing with Sound Cards and Other Annoying Hardware
44.14. Decapitating Your Machine — Serial Consoles
435. Printing
45.1. Introduction to Printing
45.2. Introduction to Printing on Unix
45.2.1. 1pr-Style Printing Commands

45.2.2. 1p-Style Printing Commands
45.3. Printer Control with Ipc

45.4. Using Different Printers

45.5. Using Symbolic Links for Spooling

45.6. Formatting Plain Text: pr

45.7. Formatting Plain Text: enscript

45.8. Printing Over a Network

45.9. Printing Over Samba
45.9.1. Printing to Unix Printers from Windows
45.9.2. Printing to Windows Printers from Unix

45.10. Introduction to Typesetting
45.11. A Bit of Unix Typesetting History

45.12. Typesetting Manpages: nroff
45.13. Formatting Markup [Languages — troff, LATEX, HTML, and So On
45.14. Printing Languages — PostScript, PCL, DVI, PDF

45.15. Converting Text Files into a Printing [.anguage

45.16. Converting Typeset Files into a Printing Language

45.17. Converting Source Files Automagically Within the Spooler
45.18. The Common Unix Printing System (CUPS)

45.19. The Portable Bitmap Package
46. Connectivity

46.1. TCP/IP — IP Addresses and Ports
46.1.1. Internet Protocol (IP)
46.1.2. Layer 4 Protocols: TCP, UDP, and ICMP
46.2. /etc/services Is Your Friend
46.3. Status and Troubleshooting
46.4. Where, Oh Where Did That Packet Go?
46.5. The Director of Operations: inetd
46.6. Secure Shell (SSH)
46.7. Configuring an Anonymous FTP Server
46.8. Mail — SMTP, POP, and IMAP
46.9. Domain Name Service (DNS)
46.10. Dynamic Host Configuration Protocol (DHCP)
46.11. Gateways and NAT
46.12. Firewalls
46.13. Gatewaying from a Personal LAN over a Modem
47. Connecting to MS Windows
47.1. Building Bridges
47.2. Installing and Configuring Samba
47.3. Securing Samba
47.4. SWAT and GUI SMB Browsers
47.5. Printing with Samba
47.6. Connecting to SMB Shares from Unix
47.7. Sharing Desktops with VNC
47.7.1. Connecting to a Windows VNC server
47.7.2. Setting up VNC on Unix
47.8. Of Emulators and APIs
47.8.1. VMWare
47.8.2. Wine
47.9. Citrix: Making Windows Multiuser
47.9.1. Citrix Metaframe
47.9.2. rdesktop
47.9.3. Hob

IX. Security
48. Security Basics

48.1. Understanding Points of Vulnerability
48.2. CERT Security Checklists

48.3. Keeping Up with Security Alerts

48.4. What We Mean by Buffer Overflow

48.5. What We Mean by DoS

48.6. Beware of Sluggish Performance
48.6.1. Check Processes
48.6.2. Checking Swap Space
48.6.3. Check Network Connections
48.6.4. Other Checks

48.7. Intruder Detection

48.8. Importance of MOTD

48.9. The Linux proc Filesystem
48.10. Disabling inetd

48.11. Disallow rlogin and rsh
48.12. TCP Wrappers
49. Root, Group, and User Management
49.1. Unix User/Group Infrastructure
49.2. When Does a User Become a User
49.3. Forgetting the root Password
49.4. Setting an Exact umask
49.5. Group Permissions in a Directory with the setgid Bit
49.6. Groups and Group Ownership
49.7. Add Users to a Group to Deny Permissions
49.8. Care and Feeding of SUID and SGID Scripts
49.9. Substitute Identity with su
49.10. Never Log In as root
49.11. Providing Superpowers with sudo
49.12. Enabling Root in Darwin
49.13. Disable logins
50. File Security, Ownership, and Sharing
50.1. Introduction to File Ownership and Security
50.2. Tutorial on File and Directory Permissions
50.2.1. User, Group, and World
50.2.2. Which Group is Which?
50.3. Who Will Own a New File?
50.4. Protecting Files with the Sticky Bit
50.5. Using chmod to Change File Permission

50.6. The Handy chmod = Operator
50.7. Protect Important Files: Make Them Unwritable

50.8. cx, cw, c-w: Quick File Permission Changes
50.9. A Loophole: Modifying Files Without Write Access

50.10. A Directory That People Can Access but Can't List

50.11. Juggling Permissions

50.12. File Verification with mdSsum

50.13. Shell Scripts Must Be Readable and (Usually) Executable
50.14. Why Can't You Change File Ownership?

50.15. How to Change File Ownership Without chown
51. SSH

51.1. Enabling Remote Access on Mac OS X

51.2. Protecting Access Through SSH

51.3. Free SSH with OpenSSH

51.4. SSH Problems and Solutions

51.5. General and Authentication Problems

51.6. Key and Agent Problems

51.7. Server and Client Problems

Glossary
Index

UNIX Power Tools, 3rd Edition

Jerry Peek
Shelley Powers
Tim O'Reilly
Mike Loukides
Editor

Laurie Petrycki

Copyright © 2009 O'Reilly Media, Inc.

O’REILLY

O'Reilly Media

A Note Regarding Supplemental Files

Supplemental files and examples for this book can be found at

http://examples.oreilly.com/9780596003302/. Please use a standard desktop web browser to access
these files, as they may not be accessible from all ereader devices.

All code files or examples referenced in the book will be available online. For physical books that
ship with an accompanying disc, whenever possible, we’ve posted all CD/DVD content. Note that
while we provide as much of the media content as we are able via free download, we are sometimes
limited by licensing restrictions. Please direct any questions or concerns to booktech@oreilly.com.

http://examples.oreilly.com/9780596003302/
mailto:booktech@oreilly.com

How to Use This Book

This section refers to conventions used in the print book and explains how they were modified for the
Safari version. The numbers in the following images correspond to the list below.

1412

'\:\."n._"” afsn i hintes for:
'“ * Deleting unised (or raeely used? files Garticle 14.12)
* Deleangall the hlesan a directzne, cxcert for one or two Gartcle 14 E3E

Mise nps tor delening files also work for renamng the files if yow wans 1o
kevp them: juse replace the rm command wirh e

—M!

® 14.12 Deleting Stale Files

Sooncr or later, a lor of junk collects in vour direcvortes: nles thar you don’

really care about and never use. It's possible to write find @0 commands that wall
auromatecally clean these up. I vou want o clean up regulardy, vou can add
same find commands w your coomeal Gle an, g

Basically, all vou need 1o do is write a find command thar locares files based on
their last access time {—arvie @50, and use i a5 o delere them., Such a
command might look like this:
£ find . -Stime b0 -ok T -F {} \;

This locates files that haven't been accessed in the lasz 60 davs, asks of vou wam
wy delere the Gle, and chen deletes the fife. (F vou run 11 from crom, make sure
o use —exer instead of —ok; and make absolutely sure thae the find won't delere
files thar vou think are imporrant.)

O couese, you can modify this fnd command o exclude {or select) tiles warh

wple, the command below deleres old core dumps and
|

partculsr g5 for exam
GNLU Emacs backup files (whose names end in =), bur leaves all others alone
% fimd , \{ -name core -0 -mame "*T \) -atime 450 -0k mm -F {} \;

If yous ake an automated approag bt delerang srale files, here are some things 1o

warch our (o

* There are plenty of files (for example, Unix unbites and log files) thar should
merer be remmoved, Mever run any “autedmati deletion” SCTIPL on Ssr or S oor
any other “system” directorny,

¢ Omosome systems, executing a bmary executable doesn’t update the last
aceess fme. Since there's no reason w read these files, you can expect them
ta et precry stale, even if they're used often. You don’t wane 1o delege them.
If vou cook up a comphested enough fird command, vou should be able 1o
handle this anomatically. Something hike this should (ac beast pamially) do
the trick:

0 -H!IIE L find . -atime 30 | -perm -311 ... -pyec mm]} \:
prn S,

26 Part Thre#: Woeking with the Filesysiem

1. Summary Boxes. You'll see gray shaded summary boxes all through the book. (On Safari, the
Summary Boxes are bordered sidebars with the title "Summary Box.") They summarize a topic
and point you to articles with examples and further explanation.

2. Article/Section Number. The first two digits indicate in which chapter the article resides; the
last two digits indicate the number of the article within that chapter. The article number is used
to refer to this article in all cross-references throughout the book. (On Safari, Article numbers
correspond to Section numbers.)

3. Cross-Reference in a Sentence. To find out more about the topic displayed in gray type (On
Safari, this text is displayed in boldface.), see the article referenced by the number in

parentheses immediately following the term.

4. Cross-Reference in a Code Example. When a cross-reference occurs in an example, the cross-
referenced text and related article number appear in the left margin. (On Safari, these cross-
references appear above the code example.)

2120

en join can do a lot more than this simple example shows. See your online manual
ﬂ page. The GNU version of jodn 15 on the CO-ROM.

-

21.20 What is (or isn’t) Unique?

.h wriiy reads a file and compaces adjacent lines (which means you’ll wsoally want
(5] f‘ o sort the file first—to be sure identical hines appear next wo each other), Here's
miq what wunig cun do as it watches the mput lines stream by
* With the —w option, the ourput gets only the lines that ocour just once {and
weren't repeated}.
* The — option does the opposite: the ourpur gets a single copy of each line
thar was repeaned (no maver how many nimes i was repeated),
(M GNLU version alsao bas a =0 opiton, 105 like = except that all duplica
||||-;'~.:|n' |l'||lip|,|:.':
s The detaule ourpat {werth 1o ur\-l'.uﬁ-\::- 1= the union of =u .|'|'.|,.|: gl |.'||||:. the first
cccurrence of a line ks written to the outpue Gle: any adjacent copies of 4 line
(svond, third, etc.} are ignonesd,
* The vurput with —¢ 15 hike the detaule, bur cach line 15 preceded by a count of
how many times it occurred.

Be warmied
@ % wnig filed filea
willl sl pring the unigue lines from both fled and file? w stan-

dard curpur. Iv will replace the contents of file2 with the unbgue
lines from fifel?
Three more optoas contral how comparsons are done:

. s, P ks of & line and all whitespeee befiore cach Id is
- ygmores the st i helds of a line and all whitespace betore each. A field 15
defined as a strng of non-whitespace characrers {separated from its neigh-
bors by whitespace).

* i ignores the fisso i characrers. Fields are skipped before characrers.

o -wonin the GNLU version compares so mote than a chaeacters in each lime.

v GNU pendg also has < o make compansons case-insenstive. (Upper and

lorwercase letters compare equal.]

whig 15 often wsed a2 2 klter. See also comm (18, sort @20, and especially sont =u
{226}

S0 what can vou do with all of this?

LAl Part Five: Text Editing

1. Globe If you don't want to type this script into a file yourself, or if we're talking about a C
program that isn't shown, you can download it from the book's web site. See the Preface for full
details on the content available for download. (Online version available at

http://examples.oreilly.com/upt3)
2. Screw. Be careful with this feature, or you might get screwed.

http://examples.oreilly.com/upt3

23

keal world-watching germration fail to realize is that

ouT American forefathers, under the tutelage of Zog,

the wirened master sage from Zeta-Reticuli, had fo fight

not only the godless and effete British for cur system of

self-determined govermment, but also avnid the terrors of

hynpa-death froe the dark and unclean Draco-Repitiliass.
There s one subtlety to fini o be aware of: fri expects sentences to end with
cithier 2 perid, a question mark or an exclaimation point followed by two
spaces, I your dogument 30t marked up sccordmg o thas conmvenmion, frmd can't
differemtiated between sentences and abbreviations, Thes 15 a common “gotcha”
thar appears frequently on Usenet.

O at least ope version of Unix, e = a disk iomialieer (disk for-
ﬂ matter) command, Don't run thar command aceidenaliv! Check

!:'I'II.IE!II:IIIII":I']11.11I.It.'||. |'I'|H:'.‘ .III.rl! L= Ehll‘ lrfll‘] :’.‘I'll.ll.\'.1ll.'|1|!\ I"-l.'!l:f“ &

There are a few difterent versions of fme, some fancier than others, In general,
the program assumes thar

* Paragraphs have blank lines beoween them,

* 0o lime 15 indented, keep the indentation.

* The output hnes should be abaowt 70 charscrers wade, Seme hove @ com-
mand line option to let you st thas, For example, fat <132 (or, on some ver-
sz, fat <1 132} would redormat your file to have hnes with o more than
132 characters on cach.

¢ [vreads files or standard wipue. Lines will ke written w standard ourpur.

The GMU fimr is on the CO-ROM, There are alsa a couple of treely available vers
o . stoms, Many versions of o bave options for other strectured dam. The -
e optiod it reformats program source code, (If vour fet doesn’t have —p, the
recorniienl @4 soript uses standand fooe with sed oo do the same ching,) The =
optien breaks long hnes at whitespace bue doesn’t join short lnes to form longer

oneCs,

Alternatwvely, you can make vour own @3 simple (and a hetle slower) version
with sed and nroff. I you want to ger fancy (and vse some nroff and/or b cod-
ing), this will lee you do astomancally formarted exe ables, bullered ises, and
mich more.

@ —r TOR and]

21.3 Alternatives to fmt

foit @13y s hard o do withour once you've leamed abou it Unforrunacely, i's
not availzble in some versions of Unix. You can ger the GNU version from the

Chagter 21: You Can™l Quite Call This Editing 30

1. Pushpin. A note to keep in mind, or a helpful tip.

2. Bomb. A bomb icon in the margin is a cross-reference to another article that explains the
possible trouble you might encounter using the tip or script in the current article. (You can think
of the bomb as a cross-referenced screw.) (On Safari, the Bomb appears above the paragraph it
refers to.)

3. Author's Initials. The author's full name is listed in the Preface.

Preface

A Book for Browsing

Technical books can be boring. But this is not an ordinary technical book! This book is like an
almanac, a news magazine, and a hypertext database all rolled into one. Instead of trying to put the
topics in perfect order — and expecting you to start at the beginning, then read through to the end —
we hope that you'll browse. Start anywhere. Read what you want. (That's not quite true. First, you
should read this Preface and the pages before it titled How to Use This Book. They will help you get
the most out of your time with this book. Next, you may want to skim through the Unix fundamentals in
Chapter 1. Then read what you want.)

Like an Almanac

The book is full of practical information. The main purpose isn't to teach you concepts (though they're
in here). We've picked a lot of common problems, and we'll show you how to solve them.

Even though it's not designed to be read in strict order, the book is organized into chapters with
related subject matter. If you want to find a specific subject, the table of contents is still a good place
to start. In addition, several of the chapters contain shaded boxes. These are like small tables of
contents on a particular subject, which might be even more limited than the scope of the chapter itself.
Use the Index when you're trying to find a specific piece of information instead of a general group of
articles about a topic.

Like a News Magazine

This book has short articles. Most show a problem and a solution — in one page or less. The
articles are numbered within each chapter. Not all articles are "how-to" tips. Some articles have
background information and concepts.

Like a Hypertext Database

Each article doesn't define all the concepts and words used. Instead, it gives you "links" that let you
get more information if you need it. It's easy to get more information when you need it, but just skip
the link 1f you don't. Unix Power Tools uses two kinds of links: those in a sentence and those in the

margin. For examples, see the pages before this Preface titled How to Use This Book.

Programs on the Web
€&

The book describes scripts and freely available programs that are available on the web site. An
article about a program or file that's on the web site will have a globe icon next to it, like this. To get
one of these programs, visit the web site:

http://www.oreilly.com/catalog/upt3/

http://www.oreilly.com/catalog/upt3/

About Unix Versions

There are lots of similarities between different versions of Unix. But it's almost impossible to write a
book that covers every detail of every version correctly. Where we know there might be big
differences or problems, we'll print a note in the text. Other places, we're forced to use "weasel
words" like "Some versions of XXX will do...," without telling you exactly which versions. When
you see those weasel words, what can you do?

e [fthe command or feature won't destroy anything when it doesn't work, try it! For instance, don't
experiment with 7m, the command that removes files. But cat, a command that shows files,
probably won't hurt anything if some feature doesn't work with your version.

e Look at the online manual or check your vendor's latest printed manuals. However, even these
can be wrong. For instance, your system administrator may have installed a local version of a
command that works differently — but not updated the online documentation. Be careful with
"generic" manuals, the kind you buy at a bookstore; there are lots of versions of Unix, and the
manual may not match your version closely enough.

e Ask your system administrator or another "guru" for help before you use a command that might
be dangerous.

Cross-References

If a cross-reference is to a single word — for example, a command name like this: zar — the cross
reference 1s probably to an article that introduces that command. Cross references to phrases — like
this: from a parent process to child process — are to an article that explains more about the concept
or problem printed in gray.

Cross references don't necessarily give a complete list of all articles about a topic. We've tried to
pick one or a few articles that give the best information. For a more complete list, use the Index.

What's New in the Third Edition

There have been some big changes in Unix since we wrote the first edition in the early 1990s, and
there's been a surprising number of changes since the second edition, released in the late 1990s. Well
over half of the articles have been revised, and we've expanded our coverage of the so-called small
Unix flavors: Linux, FreeBSD, Mac OS X's Darwin, and so on.

A major change to this edition was the addition of several new topics relevant to today's connected
world, including protecting your machine from attack and several articles related to Internet
protocols. We've also added chapters with coverage of two of the more popular languages used in
Unix: Perl and Python.

Typefaces and Other Conventions

Italic
Is used for the names of all Unix utilities, switches, directories, and filenames and to emphasize
new terms and concepts when they are first introduced. It's also used in programs and examples
to explain what's happening or what's been left out at the . . . marks.

Bold
Is used occasionally within text to make words easy to find — just like movie stars' names in the

People section of your local newspaper.
Constant width
Is used for sample code fragments and examples. A reference in text to a word or item used in an

example or code fragment is also shown in constant width font.
Constant width bold

Is used in examples to show commands or text that would be typed in literally by the user.
Constant width italic, bold italic
Are used in code fragments and examples to show variables for which a context-specific
substitution should be made. (The variable £i1ename, for example, would be replaced by some
actual filename.)
function(n)
Is a reference to a manual page in Section n of the Unix programmer's manual. For example,
getopt(3) refers to a page called getopt in Section 3.

o\

Is the C-shell prompt.
Is the Bourne-shell prompt.

Is a "smiley face" that means "don't take this seriously." The idea started on Usenet and spread.

Stands for text (usually computer output) that's been omitted for clarity or to save space.

CTRL
Starts a control character. To create CTRL-d, for example, hold down the "control" key and
press the "d" key. Control characters are not case sensitive; "d" refers to both the upper- and
lowercase letter. The notation ~p also means CTRL-d. Also, you'll sometimes see the key
sequence in bold (for example, CTRL-d 1s used when we want to make it clear exactly what you
should type.

Is used in some examples to represent a space chara - cter.
TAB
Is used in some examples to represent a TAB character.

The Authors

This book is the effort of several authors who have contributed to one edition or another since the
first edition was released. Much of the material for the first and second edition came from three
authors: Jerry Peek, Tim O'Reilly, and Mike Loukides. Their work is still present, though edited for
current times. This third edition brought in four new authors, who edited the previous material, in
addition to contributing new articles: Shelley Powers, Steven Champeon, Deborah Hooker, and Joe
Johnston.

In addition, we also had several other authors contribute to all three editions — either people who
originally posted a good tip to Usenet, authors of Nutshell Handbooks who let us take material from
their books, or authors of software packages who let us take a few paragraphs from README files
or other documentation.

Here's a list of authors and their initials:

AD || Angus Duggan JIK || Jonathan I. Kamens

AF AEleen Frisch M Jeff Moskow

AN || Adrian Nye JP Jerry Peek

BA Brandon S. Allbery || JJ Joe Johnston

BB Bruce Barnett JS John Strang
BR Bill Rosenblatt LK Lar Kaufman
CT Chris Torek LL Linda Lamb

DC Debra Cameron M Linda Mui

DD || Dale Dougherty LW || Larry Wall

DG Daniel Gilly MAL || Maarten Litmaath

DH Dave Hitz ML || Mike Loukides

DJPH || Deborah Hooker MS || Mike Stansbery

DL Don Libes RS Randal Schwartz
DR Daniel Romike SP Shelley Powers
DS Daniel Smith SG Simson Garfinkel
EK Eileen Kramer SC Steve Champeon
EP Eric Pearce SW || Sun Wu

GS Gene Spafford TC Tom Christiansen
GU Greg Ubben TOR || Tim O'Reilly

HS Henry Spencer UM || Udi Manber

The Fine Print

Where we show an article from an author on Usenet, that person may not have thought of the idea
originally, but may just be passing on something he or she learned. We attribute everything we can.

Request for Comments

Please tell us about any errors you find in this book or ways you think it could be improved. Our U.S.
mail address, phone numbers, and electronic mail address are as follows:

O'Reilly & Associates, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)

(707) 829-0104 (fax)
bookquestions@oreilly.com (email)

mailto:bookquestions@oreilly.com

Acknowledgments for the First Edition

This book wouldn't exist without Ron Petrusha. As the technical book buyer at Golden-Lee, a major
book distributor, he discovered us soon after we started publishing Nutshell Handbooks in the mid-
1980s. He was one of our early boosters, and we owed him one. So when he became an editor at
Bantam (whose computer-book publishing operations were later acquired by Random House), we
took him seriously when he started asking if there was anything we could do together.

At first nothing seemed to fit, since by that time we were doing pretty well as a publisher. We needed
to find something that we could do together that might sell better than something that either company
might do alone. Eventually, Ron suggested that we copublish a Unix book for Bantam's "Power
Tools" series. This made sense for both of us. It gave Bantam access to our Unix expertise and
reputation, and it gave us a chance to learn from Bantam about the mass market bookstore trade, as
well as build on their successful "Power Tools" series.

But what would the book contain? There were two features of Bantam's original DOS Power Tools
that we decided to emulate: its in-depth treatment of under-documented system features and its large
collection of freely available scripts and utilities. However, we didn't want to write yet another book
that duplicated the format of many others on the market, in which chapters on each of the major Unix
tools follow one another in predictable succession. Our goal was certainly to provide essential
technical information on Unix utilities, but more importantly, to show how the utilities can be
combined and used to solve common (and uncommon) problems.

Similarly, because we were weary of the multitude of endless tutorial books about Unix utilities, we
wanted to keep the tone brisk and to the point. The solution I came up with, a kind of "hypertext in
print," actually owes a lot to Dale Dougherty. Dale has been working for several years on hypertext
and online information delivery, and I was trying to get him to work with me on this project. So I tried
to imagine the kind of book that he might like to create. (We have a kind of friendly rivalry, in which
we try to leapfrog each other with ideas for new and better books!) Dale's involvement never went
far beyond the early brainstorming stage, but the book still bears his indirect stamp. In some of the
first books he wrote for me, he introduced the idea that sidebars — asides that illuminate and expand
on the topic under discussion — could be used effectively in a technical book. Well, Dale, here's a
book that's nothing but sidebars!

Dale, Mike Loukides, and I worked out the basic outline for the book in a week or two of
brainstorming and mail exchanges. We thought we could throw it together pretty quickly by mining
many of our existing books for the tips and tricks buried in them. Unfortunately, none of us was ever
able to find enough time, and the book looked to be dying a slow death. (Mike was the only one who
got any writing done.) Steve Talbott rescued the project by insisting that it was just too good an idea
to let go; he recruited Jerry Peek, who had just joined the company as a writer and Unix
consultant/tools developer for our production department.

Production lost the resulting tug of war, and Jerry plunged in. Jerry has forgotten more Unix tips and
tricks than Mike, Dale, or I ever knew; he fleshed out our outline and spent a solid year writing and
collecting the bulk of the book. I sat back in amazement and delight as Jerry made my ideas take
shape. Finally, though, Jerry had had enough. The book was just too big, and he'd never signed on to
do it all alone! (It was about 1,000 pages at that point, and only half done.) Jerry, Mike, and I spent a

week locked up in our conference room, refining the outline, writing and cutting articles, and
generally trying to make Jerry feel a little less like Sisyphus.

From that point on, Jerry continued to carry the ball, but not quite alone, with Mike and I playing "tag
team," writing and editing to fill in gaps. I'm especially grateful to Mike for pitching in, since he had
many other books to edit and this was supposed to be "my" project. I am continually amazed by the
breadth of Mike's knowledge and his knack for putting important concepts in perspective.

Toward the end of the project, Linda Mui finished up another book she was working on and joined the
project, documenting many of the freely available utilities that we'd planned to include but hadn't
gotten around to writing up. Linda, you really saved us at the end!

Thanks also to all the other authors, who allowed us to use (and sometimes abuse!) their material. In
particular, we're grateful to Bruce Barnett, who let us use so much of what he's written, even though
we haven't yet published his book, and Chris Torek, who let us use many of the gems he's posted to
the Net over the years. (Chris didn't keep copies of most of these articles; they were saved and sent in
by Usenet readers, including Dan Duval, Kurt J. Lidl, and Jarkko Hietaniemi.)

Jonathan Kamens and Tom Christiansen not only contributed articles but read parts of the book with
learned and critical eyes. They saved us from many a "power goof." If we'd been able to give them
enough time to read the whole thing, we wouldn't have to issue the standard disclaimer that any errors
that remain are our own. H. Milton Peek provided technical review and proofreading. Four sharp-
eyed Usenet readers helped with debugging: Casper Dik of the University of Amsterdam, Byron
Ratzikis of Network Appliance Corporation, Dave Barr of the Population Research Institute, and
Duncan Sinclair.

In addition to all the acknowledged contributors, there are many unacknowledged ones — people
who have posted questions or answers to the Net over the years and who have helped to build the rich
texture of the Unix culture that we've tried to reflect in this book. Jerry also singles out one major
contributor to his own mastery of Unix. He says: "Daniel Romike of Tektronix, Inc. (who wrote
Section 28.5 and Section 30.8 in the early 1980s, by the way) led the first Unix workshop I attended.
He took the time to answer a ton of questions as I taught myself Unix in the early 1980s. I'm sure some
of the insights and neat tricks that I thought I've figured out myself actually came from Dan instead."

James Revell and Bryan Buus scoured "the Net" for useful and interesting free software that we
weren't aware of. Bryan also compiled most of the software he collected so we could try it out and
gradually winnow down the list.

Thanks also to all of the authors of the software packages we wrote about! Without their efforts, we
wouldn't have had anything to write about; without their generosity in making their software free in
the first place, we wouldn't be able to distribute hundreds of megabytes of software for the price of a
book.

Jeff Moskow of Ready-to-Run Software solved the problem we had been putting off to the end: that of
packaging up all the software for the original disk, porting it to the major Unix platforms, and making
it easy to install. This was a much bigger job than we'd anticipated, and we could never have done it
without Jeff and the RTR staff. We might have been able to distribute source code and binaries for a
few platforms, but without their porting expertise, we could never have ported all these programs to
every supported platform. Eric Pearce worked with RTR to pre-master the software for CD-ROM

duplication, wrote the installation instructions, and made sure that everything came together at the
end! (Eric, thanks for pitching in at the last minute. You were right that there were a lot of details that
might fall through the cracks.)

Edie Freedman worked with us to design the format of the book — quite an achievement considering
everything we wanted the format to do! She met the challenge of presenting thousands of inline cross-
references without distracting the reader or creating a visual monstrosity. What she created is as
attractive as it is useful — a real breakthrough in technical book design, and one that we plan to use
again and again!

Lenny Muellner was given the frightful task of implementing all of our ideas in troff — no mean feat,
and one that added to his store of grey hair.

Eileen Kramer was the copyeditor, proofreader, and critic who made sure that everything came
together. For a thousand-plus page book with multiple authors, it's hard to imagine just how much
work that was.

Ellie Cutler wrote the index; Chris Reilley created the illustrations. Additional administrative support
was provided by Bonnie Hyland, Donna Woonteiler, and Jane Appleyard.

—Tim O'Reilly

Acknowledgments for the Second Edition

After teaching myself about Unix for the past 15 years, I'm off to graduate school in Computer
Science. Frank Willison, O'Reilly's Editor-in-Chief, fit this project into the summer between leaving
my position at ORA and starting school. Frank didn't just give me something to do in the summer: the
royalties should help to pay for my coursework. (So, buy this book and support a student! ; -)) Gigi
Estabrook edited this edition and fielded my zillions of questions along the way. Many thanks to Gigi,
Frank, and ORA's Production staff. Clairemarie Fisher O'Leary and Nancy Wolfe Kotary shared the
jobs of production editor and project manager. Madeleine Newell and Kismet McDonough-Chan
provided production support. Sheryl Avruch, Nicole Gipson Arigo, and Danny Marcus provided
quality control checks. Lenny Muellner provided extensive froff assistance and technical support.
Chris Reilley created the technical illustrations.

When time was short, I got expert advice from Arnold Robbins, the maintainer of the GNU gawk
utility, and coauthor of O'Reilly's sed & awk, Second Edition. He reviewed parts of the book and
gave me thorough comments.

I'd also like to thank all the readers who took a moment to send us comments and corrections. I read
every message, and the ideas in them made a big difference in this second edition. Three peoples'
comments were extensive enough to mention specially. Ted Timar spotted problems that showed his
deep knowledge of Unix. I'm glad he still found the book useful enough to read it — and to spot goofs
in some of our hairier tips. Andrew T. Young sent two long email messages: one a few years ago and
another after I contacted him. He caught plenty of techno-goofs and also sent fixes for them. Andy
doesn't know just Unix: his background in English helped to sharpen a few rough spots in our folksy
writing style. Finally, Greg Ubben sent a 15-page (!) email message that took me most of a week to
work through. When I tracked him down, three years after writing his message, he was even more
helpful. Greg wrote enough to make into a small book — and, in fact, agreed to write a few new
articles, too. He's an expert in sed and regular expressions (and Unix) who taught me a lot in our
month of email messages back and forth. I deeply appreciate all that he's given to this book's readers.

—Jerry Peek, jpeek(@jpeek.com

mailto:jpeek@jpeek.com

Acknowledgments for the Third Edition

Though much of this book is new material or has been newly updated for changes in Unix, there is a
core that remains from previous editions. The fact that this material has continued to be fresh, useful,
and relevant through the years 1s a testament to the abilities — technical and writing — of the original
authors. These includes Tim O'Reilly and Jerry Peek, among others previously mentioned, who
contributed to past editions. We, the authors of this current edition, thank you. We had a number of
terrific reviewers comment on this version of the text. We appreciate the work of Dave Carrano,
Chris DiBona, Schuyler Erle, Jeft Kawski, Werner Klauser, Adam Langley, Arnold Robbins, Jaron
Rubenstein, Kevin Schmidt, Jay Sekora, Joe Sloan, Nat Torkington, and Jay Ts. Thanks also to
Stephen Samuel.

In addition, I would like to thank those who contribute their time and efforts on Unix systems,
particularly the open source versions of Unix such as FreeBSD, Linux, and now Darwin.

—Shelley Powers

I'd just like to thank you all for inviting me to contribute to a book that helped me learn Unix a long
time ago. It's nice to be able to give something back, given how much the book helped me back in
1994 when I was just another Unix newbie.

—Steven Champeon

Thank you, Amy and Joel, for the input and review and just for putting up with me through it, and
Jasper, for being my strength when I needed it.

—Deborah Hooker

Part 1. Basic Unix Environment

Part I contains the following chapters:

Chapter 1
Chapter 2

Chapter 1. Introduction

What's Special About Unix?

If we were writing about any other operating system, "power tools" might mean "nifty add-on utilities
to extend the power of your operating system." That sounds suspiciously like a definition of Unix: an
operating system loaded with decades' worth of nifty add-on utilities.

Unix is unique in that it wasn't designed as a commercial operating system meant to run application
programs, but as a hacker's toolset, by and for programmers. In fact, an early release of the operating
system went by the name PWB (Programmer's Work Bench).

When Ken Thompson and Dennis Ritchie first wrote Unix at AT&T Bell Labs, it was for their own
use and for their friends and coworkers. Utility programs were added by various people as they had
problems to solve. Because Bell Labs wasn't in the computer business, source code was given out to
universities for a nominal fee. Brilliant researchers wrote their own software and added it to Unix in
a spree of creative anarchy, which has been equaled only with Linux, in the introduction of the X
Window System (Section 1.22), and especially the blend of Mac and Unix with Darwin included in
the Mac OS X.

Unlike most other operating systems, where free software remains an unsupported add-on, Unix has
taken as its own the work of thousands of independent programmers. During the commercialization of
Unix within the past several years, this incorporation of outside software has slowed down for larger
Unix installations, such as Sun's Solaris and HP's hp-ux, but not stopped entirely. This is especially
true with the newer lighter versions of Unix, such as the various flavors of Linux and Darwin.

Therefore, a book on Unix inevitably Aas to focus not just on add-on utilities (though we do include
many of those), but on how to use clever features of the many utilities that have been made part of
Unix over the years.

Unix is also important to power users because it's one of the last popular operating systems that
doesn't force you to work behind an interface of menus, windows, and mouse with a "one-size(-
doesn't)-fit-all" programming interface. Yes, you can use Unix interfaces with windows and menus —
and they can be great time savers in a lot of cases. But Unix also gives you building blocks that, with
some training and practice, will give you many more choices than any software designer can cram
onto a set of menus. If you learn to use Unix and its utilities from the command line, you don't have to
be a programmer to do very powerful things with a few keystrokes.

So, it's also essential that this book teach you some of the underlying principles that make Unix such a
tinkerer's paradise.

In the body of this book, we assume that you are already moderately familiar with Unix — a
journeyman hacker wanting to become a master. But at the same time, we don't want to leave
beginners entirely at sea; so in this chapter, we include some fundamental concepts. We've tried to
intersperse some simple tips and tricks to keep things interesting, but the ratio of concept articles to
tips 1s much higher than in any other part of the book. The concepts covered are also much more
basic. If you aren't a beginner, you can safely skip this chapter, though we may bounce you back here
if you don't understand something later in the book.

Don't expect a complete introduction to Unix — if you need that, buy an introductory book. What
you'll find here is a selection of key concepts that you'll need to understand to progress beyond the

beginner stage, as well as answers to frequently asked questions and problems. In some ways,
consider this introduction a teaser. If you are a beginner, we want to show you enough of Unix to whet
your appetite for more.

Also, don't expect everything to be in order. Because we don't want you to get in the habit of reading
through each chapter from beginning to end, as in most books, the articles in this chapter are in loose
order. We've tried not to make you jump around too much, but we've also avoided a lot of the
transitional material that makes reading most books a chore.

—TOR, JP, and SP

Power Grows on You

It has been said that Unix is not an operating system as much as it is a way of thinking. In The UNIX
Programming Environment, Kernighan and Pike write that at the heart of the Unix philosophy "is the
idea that the power of a system comes more from the relationships among programs than from the
programs themselves."

Most of the nongraphical utility programs that have run under Unix since the beginning, some 30 years
ago, share the same user interface. It's a minimal interface, to be sure — but one that allows programs
to be strung together in pipelines to do jobs that no single program could do alone.

Most operating systems — including modern Unix and Linux systems — have graphical interfaces that
are powerful and a pleasure to use. But none of them are so powerful or exciting to use as classic
Unix pipes and filters, and the programming power of the shell.

A new user starts by stringing together simple pipelines and, when they get long enough, saving them
for later execution in a file (Section 1.8), alias (Section 29.2), or function (Section 29.11).
Gradually, if the user has the right temperament, he gets the idea that the computer can do more of the
boring part of many jobs. Perhaps he starts out with a for loop (Section 28.9) to apply the same
editing script to a series of files. Conditions and cases soon follow and before long, he finds himself
programming.

On most systems, you need to learn consciously how to program. You must take up the study of one or
more programming languages and expend a fair amount of concentrated effort before you can do
anything productive. Unix, on the other hand, teaches programming imperceptibly — it is a slow but
steady extension of the work you do simply by interacting with the computer.

Before long, you can step outside the bounds of the tools that have already been provided by the
designers of the system and solve problems that don't quite fit the mold. This is sometimes called
hacking; in other contexts, it is called "engineering." In essence, it is the ability to build a tool when
the right one 1s not already on hand.

No single program, however well thought out, will solve every problem. There is always a special
case, a special need, a situation that runs counter to the expected. But Unix is not a single program. It
is a collection of hundreds of them, and with these basic tools, a clever or dedicated person can meet
just about any computing problem.

Like the fruits of any advanced system, these capabilities don't fall unbidden into the hands of new
users. But they are there for the reaching. And over time, even those users who want a system they
don't have to think about will gradually reach out for these capabilities. Faced with a choice between
an hour spent on a boring, repetitive task and an hour putting together a tool that will do the task in a
flash, most of us will choose the latter.

— TOR

The Core of Unix

In recent times, more attention has been paid on the newer and more lightweight varieties of Unix:
FreeBSD, Linux, and now Darwin — the version of BSD Unix that Apple used as the platform for the
new Mac OS X. If you've worked with the larger Unix versions, you might be curious to see how it
differs within these new environments.

For the most part, basic Unix functionality differs very little between implementations. For instance,
I've not worked with a Unix box that doesn't have vi (Section 21.7) installed. Additionally, I've also
not found any Unix system that doesn't have basic functionality, such as traversing directories with cd
(Section 1.16) or getting additional help with man (Section 2.1).

However, what can differ between flavors of Unix is the behavior of some of the utilities and built-in
commands, as well as the options. Even within a specific Unix flavor, such as FreeBSD, installations
can differ because one installation uses the built-in version of a utility such as make (Section 40.3)
and another installation has a GNU version of the same application.

An attempt was made to create some form of standardization with the POSIX effort. POSIX, which
stands for Portable Operating System Interface, is an IEEE standard to work towards application
interoperability. With this, C programs written on one flavor of Unix should work, with minimum
modification, on another flavor of Unix.

Unfortunately, though the POSIX effort has had some impact on interoperability, there still are
significant differences between Unix versions. In particular, something such as System V Unix can
differ considerably from something such as Darwin.

However, there is stability in this seeming chaos: for the most part, the basic Unix utilities and
commands behave the same in all Unix flavors, and aside from some optional differences, how a
command works within one environment is exactly the same as in another environment. And if there
are differences, using the facilities described in Chapter 2 should help you resolve these quickly.

— SP

Communication with Unix

Probably the single most important concept for would-be power users to grasp is that you don't "talk"
directly to the Unix operating system. Instead, you talk to a program — and that program either talks
to Unix itself or it talks to another program that talks to Unix. (When we say "talk" here, we mean
communication using a keyboard and a mouse.)

There are three general kinds of programs you'll probably "talk" to:

e The program called the shell (Section 27.1). A shell is a command interpreter. Its main job is
to interpret the commands you type and to run the programs you specify in your command lines.
By default, the shell reads commands from your #¢y and arranges for other programs to write
their results there. The shell protects Unix from the user (and the user from Unix). It's the main
focus of this book (and the rest of this article).

e Aninteractive command, running "inside" a t¢y, that reads what you type directly. These take
input directly from the user, without intervention from the shell. The shell's only job is to start
them up. A text editor, a mail program, or almost any application program (such as word
processing) includes its own command interpreter with its own rules. This book covers a few
interactive commands — such as the vi editor — but its main focus is the shell and
"noninteractive" utilities that the shell coordinates to do what needs doing.

e A Graphical User Interface (GUI) with a desktop, windows, and so on. On Unix, a GUI 1s
implemented with a set of running programs (all of which talk to Unix for you).

Unix was around long before GUIs were common, and there's no need to use a GUI to use Unix.
In fact, Unix started in the days of teletypes, those clattering printing devices used to send
telegrams. Unix terminals are still referred to as teletypes or ttys (Section 2.7).

The core of the Unix operating system is referred to as the kernel (Section 1.10). Usually, only
programs talk to the kernel (through system calls). Users talk to one of the three previous types of
programs, which interprets their commands and either executes them directly or passes them on to
other programs. These programs may, in turn, request lower-level services from the kernel.

Let's look at a specific example of using the shell. When you type a command to display files whose
four-character filenames start with the letter "m":

22?2 Section 1.13

% cat m???

it 1s the shell that finds the filenames, makes a complete list of them, and calls the cat (Section 12.2)
command to print the expanded list. The cat command calls on the kernel to find each file on the disk
and print its contents as a stream of characters on the display.

Why is this important? First of all, you can choose between several different shells (Section 1.6),
each of which may have different rules for interpreting command lines.

Second, the shell has to interpret the command line you type and package it up for the command you
are calling. Because the shell reads the command line first, it's important to understand just how the
shell changes what it reads.

For example, one basic rule is that the shell uses "whitespace" (spaces or tabs) to separate each

"argument" of a command. But sometimes, you want the shell to interpret its arguments differently.
For example, if you are calling grep (Section 13.1), a program for searching through files for a
matching line of text, you might want to supply an entire phrase as a single argument. The shell lets
you do this by quoting (Section 27.12) arguments. For example:

% grep "Power Tools" articles/*

Understanding how the shell interprets the command line, and when to keep it from doing so, can be
very important in a lot of special cases, especially when dealing with wildcards (Section 1.13), like
the * (asterisk) in the previous example.

You can think of the relationship of the kernel, the shell, and various Unix utilities and applications as
looking like Figure 1-1.

User

X

Lser
commands
and dafa

Inferachive
commandgs handle
own input a5 well
as output

prampt | w oulput
Shell

oulpul

ooo ooo

requests for
SErvices

fransfer
huilt-in commands of contro!
A

¥
UNIX Kernel amd Device Orivers

Figure 1-1. Relationship of kernel, shell, utilities, and applications

Figure 1-1 shows that a user can interact with the shell, as well as directly with interactive commands
like cat and Is. The shell transfers control to the commands it starts for you — then those commands
may write the output you see. The shell also has some built-in commands (Section 1.9) that run
directly within the shell itself. All of the commands shown in Figure 1-1 interact directly with Unix
itself.

—TOR and JP

Programs Are Designed to Work Together

As pointed out by Kernighan and Pike in The UNIX Programming Environment, there are a number
of principles that distinguish the Unix environment. One key concept is that programs are tools. Like
all good tools, they should be specific in function, but usable for many different purposes.

In order for programs to become general-purpose tools, they must be data independent. This means
three things:

1. Within limits, the output of any program should be usable as the input to another.

2. All of the information needed by a program should be either contained in the data stream passed
to it or specified on the command line. A program should not prompt for input or do unnecessary
formatting of output. In most cases, this means that Unix programs work with plain text files that
don't contain "nonprintable" or "control" characters.

3. Ifno arguments are given, a program should read the standard input (usually the terminal
keyboard) and write the standard output (usually the terminal screen).

Programs that can be used in this way are often called filters.

One of the most important consequences of these guidelines is that programs can be strung together in
"pipelines" in which the output of one program is used as the input of another. A vertical bar ()
represents pipe and means "take the output of the program on the left and feed it into the program on
the right."

For example, you can pipe the output of a search program to another program that sorts the output, and
then pipe the result to the printer program or redirect it to a file (Section 43.1).

Not all Unix programs work together in this way. An interactive program like the Emacs editor
(Section 19.1) generally doesn't read from or write to pipes you'd create on the command line.
Instead, once the shell has started Emacs, the editor works inde pendently of the shell (Section 1.4),
reading its input and output directly from the terminal. And there are even exceptions to this
exception. A program like less (Section 12.3) can read its standard input from a pipe and still interact
with you at the keyboard. It does that by reading directly from your tty (Section 2.7).

— TOR

There Are Many Shells

With most operating systems, the command intepreter is built in; it is an integral part of the operating
system. With Unix, your command interpreter is just another program. Traditionally, a command
interpreter is called a "shell," perhaps because it protects you from the underlying kernel — or
because it protects the kernel from you!

In the early 1980s, the most common shells were the Bourne shell (s/4) and the C shell (csh). The
Bourne shell (Section 3.3) (named after its creator, Steve Bourne) came first. It was excellent for
shell programming (Section 1.8). But many Unix users (who were also writing programs in the C
language) wanted a more familiar programming syntax — as well as more features for interactive use.
So the C shell came from Berkeley as part of their Unix implementation. Soon (on systems that gave
you the choice, at least) csh was much more popular for interactive use than s/. The C shell had a lot
of nice features that weren't available in the original Bourne shell, including job control (Section
23.1) and history (Section 30.2). However, it wasn't hard for a shell programmer or an advanced
user to push the C shell to its limits.

The Korn shell (also named after its creator, David Korn) arrived in the mid-1980s. The &s#4 is
compatible with the Bourne shell, but has most of the C shell's features plus features like history
editing (Section 30.14), often called command-line editing. The Korn shell was available only with
a proprietary version of Unix, System V — but now a public-domain version named pdksh is widely
available.

These days, most original C shell users have probably switched to tcsh (pronounced "T-shell"). It has
all the features of csh and more — as well as fewer mis-features and outright bugs.

The "Bourne-again" shell, bash, is from the Free Software Foundation. It's fairly similar to the Korn
shell. It has most of the C shell's features, plus command-line editing and a built-in help command.
The programming syntax, though, is much more like the original Bourne shell — and many systems
(including Linux) use bash in place of the original Bourne shell (but still call it s/).

The Z shell, zsh, is an interesting hybrid. It tries to be compatible with most features of all the other
shells, with compatibility modes and a slew of options that turn off conflicting features. In its soul,
though, zsh has a different way of doing some things. It's been accused of feature creep. But zs/ users
love its flexibility.

There are other shells. If you're a fan of the Bell Labs research operating system named Plan 9
(actually, Plan 9 from Outer Space), you'll be happy to know that its shell, c, has been ported to
Unix. If you program in Tcl, you'll probably be familiar with zc/sh , which lets you intermix Unix
commands with Tcl commands. (And we can't forget wis/ , the shell that's a superset of tclsh: it uses
Tcl/Tk commands to let you build graphical interfaces as you go.) Least — but certainly not last — if
you're a minimalist who needs the original s/4, a newer shell named ash emulates the late-1980s
Bourne shell.

In this book, we try to be as generic as we can. Where we need to get specific, many examples are
shown in the style of both the Bourne shell and the C shell — for instance, we'll often show Bourne-
shell functions side-by-side with C-shell aliases. Because bash and ksh can read scripts written for
the original Bourne shell, we use original s/ syntax to make our shell programming as portable as

possible.

Where we talk about "the Bourne shell" or s, it's usually a safe bet that the information applies to
bash and ksh too. In the same way, "the C shell" generally also means zcsh.

—JP and ML

Which Shell Am I Running?

You can usually tell which family your shell belongs to by a character in the prompt it displays.
Bourne-type shells, such as bash , usually have $ in the prompt. The C shell uses ¢ (but tcsh users
often use >).

If your shell has superuser (Section 1.18) privileges, though, the prompt typically ends with a hash,
#.

To check the shell that runs automatically when you log in to Unix, type one of these commands (the
second is for systems that use NIS, Sun's Network Information Service, to manage network-wide
files):

% grep

yourloginname /etc/passwd
% ypmatch

yourloginname passwd

You should get back the contents of your entry in the system password file. For example:
shelleyp:*:1006:1006:Shelley Powers:/usr/home/shelleyp:/usr/local/bin/bash

The fields are separated by colons, and the default shell is usually specified in the last field.

Note that in Mac OS X, passwords are managed and stored in Netinfo by default. To store the
passwords in /etc/passwd, you'll need to configure this using Netinfo.

—TOR and SP

Anyone Can Program the Shell

One of the really wonderful things about the shell is that it doesn't just read and execute the commands
you type at a prompt. The shell is a complete programming language.

The ease of shell programming is one of the real highlights of Unix for novices. A shell program need
be no more than a single complex command line saved in a file — or a series of commands.

For example, let's say that you occasionally need to convert a Macintosh Microsoft Word file for use
on your Unix system. Word lets you save the file in ASCII format. But there's a catch: the Mac uses a
carriage return ASCII character 015 to mark the end of each line, while Unix uses a linefeed (ASCII

012). As a result, with Unix, the file looks like one long paragraph, with no end in sight.

That's easy to fix: the Unix tr (Section 21.11) command can convert every occurrence of one

character in a file to another:
bash-2.04$ tr '\015' '\012' <
file.mac
>

file.unix

But you're a novice, and you don't want to remember this particular piece of magic. Fine. Save the
first part of this command line in a file called mac2unix in your personal bin directory (Section 7.4):
tr '"\015'" '"\012'

Make the file executable with chmod (Section 50.5):

bash-2.04$ chmod +x mac2unix

Now you can say:

bash-2.04$ mac2unix <
file.mac
>

file.unix
But why settle for that? What if you want to convert a bunch of files at once? Easy. The shell includes

a general way of referring to arguments passed to a script and a number of looping constructs. The
script:

for Section 35.21, $x Section 35.9

for x
do

echo "Converting $x"
tr '\015"' '\012' < "$x" > "tmp.Sx"
mv "tmp.$x" "Sx"

done

will convert any number of files with one command, replacing each original with the converted
version:
bash-2.04$ mac2unix

filel file2 file3 ...
As you become more familiar with Unix, it quickly becomes apparent that doing just a little
homework can save hours of tedium. This script incorporates only two simple programming

constructs: the for loop and variable substitution (Section 35.9, Section 35.3).111 As a new user with
no programming experience, I learned these two constructs by example: I saved a skeleton for loop in
a file and simply filled in the blanks with whatever commands I wanted to repeat. Section 35.2 has
more about shell programming.

In short, Unix is sometimes difficult because it is so rich and complex. The user who doesn't want to
learn the complexity doesn't have to — the basic housekeeping commands are simple and
straightforward. But the user who wants to take the time to investigate the possibilities can uncover a
wealth of useful tools.

— TOR

(1 [Tim is keeping this article simple, as an illustration of how easy writing a shell program can be. If
you're writing this little script for general use, you can make it work like a filter (Section 1.5) by
adding four or five more lines of code: a case (Section 35.10) or if (Section 35.13) statement that
tests the number of command-line arguments. With no filename arguments, the script would simply run
tr '\015' '\012'.—JP]

Internal and External Commands

Some commands that you type are internal, which means they are built into the shell, and it's the shell
that performs the action. For example, the cd command is built-in. The /s command, on the other hand,
is an external program stored in the file /bin/Is.

The shell doesn't start a separate process to run internal commands. External commands require the
shell to fork and exec (Section 27.2) a new subprocess (Section 24.3); this takes some time,
especially on a busy system.

When you type the name of a command, the shell first checks to see if it is a built-in command and, if
so, executes it. If the command name is an absolute pathname (Section 1.16) beginning with /, like
/bin/ls, there is no problem: the command is likewise executed. If the command is neither built-in nor
specified with an absolute pathname, most shells (except the original Bourne shell) will check for
aliases (Section 29.2) or shell functions (Section 29.11), which may have been defined by the user
— often in a shell setup file (Section 3.3) that was read when the shell started. Most shells also
"remember" the location of external commands (Section 27.6); this saves a long hunt down the
search path. Finally, all shells look in the search path for an executable program or script with the
given name.

The search path is exactly what its name implies: a list of directories that the shell should look
through for a command whose name matches what is typed.

The search path isn't built into the shell; it's something you specify in your shell setup files.

By tradition, Unix system programs are kept in directories called /bin and /usr/bin, with additional
programs usually used only by system administrators in either /etc and /usr/etc or /sbin and /usr/sbin.
Many versions of Unix also have programs stored in /usr/uch (named after the University of
California at Berkeley, where many Unix programs were written). There may be other directories
containing programs. For example, the programs that make up the X Window System (Section 1.22)
are stored in /usr/bin/X1 1. Users or sites often also have their own directories where custom
commands and scripts are kept, such as /usr/local/bin or /opt.

The search path is stored in an environment variable (Section 35.3) called PATH (Section 35.6). A
typical PATH setting might look something like this:

PATH=/bin:/usr/bin:/usr/bin/X11:/usr/ucb:/home/tim/bin:

The path is searched in order, so if there are two commands with the same name, the one that is found
first in the path will be executed. For example, your system certainly has the /s command we
mentioned earlier — and it's probably in /bin/Is.

You can add new directories to your search path on the fly, but the path 1s usually set in shell setup
files.

— TOR

The Kernel and Daemons

If you have arrived at Unix via Windows 2000 or some other personal computer operating system,
you will notice some big differences. Unix was, is, and always will be a multiuser operating system.
It 1s a multiuser operating system even when you're the only person using it; it is a multiuser operating
system even when it is running on a PC with a single keyboard; and this fact has important
ramifications for everything that you do.

Why does this make a difference? Well, for one thing, you're never the only one using the system,
even when you think you are. Don't bother to look under your desk to see if there's an extra terminal
hidden down there. There isn't. But Unix is always doing things "behind your back," running programs
of its own, whether you are aware of it or not. The most important of these programs, the kernel, is
the heart of the Unix operating system itself. The kernel assigns memory to each of the programs that
are running, partitions time fairly so that each program can get its job done, handles all /O
(input/output) operations, and so on. Another important group of programs, called daemons, are the
system's "helpers." They run continuously — or from time to time — performing small but important
tasks like handling mail, running network communications, feeding data to your printer, keeping track
of the time, and so on.

Not only are you sharing the computer with the kernel and some mysterious daemons, you're also
sharing it with yourself. You can issue the ps x (Section 24.5) command to get a list of all processes
running on your system. For example:

PID TTY STAT TIME COMMAND
18034 tty2 S 0:00 -zsh
18059 2 :01 ssh-agent
18088 tty2 :00 sh /usr/X11R6/bin/startx
18096 tty2 :00 xinit /etc/X1l/xinit/xinitrc -- :0 -auth /home/Jjpeek/
18101 tty2 :00 /usr/bin/gnome-session
18123 tty2 :33 enlightenment -clientId default?
18127 tty2 :01 magicdev --sm-client-id=defaultl2
18141 tty2 :03 panel --sm-client-id default8
18145 tty2 :01 gmc --sm-client-id defaultlO
18166 2 :20 gnomepager applet --activate-goad-server gnomepager a
18172 tty2 :01 gnome-terminal
18174 tty2 :00 gnome-pty-helper

S
S
S
S
S
S
S
S
S
S
S
18175 pts/0 S :00 zsh
18202 tty2 S :49 gnome-terminal
18203 tty2 S
18204 pts/1 S
18427 pts/1 T
18428 pts/1 T
18430 pts/1 T
18914 pts/1 T
1263 pts/1 T
1511 pts/1 T
3363 pts/1 S
4844 tty2 S
4860 tty2 S
R

5055 pts/1

:00 gnome-pty-helper

:01 zsh

:00 man zshjp

:00 sh -c /bin/gunzip -c /home/jpeek/.man/catl/zshjp.l.gz
:03 /usr/bin/less -is

:02 vi upt3 changes.html

:00 vi urls.html

:00 less coding

:00 vi 1007.sgm

:24 /usr/lib/netscape/netscape-communicator -irix-session
:00 (dns helper)

:00 ps x

O O O O O O OO OO OO0 O0OO0OOH OOODOoOOoOOoOoOo

This output tells us that the user has only three windows open. You may think that they're only running
four or five programs, but the computer is actually doing a lot more. (And, to keep this brief, we
aren't showing all the lines of output!) The user logged into his Linux system on virtual console
(Section 23.12) 2, which shows as tty2 inthe TTYy column; a lot of programs are running there,
including the X Window System (Section 1.22) (which actually runs itself as another user — root —

so its process isn't listed here). The user is also running Gnome and Enlightenment, which keep track
of the workstation's display. Two of the windows are Gnome terminals, which are windows that act
like separate terminals; each has its own ##y, pts/0 and pts/1. And the list continues.

If you are running a different window system (or no window system at all) or different utility
programs, you will see something different. But we guarantee that you're running at least two
programs, and quite likely many more. If you want to see everything that's running, including the
daemons, type the command ps aux (Berkeley-style ps) or ps -e1 (for many other flavors of ps).
You'll be impressed.

Because there is so much going on at once, Unix requires a different way of thinking. The Unix kernel
is a traffic cop that mediates different demands for time, memory, disks, and so on. Not only does the
kernel need to run your programs, but it also needs to run the daemons, any programs that other users
might want to start, or any programs that you may have scheduled to run automatically, as discussed in
Chapter 23. When it runs a program, the kernel allocates a small slice of time — up to a second —
and lets the program run until that slice is used up or until the program decides to take a rest of its
own accord (this is called "sleeping"). At this point, regardless of whether the program is finished,
the kernel finds some other program to run. The Unix kernel never takes a vacation: it is always
watching over the system.

Once you understand that the kernel is a manager that schedules many different kinds of activity, you
understand a lot about how Unix works. For example, if you have used any computer system
previously, you know that it's a bad idea to turn the computer off while it is writing something to disk.
You will probably destroy the disk, and you could conceivably damage the disk drive. The same is
true for Unix — but with an important complication. Any of the programs that are running can start
doing something to the disk at any time. One of the daemons makes a point of accessing the disk drive
every 30 seconds or so, just to stay in touch. Therefore, you can't just turn a Unix computer off. You
might do all sorts of damage to the system's files — and not just your own, but conceivably files
belonging to many other users. To turn a Unix system off, you must first run a program called
shutdown, which kicks everyone off the system, makes sure that a daemon won't try to play with a
disk drive when you aren't looking, and runs a program named sync to make sure that the disks have
the latest version of everything. Only then is it safe to pull the switch. When you start up a Unix
system, it automatically runs a program called fsck , which stands for "filesystem check"; its job is to
find out if you shut down the system correctly and try to fix any damage that might have happened if
you didn't.

—ML and JP

Filenames

Like all operating systems, Unix files have names. (Unix directories, devices, and so on also have
filenames — and are treated like files (Section 1.19).) The names are words (sequences of
characters) that let you identify a file. Older versions of Unix had some restrictions on the length of a
filename (14 characters), but modern versions have removed these restrictions for all practical
purposes. Sooner or later you will run into a limit, but if so, you are probably being unnecessarily
verbose.

Technically, a filename can be made from almost any group of characters (including nonprinting

characters and numbers) except a slash (/). However, you should avoid filenames containing most

punctuation marks and all nonprinting characters. To be safe, limit your filenames to the following

characters:

Upper- and lowercase characters
Unix filenames are always case sensitive. That is, upper- and lowercase letters are always
different (unlike Microsoft Windows and others that consider upper- and lowercase letters the
same). Therefore, myfile and Myfile are different files. It is usually a bad idea to have files
whose names differ only in their capitalization, but that's your decision.

Underscores ()
Underscores are handy for separating "words" in a filename to make them more readable. For
example, my long filename is easier to read than mylongfilename.

Periods (.)
Periods are used by some programs (such as the C compiler) to separate filenames from
filename extensions (Section 1.12). Extensions are used by these programs to recognize the
type of file to be processed, but they are not treated specially by the shell, the kernel, or other
Unix programs.
Filenames that begin with a period are treated specially by the shell: wildcards won't match
(Section 1.13) them unless you include the period (like . x). The s command, which lists your
files, ignores files whose names begin with a period unless you give it a special option (Is -a
(Section 8.9)). Special configuration files are often "hidden" in directories by beginning their
names with a period.

Certain other punctuation
About the only other punctuation mark that is always safe 1s the comma (,), although it isn't part
of the POSIX-portable character set.

I'm so dead-set against using weird, nonprinting characters in filenames that I won't even tell you how
to do it. I will give you some special techniques for deleting files with weird names (Section
14.11), though, in case you create some by accident.

Some things to be aware of:

e Unix does not have any concept of a file version. There are some revision control programs
(Section 39.4) that implement their own notion of a version, but there is nothing built into the
operating system that handles this for you. If you are editing a file, don't count on Unix to save
your previous versions — you can program this (Section 35.16, Section 18.14) though, if you
want to; the GNU Emacs editor also makes backups (Section 19.4).

e Once you delete a file in Unix, it is gone forever (Section 14.3). You can't get it back without
restoring it from a backup. So be careful when you delete files. Later, we'll show you programs
that will give you a "grace period" between the time you delete a file and the time it actually

disappears.

— ML

Filename Extensions

In Microsoft Windows and some other operating systems, filenames often have the form
name.extension. For example, plain text files have extensions such as .#x¢. The operating system
treats the extension as separate from the filename and has rules about how long it must be, and so

forth.

Unix doesn't have any special rules about extensions. The dot has no special meaning as a separator,
and extensions can be any length. However, a number of programs (especially compilers) make use of
extensions to recognize the different types of files they work with. In addition, there are a number of
conventions that users have adopted to make clear the contents of their files. For example, you might

name a text file containing some design notes notes. txt.

Table 1-1 lists some of the filename extensions you might see and a brief description of the programs

that recognize them.

Table 1-1. Filename extensions that programs expect

Extension (Description

a Archive file (library)

.C C program source file

1 FORTRAN program source file

.F FORTRAN program source file to preprocess
&z gzip ped file (Section 15.6)

h C program header file

html or .htm|HTML file for web servers

xhtml XHTML file for web servers

.0 Object file (compiled and assembled code)
S Assembly language code

Z Packed file

Z Compressed file Section 15.6)

1t0.8 Online manual (Section 2.1) source file

~ Emacs editor backup file (Section 19.4)

In Table 1-2 are some extensions often used by users to signal the contents of a file, but are not

actually recognized by the programs themselves.

Table 1-2. Filename extensions for user's benefit

Extension |Description

tar tar archive (Section 39.2)

tar.gz or .tgzlezip ped (Section 15.6) tar archive (Section 39.2)
.shar Shell archive

.sh Bourne shell script (Section 1.8)

.csh C shell script

.mm Text file containing ¢roff's mm macros

.ms Text file containing ¢roff's ms macros

.ps PostScript source file

pdf Adobe Portable Document Format

—ML and TOR

Wildcards

The shells provide a number of wildcards that you can use to abbreviate filenames or refer to groups
of files. For example, let's say you want to delete all filenames ending in .£xt in the current directory
(Section 1.16). You could delete these files one by one, but that would be boring if there were only 5
and very boring if there were 100. Instead, you can use a wildcarded name to say, "I want all files
whose names end with .#xt, regardless of what the first part is." The wildcard is the "regardless" part.
Like a wildcard in a poker game, a wildcard in a filename can have any value.

The wildcard you see most often is * (an asterisk), but we'll start with something simpler: 2 (a
question mark). When it appears in a filename, the » matches any single character. For example,
letter? refers to any filename that begins with lefter and has exactly one character after that. This
would include letterA, letterl, as well as filenames with a nonprinting character as their last letter,
such as letter"C.

The * wildcard matches any character or group of zero or more characters. For example, * . txt
matches all files whose names end with .zx¢; c* matches all files whose names start with ¢; c*b*
matches names starting with ¢ and containing at least one b; and so on.

The » and » wildcards are sufficient for 90 percent of the situations that you will find. However,
there are some situations that they can't handle. For example, you may want to list files whose names
end with .#xt, mail, or let. There's no way to do this with a single *; it won't let you exclude the files
you don't want. In this situation, use a separate * with each filename ending:

*.txt *mail *let

Sometimes you need to match a particular group of characters. For example, you may want to list all
filenames that begin with digits or all filenames that begin with uppercase letters. Let's assume that
you want to work with the files program.n, where n is a single-digit number. Use the filename:
program. [0123456789]

In other words, the wildcard [character-1ist] matches any single character that appears in the
list. The character list can be any group of ASCII characters; however, if they are consecutive (e.g.,
A-Z, a-z, 0-9, or 3-5, for that matter), you can use a hyphen as shorthand for the range. For example,
[a-zA-7] means any alphabetic English character.

There is one exception to these wildcarding rules. Wildcards never match /, which is both the name
of the filesystem root (Section 1.14) and the character used to separate directory names in a path
(Section 1.16). The only way to match on this character is to escape it using the backslash character (
\). However, you'll find it difficult to use the forward slash within a filename anyway (the system
will keep trying to use it as a directory command).

If you are new to computers, you probably will catch on to Unix wildcarding quickly. If you have
used any other computer system, you have to watch out for one important detail. Virtually all
computer systems except for Unix consider a period (.) a special character within a filename. Many
operating systems even require a filename to have a period in it. With these operating systems, a *
does not match a period; you have to say = . =. Therefore, the equivalent of rm * does virtually
nothing on some operating systems. Under Unix, it is dangerous: it means "delete all the files in the
current directory, regardless of their name." You only want to give this command when you really
mean it.

But here's the exception to the exception. The shells and the /s command consider a . special ifit is
the first character of a filename. This is often used to hide initialization files and other files with
which you aren't normally concerned; the /s command doesn't show these files unless you ask
(Section 8.9) for them. If a file's name begins with ., you always have to type the . explicitly. For
example, . *rc matches all files whose names begin with . and end with rc. This is a common
convention for the names of Unix initialization files.

Table 1-3 has a summary of common wildcards.

Table 1-3. Common shell wildcards

Wildcard| Matches
? Any single character
* Any group of zero or more characters

[ab] Either a or b

[a-Z] Any character between a and z, inclusive

Wildcards can be used at any point or points within a path. Remember, wildcards only match names
that already exist. You can't use them to create new files (Section 28.3) — though many shells have
curly braces ({}) for doing that. Section 33.3 explains how wildcards are handled, and Section 33.2
has more about wildcards, including specialized wildcards in each of the shells.

— ML

The Tree Structure of the Filesystem

A multiuser system needs a way to let different users have different files with the same name. It also
needs a way to keep files in logical groups. With thousands of system files and hundreds of files per
user, it would be disastrous to have all of the files in one big heap. Even single-user operating
systems have found it necessary to go beyond "flat" filesystem structures.

Almost every operating system solved this problem by implementing a tree-structured, or
hierarchical, filesystem. Unix is no exception. A hierarchical filesystem is not much different from a
set of filing cabinets at the office. Your set of cabinets consists of many individual cabinets. Each
individual cabinet has several drawers; each drawer may have several partitions in it; each partition
may have several hanging (Pendaflex) folders; and each hanging folder may have several files. You
can specify an individual file by naming the filing cabinet, the drawer, the partition, the group of
folders, and the individual folder. For example, you might say to someone: "Get me the ‘meeting of
July 9' file from the Kaiser folder in the Medical Insurance Plans partition in the Benefits drawer of
the Personnel file cabinet." This 1s backwards from the way you'd specify a filename, because it starts
with the most specific part, but the idea 1s essentially the same.

You could give a complete path like this to any file in any of your cabinets, as shown in Figure 1-2.
The concept of a "path" lets you distinguish your July 9 meeting with Kaiser from your July 9
interview with a job applicant or your July 9 policy-planning meeting. It also lets you keep related
topics together: it's easy to browse through the "Medical Insurance" section of one drawer or to scan
all your literature and notes about the Kaiser plan. The Unix filesystem works in exactly the same way
(as do most other hierarchical filesystems). Rather than having a heap of assorted files, files are
organized into directories. A directory is really nothing more than a special kind of file that lists a
bunch of other files (see Section 10.2). A directory can contain any number of files (although for
performance reasons, it's a good idea to keep the number of files in one directory relatively small —
under 100, when you can). A directory can also contain other directories. Because a directory is
nothing more than a special kind of file, directories also have names. At the top (the filesystem "tree'
is really upside down) is a directory called the "root," which has the special name / (pronounced
"slash," but never spelled out).

'

Document
Falder
i Pendafiex

Section

- — Cabingt

Drawer

Cabinet

least specific 1o
MEa! speciic

Figure 1-2. A hierarchical filesystem

To locate any file, we can give a sequence of names, starting from the filesystem's root, that shows the
file's exact position in the filesystem: we start with the root and then list the directories you go
through to find the file, separating them by slashes. This is called a path. For examples, let's look at
the simple filesystem represented by Figure 1-3. The names /home/mkl/mystuff/stuff and
/home/hun/publick/stuff both refer to files named stuff. However, these files are in different
directories, so they are different files. The names home, hun, and so on are all names of directories.
Complete paths like these are called "absolute paths." There are shorter ways to refer to a file:
relative paths (Section 1.16).

— ML

II' iroot directory)

| local || bin || uch | | mkl | I hun || othar [
[myswtt | | private | | nisstut | | pubiick |
- directary

Figure 1-3. A Unix filesystem tree

Your Home Directory

Microsoft Windows and the Mac OS have hierarchical filesystems (Section 1.14), much like those
in Unix and other large systems. But there is an important difference. On many Windows and Mac
systems, you start right at the "root" of the filesystem tree. In effect, you start with a blank slate and
create subdirectories to organize your files.

A Unix system comes with an enormous filesystem tree already developed. When you log in, you start
somewhere down in that tree, in a directory created for you by the system administrator (who may
even be yourself, if you are administering your own system).

This directory — the one place in the filesystem that is your very own, to store your files (especially
the shell setup files (Section 3.3) and re files (Section 3.20) that you use to customize the rest of your
environment) — is called your home directory.

Home directories were originally stored in a directory called /usr (and still are on some systems),
but are now often stored in other directories, such as /home. Within the Linux Filesystem Hierarchy
Standard (FHS), the home directory is always at /home, as configuration files are always in /efc and
SO on.

To change your current directory (Section 1.16) to your home, type cd with no pathname; the shell
will assume you mean your home directory.

Within the Mac OS X environment, some is in the /Users/username directory by default.
— TOR

Making Pathnames

Pathnames locate a file (or directory, or any other object) in the Unix filesystem. As you read this
article, refer to Figure 1-4. It's a diagram of a (very) small part of a Unix filesystem.

E (root directory)

- elirectony
=] []
hiome

I uch Il bin | | gina I

| i || bin | Crextie) Crexttite) | notes | | sre | | work |

Figure 1-4. Part of a Unix filesystem tree

Whenever you are using Unix, you have a current directory. By default, Unix looks for any mentioned
files or directories within the current directory. That is, if you don't give an absolute pathname
(Section 1.14) (starting from the root, /), Unix tries to look up files relative to the current directory.
When you first log in, your current directory is your home directory (Section 1.15), which the system
administrator will assign to you. It typically has a name like /u/mike or /home/mike. You can change
your current directory by giving the cd command, followed by the name of a new directory (for
example, cd /usr/bin). You can find out your current directory by giving the pwd ("print working
directory") command.

If your current directory is /home/mike and you give the command cat textfile, youare asking
Unix to locate the file textfile within the directory /home/mike. This is equivalent to the absolute path
/home/mike/textfile. If you give the command cat notes/textfile, youare asking Unix to locate
the file textfile within the directory notes, within the current directory /home/mike.

A number of abbreviations help you to form relative pathnames more conveniently. You can use the
abbreviation . (dot) to refer to the current working directory. You can use .. (dot dot) to refer to the
parent of the current working directory. For example, if your current directory is /home/mike,
/textfile 1s the same as textfile, which is the same as /home/mike/textfile. The relative path
../gina/textfile 1s the same as /home/gina/textfile; . . moves up one level from /home/mike (to
/home) and then searches for the directory gina and the file textfile.

You can use either the abbreviation ~ (tilde) or the environment variables $HOME or $1L.OGDIR, to refer
to your home directory. In most shells, ~ name refers to the home directory of the user name. See
Section 31.11.

Here's a summary of the rules that Unix uses to interpret paths:
If the pathname begins with /
It is an absolute path, starting from the root.

If the pathname begins with ~ or with ~ name
Most shells turn it into an absolute pathname starting at your home directory (~) or at the home

directory of the user name (~ name).

If the pathname does not begin with a /
The pathname is relative to the current directory. Two relative special cases use entries that are

in every Unix directory:

1. Ifthe pathname begins with . /, the path is relative to the current directory, e.g., ./textfile,
though this can also execute the file if it is given executable file permissions.

2. If the pathname begins with . . /, the path is relative to the parent of the current directory.
For example, if your current directory is /home/mike/work, then ../src means
/home/mike/src.

Section 10.2 explains where . and .. come from.

Note

The . and . . may appear atany point within a path. They mean "the current directory at this point in the path" and "the parent of the current directory at this point in the path." You commonly see paths starting with . . /. . / (or more) to
refer to the grandparent or great-grandparent of the current directory. However, they can appear at other places in a pathname as well. For example, /usr/ucb/./bin is the same as /usr/ucb/bin, and /usr/ucb/bin/./lib is the same as /usr/ucb/lib.
Placing . or . . in the middle of a path may be helpful in building paths within shell scripts, but I have never seen them used in any other useful way.

—ML and JP

File Access Permissions

Under Unix, access to files is based on the concept of users and groups.

Every "user" on a system has a unique account with a unique login name and a unique UID (Section
24.3) (user ID number). It 1s possible, and sometimes convenient, to create accounts that are shared
by groups of people. For example, in a transaction-processing application, all of the order-entry
personnel might be assigned a common login name (as far as Unix is concerned, they only count as
one user). In a research and development environment, certain administrative operations might be
easier if members of a team shared the same account, in addition to having their own accounts.
However, in most situations each person using the system has one and only one user ID, and vice
versa.

Every user may be a member of one or more "groups."!2! The user's entry in the master password file
(/etc/passwd (Section 22.3)) defines his "primary group membership." The /etc/group (Section 49.6)
file defines the groups that are available and can also assign other users to these groups as needed.
For example, I am a member of three groups: staff, editors, and research. My primary group is staff;
the group file says that [am also a member of the editors and research groups. We call editors and
research my "secondary groups." The system administrator is responsible for maintaining the group
and passwd files. You don't need to worry about them unless you're administering your own system.

Every file belongs to one user and one group. When a file is first created, its owner is the user who
created it; its group is the user's primary group or the group of the directory in which it's created. For
example, all files I create are owned by the user mikel and the group staff. As the file's owner, [am
allowed to use the chgrp command to change the file's group. On filesystems that don't have quotas
(Section 15.11), I can also use the chown command to change the file's owner. (To change ownership
on systems with quotas, see Section 50.15.) For example, to change the file data so that it is owned

by the user george and the group others, I give the commands:

% chgrp others data
% chown george data

Warning

If you need to change both owner and group, change the group first! You won't have permission to change the group after you aren't the owner.

Some versions of chown can change both owner and group at the same time:

% chown george.others data

File access is based on a file's user and group ownership and a set of access bits (commonly called
the mode bits). When you try to access a file, you are put into one of three classes. You are either the
file's owner, a member of the file's group, or an "other." Three bits then determine whether you are
allowed to read, write, or execute the file. So, as Figure 1-1 shows, there are a total of nine mode bits
(three for each class) that set the basic access permissions.

— ML

(2] Tn most newer Unix systems, users have the access privileges of all groups to which they belong,

all at the same time. In other Unix systems, you use a command like newgrp (Section 48.6) to change
the group to which you currently belong. Your system may even support both methods.

The Superuser (Root)

In general, a process (Section 24.1) is a program that's running: a shell, the /s command, the vi editor,
and so on. In order to Kill a process (Section 24.12), change its priority (Section 26.5), or
manipulate it in any other way, you have to be the process' owner (i.e., the user who started it). In
order to delete a job from a print queue (Section 45.1), you must be the user who started it.

As you might guess, there needs to be a way to circumvent all of this security. Someone has to be able
to kill runaway programs, modify the system's files, and so on. Under Unix, a special user known as
root (and commonly called the "superuser") is allowed to do anything,

To become the superuser, you can either log in as root or use the su (Section 49.9) command. In this
book, though, we'll assume that you don't have the superuser password. Almost all of what we
describe can be done without becoming superuser.

— ML

When Is a File Not a File?

Unix differs from most operating systems in that it is file oriented. The designers of Unix decided that
they could make the operating system much simpler if they treated everything as if it were a file. As
far as Unix is concerned, disk drives, terminals, modems, network connections, etc. are all just files.
Recent versions of Unix (such as Linux) have gone further: files can be pipes (FIFOs) (Section
43.11) and processes are files (Section 24.9). Like waves and particles in quantum physics, the
boundary between files and the rest of the world can be extremely fine: whether you consider a disk a
piece of hardware or a special kind of file depends primarily on your perspective and what you want
to do with it.

Therefore, to understand Unix, you have to understand what files are. A file is nothing more than a
stream of bytes — that is, an arbitrarily long string of bytes with no special structure. There are no
special file structures and only a few special file types (for keeping track of disks and a few other
purposes). The structure of any file is defined by the programs that use it, not by the Unix operating
system.[3] You may hear users talk about file headers and so on, but these are defined by the
applications that use the files, not by the Unix filesystem itself.

Unix programs do abide by one convention, however. Text files use a single newline character
(linefeed) between lines of text, rather than the carriage return-linefeed combination used in
Microsoft Windows or the carriage returns used in the Macintosh. This difference may cause
problems when you bring files from other operating systems over to Unix. Windows files will often
be littered with carriage returns (Ctrl-M), which are necessary for that operating system but
superfluous for Unix. These carriage returns will look ugly if you try to edit or print the file and may
confuse some Unix programs. Mac text files will appear to be one long line with no breaks. Of
course, you can use Unix utilities to convert Mac and Windows files for Unix.

— ML

[3] Many executable files — programs — begin with a magic number. This is a special two-byte-long
sequence that tells the kernel how to execute the file.

Scripting

Scripting languages and scripting applications differ from compiled languages and applications in that
the application is interpreted as run rather than compiled into a machine-understandable format. You
can use shell scripting for many of your scripting needs, but there are times when you'll want to use
something more sophisticated. Though not directly a part of a Unix system, most Unix installations
come with the tools you need for this more complex scripting — Perl (Chapter 41), Python (Chapter
42), and Tcl.

These three scripting languages seem so prevelant within the Unix world that I think of them as the
Unix Scripting Language Triumvirate. .

Perl is probably the granddaddy of scripting. Created by Larry Wall, this language is probably used
more than any other for creating complex scripts to perform sophisticated functionality with Unix and
other operating systems. The language is particularly noted for its ability to handle regular
expressions, as well as working with files and other forms of I/O.

Python isn't as widespread as Perl, but its popularity is growing. One reason it's gaining popularity is
that as a language, Python is more structured and a little more verbose than Perl, and therefore a little
easier to read. In addition, according to its fans, Python has more object-oriented and data-
manipulation features than the file-manipulation and regular-expression manipulation of Perl.

Tcl 1s particularly prevalent within Linux systems, though its use is widespread throughout all Unix
systems. It's popular because it's simpler to learn than Perl and allows scripters to get up to speed
more quickly than you can with Perl or Python. In addition, the language also has access to a very
popular graphical user interface library called the Tk toolkit. You'll rarely hear about Tcl without the
associated Tk.

—TOR and SP

Unix Networking and Communications

Generally speaking, a network lets two or more computers communicate and work together. Partly
because of the open design of Unix, a lot of networking development has been done in this operating
system. Just as there are different versions of Unix, there are different ways and programs to use
networks from Unix.

There's an entire chapter devoted to Connectivity (Chapter 46), but for now, here's a quick review of

the major networking components.

The Internet
The Internet is a worldwide network of computers. Internet users can transfer files, log into other
computers, and use a wide range of programs and services.

WWw
The World Wide Web is a set of information servers on the Internet. The servers are linked into
a hypertext web of documents, graphics, sound, and more. Point-and-click browser programs
turn that hypertext into an easy-to-use Internet interface. (For many people, the Web is the
Internet. But Unix lets you do much more.)

mail
A Unix facility that's been around for years, long before networking was common, is electronic
mail. Users can send electronic memos, usually called email messages, between themselves.
When you send email, your message waits for the other user to start his own mail program.
System programs can send you mail to tell you about problems or give you information. You can
send mail to programs, asking them for information. Worldwide mailing lists connect users into
discussion groups.

fip
The ftp program is one way to transfer files between your computer and another computer with
TCP/IP, often over the Internet network, using the File Transfer Protocol (FTP).

UUCP
Unix-to-Unix Copy is a family of programs (uucp, uux, uulog, and others) for transferring files
and email between computers. UUCP is usually used with modems over telephone lines and has
been mostly superceded by Internet-type connections.

Usenet
Usenet isn't exactly a network. It's a collection of hundreds of thousands (millions?) of
computers worldwide that exchange files called news articles. This "net news" system has
thousands of interactive discussion groups — electronic bulletin boards — for discussing
everything from technical topics to erotic art.

telnet
This utility logs you into a remote computer over a network (such as the Internet) using TCP/IP.
You can work on the remote computer as if it were your local computer. The telnet program is
available on many operating systems; te/net can log you into other operating systems from your
Unix host and vice versa.

rsh
This starts a "remote shell" to run a command on a remote system without needing to log in
interactively. If you don't give a command, rs/ acts like rlogin. This is often used to start remote
X Window System (Section 1.22) programs whose display opens on your local system. Section

6.10 has examples — as well as details on problems you can have running rsh for any

application.

ssh
ssh acts like rsh (and rlogin), but it makes a secure encrypted connection to the remote
computer. It also can encrypt X Window System (Section 1.22) connections, as well as other
types of connections, between hosts. The utility ssh-agent allows remote logins without typing a
passphrase. We've included an entire chapter on ss/ (Chapter 51).

rcp
This 1s a "remote cp" program for copying files between computers. It has the same command-
line syntax as cp except that hostnames are added to the remote pathnames.

scp

This is a secure version of rcp that uses the ssh protocol. ssh-agent works here, too.

NFS
NFS isn't a user utility. The Network FileSystem and related packages like NIS (the Network
Information Service) let your system administrator mount remote computers' filesystems onto
your local computer. You can use the remote filesystem as easily as if it were on your local

computer.

write
This sends messsages to another user's screen. Two users can have a discussion with write.

talk
A more sophisticated program than write, talk splits the screen into two pieces and lets users
type at the same time if they wish. talk can be used over networks, though not all versions of talk
can talk to one another.

irc

Internet Relay Chat allows multiple users to carry on multiple discussions across the Internet and
other networks. One popular IRC client is irc.

—JP

The X Window System

In 1988, an organization called the MIT (Massachusetts Institute of Technology) X Consortium was
formed to promote and develop a vendor-neutral windowing system called the X Window System. (It
was called "X" because it was a follow-on to a window system called "W" that was developed at
Stanford University.) The organization eventually moved away from MIT and became known as the X
Consortium. The XFree86 Project, Inc. is another major group developing X; they produce a freely
redistributable version that's used on Linux and other Unix-like systems such as Darwin.

A window system is a way of dividing up the large screen of a workstation into multiple virtual
terminals, or windows. Each window can interact with a separate application program — or a single
application can have many windows. While the "big win" is to have applications with point-and-click
mouse-driven user interfaces, one of the most common applications is still a simple terminal emulator
(xterm (Section 5.9)). X thus allows a workstation to display multiple simultaneous terminal

sessions — which makes many of the standard Unix multitasking features such as job control less
important because programs can all be running in the foreground in separate windows. X also runs on
many kinds of hardware, and it lets you run a program on a remote computer (across a network) while
the program's windows are displayed on your local system. Because Unix systems also run on many
kinds of hardware, this makes X a good match for Unix.

Unix boxes are, by default, character-based systems. GUI Communication with Unixsystems are
added to facilitate ease of use, as well as to provide access to a great number of sophisticated
applications. The Mac OS X, though, is already a GUI, built on the BSD-based Unix environment,
Darwin.

Though Darwin doesn't come with the X Window System, versions of X are available for Mac OS
X..

—TOR and JP

Chapter 2. Getting Help

The man Command

The Unix operating system was one of the first to include online documentation. It's not the best in the
world — most users who haven't internalized the manual set curse it once a week — but it has proven
surprisingly resilient. What's particularly interesting about Unix's online documentation is that, unlike
other early help systems, it isn't an adjunct to another set of printed documentation that contains the
"real" truth. The online manual is complete, authoritative, and usually more current than any printed
documentation.

The basis for Unix's online documentation is the man command. Most simply, you use it as follows:
% man

topic
where topic is usually the name of some command; but it can also be the name of a system call, a
library routine, an I/O device, or an administrative file (or file type). The output from man is usually
sent to a pager like more, which allows you to page through the results.

There are several command-line options for the man command that can differ based on system. For
instance, to look at a command within a specific section, on a System V machine use the -s "section"
option, with the following format:

% man

section topic
% man -s

section topic

For example, if you want to read documentation about the /etc/passwd file (rather than the passwd
command) on a System V machine, give the command:

% man -s 4 passwd

This is an easy way to distinguish between topics with the same name, but in different sections. For
other Unix systems, such as FreeBSD, the option to search a section could be something different,
such as -s.

Another useful command-line option is the -k option, which is equivalent to the apropos command.
This option searches database files for matches of a given keyword, returning the results. This is
particularly helpful in finding commands that contain a specific keyword if you're not quite sure what
the command is.

Your system may have a configuration file for man named /etc/man.config. If it does, reading it will
show you the directories in which manpages are stored, the order in which manpages are searched by
default, and more. Even if you don't have an /etc/man.config file, your man command may understand
the MANPATH (Section 3.21) environment variable, a list of where man should search. You can set
your own MANPATH, for example, to show manpages for local versions of commands before
standard versions with the same name.

Your system may also have a different manual page system: info (Section 2.9).

—ML and JP

whatis: One-Line Command Summaries

whatis 1s almost identical to apropos or the use of man -k (Section 2.1), but it requires a command
name as an argument — rather than an arbitrary string. Why is this useful? Well, let's say you forget
what cat (Section 12.2) does. On my system, apropos cat gives you several screenfuls of output. You
may not want to read the entire manual page. But whatis cat gives you a nice one-line summary:

% whatis cat

cat (1V) - concatenate and display

The whatis command is equivalent to man - £ on most systems.

Before running whatis the first time on your system — particularly if you're running a standalone
machine using FreeBSD, Linux, or Darwin — you'll want to run the makewhatis at
/usr/libexec/makewhatis, which creates the whatis database by scanning the command names from
the existing manpages.

— ML

whereis: Finding Where a Command Is Located

The whereis command helps you to locate the executable file, source code, and manual pages for a
program. I use it primarily as a sanity check; if I type cat useless.txt and get the message "cat:
command not found," I immediately try whereis cat. This gives me a lot of information about what
went wrong: someone may have removed cat (Section 12.2) from the system, or my PATH (Section
35.6) environment variable may be set incorrectly, etc.

Output from whereis typically looks like this:

% whereis cat
cat: /bin/cat /usr/share/man/manl/cat.l.gz

This says that the executable file is /bin/cat and the manual page 1s /usr/share/man/manl/cat.1.gz.
whereis has a few options worth mentioning:
-b

Only report the executable name

Only report the location of the manual page

Only search for source files

Only issue a report if any of the requested information (executable, manual page, source) is

missing
There are other options for modifying the list of directories through which whereis searches; if you
need these, check your manual pages. In addition, the functionality and flags for whereis can differ
between versions of Unix. For instance, much of the basic functionality of the command was removed

in version 4.4 of FreeBSD as well as Darwin. Again, the manual pages will show you this
information.

—ML and SP

Searching Online Manual Pages

When the other techniques in this chapter don't find the information you want, you can try searching
the online manual page (Section 2.1) files. You'll probably have to wade through a lot of stuff that
you don't want to see, but this method can work when nothing else does. As an example, you
remember that there's some command for chopping columns out of a file. You try man -x or apropos,
but it only mentions colrm and pr, and those aren't what you want. You'll usually be able to narrow
your search to one or two manual page sections (Section 2.1); here, you know that user commands
are in section 1. So you go to the manual pages and do a case-insensitive search through all the files
for "column" or "chop":

% cd /usr/man/manl

% egrep -i 'column|chop' *

awk.l:Add up first column, print sum and average:

colrm.l:colrm \- remove characters from specified columns within each line

cut.1l:.IX cut "" "\fIcut\fP \(em remove columns from file"

It's cut ! Notice that awk also handles columns, but apropos doesn't say so.

(I cheated on that example: there were other ways to find cut — using the synonym apropos field
instead of apropos column, for instance. But this method does work in tougher cases.) To search the
manual page files, you'll need to know where they're stored. There are lots of possibilities. If your
system has an /etc/man.config file, it'll probably tell you. Otherwise, the directories /usr/man or
/usr/share/man are good places to look. If the command is local, try /usr/local/man and maybe /opt
(a big tree where find (Section 9.4) can help). If your system has fast find or locate (Section 9.18),
try searching for man or */manx.

Your manpage files may be compressed (Section 15.6). In that case, use grep (Section 13.2) with the
-7 option, grep -Z%.

You'll probably find subdirectories with names like manl, man2, . . . and/or catl, cat2, . . . Directory
names like manN will have unformatted source files for section N; the catN directories have
formatted source files. Or you may just find files named command.N, where N is I for section 1, 2 for
section 2, and so on.

There are two types of manpage files: unformatted (shown in Section 3.22) and formatted. The
unformatted pages are easier to search because none of the words will have embedded backspace
characters. The previous example shows how. The unformatted pages have nroff commands and
macros in them, though, which can make searching and reading tougher.

To search formatted pages, you'll want to strip the embedded backspace characters. Otherwise, grep
might miss the word you want because it was boldfaced or underlined — with backspaces in it. In the
following example, a shell loop (Section 28.9) applies a series of commands to each file. First, co/ -b
removes the overstriking. grep does a search (case insensitive, as before). Because grep is reading
its standard input, it doesn't know the filename, so a little sed command adds the name to the start of
every line grep outputs.

$ ed /usr/man/catl

* Section 1.13

S for file in *

> do col -b < $file | grep -i column | sed "s/*/${file}:/"

> done
awk.1: Add up first column, print sum and average:
cut.l: Use cut to cut out columns from a table or fields from each

If your manpage files are compressed, replace col -b < $file with:

zcat $file | col -b

In Bourne shells, you can pipe the output of the loop to a pager (like less (Section 12.3)) to see the
output a screenful at a time and quit (with g) when you're done. To do that, change the last line of the
for loop to:

done | less

—JP

How Unix Systems Remember Their Names

Each computer on a network needs a name. On many Unix versions, the uname -n command shows
you this name. On some systems, the command Ahostname or uuname -1 (two us, lowercase L) may be
what you want. If you use more than one system, the hostname is great to use in a shell prompt — or
any time you forget where you're logged in.

—JP

Which Version Am I Using?

Your system may have several versions of a particular command — for instance, a BSD-compatible
version in one directory and a System V-compatible version somewhere else (and you might have
added a private version in your own bin directory (Section 7.4)). Which command you'll get
depends on your PATH (Section 35.6) environment variable. It's often essential to know which

version you're using. For example:

S type sort
sort is /bin/sort

tells me exactly which version of the sorf program I'm using. (On one system I've used, there were
two sorts; | had also defined an alias for sort.) If I want to see all versions, bash supports a -a11
option:

$ type -all sort

sort is aliased to "TMPDIR=/var/tmp /bin/sort’'

sort is /bin/sort
sort is /usr/S5bin/sort

A similar command is whence .

But type and whence are built into shells and are also Unix-version dependent (not all Unix systems
have them), so they won't work everywhere. The which command is usually external (Section 1.9),
so it works everywhere — although, because it isn't built into the shells, it can't always find out about
aliases defined in your current shell. For example:

% which sort

/usr/bin/sort

You'll find that which comes in handy in lots of other situations. I find that I'm always using which
inside of backquotes to get a precise path. (whence and type may print extra text.) For example, when
I was writing these articles, I started wondering whether or not man, apropos, and whatis were really
the same executable. It's a simple question, but one I had never bothered to think about. There's one
good way to find out:

% 1s -1i “which man" “which apropos”® “which whatis"

102352 -rwxr-xr-x 3 root 24576 Feb 8 2001 /usr/ucb/apropos
102352 -rwxr-xr-x 3 root 24576 Feb 8 2001 /usr/ucb/man
102352 -rwxr-xr-x 3 root 24576 Feb 8 2001 /usr/ucb/whatis

What does this tell us? Well, within this system the three commands have the same file size, which
means that they're likely to be identical; furthermore, each file has three links, meaning that each file
has three names. The -1 option confirms it; all three files have the same i-number. So, apropos, man,
and whatis are just one executable file that has three hard links.

However, running the same command in another environment, such as in Darwin, results in a different

output:

117804 -r-xr-xr-x 1 root wheel 14332 sep 2 2001 /usr/bin/apropos
117807 -r-xr-xr-x 1 root wheel 19020 sep 2 2001 /usr/bin/man
117808 -r-xr-xr-x 1 root wheel 14336 sep 2 2001 /usr/bin/whatis

In Darwin, the commands are separate entities.
A few System V implementations don't have a which command.
—ML, JP, MAL, and SP

What tty Am I On?

Each login session has its own tty (Section 24.6) — a Unix device file that handles input and output
for your terminal, window, etc. Each tty has its own filename. If you're logged on more than once and
other users want to write or talk (Section 1.21) to you, they need to know which tty to use. If you
have processes running on several ttys, you can tell which process 1s where.

To do that, run the ##y command at a shell prompt in the window:
% tty
/dev/tty07

You can tell other users to type write your-username tty07.

Most systems have different kinds of ttys: a few dialup terminals, some network ports for rlogin and

telnet, etc. (Section 1.21). A system file like /etc/ttys lists which ttys are used for what. You can use
this to make your login setup more automatic. For example, most network terminals on our computers
have names like /dev/ttyp x Or /dev/pts/ x, Where x 1s a single digit or letter. [have a test in my

Jogout file (Section 4.17) that clears the screen on all ttys except network:

Clear screen non-network ttys:

* Section 28.14

if ("Ttty " !~ /dev/ttyp?) then
clear
endif

(Of course, you don't need to clear the terminal screen if you're using an xterm window that you close
when you log out.)

—JP

Who's On?

The who command lists the users logged on to the system now. Here's an example of the output on my

system:
% who
naylor ttyzl

hal ttyp0
pmui ttypl
Jjpeek ttyp2
hal ttyp3

Nov
Oct
Nov
Nov
Oct

:25
:04
:21
:08
143

zebra.ora.com:0.)
dud.ora.com:0.0)
Jjpeek.com)
zebra.ora.com:0.)

(
(
(
(

Each line shows a different terminal or window. The columns show the username logged on, the tty
(Section 2.7) number, the login time, and, if the user is coming in via a network (Section 1.21), you'll
see their location (in parentheses). The user Aal is logged on twice, for instance.

It's handy to search the output of who with grep (Section 13.1) — especially on systems with a lot of

users. For example:
% who | grep "“hal "

-v Section 13.3

% who | grep -v "Nov 6"
...who logged on before today?

...where is hal logged on?
% who | grep "Nov 6"
...who logged on today?

Your version may have more options. To find out, type man who.

—JP

The info Command

An information system gaining popularity on the more lightweight Unix-based systems is info. It's
particularly relevant for finding information within Linux and FreeBSD.

Unlike man — which displays all information on a topic at once, usually routed through some form of
paging system such as cat — info is based on a hypertext like linkage between topic components. You
connect to each of the subtopics using character-based commands and typing part or all of the
subtopic title — at least enough to distinguish one subtopic from another.

To use info, you type the command info followed by the Unix command about which you're trying to
find information. For instance, to find out more about info itself, you would use the following
command line:

info info

This will return the main info introduction page and a menu of subtopics such as:

Getting Started
Advanced Info
Creating an Info File

To access the subtopic, you type the letter m for menu, and then in the prompt that opens at the bottom
of the screen, type enough of the letters to distinguish the subtopic menu item from any other. You
don't have to complete the command: you can just type enough of the letters followed by a TAB to fill
in the rest. Once the subtopic menu item has been filled in, hitting ENTER sends you to the
information.

To learn more about using info, you can type the letter h when you're in info and no command line
buffer is showing. This brings up basic information about the info command, including the commands
you use within info to use the application. These letters are summarized in Table 2-1.

Table 2-1. info commands

Command Action

h To get help on using info

m To access a subtopic menu item

n To get to next related subtopic

p To get to the previous related subtopic

space To move forward in the display if it exceeds page size
delete To move backward in the display if it exceeds page size
Ctri-1 To clean up the display if it gets mangled

b To get to the first page of the display

? To get a list of info commands

iTo qurt o
To return to highest level of info topics

mEmacsreturn||To access the Emacs manual

S To search for string within current node

Note that the letter commands are case insensitive: U works the same as u.

Use the d command to pull up the Directory node, the menu of info major topics. In fact, this is a good
way to become familiar with info and its contained subtopics — type d and then use the menu
commands to explore each of the major subtopic areas.

For instance, from the Directory Node, typing m followed by typing strings into the command buffer
pulls up the strings info node.

When using the info command, if the information doesn't fit within a page, header and footer
information will provide you some details about the subtopic, such as the info file, node, and the next
nodes within the hierarchy. For instance, when accessing information about man, depending on your
system the header reads as follows:

File: *manpages*, Node:man, Up: (dir)

This translates to the info file manpages and the node for man. Typing the u will move you up to the
dir info page. Within Emacs, use mouse button two to click on and access a subtopic.

The footer provides a summary of the header information and also provides the number of lines for
the topic 1f the topic page extends past the current screen. To see more information, type the space to
page through the topic, just as you do with man.

Much of the help information within info is pulled over as is from manpages and hasn't been
converted to the hypertext format of info. Because of this, the use of the m command won't pull up any
subtopic. You'll need to use the space key to access the additional information.

To search within an info node/page, type s and then type the search string into the command buffer.
The cursor 1s moved to the first occurance of the string.

— SP

Part II. Customizing Your Environment

Part II contains the following chapters:

Chapter 3
Chapter 4
Chapter 5
Chapter 6

Chapter 3. Setting Up Your Unix Shell

What Happens When You Log In

When you first log in to a Unix system, the login program performs various security measures. These
vary slightly from Unix variant to Unix variant, but they are largely the same.

First, login checks to see if you are not the root user and whether the file /etc/nologin exists (it is
created by the shutdown command to indicate that the system is being brought down for maintenance).
If both of these conditions are true, the /ogin program prints the contents of that file to the terminal,
and the login fails. If you are the root user, however, you will be allowed to log in.

Second, login checks to see if there are any special conditions on your login attempt (which may be
defined in /etc/usertty or /etc/securetty), such as on which tty you're coming in. Linux systems do
this, for example. Some systems (such as Darwin and other BSD-based systems) also check
/etc/fbtab and may restrict your access to any devices listed in that file. These systems may also log
failed login attempts to a file, such as /var/log/failedlogin, if it exists.

login may also record the time of login in the file /var/log/lastlog, make an entry in the file
/var/run/utmp , showing that you are successfully logged in (it is removed once you log out), and
append the utmp entry to the file /var/log/wtmp , showing that you logged in. This wtmp record will
be updated on logout, showing the duration of your login session.

If the file .hushlogin exists in the user's home directory, the login will be quiet; otherwise, the
following sequence of events will occur. If the system has any special copyright information to
display, it will be printed to the terminal, followed by the message of the day (usually stored in
/etc/motd), and the user's last login time and system of origin (from the wtmp file, as discussed in the
previous paragraph). If you want your login to be quiet, simply touch ~/.hushlogin. If you want it to
be noisy, remove the file.

Finally, if all other checks have passed and restrictions have been performed, /ogin starts a shell for
you. Which shell depends on what is set in your user database entry (/etc/passwd, NIS, or possibly
NetInfo under Darwin). If the shell specified for you is not interactive (Section 3.4), you may well
be denied a command line. This is common for POP and ftp-only user accounts, where /bin/true and
/bin/false are often specified as shells to disallow shell logins from those accounts.

—JP and SJC

The Mac OS X Terminal Application

Throughout the book, we will refer to terminals, terminal emulators, and other software that allows
you, the end user, to interact with the computer via some character-driven screen. In the old days,
most terminals were separate hardware, but nowadays they're usually software. Mac OS X is no
exception: its Terminal application, found in the utilities folder of your Applications folder, is
a terminal emulator.

You can launch Terminal by double-clicking on the icon in the Finder, or if you have the Terminal
icon in your Dock, by single-clicking on that icon.

Once launched, Terminal may be configured as most Mac applications can: by setting preferences in
the Preferences dialog and choosing a font family and size from the Font menu.

One big difference between Terminal and other, X-specific applications is that instead of running
individual instances of xterm, you run one instance of Terminal and may have multiple windows,
known as "shells," which may have saved settings (such as color, size, font choice, and various other
settings). You can't run a shell in Mac OS X without running Terminal.

—SJC

Shell Setup Files — Which, Where, and Why

To understand setup files, you need to understand that a shell can act like a login shell or a nonlogin
shell (Section 3.4). There are different setup files for nonlogin and login shells.

When you log in to a Unix system — but not under a window system — the /ogin program starts a
shell for you. The login program sets a special flag (Section 3.19) to tell a shell that it's a login shell.
If the shell doesn't have that flag set, it won't act like a login shell. Opening a new window in a
window system may or may not set the "login shell" flag — that depends on the configuration. (For
example, the command xterm -1s starts a login shell in an xterm window (Section 24.20); xterm +1s
starts a nonlogin shell.) When you connect to a system with programs like ftp and scp, that usually
starts a nonlogin shell. And a subshell (Section 24.4) is never a login shell (unless you set a
command-line option to force a login shell, like bash -1).

How can you tell whether your shell is a login shell? The answer is "it depends." When you first log
in to a system, you want a login shell that sets things like the terminal type (Section 5.2, Section 5.3).
Other shells on the same terminal should be nonlogin shells — to avoid redoing those one-time-only
setup commands. Different shells have their own methods for handling first-time shell invocations
versus later invocations, and that's what the rest of this article is about.

Parenthesis operators (Section 43.7) don't read any setup file. Instead, they start another instance of
your current shell. Parentheses are called "subshell operators," but the subshell they start doesn't print
a prompt and usually has a short lifetime.

Next, let's look at the setup files — login and nonlogin — for the major shells. I recommend that you

read about all of them. Then experiment with your shell's setup files until you get things working the

way you want them.

System-wide setup
Your /ogin(1) command probably sets some environment variables (Section 35.3) like
HOME, PATH, SHELL, TERM, MAIL, and LOGNAME or USER; check its manual page. Your
system may set some environment variables or other parameters that apply to all shells or to all
shells of a particular type (all bash shells, zsh shells, etc.). All of these will be passed through
the environment, from parent process to child process (Section 35.4), to all of your shells,
login and nonlogin.

Once login or your window system starts your individual shell, it may also read its own system-wide
setup files. These files, if any, will be read before your personal setup files. Check your shell's
manual page and the /etc directory for files like csh.login, bashrc, zshrc, and so on. On Red Hat
systems, for example, there is a directory named /etc/profile.d containing package-specific C and
Bash shell config files that are sourced (read into the current shell) on startup of a shell. On Mac OS
X, when you use Terminal (Section 3.2), your shell (which is fcsh by default) reads
/private/etc/csh.cshre, as well as any user-specific files (e.g., ~/.tcshrc).
Bourne shell
The original Bourne shell has one file that it reads when you log in: it's called .profile and is in
your home directory. Put all your setup commands there. Later versions of the Bourne shell may
also read /etc/profile before your local setup file is read and may also read the contents of
whatever file is named in the ENV environment variable (Section 35.3) (but only for

interactive shells). You may set this variable from your own .profile:
ENV=$HOME/.mystartup; export ENV

The Bourne shell doesn't read .profile when you start a nonlogin shell or subshell (Section
43.7), though. Subshells are set up through inheritance of environment variables (Section 35.3)
that were set when you first logged in (in system-wide setup files or .profile) or from commands
you typed since.

C shell

C shell users have several shell setup files available:

e The .cshrc file is read any time a C shell starts — that includes shell escapes and shell

scripts.l! This is the place to put commands that should run every time you start a shell. For
instance, shell variables like edpath (Section 31.5) and prompt should be set here. Aliases
(Section 29.2) should, too. Those things aren't passed to subshells through the environment,
so they belong in .cshrc (or .tcshre). See the upcoming section on tcsh for more details.
Alternately, you can put aliases into a separate file and use the source command to read the
file into the current shell from your .cshrc/.tcshrec — 1f you're the sort who likes to have
custom init files for every host you log in to, but like your aliases to be common wherever
you go. This provides a quick and easy way for you to copy your .csh.aliases (or whatever
name you give it, being careful to distinguish between it and the slightly different format
required by bash aliases) from host to host without clobbering your custom, localized init
files.

When csh starts up, on recent systems it may read a system-wide setup file, such as

Jetc/csh.cshre /2 and for login shells, /etc/csh.login .

Your ./ogin file is read when you start a login shell. You should set several things here.
Set environment variables (Section 35.3) (which Unix will pass to subshells
automatically). Run commands like tset (Section 5.3) and stty (Section 5.7, Section 5.8)
that set up your terminal. Finally, include commands you want to run every time you log in
— checking for mail and news (Section 1.21), running fortune, checking your calendar for
the day, etc.

Note that .cshrc is read before .login, by csh, but that tcsh may be compiled such that the
order is reversed, and .fcshrc may be read after .login in some environments. Check the
version shell variable to find out how your environment is set up.

The shell reads ./logout when you end a login shell. Section 3.8 has tips for reading ./ogout
from nonlogin shells.

Korn shell
The Korn shell is a lot like the Bourne shell. A login Korn shell (Section 3.4) will read the
profile first; recent versions do so only after reading /etc/profile , if present. The .profile can
set the ENV (Section 35.5) environment variable to the pathname of a file (typically
SHOME/ .kshrc). Any child Korn shell started by that login shell — including all subshells —
will read the file named by $Env as it starts up, before printing a prompt or running other
commands.
The public domain Korn shell often found on Linux may also be further restricted when invoked
as a "privileged" shell, using a pattern that matches r*sh, in which case neither the ~/.profile nor
the file named by the ENV environment variable will be read. Instead, the shell will be

bash

tcsh

zsh

initialized using /etc/suid profile, if present.

bash is something of a cross between the Bourne and C shells. A login bash will read
.bash_profile , .bash_login, or .profile. A noninteractive bash will read a file named .bashrc in
your home directory. The shell reads .bash [ogout when you end a login shell; you can set a
trap (Section 4.18) to handle nonlogin shells.

bash also uses GNU Readline for reading and editing text you enter at a shell prompt. The
.inputrc file configures Readline for a given user; /etc/inputrc is for global configuration.

tesh 1s like the C shell but more flexible. If a tcsh shell is run, it first tries to read .fcshre and, if
not found, then tries .cshrc. In addition, tcsh will also load either . history or the value of the
histfile variable, if set; then it may try to read .cshdirs or the value of the dirsfile variable.

As always, zsh is very flexible. Startup files are read from the directory named in the ZDOTDIR

environment variable, if any;l3 otherwise, from HOME. All shells read the global /etc/zshenv
and your .zshenv files. If the shell is a login shell, commands are read from /etc/zprofile and
then your .zprofile. Then, if the shell is interactive, commands are read from /etc/zshrc and your
.zshrc. Finally, if the shell 1s a login shell, /etc/zlogin and your .zlogin files are read.

—JP and SJC

(L If you write a csh (or tcsh) script, you probably should use the - £ option to keep scripts from
reading .cshrc (or .tcshrc). However, you probably shouldn't use csh or tcsh for scripts.

(21 On Mac OS X, /etc is a symbolic link to /private/etc. The actual initialization files for tcsh are in
/usr/share/init/tcsh.

131 ZDOTDIR may be hard to set on your first login — when your zs# is a login shell — because it's
hard to set an environment variable before your first shell starts. (The system program that starts your
shell, like login(1), could do the job, I guess.)

Login Shells, Interactive Shells

Each Unix shell (sh, csh, etc.) can be in interactive mode or noninteractive mode. A shell also can
act as a /ogin shell or a nonlogin shell. A shell is a shell 1s a shell — e.g., a login bash shell is the
same program (like /bin/bash) as a nonlogin bash shell. The difference 1s in the way that the shell
acts: which setup files it reads, whether it sets a shell prompt, and so on.

Login Shells

When you first log in to a Unix system from a terminal, the system normally starts a login shell.
(Section 3.4) A login shell is typcally the top-level shell in the "tree" of processes that starts with the
init (Section 24.2) process. Many characteristics of processes are passed from parent to child
process down this "tree" — especially environment variables (Section 35.3), such as the search
path (Section 35.6). The changes you make in a login shell will affect all the other processes that the
top-level shell starts — including any subshells (Section 24.4).

So, a login shell is where you do general setup that's done only the first time you log in — initialize
your terminal, set environment variables, and so on. A shell "knows" (Section 3.19) when it's a login
shell — and, if it is, the shell reads special setup files (Section 3.3) for login shells. For instance,
login C shells read your ./ogin file, and Bourne-type login shells read .profile. Bash may also read
/etc/profile, and ~/.bash_profile or ~/.bash_login or ~/.profile, depending on whether those files
exist and whether the -noprofile option has been passed (which would disable reading of any
startup files).

Nonlogin shells are either subshells (started from the login shell), shells started by your window
system (Section 24.20), or "disconnected" shells started by at (Section 25.5), rsh (Section 1.21), etc.
These shells don't read ./ogin or .profile. In addition, bash allows a nonlogin shell to read ~/.bashrc
or not, depending on whether the -norc or -rcfile options have been passed as arguments during
invocation. The former simply disables reading of the file, and the latter allows a substitute file to be
specified as an argument.

Some shells make it easy to know if a particular invocation is a login shell. For instance, tcsh sets the
variable loginsh. Check your shell's manual page for details. Section 4.12 shows another solution: the
SHLVL variable that's set in most modern shells. Or you can add the following line to the beginning of
a setup file that's only read by login shells (Section 3.3). The line sets a shell variable (Section
35.9) named loginshell :

set loginsh=yes ...csh

loginshell=yes ...bash and other sh-type shells
Now wherever you need to know the type of shell, use tests like:

if Section 35.13

if ($?loginsh) ...csh-type shells

if [-n "$loginshell"] ...sh-type shells (including bash)

This works because the flag variable will only be defined if a shell has read a setup file for login
shells. Note that none of the variable declarations use the "export" keyword — this is so that the

variable 1s not passed on to subsequent shells, thereby ruining its purpose as a flag specific to login
shells.

Interactive Shells

In general, shells are used for two jobs. Sometimes, a shell handles commands that you type at a
prompt. These are interactive shells. Other times, a shell reads commands from a file — a shell
script (Section 35.2). In this case, the shell doesn't need to print a prompt, to handle command-line
editing, and so on. These shells can be noninteractive shells . (There's no rule that only
noninteractive shells can read shell scripts or that only interactive shells can read commands from a
terminal. But this is generally true.)

One other difference between interactive and noninteractive shells is that interactive shells tie
STDOUT and STDERR to the current terminal, unless otherwise specified.

It's usually easy to see whether a particular invocation of your shell is interactive. In C shells, the
prompt variable will be set. In the Korn shell and bash, the -1 flag is set. Your current flags may be
displayed using the $- variable:

prompt$ echo $-
imH

The previous example, from an interactive bash shell, shows that the flags for an interactive shell (1),
monitor mode (m), and history substitution (H) have been set.

—JP and SJC

What Goes in Shell Setup Files?

Setup files for login shells (Section 3.4) — such as ./ogin and .profile — typically do at least the
following;

e Set the search path (Section 27.6) if the system default path isn't what you want.

e Set the terminal type (Section 5.3) and make various terminal settings (Section 5.7, Section
5.8) if the system might not know your terminal (if you log in from various terminals over a
dialup line or from a terminal emulator on a desktop machine, for instance).

e Set environment variables (Section 35.3) that might be needed by programs or scripts that you
typically run.

e Run one or more commands that you want to run whenever you log in. For example, if your
system /ogin program doesn't show the message of the day, your setup file can. Many people
also like to print an amusing or instructive fortune. You also might want to run who (Section 2.8)
or uptime (Section 26.4) or w (a combination of the other two, but not found on all systems) for
information about the system.

In the C shell, the .cshrc file is used to establish settings that will apply to every instance of the C
shell, not just login shells. For example, you typically want aliases (Section 28.2) available in every
interactive shell you run — but these aren't passed through the environment, so a setup file has to do
the job. You may wish to put all of your aliases into another file, such as .aliases, or qualify the name
with the shell's name, such as .csh.aliases, to allow for different alias formats between shells, and
then you can use the source command to read in that file on startup from.cshrc.

Even novices can write simple setup files. The trick is to make these setup scripts really work for
you. Here are some of the things you might want to try:

Creating a custom prompt.

Coordinating custom setup files on different machines (Section 3.18).

Making different terminal settings depending on which terminal you're using (Section 3.10 and
others).

Seeing the message of the day only when it changes.

Doing all of the above without making your login take forever.

—TOR and SJC

Tip for Changing Account Setup: Keep a Shell Ready

The shell is your interface to Unix. If you make a bad mistake when you change your setup file
(Section 3.3) or your password, it can be tough to log in and fix things.

Before you change your setup, it's a good idea to start a login session to the same account from
somewhere else. Use that session for making your changes. Log in again elsewhere to test your
changes.

Don't have a terminal with multiple windows or another terminal close to your desk? You can get the
same result by using r/ogin or telnet (Section 1.21) to log in to your host again from the same
terminal. What [mean is:

somehost% vi .cshrc
...Make edits to the file...
somehost% rlogin localhost
...Logs you in to your same account...

An error message
somehost% logout
Connection closed.
somehost% vi .cshrc

...Edit to fix mistake...

If you don't have rlogin or telnet, the command su - username, where username 1s your username,
will do almost the same thing. Or, if you're testing your login shell configuration, /ogin will do as
well.

—JP and SJC

Use Absolute Pathnames in Shell Setup Files

One common mistake in shell setup files (Section 3.3) is lines like these:

ss Section 27.17, * ... Section 28.14

source .aliases

echo "Shell PID $$ started at “date ™" >> login.log

What's wrong with those lines? Both use relative pathnames (Section 1.16) for the files (.aliases,
login.log), assuming the files are in the home directory. Those lines won't work when you start a
subshell (Section 24.4) from somewhere besides your home directory because your setup files for
nonlogin shells (like .cshrc) are read whenever a shell starts. If you ever use the source or .
commands (Section 35.29) to read the setup files from outside your home directory, you'll have the
same problem.

Use absolute pathnames instead. As Section 31.11 explains, the pathname of your home directory is in
the tilde (~) operator or the $HOME or $LOGDIR environment variable:

source ~/.aliases
echo "Shell PID $$ started at “date " >> ~/login.log

—JP

Setup Files Aren't Read When You Want?

The C shell reads its .cshrc, .login, and .logout setup files at particular times (Section 3.3). Only
"login" C shells (Section 3.4) will read the ./ogin and .logout files. Back when csh was designed,
this restriction worked fine. The shell that started as you logged in was flagged as a login shell, and it
read all three files. You started other shells (shell escapes, shell scripts, etc.) from that login shell,
and they would read only .cshrc. The same can be said of other shell variants, such as zcsh, though
they may have multiple startup files — the problem of distinguishing between login and nonlogin shell
startup is the same.

Now, Unix has interactive shells started by window systems (like xterm (Section 24.20)), remote
shells (like rsh (Section 1.21) or ssh), and other shells that might need some things set from the ./ogin
or .logout files. Depending on how these shells are invoked, these might not be login shells — so they
might read only .cshrc (or .tcshre, etc.). How can you handle that? Putting all your setup commands in
.cshrc isn't a good idea because all subshells (Section 24.4) read it . . . you definitely don't want to
run terminal-setting commands like tset (Section 5.3) during shell escapes!

Most other shells have the same problem. Some, like zs4 and bash, have several setup files that are
read at different times — and probably can be set up to do what you want. For other shells, though,
you'll probably need to do some tweaking.

To handle problems at login time, put almost all of your setup commands in a file that's read by all
instances of your shell, login or nonlogin. (In the C shell, use .cshrc instead of ./ogin.) After the
"login-only" commands have been read from the setup file, set the ENV SET environment variable
(Section 35.3) as a flag. (There's nothing special about this name. You can pick any name you want.)
You can then use this variable to test whether the login-only commands have already been run and
skip running them again in nonlogin shells.

Because the environment variables from a parent process are passed to any child processes it starts,
the shell will copy the "flag" variable to subshells, and the .cshrc can test for it. If the variable exists,
the login-only commands are skipped. That'll keep the commands from being read again in a child
shell.

Here are parts of a .cshrc that show the 1dea:

...Normal .cshrc stuff...

if ($?prompt && ! S$S?ENV_SET) then
Do commands that used to go in .login file:
setenv EDITOR /usr/ucb/vi
tset

setenv ENV_SET done
endif

You might put a comment in the file you've bypassed — the csh .login file, the ksh .profile file, etc.
— to explain what you've done.

The file that runs when you log out (in the C shell, that's ./logout) should probably be read only once
— when your last ("top-level") shell exits. If your top-level shell isn't a login shell, you can make it
read the logout file anyway. Here's how: first, along with the previous fixes to your .cshrc-type file,
add an alias that will read your logout file when you use the exit command. Also set your shell to
force you to use the exit command (Section 35.12) to log out — in csh, for example, use set

ignoreeof. Here's what the chunk of your .bashrc will look like:
case Section 35.10, / Section 36.25, function Section 29.11, . Section 35.29

case "$-/${ENV_SET:-no}" in
i/no)
This is an interactive shell / SENV_SET was not set earlier.
Make all top-level interactive shells read .bash logout file:
set -o ignoreeof
function exit {
. ~/.bash logout
builtin exit

}
esac

The builtin exit (Section 27.9) prevents a loop; it makes sure bash uses its internal exit command
instead of the exit function you've just defined. In the C shell, use ""exit (Section 27.10) instead.
This isn't needed on all shells though. If you can't tell from your manual page, test with another shell
(Section 3.6) and be ready to kill (Section 24.12) a looping shell.

—JP and SJC

Gotchas in set prompt Test

Lots of users add anif (! $?prompt) exit testto their.cshrc files. It's gotten so common that some
vendors add a workaround to defeat the test. For instance, some versions of the which command
(Section 2.6) set the prompt variable so that it can see your aliases "hidden" inside the $?prompt
test. I've also seen a version of at that starts an interactive shell to run jobs.

If you've buried commands after i £ (! $2prompt) that should only be run on interactive shells or at
login time, then you may have trouble.

There are workarounds. What you'll need depends on the problem you're trying to work around.

e Here's a way to stop the standard which from reading parts of your .cshrc that you don't want it
to read. The first time you log in, this scheme sets a CSHRC READ environment variable
(Section 35.3). The variable will be copied into all subshells (Section 24.4) (like the one that

which starts). In subshells, the test i £ ($2csurc_RrREAD) will branch to the end of your .cshrc
file:

if (! $?prompt) goto cshrc end

COMMANDS BELOW HERE ARE READ ONLY BY INTERACTIVE SHELLS:
alias foo bar

if ($?CSHRC_READ) goto cshrc_end

COMMANDS BELOW HERE ARE READ ONLY AT LOGIN TIME:
setenv CSHRC READ yes

cshrc end:

e [fyou have a buggy version of at (Section 25.5) that runs jobs from interactive shells, make your
own frontend to at (Section 29.1) that sets an environment variable named A7 temporarily
before it submits the at job. Add a test to your .cshrc that quits 1f AT 1s set:

() Section43.7, \at Section 29.8

at JOBS RUN INTERACTIVE SHELLS ON MY BUGGY VERSION OF UNIX.
WORKAROUND IS HERE AND IN THE at ALIAS BELOW:
if ($?AT) goto cshrc end

alias at '(setenv AT yes; \at \!*)'

cshrc end:

Most modern versions of at save a copy of your environment when you submit the job and use it
when the at job is run. At that time, the AT environment variable will be set; the C shell will
skip the parts of your .cshrc that you want it to. It's ugly, but it works.

Those workarounds probably won't solve all the problems on your version of Unix, but I hope they'll
give you some ideas.

—JP and SJC

Automatic Setups for Different Terminals

If you work at several kinds of terminals or terminal emulators, terminal setup can be tough. For
instance, my X terminal sends a backspace character when I push the upper-right key, but the same
key on another terminal sends a delete character — I want stty erase (Section 5.8) to set the correct
erase character automatically.[¥] Maybe you want a full set of calendar programs started when you log
in to the terminal at your desk, but not when you make a quick login from somewhere else.

The next seven articles have ideas for changing your login sequence automatically. Some examples
are for the C shell and use that shell's switch and if. Examples for Bourne-type shells use case
(Section 35.10) and if (Section 35.13). If you use the other type of shell, the idea still applies; just
swap the syntax.

e If youuse several kinds of terminals or terminal emulators, try testing the 7ERM environment
variable (Section 3.11). Testing other environment variables (Section 3.14) can identify the
frontend system (like a window system) you're using.

e Test the output of who am i (Section 3.12) to find out about the remote system from which
you've logged in.

e Ifyoulog into different kinds of ports — network, hardwired, and so on — search for the port
type (Section 3.15) in a table like /etc/ttys (in BSD derivatives) or /etc/inittab (in some other
variants). Testing the port name (Section 3.13) may also work.

e Inthe X Window System, you can test the window size (Section 3.16) and make various
settings based on that. Naming windows (Section 3.17) lets you identify a particular window by
reading its environment.

e You can also handle some of these cases using the venerable but obscure tset (Section 5.3)
program to select and initialize the correct terminal type. Another program that sets the terminal
type 1s qterm (Section 5.4).

Because your terminal type doesn't change after you've logged in, many of these tests probably belong
in your .profile or .login file. Those setup files are read when you first log in to a ¢£y. Other tests,
especially ones that involve windows, will probably fit better in a per-shell setup file such as
.bashrc or .cshrc. Section 3.3 can help you choose.

—JP and SJC

(4] Of course, it is all arbitrary and contingent on your keyboard layout and configuration.

Terminal Setup: Testing TERM

If you use several different kinds of terminals (or, as is far more common these days, terminal
emulators) and your TERM environment variable is set differently on each terminal, you can add a
test like this to your C shell .login file:

switch (STERM)

case vtl1l00:
...do commands for vt100
breaksw

case XXXx:
...do commands for xxx
breaksw

default:
...do commands for other terminals
breaksw

endsw

If you have a Bourne-type shell, use a case statement (Section 35.10) in your .profile instead:

case "STERM" in
vt100)
...do commands for vt100

xterm)
...do commands for xterm

*)
...do commands for other terminals

rs

esac

—JP and SJC

Terminal Setup: Testing Remote Hostname and X Display

If you log in from other hosts (Section 1.21) or from hosts running the X Window System (Section

24.20), the who am i 131 command will probably show a hostname and/or window information in
parentheses:

schampeo@fugazi:1002 $ who am i

schampeo ttyp7 Jun 19 03:28 (fugazi:0.0)

(Long hostnames may be truncated. Also, note that some versions of who am i prepend the name of the
local host to the username and don't include the remote hostname at all in their output. Check yours
before you write this test.) The information in parentheses can help you configure your terminal based
on where you've logged in from and/or which display you're using. To test it, add commands such as
the following to your .profile file. (In C-type shells, use a switch statement in ./ogin instead.)

case Section 35.10

case "'who am i1 | sed -n 's/.*(\(.*\))/\1/p' " in
\(..\) \1 Section 34.11

*0.0) ...do commands for X display 0 ;;

mac2*) ...do commands for the host macZ2.foo.com ;;

") ...no output (probably not a remote login) ;;
*) ...do commands for other situations ;;
esac

That uses sed (Section 34.1) to give the text between the parentheses for that remote host to the case.
This 0.0 case matches lines ending with 0. 0; the mac2 case matches lines that start with mac2; an
empty string means sed probably didn't find any parentheses; and the * case catches everything else.

—JP and SJC

3] Also try "who mom likes" or maybe "who is responsible?" — the who doesn't really care, as long
as there are only two arguments. So, "who let the dogs out?", as you might expect, causes an error.

Terminal Setup: Testing Port

If you know that certain port (tty) numbers are used for certain kinds of logins, you can test that and
change your terminal setup based on the ¢¢y you're currently using. For example, some systems use
ttyp0, ttyql, etc. as network ports for rlogin and ssh (Section 1.21), while others use p#y0, etc. This
Bourne-type case statement branches on the port name:

tty Section 2.7
case "“tty " in
/dev/tty[pgrs]?)

rlogin, telnet:

/dev/tty02)
terminal on my desk:

"not a tty") ;; ...not a terminal login session; do nothing
esac

In C-type shells, try a switch or if statement instead.
On Linux, you may need to look for patterns to match /dev/pts/0, /dev/pts/I, etc.
—JP and SJC

Terminal Setup: Testing Environment Variables

Certain systems set certain environment variables. For example, the X Window System sets a
DISPLAY environment variable (Section 35.5). If you've logged in from a remote system using ssh
(Section 1.21), look for variables like SSH CLIENT and SSH _TTY or SSH AUTH SOCK on the
system you log in to. (If you aren't sure about your system, use the env or printenv command (Section
35.3) to look for changes in your environment at different systems.)

Your shell setup file (Section 3.3) makes decisions based on the environment variables that have
been set. Here are examples for both C-type and Bourne-type shells:

[1 Section 35.26

if ($?DISPLAY) then if [-n "$DISPLAY"]; then
on X window system # on X window system

else if ($?XDARWIN7VERSION) then elif [-n "$XDARWIN7VERSION"]; then
on MacOS X system # on MacOS X system

else else

endif fi

—JP and SJC

Terminal Setup: Searching Terminal Table

Your system may have an /etc/ttytab or /etc/ttys file that lists the type of each terminal port (tty
(Section 24.6)).[% Here are lines from /etc/ttys on a NetBSD system I use:

console "/usr/libexec/getty std.9600" vt100 on local
tty00 "/usr/libexec/getty std.9600" dialup off local
tty01l "/usr/libexec/getty std.9600" plugboard off local
ttyp0 none network off

For example, port ttyp0 is network, the type used by xterm (Section 24.20), telnet (Section 1.21),
etc.

To change your account configuration based on the tty port type, match the first column of that file to
the output of the tty (Section 2.7) command, which shows your current tty pathname. The output of #¢y
starts with /dev or /dev/pts. So, to match your current tty to the file, you need to strip the name to its
tail. For example, in bash and ksh, these three lines would put the terminal port type (vt100,

plugboard, etc.) into the ¢t¢ykind shell variable:
tty="tty"
ttytail=${tty#/dev/}

awk Section 20.10

ttykind="awk '$1 == "'Sttytail'" {print $3}' /etc/ttys"

Then you can test the value with case (Section 35.10) or if (Section 35.13). In C shells, you can set
ttytail by using the :t string modifier (Section 28.5) and test its value with switch or if.

—JP and SJC

[Then again, it may not. The RedHat Linux system I tested this on did not; the MacOS X 10.1.5 box I
tested it on did.

Terminal Setup: Testing Window Size

I use several terminal windows of different sizes. I don't stretch the windows after I open them;
instead, I set the size as I start each xterm . Here's an excerpt from my X setup file (Section 3.20) that
opens the windows:

-e Section 5.22

xterm -title SETI -geometry 80x9+768+1 -e setiathome -verbose -nice 10 &
xterm -title "work xterm" -geometry 80x74+329-81 &

The first window has 9 rows (80x9) and the second has 74 rows (80x74).1Z1 I'd like the less (Section
12.3) pager to use different jump-target lines in larger windows. If the window has more than 24
lines, I want less to use its option -5 3 to show search-matches on the third line of the window instead
of the first.

On many systems, the command st¢y size gives the number of rows and columns in the current

window, like this:
S stty size
74 80

Your system might need the command st¢y -a instead — or it could have environment variables
named LINES and COLUMNS. We'll use stty size in the following Bourne shell setup file. The set
(Section 35.25) command puts the number of rows into the $2 shell parameter. (Using set this way is
portable to all shells, but it's a clumsy way to split s¢#)'s output into words. If you have a newer shell
with array support, it'll be easier.) Then a series of if (Section 35.13)/then (Section 35.26) tests

handle different window sizes:

LESS=emqgc; export LESS

Put number of rows into $2, configure session based on that:
set x “stty size’

if [-z "$2" -o "$2" -1t 1]

then echo ".profile: bogus number of rows ($2) in window!?" 1>&2
elif ["$2" -gt 24]

then LESS=3j3S$LESS

fi

Additionally, you may be able to run resize on machines with the X Window System installed; it may
output something like this:

schampeo@fugazi:1046 $ resize
COLUMNS=80;

LINES=37;

export COLUMNS LINES;

You may then capture the output and read it for the current setting or simply check the COLUMNS or
LINES environment variables.

—JP and SJC

[Z1 Both windows have 80 columns. This is a Unix custom that comes from "the old days" when
terminals all were 80 columns wide. But it's still a common width today — and a good default when
you don't need a wider window. Some people are even sort of weird about it, especially for reading
email.

Terminal Setup: Setting and Testing Window Name

I use several xterm windows. Here's an excerpt from my X setup file (Section 3.20):

WINNAME=console xterm -C -title Console -geometry 80x9+0+0 &
WINNAME=work xterm -title "work xterm" -geometry 80x74+329-81 &

The wINNAME= name sets an environment variable named WINNAME for the particular command line
it's on. This is passed through the environment, through the xterm process, to the shell running inside
the window. So the shell's setup file can test for this variable — and, by knowing the window name
stored in that variable, do specific setup for just that window. For example, in tcsh :

-f Section 11.10, {) Section 28.4

if (S?WINNAME) then
switch (SWINNAME)
case console:
Watch logs:
tail -f /var/log/{messages,maillog, secure} ~/tmp/startx.log &
breaksw

case work:
/usr/games/fortune
fetchmail
breaksw
endsw
endif

On the console terminal, this .zcshrc file starts a job in the background (Section 23.2) to watch log
files. On the work xterm, I get a fortune and grab email from the POP server.

—JP and SJC

A .cshrc.$HOST File for Per Host Setup

I work with different types of machines every day. It is often necessary to set things up differently for,
say, a Linux box than a SPARCstation or a MacOS X box. Going beyond that, you may want to set
things up differently on a per-host basis.

I have this test in my .cshrc file:

setenv Section 35.3

setenv HOST " uname -n""

~ Section 31.11

if (-e ~/lib/cshrc.hosts/cshrc.$HOST) then
source ~/lib/cshrc.hosts/cshrc.$HOST
endif

So, if I log in to a machine named (Section 2.5) bosco, and I have a file called
~/lib/cshrc.hosts/cshrc.bosco, 1 can source (Section 35.29) it to customize my environment for that
one machine. These are examples of things you would put in a .cshrc. SHOST file:
Search path (Section 27.6)
Some machines have /usr/local/bin, and some have /opt. The same goes for cdpath (Section
31.5).
Terminal settings (Section 5.8)
I always like to reach for the upper-right part of a keyboard to erase characters. Sometimes this
is the location for the BACKSPACE key, and sometimes it is the DELETE key. I set things up so
that I can consistently get "erase" behavior from whatever key is there.
Other shell variables (Section 35.9) and environment variables (Section 35.3)
These may be different. You may run a package on a certain machine that relies on a few
environment variables. No need to always set them and use up a little bit of memory if you only
use them in one place!

In general, this idea allows you to group together whatever exceptions you want for a machine, rather
than having to write a series of switch or if statements throughout your .cshrc and .login files. The
principle carries over directly to the newer shells as well.

—DS and SJC

Making a "Login" Shell

When you log in to most Unix systems, your shell is a login shell. When a shell is a login shell, it acts
differently (Section 3.4).

Sometimes, when you're testing an account or using a window system, you want to start a login shell
without logging in. Unix shells act like login shells when they are executed with a name that starts
with a dash (-).I8] This is easy to do if you're using a system call in the exec(3) family. These system
calls let a C-language programmer give both the filename of an executable file, like s/ or /bin/sh, as
well as the name that should be used to identify the process (in a ps (Section 24.5) listing, for
example), like -sh.

If you're currently using zs/ , you can invoke another shell this way by typing a dash and a space
before the shell's name:

zsh% - csh
...C shell starts, acting like a login shell...

C programmers can write a little program that runs the actual shell but tells the shell that its name
starts with a dash. This is how the Unix login process does it:

run login csh()
{

execl ("/bin/csh", "-csh", 0);
)
A more general solution is to make a link (Section 10.4) to the shell and give the link a filename
starting with a dash. If your own bin subdirectory is on the same filesystem as /bin (or wherever the
executable shell file is), you can use a hard link. Otherwise, make a symbolic link, as shown here:

bin Section 7.4, . /- Section 14.13
$ cd SHOME/bin
$ 1ln -s /bin/csh ./-csh

Then you can execute your new shell by typing its name:
$ -csh
...normal C shell login process...
% ...run whatever commands you want..
% logout
$...back to original shell

—JP and SJC

18] bash also has a command-line option, -1o0gin, that makes it act like a login shell. zsk -1
(lowercase L) does the same for zsh.

RC Files

One way to set defaults for your applications is with environment variables (Section 35.3) that the
applications might read. This can get messy, though, if your environment has tens or hundreds of
variables in it. A lot of applications have a different way to choose defaults: setup files, similar to
shell setup files (Section 3.3). Most of these filenames end with rc, so they're often called RC files.”]
Today's more-complex applications also use their own setup subdirectories. Almost all of these files
and directories are hidden (Section 8.9) in your home directory; you'll need /s -2 to see them.

This article describes some of the most common setup files. For a more complete list, check your
application's manpage:
.emacs
For the Emacs editor. See Section 19.3.
.exrc
For the vi (actually, ex) editor. See Section 17.5.
.Inputrc
For the GNU Readline library and applications that use it, such as the bash shell.
.mailrc
For the mail (Section 1.21) program and others like it. This can be handy i1f you use mai/ from
the command line to send quick messages. For example:

If I send mail to "bookquestions", send it to myself too:

alias bookquestions bookquestions@oreilly.com, jerry
When I send a message, prompt me for "cc:" addresses:
set askcc

.mh_profile
For the MH email system.

.netrc
A listing of hostnames, accounts — and possibly passwords — used for connecting to remote
hosts with ftp and some other programs. Should have file access mode (Section 50.2) 600 or
400 for security, but this may not be enough protection for passwords! Best used for Anonymous
fip.

.newsrc
For news readers (Section 1.21). (Some newer news readers have more complex files.) A list
of newsgroups in the order you want to see them. For example:

comp.security.announce: 1-118
news.announce.important: 1
comp.org.usenix: 1-1745
comp.sys.palmtops! 1-55069,55071

A newsgroup name ending with a colon (:) means you want to read that newsgroup; an
exclamation point (!) means you don't. After each name is a list of the article numbers you've
read in that newsgroup; a range like 1-55069 means you've read all articles between number 1
and number 550609.

.rhosts
A list of remote hostnames that are allowed to access your local machine with clients like rsh
and rlogin (Section 1.21). Remote usernames are assumed the same as your local username
unless the remote username is listed after the hostname. This file can be a security hole; make its
file access mode (Section 50.2) 600 or 400. We suggest you only use it if your system or

network administrator approves. For example:

rodan Allow a user with same username from host rodan
foo.bar.com joe Allow username joe from host foo.bar.com
Xauthority
For xauth, a program that handles authorization information used in connecting to the X Window
System server.
Xdefaults

A resource file (Section 6.5) for the X Window System. Sometimes also called .xrdb.

Xinitre
A shell script (Section 35.2) that runs as you log in to an X Window System session using xinit.
(Also see .xsession, later in this list.)

All commands except the last typically end with an ampersand (), which makes those clients run in
the background. The last command becomes the controlling process; when that process exits (for
instance, you use the window manager's "quit" command), the window system shuts down. For
example:

s$1d Section 39.5, exec > Section 36.5, -v Section 35.25, uname -n Section 2.5, s{..:=..} Section

36.7, export Section 35.3, xrdb Section 6.8, sh -c Section 24.21, exec Section 36.5
#! /bin/sh

$Id: ch03.xml,v 1.36 2002/10/13 03:50:01 troutman Exp troutman $

Usage: .xinitrc [DISPLAY]

wm=fvwm2 # window manager

Put all output into log that you can watch from a window (tail -f):
mv -f SHOME/tmp/startx.log SHOME/tmp/,startx.log

exec > SHOME/tmp/startx.log 2>&1

set -v

Set DISPLAY from $1 if the X server isn't on same host as client:
if [$# -gt 0 1]
then
if [$# -ne 1]
then
echo "Usage: .xintirc [DISPLAY]" 1>&2
exit 1
else
DISPLAY=S$1
fi
else
host="uname -n°
DISPLAY=${DISPLAY:=Shost:0.0}
fi
export DISPLAY
xrdb -load $HOME/.xrdb

#

Clients

#

xterm -C -geometry 80x9+0+0 -sl 2000 &

oclock -geometry -1+1 &

xterm -title "SETI console" -bg blue -fg white -geometry 80x9+768+1 -e \
sh -c 'cd /var/cache/seti && exec ./setiathome -nice 5 -verbose' &

Don't use -e because Mozilla crashes; start by hand from prompt:

xterm -title "Mozilla console" -bg orange -geometry 80x9-0+1 &

xterm -geometry 80x74+329-81 &

#
Start window manager
#

exec Swm

.xsession
An executable file (generally a shell script (Section 35.2), but it can be any executable) that runs
as you log into an X Window System session using xdm. See .xinitrc, earlier in this list.

/etc/rc*
Last but not least, your system probably has a lot of setup files in its /etc directory. Look for
subdirectory or filenames starting with rc. These are read when your system reboots or changes
its runlevel (for example, from single-user mode to multiuser mode). These files are basically
shell scripts (Section 35.2). If you know a little about shell programming, you can learn a lot
about your system by looking around these files.

—JP and SJC

T Don't ask me why. It's one of those acronyms, like spool (Section 45.2), that's open to
interpretation, though one theory is that it is derived from "runcom files," (possibly short for "run
commands") on the Compatible Time-Sharing System, ¢.1962-63 (source: The Jargon File).

Make Your Own Manpages Without Learning troff

We strongly suggest that you write a manual page for each command that you place in your bin

directory. Unix manual pages typically have the following format, which we suggest you follow:

NAME
The program's name; one line summary of what it does.

SYNOPSIS
How to invoke the program, including all arguments and
command-line options. (Optional arguments are placed in
square brackets.)

DESCRIPTION
A description of what the program does—as long as
is necessary.

OPTIONS
An explanation of each option.

EXAMPLES
One or more examples of how to use the program.

ENVIRONMENT
Any environment variables that control the program's behavior.

FILES
Files the program internals will read or write. May include
temporary files; doesn't include files on the command line.

BUGS
Any known bugs. The standard manual pages don't take
bug recording seriously, but this can be very helpful.

AUTHOR
Who wrote the program.

To see how a "real" manual page looks, type man 1s.

Feel free to add any other sections that you think are necessary. You can use the nroff -man macros
(Section 3.22) if you want a nicely formatted manual page. However, nroff is fairly complicated and,
for this purpose, not really necessary. Just create a text file that looks like the one we showed
previously. If you are using a BSD system and want your manual pages formatted with nroff, look at
any of the files in /usr/man/manl, and copy it.

Note

If you insist on formatting y our manual page properly, using the #roff or groff "man" macros, y ou can use nroff to preview the file.

The man (Section 2.1) command is essentially the same as this:

-s Section 11.7

% nroff -e -man

filename
| more -s

Q“ Go to http://examples.oreilly.com/upt3 for more information on: gnroffawf

You can safely omit the -e option to nroff and the -s option to more, or even substitute in your

http://examples.oreilly.com/upt3

favorite pager, such as less. And remember that nroff may not be available on all systems, but the
web site has gnroff and awf. In fact, on some systems, nroff is simply a script that emulates the real

nroff using groff.

Now, you want to make this manual page "readable" by the standard man command. There are a few
ways to do this, depending on your system. Create the directory man in your home directory; create
the directory catl as a subdirectory of man; then copy your manual entry into cat/, with the name
program.l (where program is the name of your special command). When you want to read the
manual page, try the command:

~ Section 31.11

% man -M ~/man
program

Note

We like to be more strict about naming things properly, but y ou can omit the man directory and just put the cat! directory into y our home directory . In this case, the command would be as follows:
% man -M ~
program

Some systems have a MANPATH environment variable (Section 35.3), a colon-separated list of
directories where the man command should look. For example, my MANPATH contains:

/home/mike/man: /usr/local/man:/usr/man

MANPATH can be more convenient than the -m option.

Note

We are telling y ou to put the manual page into the cat/ directory rather than the manl directory because the man program assumes that files in cat/ are already formatted.

If you are sharing your program with other people on the system, you should put your manual entry in
a public place. Become superuser and copy your documentation into /usr/local/man/catl, giving it the
name program./ (the "1" stands for "local"). You may need to create /usr/local and /usr/local/man
first. If you can't become superuser, get the system administrator to do it for you. Make sure that

everyone can read the manual page; the permissions should be something like this:

% 1ls -1 /usr/local/man/catl
-r--r--r-- 1 root 468 Aug 5 09:21 program.l

Then give the command man program to read your documentation.

If you are working on some other systems, the rules are a little different. The organization of the
manual pages and the man command itself are slightly different — and really, not as good. Write your

manual entry, and place it in your doc directory. Then create the following C shell alias (Section
29.3):

less Section 12.3

alias myman " (cd ~/doc; man -d \!$ | less)"

or shell function (Section 29.11):

myman() { (cd $HOME/doc; man -d "$1" | less); }

Now the command myman docfilename will retrieve your manual page. Note that if you use a

section-number extension like . 1, you have to give the entire filename (e.g., program. 1), not just the
program's name.

If you want to make your manual page publicly available, copy the file into the system manual page
directory for section 1; you may have to become superuser to do so. Make sure that anyone on the
system can read your file. If the entry is extremely long and you want to save space in your filesystem,
you can use the gzip (Section 15.6) utility on your documentation file. The resulting file will have the
name program. l.gz; newer versions of the man command will automatically uncompress the file on-
the-fly.

—ML and SJC

Writing a Simple Manpage with the -man Macros

If you're not satisfied with the simple manual pages we discussed in Section 3.21, here's how to go all
the way and create a "real" manual page. As we said, the best way to create a manual page is to copy
one that already exists. So here's a sample for you to copy. Rather than discuss it blow by blow, I'll
include lots of comments (these start with .\" or \").

.\" Title: Program name, manual section, and date

1 Section 2.1

.TH GRIND 1

.\" Section heading: NAME, followed by command name and one line summary
.\" It's important to copy this exactly; the "whatis" database (used

.\" for apropos) looks for the summary line.

.SH NAME

grind \- create output from input

.\" Section heading: SYNOPSIS, followed by syntax summary

.SH SYNOPSIS

.B grind \" .B: bold font; use it for the command name.

[-b] [-c 1 [-d1 \" Put optional arguments in square brackets.

[input [output 1] \" Arguments can be spread across several lines.

.br \" End the synopsis with an explicit line break (.br)

.\" A new section: DESCRIPTION, followed by what the command does
.SH DESCRIPTION

.I Grind \" .I: 1Italic font for the word "Grind"

performs lots of computations. Input to

.IR grind , \" .IR: One word italic, next word roman, no space between.
is taken from the file

.IR input ,

and output is sent to the file

.IR output ,

which default to standard input and standard output if not specified.
.\" Another section: now we're going to discuss the -b, -c, and -d options

.SH OPTIONS
.\" The .TP macro precedes each option
TP

.B \-b \" print the -b option in bold.

Print output in binary.

.TP

.B \-c \" \- requests a minus sign, which is preferable to a hyphen (-)
Eliminate ASCII characters from input before processing.

TP

.B \-d

Cause daemons to overrun your computer.

.\" OK, we're done with the description and the options; now mention
.\" other requirements (like environment and files needed) as well as
.\" what can go wrong. You can add any other sections you want.

.SH FILES

.PD O

.TP 20

.B /dev/null

data file

.TP

.B /tmp/grind*

temporary file (typically 314.159 Gigabytes)

.PD

.SH BUGS

In order to optimize computational speed, this program always produces
the same result, independent of the input.

.\" Use .LP between paragraphs

.LP

If the moon is full,

.I grind

may destroy your input file. To say nothing of your sex life.

.\" Good manual pages end by stating who wrote the program.

.SH AUTHOR
I wouldn't admit to this hack if my life depended on it.

After all that, you should have noticed that there are four important macros (listed in Table 3-1) to
know about.

Table 3-1. Important -man macros

Macro|Meaning

.TH |Title of the manual page.

.SH |Section heading; one for each section.

TP |Formats options correctly (sets up the "hanging indent").

.LP |[Used between paragraphs in a section.

For some arcane reason, all manual pages use the silly .B, .B1, etc. macros to make font changes. I've
adhered to this style in the example, but it's much easier to use inline font changes: \ 1 for italic, \ B
for bold, and \ £r for roman. There may be some systems on which this doesn't work properly, but
I've never seen any.

—ML and SJC

Chapter 4. Interacting with Your Environment

Basics of Setting the Prompt

The prompt displayed by your shell is contained in a shell variable (Section 35.9) called prompt in
C-type shells and PSI in Bourne-type shells. As such, it can be set like any other shell variable.

There are two or three ways to set a prompt. One is a static prompt (Section 4.2) that doesn't change
during your login session (as you change directories, as the time of day changes, etc.). Some shells let
you set a dynamic prompt (Section 4.3) string that is interpreted by the shell before each prompt is
printed. Even on shells that don't interpret prompt strings dynamically, you can simulate a dynamic

prompt (Section 4.4) by changing the prompt string automatically.[!]

Depending on your shell's capabilties, you can use or combine those three techniques — and those
found in the rest of this chapter — to do a lot. But, of course, you don't want to type that prompt-
setting command every time you log in. So after you've perfected your prompt on the command line,
store it in the correct shell setup file (Section 3.3): use the file that's read by interactive shells or add
an interactive shell test to your setup file. (Setting the prompt in noninteractive shells is pointless —
and it can even cause problems (Section 4.5).)

—JP, TOR, and SJC

(11T haven't seen prompts described this way before. I invented the terms static prompt and dynamic
prompt to make them easier to talk about.

Static Prompts

As Section 4.1 explains, the simplest prompts — which I call static prompts — are prompts whose
value are set once. The prompt doesn't change (until you reset the prompt variable, of course).

The default bash prompt is a good example of a static prompt. It's "bashs " (with a space at the end,
to make the command you type stand out from the rest of the prompt). You could set that prompt with

the simple command:
PSl='bash$ '

Notice the single quotes (Section 11.3) around the value; this is a good 1dea unless you want special
characters in the prompt value to be interpreted before it's set. You can try it now: type that command

on a command line, just as you would to set any other shell variable. Experiment a bit. The same
prompt works on ksh and sh .

If you use csh or tcsh, try one of these, then experiment:
set prompt='csh% '
set prompt='tcsh> '

(zsh users: you can use any of the previous styles, but omit the set fromthe set prompt style.) Those
prompts are fairly useless, right? If you log in to more than one machine, on more than one account,
it's nice to have your hostname and username in the prompt. So try one of the following prompts.
(From here on, I won't show a separate tcsh version with a > instead of a <. You can do that yourself,

though, if you like.) If your system doesn't have uname, try hostname instead:

PS1="S$SUSER@ uname -n"$ "
set prompt="S$user@ uname -n'% "

Notice that I've used double quotes (Section 12.3) around the values, which lets the shell expand the
values inside the prompt string before the prompt is stored. The shell interprets the variable suser
or suser — and it runs the command substitution (Section 28.14) that gives the hostname — once,
before the prompt 1s set. Using double quotes is more efficient if your prompt won't change as you
move around the system.

—JP and SJC

Dynamic Prompts

Many shells can interpret the stored prompt string as each prompt is printed. As Section 4.1
explains, I call these dynamic prompts.

Special character sequences in the prompt let you include the current directory, date and time,
username, hostname, and much more. Your shell's manual page should list these at the PS7 or prompt
variable. (If you use the Korn shell or the original C shell