

Nginx 1 Web Server
Implementation
Cookbook

Over 100 recipes to master using the Nginx HTTP server
and reverse proxy

Dipankar Sarkar

 BIRMINGHAM - MUMBAI

D
o

Nginx 1 Web Server Implementation Cookbook

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be
caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2011

Production Reference: 1180511

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849514-96-5

www.packtpub.com

Cover Image by Javier Barria (jbarriac@yahoo.com)

Credits

Author
Dipankar Sarkar

Reviewers
Valery Kholodkov

José Miguel Parrella

Michael Shadle

Acquisition Editor
Usha Iyer

Development Editor
Hyacintha D'Souza

Technical Editor
Kavita Iyer

Copy Editor
Neha Shetty

Project Coordinator
Srimoyee Ghoshal

Proofreader
Samantha Lyon

Indexer
Tejal Daruwale

Graphics
Nilesh Mohite

Production Coordinator
Kruthika Bangera

Cover Work
Kruthika Bangera

About the Author

Dipankar Sarkar is a web and mobile entrepreneur. He has a Bachelor's degree in
Computer Science and Engineering from the Indian Institute of Technology, Delhi. He is a
firm believer in the Open source movement and has participated in the Google Summer
of Code, 2005-06 and 2006-07. He has conducted technical workshops for Windows
mobile and Python at various technical meet ups. He recently took part in the Startup
Leadership Program, Delhi Chapter.

He has worked with Slideshare LLC, one of the world's largest online presentation hosting
and sharing service as an early engineering employee. He has since then worked with
Mpower Mobile LLC, a mobile payment startup and Clickable LLC, a leading search engine
marketing startup. He was a co-founder at Kwippy, which was one of the top micro-blogging
sites. He is currently working in the social TV space and has co-founded Jaja.

This is his first technical publication

I would like to thank my patient and long suffering wife, Maitrayee, for
putting up with my insane working hours and for being there for me
throughout. My mother and my sister, Rickta and Amrita, whose belief and
support sustains me. My in laws, Amal and Ruchira Roychoudhury, for
opening their homes and hearts to me so generously. Also to my father, the
late A. C. Sarkar, who co-authored the first chapter of my life and without
whom none of this would have been possible.

I would also like to thank Usha, Hyacintha, Srimoyee, and Kavita from Packt
who made this opportunity possible and have been fantastic to work with.
I am deeply grateful to the technical reviewers whose insights have been
invaluable. Needless to say, errors, if any, are mine.

About the Reviewers

Valery Kholodkov is an active member of Nginx community and one of the earliest
module developers for Nginx. He’s been a computer enthusiast since the age of 10 and has
solid experience in developing scalable web applications and realtime control systems.

Valery helps people with scaling their websites. He has worked for various companies
whose business depends on how fast their website is and how many requests servers can
process within reasonable amount of time. In his blog “Nginx Guts” he writes about the
internals of Nginx web server and shares his best practices in Nginx.

José Miguel is a Venezuelan IT professional based in Quito, Ecuador. Passionate about
technology since the age of three, he started working with Linux servers in 2002, and
he started working as a lead for a Linux deployment at a Venezuelan Government office
(SAPI) in 2004, at the age of 17.

Afterwards he became an advisor and private consultant on Linux and open source
software architecture and deployment for organizations such as the National Oil Company
(PDVSA) as well as the IT/Telecom Regulators, National Phone Company, National Library,
and other institutions in Venezuela as well as Ecuador and the US.

He also held a position as a datacenter analyst for EDELCA, one of the largest hydro
power utilities worldwide, where he developed several system clusters with Nginx as
well as the desktop Debian-based distribution. This experience led José Miguel to be
the architect of Canaima 2.0, the national Linux distribution in Venezuela and now a
community project, currently topping 1 million installations in a 1:1 school laptop project
as well as State-funded computers.

In 2008 he accepted the position of Country Manager for ONUVA in Ecuador, one of the
most renowned open source consulting firms in South America, altogether with the Chief
Technology Officer position. While in ONUVA he had the opportunity to lead a team of
professionals in Venezuela, Ecuador, and the US in large IT projects. Since 2010 he's
been working as an open source strategy lead for a software development company.

José Miguel continues to be involved in technology communities worldwide, such as the
Debian Project, where he's part of the Nginx maintenance team, but also the LACNIC
Security Group, some Perl Mongers chapters, and local Linux User Groups. He's been
an international speaker at venues such as Argentina, México, Scotland, and India and
continues to devote some time to technical writing and presentations on his blog.

Michael Shadle is a self-proclaimed surgeon when it comes to procedural PHP. He
has been using PHP for over ten years along with MySQL and various Linux and BSD
distributions. He has used many different web servers over the years and considers Nginx
to be the best solution yet.

During the day he works as a senior Web Developer at Intel Corporation on a handful
of public-facing websites. He enjoys using his breadth of knowledge to come up with
"out-of-the-box" solutions to solve the variety of issues and requests that come up.
During his off-hours, he has a thriving personal consulting and web development
practice and more personal project ideas than he can tackle at once.

He is a minimalist at heart, and believes that when architecting solutions, starting small
and simple allows for a more agile approach in the long run. Michael also coined the
phrase "A simple stack is a happy stack."

You can visit his personal blog at http://michaelshadle.com/.

I'd like to thank my parents, my friends, and the thousands of people I've
interacted with over the Internet for keeping me on my toes.

http://michaelshadle.com/

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print and bookmark content

ff On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Table of Contents
Preface	 1
Chapter 1: The Core HTTP Module	 7

Introduction	 8
Installing new modules and compiling Nginx	 8
Running Nginx in debug mode	 10
Easy reloading of Nginx using the CLI	 11
Splitting configuration files for better management	 13
Setting up multiple virtual hosts	 16
Setting up a default catch-all virtual host	 17
Using wildcards in virtual hosts	 18
Setting up the number of worker processes correctly	 19
Increasing the size of uploaded files	 20
Using dynamic SSI for simple sites	 22
Adding content before and after a particular page	 23
Enabling auto indexing of a directory	 25
Serving any random web page from a directory	 27
Serving cookies for identifying and logging users	 29
Re-encoding the response to another encoding	 30
Enabling Gzip compression on some content types	 31
Setting up 404 and other error pages	 32

Chapter 2: All About Rewrites: The Rewrite Module	 35
Introduction	 35
Setting up a simple redirect	 36
Using variables in your rewrite	 37
Using cookies for your rewrites	 38
Using browser agents for your rewrites	 40
Using rate limits as a condition for rewrites	 41
Blocking requests based on HTTP referrers	 43
Serving maintenance page when deploying	 44

ii

Table of Contents

Setting up a WordPress site with static file serving	 46
Setting up a Drupal site with static file serving	 52
Setting up a Magento site with static file serving	 56
Converting your Apache's .htaccess into Nginx rewrites	 59
Using maps to make configurations cleaner	 62

Chapter 3: Get It All Logged: The Logging Module	 65
Introduction	 65
Setting up error log path and levels	 66
Logging it like Apache	 67
Disabling logging of 404 in error logs	 68
Using different logging profiles in the same setup	 69
Enabling a log file cache	 71
Utilizing separate error logs per virtual host	 72
Setting up log rotation	 74
Enabling remote logging with syslog-ng	 75
Setting up your custom logs for easy parsing	 76

Chapter 4: Slow Them Down: Access and Rate Limiting Module 	 83
Introduction	 83
Limiting requests for any given session	 84
Blocking and allowing access using IP	 85
Setting up simple rate limiting for a download directory	 86
Rate limiting search engine bots	 87
Setting up GeoIP using the MaxMind country database	 88
Using the GeoIP module to set up access and rate control	 90

Chapter 5: Let's be Secure: Security Modules	 93
Introduction	 93
Setting up HTTP auth for access control	 94
Generating a secure link for files	 95
Setting up HTTPS for a simple site	 97
Using non standard error codes for debugging SSL setup	 100
Using wildcard certificates with multiple servers	 101
Using Nginx SSL variables for rewrite rules	 103

Chapter 6: Setting Up Applications: FCGI and WSGI Modules	 105
Introduction	 105
Setting up a PHP FCGI site	 106
Setting up a Python site using uWSGI	 110
Modifying FCGI timeouts	 113
Utilizing FCGI cache to speed it up	 114
Using multiple FCGI backends	 115

iii

Table of Contents

Chapter 7: Nginx as a Reverse Proxy	 119
Introduction	 119
Using Nginx as a simple reverse proxy	 120
Setting up a rails site using Nginx as a reverse proxy	 121
Setting up correct reverse proxy timeouts	 123
Setting up caching on the reverse proxy	 124
Using multiple backends for the reverse proxy	 126
Serving CGI files using thttpd and Nginx	 128
Setting up load balancing with reverse proxy	 130
Splitting requests based on various conditions using split-clients	 132

Chapter 8: Improving Performance and SEO Using Nginx	 135
Introduction	 136
Setting up TCP options correctly for optimizing performance	 136
Reducing the keep-alives to free up Nginx workers	 137
Using Memcached as the cache backend	 138
Configuring the right event model and file limits	 140
Setting max-age expiry headers for client-side caching	 141
Blocking scrapers, bots, and spiders to save bandwidth	 143
Redirection of www to non-www domain for SEO	 144
Removing all white space from response	 145
Setting up server status for monitoring	 146
Setting up Munin for 24x7 Nginx monitoring	 147
Enabling GZIP pre-compression	 150
Preventing hotlinking using Nginx	 151
Using embedded Perl to minify JavaScript files	 152
Using embedded Perl to minify CSS files	 154
Using embedded Perl to serve sitemaps (SEO)	 156
Setting up Boost module on Drupal with Nginx	 158
Setting up streaming for Flash files	 162
Utilizing the 1x1 GIF serving module to do offline processing	 163

Chapter 9: Using Other Third-party Modules	 165
Introduction	 166
Setting up an IMAP/POP3 proxy server	 166
Setting up authentication for mail services	 167
Setting up SSL for mail authentication	 170
Using Nginx as a WEBDAV reverse proxy	 172
Dynamic image resizing using Nginx	 173
Replacing and searching text in Nginx response	 175
Assembling ZIP files on the fly	 176
Using Nginx as a HTTP publish-subscribe server	 178

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

iv

Table of Contents

Transforming XML responses using XSLT templates	 181
Setting up Etags for static content	 182
Easy logging of page load times	 183
Streaming of MP4/H.264 files	 185
Setting up SCGI sites	 186
Setting up expiring links	 188

Chapter 10: Some More Third-party Modules	 191
Introduction	 191
Configuring a fair load balancing	 192
Setting up health checks for backend servers	 194
Tracking and reporting file upload progress	 196
Generating circles for round edges using Nginx	 198
Running Python using Phusion Passenger	 200
Generating graphs directly from RRDtool in Nginx	 202
Using Google performance tools	 204
Serving content directly from GridFS	 205
Configuring Basic HTTP auth using PAM	 207
Configuring Basic HTTP auth using Kerberos	 209

Index	 211

Preface
Nginx is an open source high-performance web server, which has gained quite some
popularity recently. Due to its modular architecture and small footprint, it has been the default
choice for a lot of smaller Web 2.0 companies to be used as a load-balancing proxy server. It
supports most of the existing backend web protocols such as FCGI, WSGI, and SCGI. This book
is for you if you want to have in-depth knowledge of the Nginx server.

Nginx 1 Web Server Implementation Cookbook covers the whole range of techniques that
would prove useful for you in setting up a very effective web application with the Nginx web
server. It has recipes for lesser-known applications of Nginx like a mail proxy server, streaming
of video files, image resizing on the fly, and much more.

The first chapter of the book covers the basics that would be useful for anyone who is starting
with Nginx. Each recipe is designed to be independent of the others.

The book has recipes based on broad areas such as core, logging, rewrites, security, and
others. We look at ways to optimize your Nginx setup, setting up your WordPress blog, blocking
bots that post spam on your site, setting up monitoring using munin, and much more.

Nginx 1 Web Server Implementation Cookbook makes your entry into the Nginx world easy
with step-by-step recipes for nearly all the tasks necessary to run your own web application.

A practical guide for system administrators and web developers alike to get the best out of the
open source Nginx web server.

What this book covers
Chapter 1, The Core HTTP Module, deals with the basics of Nginx configuration and
implementation. By the end of it you should be able to compile Nginx on your machine, create
virtual hosts, set up user tracking, and get PHP to work.

Chapter 2, All About Rewrites: The Rewrite Module, is devoted to the rewrite module; it will teach
you the basics and also allow you to configure various commonly available web development
frameworks to work correctly with your Nginx setup using the correct rewrite rules.

Preface

2

Chapter 3, Get It All Logged: The Logging Module, aims to teach the basics as well as
the advanced configurations that can be done around the Nginx logging module, like log
management, backup, rotation, and more. Logging is very crucial as it can help you identify
and track various attributes of your application like performance, user behavior, and much
more. It also helps you as a system administrator to identify, both reactively and proactively,
potential security issues.

Chapter 4, Slow Them Down: Access and Rate Limiting Module, explains how Nginx provides
good protection against cases such as bringing down sites by providing rate limiting and
server access based on IP.

Chapter 5, Let's be Secure: Security Modules, looks at how we can use the security modules
built-in Nginx to secure your site and user's data.

Chapter 6, Setting Up Applications: FCGI and WSGI Modules, has a practical section devoted
to helping programmers and system administrators understand and install their applications
using Nginx as the web server. Due to the lack of integrated modules for running PHP
and Python, the setting up of such systems can be an issue for non-experienced system
administrators.

Chapter 7, Nginx as a Reverse Proxy, deals with the usage of Nginx as a reverse proxy in
various common scenarios. We will have a look at how we can set up a rail application; set
up load balancing, and also have a look at caching setup using Nginx, which will potentially
enhance the performance of your existing site without any codebase changes.

Chapter 8, Improving Performance and SEO Using Nginx, is all about how you can make
your site load faster and possibly get more traffic on your site. We will cover the basics of
optimizing your Nginx setup and some SEO tricks. These techniques will not only be useful for
your SEO, but also for the overall health of your site and applications.

Chapter 9, Using Other Third-party Modules, a look at some inbuilt and third-party modules
which allow us to extend and use Nginx with other protocols such as IMAP, POP3, WebDAV,
and much more. Due to the flexible and well-defined module API, many module developers
have used Nginx for interesting web-based tasks such as XSLT transformations, image
resizing, and HTTP publish-subscribe server.

Chapter 10, Some More Third-party Modules, looks at various web situations such as
load balancing, server health checks, and more which will be very useful in a production
environment. These simple recipes will be highly applicable in enterprise scenarios where you
may need to have analytics, external authentication schemes, and many other situations.

What you need for this book
In terms of understanding, a bit of web server administration experience would help. If you
understand how a basic site works, it would be easier to follow some of the more production
oriented configurations. A look at the index of recipes would give you a good overview of the
topics and also show some of the connectivity throughout the book at a glace.

Preface

3

All the code in this book has been tried and tested on the following software setup

1.	 Ubuntu/debian linux with 2.6.x kernel

2.	 Nginx 0.7.x+ to 1.0.0

3.	 Installed compiler dependencies for Nginx

Nginx binaries are available for windows as well, compiling the modules however will be easier
to by using cygwin based setups.

Some patience and reading maybe required to make more effective use of what you can do
with the learnings in the book. Have fun 'Nginx'ing !

Who this book is for
If you are tired of Apache consuming all your server memory with little traffic, and to overcome
this, or for some other reason, you are looking for a high-performance load-balancing proxy
server and have tried using Nginx, then this book is for you. You need some basic knowledge
of Nginx. System administrators and web developers will benefit greatly from this book.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through the use of
the include directive."

A block of code is set as follows:

int main()
{
 // Open the video file
 cv::VideoCapture capture("../bike.avi");
 // check if video successfully opened
 if (!capture.isOpened())
 return 1;

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

 server 192.168.1.3;
 server 192.168.1.5;
 fair;
}
server {

Preface

4

Any command-line input or output is written as follows:

/etc/init.d/nginx restart

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "clicking the Next button
moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in the
SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.PacktPub.com. If you purchased this book elsewhere, you can visit
http://www.PacktPub.com/support and register to have the files e-mailed directly to you.

http://www.PacktPub.com
http://www.PacktPub.com/support

Preface

5

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/support, selecting your book, clicking on the errata
submission form link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded on our website, or added to any
list of existing errata, under the Errata section of that title. Any existing errata can be viewed by
selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

1
The Core HTTP

Module

In this chapter, we will cover:

ff Installing new modules and compiling Nginx

ff Running Nginx in debug mode

ff Easy reloading of Nginx using the CLI

ff Splitting configuration files for better management

ff Setting up multiple virtual hosts

ff Setting up a default catch-all virtual host

ff Using wildcards in virtual hosts

ff Setting up the number of worker processes correctly

ff Increasing the size of uploaded files

ff Using dynamic SSI for simple sites

ff Adding content before and after a particular page

ff Enabling auto indexing of a directory

ff Serving any random web page from a directory

ff Serving cookies for identifying and logging users

ff Re-encoding the response to another encoding

ff Enabling Gzip compression on some content types

ff Setting up 404 and other error pages

The Core HTTP Module

8

Introduction
This chapter deals with the basics of Nginx configuration and implementation. By the end
of it you should be able to compile Nginx on your machine, create virtual hosts, set up user
tracking, and get PHP to work.

Installing new modules and compiling Nginx
Today, most softwares are designed to be modular and extensible. Nginx, with its great
community, has an amazing set of modules out there that lets it do some pretty interesting
things. Although most operating system distributions have Nginx binaries in their repositories,
it is a necessary skill to be able to compile new, bleeding edge modules, and try them out.
Now we will outline how one can go about compiling and installing Nginx with its numerous
third-party modules.

How to do it...
1.	 The first step is to get the latest Nginx distribution, so that you are in sync with the

security and performance patches (http://sysoev.ru/nginx/nginx-0.7.67.
tar.gz). Do note that you will require sudo or root access to do some of the
installation steps going ahead.

2.	 Un-tar the Nginx source code. This is simple, you will need to enter the following
command:
tar -xvzf nginx-0.7.67.tar.gz

Chapter 1

9

3.	 Go into the directory and configure it. This is essential, as here you can enable
and disable the core modules that already come with Nginx. Following is a sample
configure command:
./configure -–with-debug \

--with-http_ssl_module \

--with-http_realip_module \

--with-http_ssl_module \

--with-http_perl_module \

--with-http_stub_status_module

You can figure out more about what other modules and configuration flags use:
./configure -–help

4.	 If you get an error, then you will need to install the build dependencies, depending on
your system. For example, if you are running a Debian based system, you can enter
the following command:
apt-get build-dep nginx

This will install all the required build dependencies, like PCRE and TLS libraries.

5.	 After this, you can simply go ahead and build it:
sudo make install

6.	 This was the plain vanilla installation! If you want to install some new modules, we take
the example of the HTTP subscribe-publish module:

7.	 Download your module (http://pushmodule.slact.net/downloads/nginx_
http_push_module-0.692.tar.gz).

8.	 Un-tar it at a certain location:/path/to/module.

9.	 Reconfigure Nginx installation:
./configure --add-module=/path/to/module

The important part is to point the –add-module flag to the right module path. The
rest is handled by the Nginx configuration script.

10.	 You can continue to build and install Nginx as shown in step 5.
sudo make install

If you have followed steps 1 to 10, it will be really easy for you to install any Nginx module.

There's more...
If you want to check that the module is installed correctly, you can enter the following
command:

nginx -V

The Core HTTP Module

10

A sample output is something as shown in the following screenshot:

This basically gives you the compilation flags that were used to install this particular binary of
Nginx, indirectly listing the various modules that were compiled into it.

Running Nginx in debug mode
Nginx is a fairly stable piece of software which has been running in production for over a decade
and has built a very strong developer community around it. But, like all software there are issues
and bugs which crop up under the most critical of situations. When that happens, it's usually
best to reload Nginx with higher levels of error logging and if possible, in the debug mode.

How to do it...
If you want the debug mode, then you will need to compile Nginx with the debug flag
(--with-debug). In most cases, most of the distributions have packages where Nginx is pre-
compiled with debug flag. Here are the various levels of debugging that you can utilize:

error_log LOGFILE [debug | info | notice | warn | error | crit |
debug_core | debug_alloc | debug_mutex | debug_event | debug_http |
debug_imap];

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you purchased
this book elsewhere, you can visit http://www.PacktPub.com/support and
register to have the files e-mailed directly to you.

If you do not set the error log location, it will log to a compiled-in default log location. This
logging is in addition to the normal error logging that you can do per site. Here is what the
various specific debug flags do:

Flags Application
debug_core Lets you dump the core when Nginx crashes
debug_alloc Logs all memory allocation warnings and errors
debug_mutex Logs potential mutex issues
debug_event Logs events module issues
debug_http This is the default HTTP logging
debug_imap This is the default IMAP logging

Chapter 1

11

There's more...
Nginx allows us to log errors for specific IP addresses. Here is a sample configuration that will
log errors from 192.168.1.1 and the IP range of 192.168.10.0/24:

error_log logs/error.log;
events {
 debug_connection 192.168.1.1;
 debug_connection 192.168.10.0/24;
}

This is extremely useful when you want to debug in the production environment, as logging for
all cases has unnecessary performance overheads. This feature allows you to not set a global
debug on the error_log, while being able to see the debug output for specific matched IP
blocks based on the user's IP address.

Easy reloading of Nginx using the CLI
Depending on the system that you have, it will offer one clean way of reloading your Nginx
setup

ff Debian based: /etc/init.d/Nginx reload

ff Fedora based: service Nginx reload

ff FreeBSD/BSD: service Nginx reload

ff Windows: Nginx -s reload

All the preceding commands reload Nginx; they send a HUP signal to the main Nginx process.
You can send quite a few control signals to the Nginx master process, as outlined in the
following table. These let you manage some of the basic administrative tasks:

Signal Activity
TERM,INT Quick shutdown
QUIT Graceful shutdown
HUP Reload configuration, gracefully shutdown the worker processes and restart them
USR1 Reopen the log files
USR2 Upgrade the executable on the fly, when you have already installed it
WINCH Gracefully shutdown the worker process

The Core HTTP Module

12

How to do it...
Let me run you through the simple steps of how you can reload Nginx from the command line.

1.	 Open a terminal on your system. Most UNIX-based systems already have fairly
powerful terminals, while you can use PuTTY on Windows systems.

2.	 Type in ps auxww | grep nginx. This will output something as shown in the
following screenshot:

If nothing comes, then it means that Nginx is not running on your system.

3.	 If you get the preceding output, then you can see the master process and the
two worker processes (it may be more, depending on your worker_processes
configuration). The important number is 3322, which is basically the PID of the
master process.

4.	 To reload Nginx, you can issue the command kill -HUP <PID of the nginx
master process>. In this case, the PID of the master process is 3322. This will
basically read the configurations again, gracefully close your current connections, and
start new worker processes. You can issue another ps auxww | grep nginx to
see new PIDs for the worker processes (4582,4583):

5.	 If the worker PIDs do not change it means that you may have a problem while
reloading the configuration files. Go ahead and check the Nginx error log.

This is very useful while writing scripts, which control Nginx configuration. A good example
is when you are deploying code on production; you will temporarily point the site to a static
landing page.

Chapter 1

13

Splitting configuration files for better
management

By default, when you are installing Nginx you get this one monolithic configuration file which
contains a whole lot of sample configurations. Due to its extremely modular and robust
designing, Nginx allows you to maintain your configuration file as a set of multiple linked files.

How to do it...
Let's take a sample configuration file nginx.conf and see how can it be broken into logical,
maintainable pieces:

user www www; #This directive determines the user and group of
the processes started
worker_processes 2;
error_log logs/error.log;
pid logs/nginx.pid;
events {
 worker_connections 1024;
}
http {
 include mime.types;
 default_type application/octet-stream;
 gzip on;
 gzip_min_length 5000;
 gzip_buffers 4 8k;
 gzip_types text/plain text/html text/css application/x-javascript
text/xml application/xml application/xml+rss text/javascript;
 gzip_proxied any;
 gzip_comp_level 2;
 ignore_invalid_headers on;
 server {
 listen 80;
 server_name www.example1.com;
 location / {
 root /var/www/www.example1.com;
 index index.php index.html index.htm;
 }
 location ~ \.php$ {
 include conf/fcgi.conf;
 fastcgi_pass 127.0.0.1:9000;
 }
 }
}

The Core HTTP Module

14

The preceding configuration is basically serving a simple PHP site at
http://www.example1.com using FastCGI. Now we can go ahead and
split this file into the following structure:

ff nginx.conf: The central configuration file remains

ff fcgi.conf: This will contain all the FastCGI configurations

ff sites-enabled/: This directory will contain all the sites that are enabled (much
like Apache2's sites-enabled directory)

ff sites-available/: This directory will contain all the sites that are not active, but
available (again, much like Apache2's sites-available)

ff sites-enabled/site1.conf: This is the sample virtual host configuration of the
sample PHP site

The following code is for the new nginx.conf

user www www;
worker_processes 2;
error_log logs/error.log;
pid logs/nginx.pid;
events {
 worker_connections 1024;
}
http {
 include mime.types;
 default_type application/octet-stream;
 gzip on;
 gzip_min_length 5000;
 gzip_buffers 4 8k;
 gzip_types text/plain text/html text/css application/x-
javascript text/xml application/xml application/xml+rss text/
javascript;
 gzip_proxied any;
 gzip_comp_level 2;
 ignore_invalid_headers on;
 includes sites-available/*;
}

If you notice, you will see how includes has allowed the inclusion of external configuration
files. It should be noted that if we have any errors in any of the files, the Nginx server will fail
to reload.

Here is the FastCGI configuration which is used by this setup; generally most Nginx
installations provide a default one.

http://www.example.com/
http://www.example.com/

Chapter 1

15

The following is the code for fcgi.conf:

fastcgi_param QUERY_STRING $query_string;
fastcgi_param REQUEST_METHOD $request_method;
fastcgi_param CONTENT_TYPE $content_type;
fastcgi_param CONTENT_LENGTH $content_length;
fastcgi_param SCRIPT_NAME $fastcgi_script_name;
fastcgi_param REQUEST_URI $request_uri;
fastcgi_param DOCUMENT_URI $document_uri;
fastcgi_param DOCUMENT_ROOT $document_root;
fastcgi_param SERVER_PROTOCOL $server_protocol;
fastcgi_param GATEWAY_INTERFACE CGI/1.1;
fastcgi_param SERVER_SOFTWARE nginx/$nginx_version;
fastcgi_param REMOTE_ADDR $remote_addr;
fastcgi_param REMOTE_PORT $remote_port;
fastcgi_param SERVER_ADDR $server_addr;
fastcgi_param SERVER_PORT $server_port;
fastcgi_param SERVER_NAME $server_name;
fastcgi_index index.php ;
fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name ;

PHP only, required if PHP was built with --enable-force-cgi-redirect
fastcgi_param REDIRECT_STATUS 200;
fastcgi_connect_timeout 60;
fastcgi_send_timeout 180;
fastcgi_read_timeout 180;
fastcgi_buffer_size 128k;
fastcgi_buffers 4 256k;
fastcgi_busy_buffers_size 256k;
fastcgi_temp_file_write_size 256k;
fastcgi_intercept_errors on;

The following is the code for sites-enabled/site1.conf:

server {
 listen 80;
 server_name www.example1.com;
 location / {
 root /var/www/www.example1.com;
 index index.php index.html index.htm;
 }
 location ~ \.php$ {
 include conf/fcgi.conf;
 fastcgi_pass 127.0.0.1:9000;
 }
}

The Core HTTP Module

16

This sort of a file arrangement allows clean separation of the main configuration and the
auxiliary ones. It also promotes structured thinking, which is useful when you have to quickly
switch or deploy sites.

We will go over the various configurations that you see in these files in other chapters. For
example, fcgi.conf is covered in the recipe to get PHP working with Nginx using FastCGI.

Setting up multiple virtual hosts
Usually any web server hosts one or more domains, and Nginx, like any good web server,
allows you to easily configure as many virtual hosts as you want.

How to do it...
Let's take a simple example. You want to set up a simple set of webpages on
www.example1.com. Here is the sample configuration which needs to go into
the sites-enabled/site1.conf:

server {
	 listen 80;
	 server_name www.example1.com example1.com;
	 access_log /var/log/Nginx/example1.com/access.log;
	 error_log /var/log/Nginx/example1.com/error.log;
	 location / {
		 root /var/www/www.example1.com;
		 index index.html index.htm;
	 }
}

How it works...
So let's see how this works. The listen defines the port on which the web server is listening
(in this case, its 80)! The server_name lets you easily define the domain that maps to this
virtual host configuration. Inside, you can start defining how the virtual host works. In this
case it serves set of HTML pages from the /var/www/www.example1.com directory.

So when you reload your Nginx configuration assuming that your DNS records point correctly
at your server, you should see your HTML pages load when you access the web address (in
this case, http://www.example1.com).

There's more...
Here is a quick checklist to get you started:

Chapter 1

17

1.	 Create a simple directory with the HTML files.

2.	 Create a simple configuration file containing the virtual host configuration
for www.example1.com.

3.	 Reload Nginx.

4.	 Point your DNS server to the correct server running Nginx.

5.	 Load www.example1.com.

Setting up a default catch-all virtual host
Once you are comfortable setting up the virtual hosts, you will end up in a situation where
you have a lot of domains pointing at the IP. In addition to the domains, you would also have
the web server responding to the IP addresses it hosts, and many other unused subdomains
of the domains pointing at it. We can take a look at this with a simple example, so you have
http://www.example1.com pointing at the IP address, you have configured a virtual host
to handle the domains www.example1.com and example1.com. In such a scenario, when
the user types in abc.example1.com or an IP address the web server will not be able to
serve the relevant content (be it 404 or some other promotional page).

How to do it...
For situations like the one above, one can utilize the default catchall virtual host that Nginx
provides; here is a simple example where this default catchall virtual host serves a simple set
of web pages.

The following is the code for sites-enabled/default.conf:

server {
	 listen 80 default;
 	 server_name _;
	 location / {
		 root /var/www/default;
		 index index.html index.htm;
	 }
}

How it works...
The key thing to note is the fact that you are listening on the default port and that the
server_name is "_" which is the catchall mechanism. So whenever the user enters
a domain for which you have no defined virtual host, pages will get server from the
/var/www/default directory.

http://www.example.com/
http://www.example.com/

The Core HTTP Module

18

Using wildcards in virtual hosts
Imagine a situation where you need to create an application that needs to serve dynamic pages
on subdomains! In that case, you will need to set up a virtual host in Nginx that can utilize
wildcards. Nginx has been made ground up to handle such a scenario. So let's take our favorite
example of http://www.example1.com. Let's say you are building an application that needs
to handle the various subdomains such as a.example1.com, b.example1.com, and
so on. The following configuration would let the application behind handle all these
various subdomains.

How to do it...
You will need to set a wildcard on the DNS entry. Without the DNS entries, the domain (and
subdomains) will never resolve to your server IP. A sample DNS entry is given below which
points the domain http://example1.com to the IP 69.9.64.11:

example1.com. IN A 69.9.64.11

Once you know how your DNS works, you can add this to your nginx.conf inside the
http section:

server {
	 listen 80;
	 server_name example1.com *.example1.com;
	 location / {
		
	 }	
}

How it works...
The important part to note is that in this case, you are serving all the subdomains using the
same code base. We have also set the virtual host to serve the non-www domain as well
(example1.com which is different from www.example1.com).

So when you type a.example1.com, your web application will receive a.example1.com as
the domain that was requested from the web server and it can process the HTTP response
accordingly.

http://example1.com
http://example1.com

Chapter 1

19

Setting up the number of worker processes
correctly

Nginx like any other UNIX-based server software, works by spawning multiple processes
and allows the configuration of various parameters around them as well. One of the basic
configurations is the number of worker processes spawned! It is by far one of the first things
that one has to configure in Nginx.

How to do it...
This particular configuration can be found at the top of the sample configuration file
nginx.conf:

user www www;
worker_processes 5;
error_log logs/error.log;
pid logs/nginx.pid;
worker_rlimit_nofile 8192;
events {
 worker_connections 4096;
}

In the preceding configuration, we can see how the various process configurations work. You
first set the UNIX user under which the process runs, then you can set the number of worker
processes that Nginx needs to spawn, after that we have some file locations where the errors
are logged and the PIDs (process IDs) are saved.

How it works...
By default, worker_processes is set at 2. It is a crucial setting in a high performance
environment as Nginx uses it for the following reasons:

ff It uses SMP, which allows you to efficiently use multi-cores or multi-processors
systems very efficiently and have a definite performance gain.

ff It increases the number of processes decreases latency as workers get blocked on
disk I/O.

ff It limits the number of connections per process when any of the various supported
event types are used. A worker process cannot have more connections than specified
by the worker_connections directive.

The Core HTTP Module

20

There's more...
It is recommended that you set worker_processes as the number of cores available on
your server. If you know the values of worker_processes and worker_connections,
one can easily calculate the maximum number of connections that Nginx can handle in the
current setup.

Maximum clients = worker_processes * worker_connections

Increasing the size of uploaded files
Usually when you are running a site where the user uploads a lot of files, you will see that
when they upload a file which is more than 1MB in size you get an Nginx error stating,
"Request entity too Large" (413), as shown in the following screenshot. We will look at how
Nginx can be configured to handle larger uploads.

How to do it...
This is controlled by one simple part of the Nginx configuration. You can simply paste this in
the server part of the Nginx configuration:

client_max_body_size 100M; # M stands for megabytes

This preceding configuration will allow you to upload a 100 megabyte file. Anything more than
that, and you will receive a 413. You can set this to any value which is less than the available
disk space to Nginx, which is primarily because Nginx downloads the file to a temporary
location before forwarding it to the backend application.

Chapter 1

21

There's more...
Nginx also lets us control other factors related to people uploading files on the web
application, like timeouts in case the client has a slow connection. A slow client can keep
one of your application threads busy and thus potentially slow down your application. This
is a problem that is experienced on all the heavy multimedia user-driven sites, where the
consumer uploads all kinds of rich data such as images, documents, videos, and so on. So it
is sensible to set low timeouts.

client_body_timeout 60; # parameter in seconds
client_body_buffer_size 8k;
client_header_timeout 60; # parameter in seconds
client_header_buffer_size 1k;

So, here the first two settings help you control the timeout when the body is not received at
one read-step (basically, if the server is queried and no response comes back). Similarly,
you can set the timeout for the HTTP header as well. The following table lists out the various
directives and limits you can set around client uploading.

Directive Use
client_body_in_file_only This directive forces Nginx to always store a client

request body in temporary disk files, even if the file size
is 0.

The file will not be removed at request completion.
client_body_in_single_
buffer

This directive specifies whether to keep the whole body
in a single client request buffer.

client_body_buffer_size This directive specifies the client request body buffer size.

If the request body is more than the buffer, then
the entire request body or some part is written in a
temporary file.

client_body_temp_path This directive assigns the directory for storing the
temporary files in it with the body of the request.

client_body_timeout This directive sets the read timeout for the request body
from client.

client_header_buffer_size This directive sets the header buffer size for the request
header from client.

client_header_timeout This directive assigns timeout with reading of the title of
the request of client.

client_max_body_size This directive assigns the maximum accepted body size
of client request, indicated by the line Content-Length in
the header of request.

The Core HTTP Module

22

Using dynamic SSI for simple sites
With the advent of modern feature-full web servers, most of them have Server-Side Includes
(SSI) built in. Nginx provides easy SSI support which can let you do pretty much all basic
web stuff.

How to do it...
Let's take a simple example and start understanding what one can achieve with it.

1.	 Add the following code to the nginx.conf file:
server {
	 …..
	 location / {
		 ssi on;
		 root /var/www/www.example1.com;
	 }
}

2.	 Add the following code to the index.html file:
<html>
<body>
 <!--# block name="header_default" -->
 the header testing
 <!--# endblock -->
 <!--# include file="header.html" stub="header_default" →
<!--# echo var="name" default="no" -->
 <!--# include file="footer.html"-->
</body>
</html>

3.	 Add the following code to the header.html file:
<h2>Simple header</h2>

4.	 Add the following code to the footer.html file:
<h2>Simple footer</h2>

Chapter 1

23

How it works...
This is a simple example where we can see that you can simply include some partials in
the larger page, and in addition to that you can create block as well within the page. So the
<block> directive allows you to create silent blocks that can be included later, while the
<include> directive can be used to include HTML partials from other files, or even URL end
points. The <echo> directive is used to output certain variables from within the Nginx context.

There's more...
You can utilize this feature for all kinds of interesting setups where:

ff You are serving different blocks of HTML for different browsers types

ff You want to optimize and speed up certain common blocks of the sites

ff You want to build a simple site with template inheritance without installing any other
scripting language

Adding content before and after a particular
page

Today, in most of the sites that we visit, the webpage structure is formally divided into a set
of boxes. Usually, all sites have a static header and a footer block. Here, in this following page
you can see the YUI builder generating the basic framework of such a page.

In such a scenario, Nginx has a really useful way of adding content before and after it serves
a certain page. This will potentially allow you to separate the various blocks and optimize their
performance individually, as well.

The Core HTTP Module

24

Let's have a look at an example page:

So here we want to insert the header block before the content, and then append the footer
block:

Chapter 1

25

How to do it…
The sample configuration for this particular page would look like this:

server {
	 listen 80;
	 server_name www.example1.com;
	 location / {
 		 add_before_body /red_block
 		 add_after_body /blue_block;
		 ...
	 }
	 location /red_block/ {
		 …
	 }
	 location /blue_block/ {
		 ….
	 }
}

This can act as a performance enhancer by allowing you to load CSS based upon the browser
only. There can be cases where you want to introduce something into the header or the footer
on short notice, without modifying your backend application. This provides an easy fix for
those situations.

This module is not installed by default and it is necessary to enable it when
building Nginx.
./configure –with-http_addition_module

Enabling auto indexing of a directory
Nginx has an inbuilt auto-indexing module. Any request where the index file is not found will
route to this module. This is similar to the directory listing that Apache displays.

How to do it...
Here is the example of one such Nginx directory listing. It is pretty useful when you want to share
some files over your local network. To start auto index on any directory all you need to do is to
carry out the following example and place it in the server section of the Nginx configuration file:

server {
	 location 80;

The Core HTTP Module

26

	 server_name www.example1.com;
	 location / {
		 root /var/www/test;
		 autoindex on;
	 }
}

How it works...
This will simply enable auto indexing when the user types in http://www.example1.com.
You can also control some other things in the listings in this way:

autoindex_exact_size off;

This will turn off the exact file size listing and will only show the estimated sizes. This can be
useful when you are worried about file privacy issues.

autoindex_localtime on;

This will represent the timestamps on the files as your local server time (it is GMT by default):

This image displays a sample index auto-generated by Nginx using the preceding
configuration. You can see the filenames, timestamp, and the file sizes as the three data
columns.

Chapter 1

27

Serving any random web page from
a directory

There has been a recent trend for a lot of sites to test out their new pages based upon
the A/B methodology. You can explore more about its history and the various companies
that have adopted this successfully as a part of their development process at http://
en.wikipedia.org/wiki/A/B_testing. In this practice, you have a set of pages
and some metric (such as number of registrations, or the number of clicks on a particular
element). Then you go about getting people to randomly visit these pages and get data about
their behavior on them. This lets you iteratively improve the page and the elements on them.

Nginx has something that will let you to run your own A-B test without writing any code at all. It
allows you to randomly select any web page from a directory and display it.

How to do it...
Let's have a look at a sample configuration which needs to be placed within the HTTP section
of the Nginx configuration:

server {
	 listen 80;
	 server_name www.example1.com;
	 location / {
		 root /var/www/www.example1.com/test_index;
 		 random_index on;
	 }
}

http://en.wikipedia.org/wiki/A/B_testing
http://en.wikipedia.org/wiki/A/B_testing

The Core HTTP Module

28

How it works...
Let's assume that you have some files in the /var/www/www.example1.com/test_index
directory. When you turn on the random index it will scan the directory and then send a
randomly picked file instead of the default index.html. The only exceptions are plain files.
Whole filenames which start with a dot will not be part of the site of files to be picked from.

So here are two sample test pages, with slightly differing headers. Notice that the URLs are
the same. So it will let you determine if the end user is clicking through more with the red link
or the blue link using pure statistical methods:

The preceding screenshot displays A.html on opening the site. There is equal probability of
opening both the pages, much like the tossing of a coin and getting heads or tails.

So, using the A-B testing as an example, you can set an A.html and a B.html, which would
be served to the user randomly. It would allow you to easily measure a lot of interesting client
behavior by simply analyzing the Nginx access logs.

Chapter 1

29

Serving cookies for identifying and logging
users

Nginx has a useful functionality of serving cookies for identifying users. This is very useful
in tracking anonymous user behavior in case a website does not want to employ external
analytics software. This module is compatible with the mod_uid module in Apache2, which
provides a similar functionality.

How to do it…
Here is a sample configuration for this module. This goes in the server section of the
configuration:

userid on;
userid_name uid;
userid_domain example1.com;
userid_path /;
userid_expires 365d;
userid_p3p 'policyref="/w3c/p3p.xml", CP="CUR ADM OUR NOR STA
NID"';

How it works...
Now let's see and understand what the various directives are about. The first userid
directive enables this module; the second assigns a name to the cookie which is going to be
written on the client side. The next three directives are the standard cookie information that is
needed (the primary domain, the path, and the time of expiry). The last directive enables the
browser to understand the privacy practices that the website follows. This is done by using the
P3P protocol which allows websites to declare their intended usage that they collect about the
user. It is basically an XML file that allows you to programmatically display your privacy policy.
The following code is a simple example configuration of how you can define a policy where the
data is removed after 4 months:

<META xmlns="http://www.w3.org/2002/01/P3Pv1">
 <POLICY-REFERENCES>
 <EXPIRY max-age="10000000"/><!-- about four months -->
 </POLICY-REFERENCES>
</META>

This XML put on the server will objectively define the privacy policies of the site to the
incoming bots or users.

The Core HTTP Module

30

There's more...
On enabling this module, some variables are available in the Nginx configuration which
allow you do fairly interesting things. You have access to some variables in the configuration
contest, like $uid_got,$uid_set.

These can be used for writing interesting rewrite rules. A simple application using these
variables is to log the users coming on your site and then determining the user bounce rates
on your website by parsing the logs.

Re-encoding the response to another
encoding

File encoding is a major issue on most websites, a lot of time the database (MySQL in most
cases) is configured to run using the Latin-1 encoding instead of the UTF-8 encoding that is
the prevalent standard. Nginx provides an easy solution for changing your web page encoding
on-the-fly, so that your users do not end up with garbled characters on your website

How to do it...
All you need to do is to place this in the server section of your Nginx configuration:

charset windows-1251;
source_charset koi8-r;

How it works...
This basically defines the fact that the source character set is koi8-r. If the encoding is
different from the charset character set, then re-encoding is carried out. In case your original
response already has a "Content-Type" header present then you will need to use the following
to override and do the re-encoding:

overrride_charset on;

There's more...
You can also decide how the re-encoding happens by defining a character mapping. A simple
example is the following:

charset_map koi8-r windows-1251 {
 C0 FE ; # small yu
 C1 E0 ; # small a
 C2 E1 ; # small b

Chapter 1

31

 C3 F6 ; # small ts
 # ...
}

Nginx lets you do these neat little things that can make your site more accessible and usable
for the end-user.

Enabling Gzip compression on some content
types

As the Web has evolved, we have had improvements in web server and browser technologies.
In recent times, with the booming consumer Internet market, the web application has had to
become faster.

Compression techniques, which were already present, have come of age and now most sites
enable a fairly high degree of compression on the pages they serve. Nginx being state of the
art, has Gzip compression and allows a whole lot of options on how to go about it.

How to do it...
You will need to modify your Nginx configuration file and add the following directives:

http {
	 gzip on;
	 gzip_min_length 1000;
	 gzip_comp_level 6;
	 gzip_proxied expired no-cache no-store private auth;
	 gzip_types text/plain application/xml;
	 gzip_disable "MSIE [1-6]\.";
	 server {
		 ….
	 }
}

How it works...
This sample configuration allows you to turn on the Gzip compression of the outgoing page
for all pages which are over 1000 bytes. This limit is set because compression technology
performance degrades as the page size becomes smaller. You can then set the various MIME
types for which the compression should occur; this particular example will compress only plain
text files and XML files.

The Core HTTP Module

32

Older browsers are not the best when it comes to utilizing this, and you can disable
Gzip depending on the browser type. One of the most interesting settings is the level of
compression where you need to make a choice between the amount of CPU that you want to
spend on compressing and serving the pages (the higher this number, more of your CPU time
will go towards compressing and sending pages). It is recommended to follow a middle path
on this particular setting; the client also spends more CPU time decompressing the page if
you set this. A sensible setting of this value would be six.

There's more...
For proxy requests, gzip_proxied actually allows or disallows the compression of the
response of the proxy request based on the request and the response. You can use the
following parameters:

parameter Function

off Disables compression for all proxy requests

expired Enables compression, if the Expires header prevents caching

no-cache Enables compression if Cache-Control header contains no-cache

no-store Enables compression if Cache-Control header contains no-store

private Enables compression if Cache-Control header contains private

no_last_modified Enables compression if Last-Modified isn't set

no_etag Enables compression if there is no ETag header

auth Enables compression if there is an Authorization header

any Enables compression for all requests

So in the preceding example (expired no-cache no-store private auth) it is clear
that the compression is enabled when the Expires header prevents caching, when the
Cache-Control contains no-cache, no-store, or private, and when there is an
Authorization header present. This allows tremendous control on how the compression is
delivered to the client's browser.

Setting up 404 and other error pages
All web applications have errors and missing pages, and Nginx has easy methods of ensuring
that the end user has a good experience when the application does not respond correctly. It
successfully handles all the HTTP errors with default pages, which can gracefully notify the
users that something has gone wrong.

Chapter 1

33

How to do it...
Nginx allows you to do pretty interesting things with error pages. Following are some example
configurations which can be placed within the HTTP or server section.

We are also going to define a named location using the "@" prefix after location. These
locations are not used during the normal processing of any request and are intended to only
process internally redirected requests.

location @fallback (
 proxy_pass http://backend;
)
error_page 404 /404.html;
error_page 502 503 504 /50x.html;
error_page 403 http://example1.com/forbidden.html;
error_page 404 = @fallback;
error_page 404 =200 /.empty.gif;

How it works...
The first example allows you to map a simple 404 page to a simple HTML. The next example
allows the mapping of various application error codes to another generic application error
HTML page. You can also map the error page to some other external site all together
(http://example1.com/forbidden.html). The fourth example allows you to map the
page to another location, defined as @fallback. The last example is interesting as it actually
allows you to change the response code to a 200 (HTTP OK). This is useful in situations where
you have excessive 404 pages on the site, and would prefer not sending a 404 back as reply,
but a 200 with a very small GIF file in return.

You can utilize this very effectively to give the end user a better experience when they
inadvertently reach dead ends and application errors on your site.

If you do not set these error pages correctly, you will get the default Nginx error pages which
may not be useful to the user and may turn them away.

2
All About Rewrites:

The Rewrite Module

In this chapter, we will cover:

ff Setting up a simple redirect

ff Using variables in your rewrite

ff Using cookies for your rewrites

ff Using browser agents for your rewrites

ff Using rate limits as a condition for rewrites

ff Blocking requests based on HTTP referrers

ff Serving maintenance page when deploying

ff Setting up a WordPress site with static file serving

ff Setting up a Drupal site with static file serving

ff Setting up a Magento site with static file serving

ff Converting your apache .htaccess into Nginx rewrites

ff Using maps to make configurations cleaner

Introduction
This chapter is devoted to the rewrite module; it will teach you the basics and also allow you
to configure various commonly available web development frameworks to work correctly with
your Nginx setup using the correct rewrite rules.

All About Rewrites: The Rewrite Module

36

Setting up a simple redirect
A lot of sites undergo changes, and in some cases complete rewriting. In most cases
the earlier contents URLs would have changed, leading to loss of SEO and, of course,
inconvenience for older clients. This recipe will help you write simple rewrites so that you can
ensure that your new site has all the redirect working.

How to do it...
Let's take a simple example of a site called http://www.example1.com. It earlier had
a page called http://www.example1.com/blog/test-post.html and now it's been
redone. The new blog has a different URL scheme and this old post is at the following location:
http://www.example1.com/blog/test-post/. It may look like a simple change, but
when an older bookmarked user visits the older URL they would get a 404 error page. The
configuration change below will easily let you rewrite the older URL to the new one:

server {
 server_name www.example1.com;
 ...
 rewrite ^/blog/test-post.html$ /blog/test-post/ permanent;
 location ~ .php$ {
 ...
 }
}

How it works...
This creates a permanent redirection [301] rule for the older URL and makes it point to the
new one. Over time this can be removed as permanent redirects changes the bookmarks and
makes sure that people/crawlers do not keep coming back to the older URL.

There's more...
You can also do a temporary redirection which is the 302 redirection by removing the
permanent keyword that is:

rewrite ^/blog/test-post.html$ /blog/test-post/ ;

This means that the browser will not update the bookmark and also the search crawlers will
not update the new URL as the primary one for the content on the page.

Chapter 2

37

Using variables in your rewrite
Now that we are comfortable with the basics, we can go ahead and write more interesting
rewrites using conditions based on various variables accessible inside the configuration. We
will look at a simple example where we check for the presence of a particular GET parameter
in the URI, in the presence of which we rewrite to a special URL.

How to do it...
We will use the following piece of configuration to create the conditional rewrite:

location / {
 ...
 If ($arg_special ~* (beta|alpha|gamma)) {
 rewrite ^(.*)$ http://www.example1.com/greek/$1/;
 }
}

How it works...
If you type in any URL which has a GET parameter special (for example, http://www.
example.com/?special=beta&test=test1) it will show a corresponding special page for
beta. This is very useful if you want to hide certain parts of your site or make it accessible only
by using a basic key in the parameter.

There's more...
As seen above, you can configure a lot more variables available to you in the HTTP header.
Here is a list of more variables that we can access to write more interesting rules.

Variable Description
$arg_PARAMETER This variable contains the value of the GET request variable

PARAMETER if present in the query string.
$args This variable contains the query string in the URL, for example

foo=123&bar=blahblah if the URL is http://example1.
com/? foo=123&bar=blahblah

$binary_remote_addr The address of the client in binary form.
$body_bytes_sent The bytes of the body sent.
$content_length This variable is equal to line Content-Length in the header of

request.
$content_type This variable is equal to line Content-Type in the header of request.

All About Rewrites: The Rewrite Module

38

Variable Description
$document_root This variable is equal to the value of directive root for the current

request.
$document_uri The same as $uri.
$host This variable contains the value of the 'Host' value in the request

header, or the name of the server processing if the 'Host' value is
not available.

$http_HEADER The value of the HTTP header HEADER when converted to
lowercase and with "dashes" converted to "underscores", for
example, $http_user_agent, $http_referer.

$is_args Evaluates to "?" if $args is set, returns "" otherwise.
$request_uri This variable is equal to the *original* request URI as received

from the client including the args. It cannot be modified. Look
at $uri for the post-rewrite/altered URI. Does not include host
name. Example: "/foo/bar.php?arg=baz".

$scheme The HTTP scheme (that is http, https). Evaluated only on demand,
for example:
rewrite ^(.+)$ $scheme://example.com$1
redirect;

$server_addr This variable contains the server address. It is advisable to
indicate addresses correctly in the listen directive and use the
bind parameter so that a system call is not made every time this
variable is accessed.

$server_name The name of the server.
$server_port This variable is equal to the port of the server, to which the

request arrived.
$server_protocol This variable is equal to the protocol of request, usually this is

HTTP/1.0 or HTTP/1.1.
$uri This variable is equal to current URI in the request (without

arguments, those are in $args.) It can differ from $request_
uri which is what is sent by the browser. Examples of how it can
be modified are internal redirects, or with the use of index. Does
not include host name. Example: "/foo/bar.html"

Using cookies for your rewrites
Most websites today use their cookies to effectively track and interact with the client's
browser. Nginx with its powerful rewrite module, allows us to write some interesting rules with
the information that may exist in the browser cookies. You can check out the various cookies
on your browser through the preferences.

Chapter 2

39

How to do it...
We can take the simple example of a site which is running the staging and production versions
on the same Nginx instance. Based upon the cookie, the URL is rewritten into the correct one.
The following snippet will allow you to switch sites based upon what is in the cookie:

 if ($cookie_env ~* "testing") {
 rewrite ^(.*)$ /testing/$1;
 }
 if ($cookie_env ~* "staging") {
 rewrite ^(.*)$ /staging/$1;
 }
 if ($cookie_env ~* "production") {
 rewrite ^(.*)$ /production/$1;
 }

All About Rewrites: The Rewrite Module

40

How it works...
In the above configuration the cookie value is checked for the type of setup that the user is
accessing. This cookie is set on the user logging in by the application, so a testing user will be
able to access cutting-edge features, while a staging user will be able to access beta features
for testing only, and the normal users will continue to use the stable production system.

Using browser agents for your rewrites
In this recipe we will see how we can utilize rewrites for displaying alternative sites based
on the user agent of the client's browser. We can take the example of a very flashy site that
wants to display different sets of pages based upon the browser that the client is using. The
following two screenshots display how facebook.com appears on a normal desktop browser
and on an iPhone; the URL however remains the same.

In the preceding screenshot, we are looking at the full browser version of Facebook, and you
can see a fairly wide-screen site. In the following screenshot, we can see the mobile version of
Facebook which clearly lets go of a lot of functionality because of the reduced screen-size.

Chapter 2

41

How to do it...
The simple example that we take is of an iPhone surfing the website and how you can actually
rewrite the URL to show them a completely iPhone-compatible website. The configuration
below is a great start for it!

location / {
 ...
if ($http_user_agent ~* '(iPhone|iPod)') {
 set $iphone_request '1';
}
if ($iphone_request = '1') {
 rewrite ^.+ http://m.example1.com/$uri;
}
}

How it works...
The idea is simple. What it allows is checking the HTTP USER AGENT header that already
comes to us. We see if it is an iPhone or an iPod browser. If that is the case, we actually set a
variable to some value. If that variable is "1", we go ahead and rewrite the URL to the mobile
version of the site.

Using rate limits as a condition for rewrites
Nginx has some really interesting built-in features around rate limiting requests. This recipe
will help you understand how exactly you can control the requests to your application, thereby
maintaining a certain quality of service to your users even under significant loads.

All About Rewrites: The Rewrite Module

42

Nginx lets you define zones that act as storage area for the state of sessions. The value of
the session key is decided by the chosen variable which, is usually the IP or the hostname
of the client.

How to do it...
In this example, we will see how we can rate limit based on certain parameters, like the
user agent.

location / {
. . .
if ($http_user_agent ~ "MSIE") {
 limit_rate 5k;
}
}

How it works...
In the preceding example we check if the user agent contains MSIE, in which case it will rate
limit the transfer to 5000 bytes only.

There's more...
You can also set up request based rate limiting by using the following snippet:

http {
 limit_req_zone $binary_remote_addr zone=one:10m rate=1r/s;
 ...
 server {
 ...
 location / {
 limit_req zone=one burst=5;
 }
}

The above configuration creates a zone called one, which has a session storage size of 10MB
allocated to it and allows a rate of one request per second in this particular configuration. In
case any request comes that is outside of the rate limit that cannot be served, it will get a
"Service unavailable" 503 page. You can store approximately 16000 sessions in a 1MB zone.
You can choose to create as many zones as you require for your system.

Chapter 2

43

Blocking requests based on HTTP referrers
In this recipe, we will take the example of writing a rule which will look at your HTTP REFERER
header line of the request and block spammers on your site.

The preceding screenshot displays the spam comments on a blog for a single day; these have
been made by automated bots which are trying to get linkbacks for their various properties.
These techniques fall under the dark aspects of SEO.

All About Rewrites: The Rewrite Module

44

How to do it...
To block spammer bots from visiting your site, you can use the following code snippet inside
the location part of your configuration:

location / {
 ...
 if ($http_referer ~* (babes|click|diamond|forsale|girl|jewelry|lo
ve|nudit|organic|poker|porn|poweroversoftware|sex|teen|video|webcam|z
ippo)) {
return 403;
}
}

How it works...
This basically has a look at the $http_referer variable and matches it with the various
keywords provided. This is a very effective in ensuring that you do not have a lot of spam in your
system linking back to bad sites! In case the keywords do match, it returns a 403 client error.

Serving maintenance page when deploying
One of the few things that most sites need to do is deploy code, and usually do it when the
site is running on production. Nginx is really amazing in terms of how it can easily reload its
configuration without terminating the client connections. You can have a look at the reloading
recipe in the previous chapter to know more. In this recipe, we will have a look at a simple way of
setting up a system which can make your deployment pain free for the end user and you as well!

Chapter 2

45

How to do it...
Let's run through step-by-step what one needs to do to make a working deployment. In the
process the various configuration changes will also be outlined.

1.	 Create a directory which has the temporary "Coming back soon" HTML file. Let's call
this /var/www/www.example1.com/deployment/ and the file is index.html.

2.	 You need to create an alternative configuration file which will be called temporary.
conf. This file basically replaces the server configuration for www.example1.com
with the following:
server {
 server_name www.example1.com;
 location / {
 index index.html;
 root /var/www/www.example1.com/deployment/;
 rewrite ^(.*)$ http://www.example1.com/;
 }
}

3.	 Now we can write a small script for deployment. It will basically put the site into a
temporary mode and then update your codebase. After the code update, it will simply
copy the older production configuration and reload Nginx.
!#/bin/bash
mv /etc/nginx/nginx.conf /etc/nginx/nginx_temp.conf
mv /etc/nginx/temporary.conf /etc/nginx/nginx.conf
kill -HUP `cat /var/log/nginx/nginx.pid`
#<deploy the code>
Restart the Fcgi / WSGI backend
mv /etc/nginx/nginx_temp.conf /etc/nginx/nginx.conf
kill -HUP `cat /var/log/nginx/nginx.pid`

All About Rewrites: The Rewrite Module

46

How it works...
In this recipe, we simply use our earlier learned techniques and combine them with some nifty
bash scripting to write a simple deployment script. The idea is to rewrite all the URLs to the
maintenance page when the site is being deployed, and once done with the backend code
deployment we revert back to the older production configuration.

Setting up a WordPress site with static file
serving

WordPress is one of the world's leading blogging systems, and is pretty much the defacto
standard today. It has a fairly easy setup with Apache2 and makes setting up of clean URLs
pretty simple as well. However, with Nginx, (and PHP over fcgi) setting up WordPress with
clean URLs requires some amount of work. My own blog is running on WordPress with Nginx!

Chapter 2

47

How to do it...
Let's try to set up a complete WordPress blog using Nginx and PHP over fcgi. In this recipe, you
will end up learning the various details around the WordPress and Nginx stack.

1.	 Download WordPress - http://Wordpress.org/latest.tar.gz.

2.	 Untar it at /var/www/www.example1.com/:
tar -xvzf latest.tar.gz

3.	 Add the following configuration in Nginx.conf within the http directive:
server {
 listen 80;
 server_name www.example1.com;
 root /var/www/www.example1.com;
 index index.php index.html;
 try_files $uri $uri/ /index.php?q=$uri;
 location ~* \.(jpg|jpeg|gif|css|png|js|ico|html)$ {
 expires max;

http://wordpress.org/latest.tar.gz
http://wordpress.org/latest.tar.gz

All About Rewrites: The Rewrite Module

48

 }
 location ~ \.php$ {
 include /etc/nginx/fastcgi_params;
 fastcgi_pass 127.0.0.1:9000;
 }
}

4.	 Restart the server:
kill -HUP <master PID>

5.	 Go to the blog, and start the installation.

6.	 Log in to the administrative section and set up the clean URLs.

Chapter 2

49

The following screenshot is the permalink setting that allows you to have clean URLs
without .php with the various parameters appended. That makes it very search
engine and human friendly:

/blog/%year%/%monthnum%/%day%/%postname%/

All About Rewrites: The Rewrite Module

50

7.	 We are nearly done. Now you can go ahead and customize your cool, new WordPress
blog!

How it works...
This is a fairly basic setup. The clean URLs are handled by one rewrite. The interesting part
is the static file serving, which is highlighted in the configuration above, that checks if the file
being served is a static file (that is a GIF, PNG, DOC, and so on). If it is, then the file is served
with an expiry header with long expiration time. This reduces the consumed bandwidth as it
facilitates extended client side caching.

There's more...
Many sites have alternative setups to handle higher loads, and use plugins like
wp-supercache. The following configuration has the correct rewrites for fully utilizing
the combined power of wp-supercache and Nginx. This setup has the capability to
handle a significant amount of load within very low resource constraints:

 if (-f $request_filename) {
 break;
 }
 set $supercache_file '';
 set $supercache_uri $request_uri;
 if ($request_method = POST) {
 set $supercache_uri '';
 }

Chapter 2

51

 if ($query_string) {
 set $supercache_uri '';
 }
 if ($http_cookie ~* "comment_author_|Wordpress|wp-postpass_")
{
 set $supercache_uri '';
 }
 if ($supercache_uri ~ ^(.+)$) {
 set $supercache_file /blog/wp-content/cache/
supercache/$http_host/$1index.html;
 }
 if (-f $document_root$supercache_file) {
 rewrite ^(.*)$ $supercache_file break;
 }
 if (!-e $request_filename) {
 rewrite ^(.+)$ /index.php?q=$1 last;
 }

In the following screenshot you can see the WP super cache Manager plugin configuration
page which allows you to setup other parameters for the caching based on your site
requirements. In the above example we handle the basic settings which assume that all the
pages need to be cached.

All About Rewrites: The Rewrite Module

52

Setting up a Drupal site with static
file serving

Drupal is an emerging open source CMS and has captured the imagination of many PHP
developers and enthusiasts alike. In this recipe, we will have a look at how we can set up
Drupal using Nginx and PHP over FastCGI.

How to do it...
1.	 Download Drupal: http://ftp.Drupal.org/files/projects/Drupal-6.19.

tar.gz

2.	 Untar Drupal to /var/www/www.example1.com/.

3.	 Add the following to your Nginx.conf:
server {
 listen 80;

 server_name www.example1.com;
 root /var/www/www.example1.com;
 index index.php index.html index.htm
 try_files $uri $uri/ /index.php?q=$uri;
 location ~* \.(jpg|jpeg|gif|css|png|js|ico|html)$ {
 expires max;
 }
 location ~ \.php$ {

http://www.example1.com
http://www.example1.com
http://www.example1.com

Chapter 2

53

 include /etc/nginx/fastcgi_params;
 fastcgi_pass 127.0.0.1:9000;
 }
}

4.	 Reload Nginx:
kill -HUP <master PID>

5.	 Set up Drupal:

All About Rewrites: The Rewrite Module

54

The preceding screenshot lets you set up the database settings for the installation. In the
following screen, you will be logged in as administrator and will have the ability to manipulate
the various options of the platform:

How it works...
The basic Drupal setup is very similar to the WordPress setup shown in the earlier recipe, and
has the same rewrite rules. You need to transform the clean URL into a parameterized URL for
index.php, as shown in the highlighted directive, try_files.

There's more...
Drupal has an exciting caching framework called Boost, which enhances the speed drastically.
It can be used in conjunction with Nginx to handle fairly high loads. Do note that this stack
with the boost modules has certain pitfalls when it comes to large Drupal sites; it is best
utilized with smaller portals.

Chapter 2

55

set $boost "";
if ($request_method = GET) {
set $boost G;
}
if ($http_cookie !~ "DRUPAL_UID") {
set $boost "${boost}D";
}
if ($query_string = "") {
set $boost "${boost}Q";
}
if (-f $document_root/cache/$host/0/index.html) {
set $boost "${boost}I";
}
if ($boost = GDQI) {
rewrite ^/$ /cache/$server_name/0/index.html break;
}
if (-f $document_root/cache/$host/0$request_uri.html) {
set $boost "${boost}F";
}
if ($boost = GDQIF) {
rewrite .? /cache/$server_name/0$request_uri.html break;
}
if (-d $document_root/cache/$host/0$request_uri) {
set $boost "${boost}E";
}
if (-f $document_root/cache/$host/0$request_uri/index.html) {
set $boost "${boost}F";
}
if ($boost = GDQEF) {
rewrite .? /cache/$server_name/0$request_uri/index.html break;
}
if (!-e $request_filename) {
rewrite ^/(.*)$ /index.php?q=$1 last;
}

All About Rewrites: The Rewrite Module

56

The important assumption in the above case
is that the boost cache is set at /cache/.

Setting up a Magento site with static file
serving

Magento is a neat e-commerce CMS which has been around for a fair bit of time. It has gained
widespread acceptance due to its strong API and committed developer community. In this
recipe, we will have a look at how to set up Magento using Nginx and PHP over FastCGI.

Chapter 2

57

How to do it...
1.	 Download Magento: http://www.magentocommerce.com/

getmagento/1.4.1.1/magento-1.4.1.1.zip

2.	 Untar Magento to /var/www/www.example1.com/.

3.	 Add this to your Nginx.conf:
server {
 listen 80 default;
 server_name www.example1.com;
 root /var/www/www.example1.com;

 location / {
 index index.html index.php;
 if (!-e $request_filename) {
 rewrite / /index.php;
 }
 }
 location ~ \.php/ {
 rewrite ^(.*\.php)/ $1 last;
 }
 location ~ \.php$ {
 include fastcgi_params;
 fastcgi_pass 127.0.0.1:9000;

All About Rewrites: The Rewrite Module

58

 }
}

4.	 Reload Nginx:
kill -HUP <master PID>

5.	 Install Magento:

How it works...
Magento, unlike Drupal or WordPress, does not rewrite its URL to index.php. All the pages
map to index.php. This is achieved by the rewrite rule that has been highlighted in the
configuration code above.

Chapter 2

59

Converting your Apache's .htaccess
into Nginx rewrites

One of the primary uses of Nginx rewrites is to help you easily translate Apache2's .htaccess
to usable Nginx configuration. Apache2 is the dominant open source web server in the world.
In such a situation, inevitably most of the code available has .htaccess rules and very little
direction regarding how to go about configuring Nginx rewrites so that it can properly run the
site.

How to do it...
In this we will have a look at an example where we take an .htaccess file and see its
equivalent Nginx rewrite rules. In the later sections, we will have a look at some patterns that
emerge out of the conversion which you can later utilize for converting other scripts.

Options -Indexes
Options +FollowSymLinks

Enable ETag
#FileETag MTime Size
FileETag none

Set expiration header
ExpiresActive on
ExpiresDefault A2592000
Header append Cache-Control "public"

Compress some text file types
AddOutputFilterByType DEFLATE text/html text/plain text/css text/
xml application/x-javascript text/javascript application/javascript
application/json

Deactivate compression for buggy browsers
BrowserMatch ^Mozilla/4 gzip-only-text/html
BrowserMatch ^Mozilla/4\.0[678] no-gzip
BrowserMatch \bMSIE !no-gzip !gzip-only-text/html

Set header information for proxies
Header append Vary User-Agent

##
Rewrite Rules
##

RewriteEngine on

Require SSL (HTTPS) on the signup page
RewriteCond %{SERVER_PORT} 80
RewriteCond %{REQUEST_URI} ^/signup/?
RewriteRule ^(.*)$ https://www.example.com/$1 [R,L]

All About Rewrites: The Rewrite Module

60

Redirect /signup/plan or /signup/plan/ -> /signup/index.
php?account_type=plan
RewriteRule ^signup/([A-Za-z]+)/?$ /signup/index.php?account_type=$1
[NC,L]

Redirect /home/123 or /home/123/ -> home.php?home_id=123
RewriteRule ^home/([0-9]+)/?$ home.php?home_id=$1 [NC,L]

Redirect /homes/ in case someone made a typo when it should have
been /home/
RewriteRule ^homes/([0-9]+)/?$ home.php?home_id=$1 [NC,L]

###
Default Settings
###

hide apache server signaute on apache generated pages (e.g. 404)
ServerSignature Off

The equivalent Nginx rule set is:

if ($server_port ~ "80"){
 set $rule_0 1$rule_0;
}
if ($uri ~ "^/signup/?"){
 set $rule_0 2$rule_0;
}
if ($rule_0 = "21"){
 rewrite ^/(.*)$ https://www.example.com/$1 redirect;
 break;
}
 rewrite ^/signup/([A-Za-z]+)/?$ /signup/index.php?account_type=$1
last;
 rewrite ^/home/([0-9]+)/?$ /home.php?home_id=$1 last;
 rewrite ^/homes/([0-9]+)/?$ /home.php?home_id=$1 last;

How it works...
Now let's have a look at how exactly the rules have got translated, so the Apache rewrite rules
basically enforce the following rules:

ff If the request is on port 80 and the URL is /signup/ then it is rewritten to the HTTPS
version

ff It redirects all /signup/plan or /signup/plan/ to /signup/index.
php?account_type=plan

ff It redirects all /home/123 or /home/123/ to home.php?home_id=123

ff It fixes all /homes/ to /home/

Chapter 2

61

So basically, if you notice, the conversion is very direct and rather simple. The Apache
.htaccess basically utilizes a sequential set of conditions which are converted to if
conditionals statements in Nginx which manipulate some variables. The following table gives
you a clearer look at the direct conversion of the rewrites.

Apache Nginx Notes
RewriteCond %{SERVER_
PORT} 80

if ($server_port ~ "80"){
 set $rule_0 1$rule_0;
}

This is a simple rewrite conditional
check for what is the server port.

RewriteCond %{REQUEST_URI}
^/signup/?

if ($uri ~ "^/signup/?"){
 set $rule_0 2$rule_0;
}

This is a check for the URL
structure.

RewriteRule ^(.*)$ https://
www.example.com/$1 [R,L]

if ($rule_0 = "21"){
 rewrite ^/(.*)$ https://
www.example.com/$1
redirect;
 break;
}

This Rule is fired only when the
above two conditions are met. It's
a redirect as specified by the R
in the Apache configuration and
redirect in Nginx.

RewriteRule ^signup/
([A-Za-z]+)/?$ /signup/index.
php?account_type=$1 [NC,L]

rewrite ^/signup/
([A-Za-z]+)/?$ /signup/
index.php?account_
type=$1 last;

This simply matches URLs which
look like /signup/something and
rewrites them to /signup/index.
php?account_type=something . If
you notice, something can contain
alphabets to have a match.

RewriteRule ^home/([0-
9]+)/?$ home.php?home_
id=$1 [NC,L]

rewrite ^/home/
([0-9]+)/?$ /home.
php?home_id=$1 last;

This is similar to the above rewrite
and matched for a number.

RewriteRule ^homes/([0-
9]+)/?$ home.php?home_
id=$1 [NC,L]

rewrite ^/homes/
([0-9]+)/?$ /home.
php?home_id=$1 last;

This rewrite is matches for
patterns like /homes/123, /
homes/123123 and so on. It is
similar to the above rewrites.

It is clear how you can take rewrite conditionals in Apache htaccess, and convert them to
Nginx conditions which modify the value of a variable as shown in the comparison above. It is
fairly simple to see the pattern of conversion for the actual rewrites that take place by looking
at the table above.

There's more...
Today, there are a lot of online tools that are fairly advanced and let you convert your
.htaccess file directly into an Nginx configuration! Though it is still safe to assume that more
efficient code is generated by human conversion in slightly complex cases. You can try using
http://www.anilcetin.com/convert-apache-htaccess-to-nginx/ and see your
Apache configuration converted into Nginx configuration with one click.

http://www.anilcetin.com/convert-apache-htaccess-to-nginx/
http://www.anilcetin.com/convert-apache-htaccess-to-nginx/

All About Rewrites: The Rewrite Module

62

Using maps to make configurations cleaner
There is a very useful Nginx module that allows the classification of set of values into different
sets of values, which is then stored in a variable. The idea is that it makes it much simpler to
write switch-case, like statements where you have a different rewrite when there is a different
value. So let us look at some examples where the map module is effectively used.

How to do it...
Let's say you want to detect the incoming hostname and want to do something different on
certain domains and sub-domains, we will write a map and utilize it in a simple rewrite rule:

map $http_host $name {
 hostnames;
 default 0;
 example.com 1;
 *.example.com 1;
 test.com 2;
 *.test.com 2;
 .site.com 3;
}

if($name ~* 1) {
<some rewrite rule>
}

How it works...
This idea is simple. Here you have taken the $http_host variable and created a map where
it will simply fill $name with the value corresponding to the matched value. So for example, if
the site visited was http://abc.site.com then the $name value would be set at three as
per the map.

The hostname directive allows you to write one instead of two mappings if you want to cover a
complete domain, that is:

.example1.com 1;

Instead of:

example1.com 1;
*.example1.com 1;

Chapter 2

63

There's more…
After this variable is mapped, one can utilize this for triggering other rewrite rules. The recipe
for using cookies with rewrite rules could have potentially utilized this approach to have a
much cleaner configuration file:

 if ($cookie_env ~* "testing") {
 rewrite ^(.*)$ /testing/$1;
 }
 if ($cookie_env ~* "staging") {
 rewrite ^(.*)$ /staging/$1;
 }
 if ($cookie_env ~* "production") {
 rewrite ^(.*)$ /production/$1;
 }

The above can be simply translated into:

map $cookie_env $type {
 default /production/;
 testing /testing/;
 staging /staging/;
 production /production/;
}

rewrite ^(.*)$ $type/$1;

This looks much cleaner and effectively is the equivalent to the configuration that is not using
the Map module.

3
Get It All Logged: The

Logging Module

In this chapter, we will cover:

ff Setting up error log path and levels

ff Logging it like Apache

ff Disabling logging of 404 in error logs

ff Using different logging profiles in the same setup

ff Enabling a log file cache

ff Utilizing separate error logs per virtual host

ff Setting up log rotation

ff Enabling remote logging with syslog-ng

ff Setting up your custom logs for easy parsing

Introduction
This chapter aims to teach the basics as well as the advanced configurations that can be done
around the Nginx logging module, like log management, backup, rotation, and more. Logging
is very crucial as it can help you identify and track various attributes of your application, like
performance, user behavior, and much more. It also helps you as a system administrator to
identify, both reactively and proactively, potential security issues.

Get It All Logged: The Logging Module

66

Setting up error log path and levels
The basic configurations that one needs to get the logging modules working properly are setting
up the location of the logging files and configuring the level of the logging that will take place.

Nginx allows a clear separation of the access and the error logs, thus letting you easily track
your error lists.

How to do it...
You can use the following configuration to setup a file path for logging in addition to setting the
format in which to log in:

http {
log_format combined '$remote_addr - $remote_user [$time_local] '
 '"$request" $status $body_bytes_sent '
 '"$http_referer" "$http_user_agent"';

access_log /var/log/nginx/access.log combined;
error_log /var/log/nginx/error.log crit;
...

How it works...
This simple configuration will allow us to log the various HTTP activities that occur on all the
sites hosted in the particular environment. Here is a sample log from the access log:

204.15.240.18 - - [11/Nov/2010:10:57:50 -0800] "GET /public/images-
redux/infobox_join_type.png HTTP/1.1" 200 10212 "http://example.com/
public/css/style-redux.css" "Mozilla/5.0 (Windows; U; Windows NT 5.1;
en-US; rv:1.9.2.10) Gecko/20100914 Firefox/3.6.10"

It is easy to see how the various variables are outputted in order, as defined with the
combined format.

The error log, which is now logged at /var/log/nginx/error.log, will start logging all the
critical errors, and here is a sample entry from an error log:

2010/11/11 10:07:28 [error] 3172#0: accept() failed (53: Software
caused connection abort)
2010/11/11 10:15:12 [error] 3175#0: *136332 open() "/root/sites/
app/public/images/fancybox/blank.gif" failed (2: No such file or
directory), client: 122.176.248.115, server: example1.com, request:
"GET /public/images/fancybox/blank.gif HTTP/1.1", host: "example1.
com", referrer: "http://example1.com/"

Chapter 3

67

There's more...
You can change the level of error logging (error_log) to debug,info,notice,warn
,error,crit, or alert, based upon your application needs. It is usually best to try out the
various levels to understand what exactly it outputs, and weather that can satisfy your current
debugging needs.

Error level What does it mean?
Alert Emergency conditions
Crit Critical conditions
Error Error conditions
Warn Warning conditions
Notice Normal, but significant conditions
Info Information messages
Debug Debug-level messages

Logging it like Apache
Apache or httpd is the most used open source web server out there. It has a very stable
codebase and community which has made it more or less the standard for open source
enterprise applications out there.

Most of the log analyzers are configured with Apache logging format in mind. Our goal in this
recipe is to enable us to use log analyzing tools which already work well with Apache in our
Nginx setup.

How to do it...
If you want the log to look like the Apache logs, you will need to enter the following code:

log_format main '$remote_addr - $remote_user [$time_local] '
 '"$request" $status $body_bytes_sent "$http_referer" '
 '"$http_user_agent" "$http_x_forwarded_for"';

access_log /var/log/nginx/access.log main;

Get It All Logged: The Logging Module

68

How it works...
In this, we basically create a new Apache compatible format which will be easily read with
tools like AWStats. We then set the standard as the Nginx access log format in the preceding
configuration. The format has the following fields:

Variable What is it?
$remote_addr This is the IP of the remote address that was accessing the

site.
$remote_user If the user is logged in with HTTP authentication, this would be

their username.
$time_local This is the local timestamp of the server when the request

was made.
$request The request that was made on the server.
$status The HTTP response code (200, 404, 500, and so on).
$body_bytes_sent This is the size of the response that was sent to the server.
$http_referer This is the site from where the user has arrived on to this

particular page/made this HTTP request.
$http_user_agent This is the browser type that was used to make this HTTP

request.
$http_x_forwarded_for If the server is running as a reverse proxy then this will display

the actual IP of the server.

66.249.64.13 - - [18/Sep/2004:11:07:48 +1000] "GET /robots.txt
HTTP/1.0" 200 468 "-" "Googlebot/2.1"
66.249.64.13 - - [18/Sep/2004:11:07:48 +1000] "GET / HTTP/1.0" 200
6433 "-" "Googlebot/2.1"

The preceding lines from the access log display the format in action. This particular format will
easily work with all the web log parsing and analyzing tools, such as webalizer and AWStats,
with no changes at all.

Disabling logging of 404 in error logs
In the age of Google, we can see that there are thousands of crawlers out there trying to get
the most out of your site and content by reading through all your pages. In a lot of situations,
when you update or upgrade a site, these crawlers start to take up system resources by
trying to access pages that used to exist and do not anymore. This also increases the system
overheads of logging and can potentially become a bottleneck for your site. This recipe will
address this particular issue.

Chapter 3

69

How to do it...
This piece of configuration is placed in the location context of the configuration, as shown in
the following code:

location = /robots.txt {
 log_not_found off;
}

How it works...
This simple configuration will not log when the /robots.txt file is not found on the server.
This will save the unnecessary overhead of opening the error log file and writing out an 404
entry indicating that the file, robots.txt(cit) is being found.

Using different logging profiles in the same
setup

As we have seen before, Nginx allows you to easily set up a logging format. In this recipe,
we will explore how one configuration file can exploit multiple logging formats. This neat
functionality can help you generate custom logs specific to a particular section of the site
whenever necessary.

How to do it...
This particular configuration will implement three logging formats and then effectively utilize
them for logging different sections of the site:

http {

log_format main '$remote_addr - $remote_user [$time_local] '
 '"$request" $status $body_bytes_sent "$http_referer" '
 '"$http_user_agent" "$http_x_forwarded_for"';

You do not need HTTP authentication information and Refer
information for the static files !
log_format static_main '$remote_addr [$time_local] '
 '"$request" $status $body_bytes_sent
 '"$http_user_agent";

You do not need to know about the bytes sent in an error logging
case
log_format error_main '$remote_addr - $remote_user [$time_local] '
 '"$request" $status "$http_user_agent";
...

Get It All Logged: The Logging Module

70

server {
	 listen 80;
 server_name example1.com;
 error_log var/log/nginx/example1_error.log error_main;
 location / {
 ...
 access_log /var/log/nginx/example1_main.log main;
}
location /static/ {
 		 ...
 access_log /var/log/nginx/example1_static.log static_main;
}
}

...

}

How it works...
The main log format will be used to log the normal dynamic PHP request, while the static_
main log format is being used to log the static requests that come to Nginx. Finally we use an
error_main format to keep track of the errors.

There's more...
You have access to the following variables to use in the log_format structure. These can be
utilized effectively to gather and understand whatever Nginx can access in your stack:

Variable Description
$arg_PARAMETER This variable contains the value of the GET request variable

PARAMETER if present in the query string.
$args This variable is the GET parameter's in request line, for example,

foo=123&bar=blahblah.
$binary_remote_
addr

The address of the client in binary form.

$body_bytes_sent The bytes of the body sent.
$content_length This variable is equal to line Content-Length in the header of

request.
$content_type This variable is equal to line Content-Type in the header of

request.
$document_root This variable is equal to the value of directive root for the current

request.

Chapter 3

71

Variable Description
$document_uri The same as $uri.
$host This variable is equal to line Host in the header of request or

name of the server processing the request if the Host header
is not available. This variable may have a different value from
$http_host when the Host input header is absent or has an
empty value.

$http_HEADER The value of the HTTP header HEADER when converted to
lowercase and with "dashes" converted to "underscores", for
example, $http_user_agent, $http_referer.

$is_args Evaluates to "?" if $args is set, returns "" otherwise.
$request_uri This variable is equal to the *original* request URI as received

from the client including the args. It cannot be modified. Look
at $uri for the post-rewrite/altered URI. Does not include host
name. Example: "/foo/bar.php?arg=baz".

$scheme The HTTP scheme (that is http, https). Evaluated only on demand,
for example:

rewrite ^(.+)$ $scheme://example.com$1
redirect;

$server_addr Equal to the server address. As a rule, for obtaining the value of
this variable is done one system call. In order to avoid system call,
it is necessary to indicate addresses in directives, listen, and to
use parameter bind.

$server_name The name of the server.
$server_port This variable is equal to the port of the server, to which the

request arrived.
$server_protocol This variable is equal to the protocol of request, usually this

HTTP/1.0 or HTTP/1.1.
$uri This variable is equal to current URI in the request (without

arguments, those are in $args.) It can differ from $request_
uri which is what is sent by the browser. Examples of how it can
be modified are internal redirects, or with the use of index. Does
not include host name. Example: "/foo/bar.html".

Enabling a log file cache
Logging is primarily a disk based activity, and on a busy server, that requires logging as an
audit requirement. It is crucial to ensure that you enable file descriptor caching in Nginx. This
is a performance enhancement recipe that will also increase the life of your server hard drive.

Get It All Logged: The Logging Module

72

How to do it...
You can put this configuration in the http part of the configuration:

http {
...
open_log_file_cache max=1000 inactive=20s min_uses=2 valid=1m;
..

How it works...
This simple configuration sets up the following flags which are described in the following table:

Flag Utility
Max Maximal number of descriptors in the cache, with overflow Least Recently Used

removed (LRU)
Inactive Sets the time after which descriptor without hits during this time are removed;

default is 10 seconds
min_uses Sets the minimum number of file usage within the time specified in parameter

inactive, after which the file descriptor will be put in the cache; default is 1
Valid Sets the time until it will be checked if file still exists under same name; default is

60 seconds
Off Disables the cache

These settings can be optimized over some span of testing, thus giving you the best of what
Nginx has to offer with logging and reducing your performance overheads for the same.

Utilizing separate error logs per virtual
host

We looked earlier at how simple it is in Nginx to set up virtual hosts and manage them clearly
in their separate files. In this recipe, we are going to have a look at how we create different
access and error logs for each virtual host.

How to do it...
This is a configuration that takes three virtual hosts (www.example1.com , www.example2.
com, and www.example3.com) which have different access and error logs:

http {
...
server {

http://www.example2.com
http://www.example3.com

Chapter 3

73

	 listen 80;
 	 server_name www.example1.com ;
	 access_log /var/log/nginx/example1.access.log;
	 error_log /var/log/nginx/example1.error.log;
 	 ...
}
server {
	 listen 80;
 	 server_name www.example2.com ;
	 access_log /var/log/nginx/example2.access.log;
	 error_log /var/log/nginx/example2.error.log;
 	 ...
}

server {
	 listen 80;
 	 server_name www.example3.com ;
	 access_log /var/log/nginx/example3.access.log;
	 error_log /var/log/nginx/example3.error.log;
 	 ...
}

}

How it works...
As you can see, we can place access_log and error_log directives individually in each of
the virtual host configurations. This allows us to create different files for each of those sites.

There's more...
You can potentially combine the earlier recipe of different log formats and this recipe to create
different kinds of access and error logs for each of your sites. This clearly exhibits the immense
power that the Nginx logging module brings to the table for the system administrators.

http {
...
server {
	 listen 80;
 	 server_name www.example1.com ;
	 access_log /var/log/nginx/example1.access.log main;
	 error_log /var/log/nginx/example1.error.log error_main;
 	 ...
}

Get It All Logged: The Logging Module

74

The preceding example shows how we are logging the access and error logs with different
formats, which are main and error_main respectively. This may be necessary in cases
where one logs fewer variables for the access logs purposes and more esoteric variables to
track errors in the error logs.

Setting up log rotation
In production sites that have been running for a decent amount of time, log archiving
becomes a necessity. For proper log archiving, you will need to have a proper log rotation
system in place. Every website request generates more than one log entry (as there are
logging for the static files as well), so logs tend to bloat up quickly. This recipe helps you tackle
the log rotation setup with Nginx, making sure you are archiving your logs correctly.

This depends on the logrotate script that is available, for example, on both Fedora and Debian
distributions.

How to do it...
You will need to add a configuration to the logrotate conf file:

/var/log/nginx/*.log {
 daily
 missingok
 rotate 52
 compress
 delaycompress
 notifempty
 create 640 root adm
 sharedscripts
 postrotate
 [! -f /var/run/nginx.pid] || kill -USR1 `cat
/var/run/nginx.pid`
 endscript
}

This assumes that the Nginx configurations are placed in the /var/log/nginx directory and
the Nginx PID file exists at /var/run/nginx.pid.

How it works...
This is a simple configuration for logrotate which effectively carries out the following steps:

1.	 Moves the existing log file with a new filename and compresses it.

Chapter 3

75

2.	 Makes a USR1 signal call to the Nginx master process, which releases the log which
has just been moved and starts writing into a normal log file.

The logrotate script allows very interesting configurations which allow you great control over
when the log needs to be rotated, what compressions you need, and with what permissions
the files to be archived.

Enabling remote logging with syslog-ng
Imagine running a cluster of servers spread out over various geographies. In such a scenario,
one will probably need to do remote logging on a set of redundant central logging servers. It
makes life easier for log parsing and system administration tasks as well.

In this recipe, we will have a look at syslog-ng and Nginx to get them working together in a
networked environment. This will involve some interesting things, like patching the Nginx
codebase.

How to do it...
If you want to get the Nginx installation to interact with syslog-ng, you will need to carry out
the following steps carefully. This recipe assumes that you have already installed syslog-ng on
your system:

1.	 You will need to download Nginx from the following URL: (http://nginx.org/
download/nginx-0.7.67.tar.gz)
wget http://nginx.org/download/nginx-0.7.67.tar.gz

2.	 Then untar the downloaded file:
tar –xvzf nginx-0.7.67.tar.gz

3.	 Download the patch: (http://bugs.gentoo.org/attachment.
cgi?id=197180)
wget "http://bugs.gentoo.org/attachment.cgi?id=197180" -O syslog.
patch

4.	 Apply the patch:
patch -p0 < syslog.patch

5.	 Configure Nginx:
./configure --with-syslog

6.	 Build and install Nginx:
make && make install

http://bugs.gentoo.org/attachment.cgi?id=197180
http://bugs.gentoo.org/attachment.cgi?id=197180
http://bugs.gentoo.org/attachment.cgi?id=197180

Get It All Logged: The Logging Module

76

7.	 You will now need to configure the syslog client, adding the following configuration to
/etc/syslog-ng/syslog-ng.conf and restarting the syslog-ng service:
filter f_local5 { facility(local5); };

destination d_loghost {tcp("nginx_log" port(514));};

log { source(s_all); filter(f_local5); destination(d_loghost); };

8.	 You will now need to configure the remote logging server nginx_log , adding the
following configuration to /etc/syslog-ng/syslog-ng.conf and restarting the
syslog-ng service:
source s_remote { tcp(); };

destination d_clients { file("/var/log/HOSTS/nginx.$HOST"); };

log { source(s_remote); destination(d_clients); };

9.	 You can test this configuration out by running the following:
logger -p local5.info HelloWorld

How it works...
Nginx, by default, does not support syslog-ng and needs some patching to work correctly. So
in the first set of steps we actually install Nginx with the patch and then proceed to configure
syslog-ng.

There are two parts to the syslog-ng configuration. In the first we actually configure the client
on which Nginx is running and make the local5 facility (where Nginx logs in our case) point to
the syslog-ng server running on the nginx_log server. The second part involved configuring
the syslog-ng server to accept log request from the remote client and putting them at certain
locations on the hard drive.

There is a small utility called "logger", which allows you to test out the logging on your machine
without invoking Nginx. It's pretty nifty and lets you easily debug your syslog-ng setup.

Setting up your custom logs for easy parsing
The point of logging is not only to find out errors in a setup, but also for various analytics that
one can perform on the usage of the sites running on the server. There are various tools that are
available that one can use to analyze your web logs. Some of the open source and freely available
ones are AWstats, webalizer, and so on. We will have a look at how to set up for AWstats.

Chapter 3

77

The following screenshot is a sample of the AWstats generated HTML report:

How to do it...
We will first have a look at how to install AWstats, and then configure it to create a continuous
report around Nginx logs.

1.	 Add the following to the Nginx configuration file:
log_format new_log

$remote_addr - $remote_user [$time_local] $request '

 '"$status" $body_bytes_sent "$http_referer" '

 '"$http_user_agent" "$http_x_forwarded_for"';

access_log logs/access.log new_log;

Get It All Logged: The Logging Module

78

2.	 Now we need to install the AWstats package, so download the latest version and
then run the configuration wizard awstats_configure.pl to create a new
statistics profile:
-----> Check for web server install

Enter full config file path of your Web server.

Example: /etc/httpd/httpd.conf

Example: /usr/local/apache2/conf/httpd.conf

Example: c:Program filesapache groupapacheconfhttpd.conf

Config file path ('none' to skip web server setup):

#> none

Enter

Your web server config file(s) could not be found.

You will need to setup your web server manually to declare AWStats

script as a CGI, if you want to build reports dynamically.

See AWStats setup documentation (file docs/index.html)

-----> Update model config file '/usr/local/awstats/wwwroot/cgi-
bin/awstats.model.conf'

 File awstats.model.conf updated.

-----> Need to create a new config file ?

Do you want me to build a new AWStats config/profile

file (required if first install) [y/N] ?

#> y

Enter

-----> Define config file name to create

What is the name of your web site or profile analysis ?

Example: www.mysite.com

Example: demo

Your web site, virtual server or profile name:

#> www.example1.com

www.example1.com

Enter

-----> Define config file path

In which directory do you plan to store your config file(s) ?

Default: /etc/awstats

Directory path to store config file(s) (Enter for default):

http://www.example1.com

Chapter 3

79

#>

----> Add update process inside a scheduler

Sorry, configure.pl does not support automatic add to cron yet.

You can do it manually by adding the following command to your
cron:

/usr/local/awstats/wwwroot/cgi-bin/awstats.pl -update -config=www.
moabc.net

Or if you have several config files and prefer having only one
command:

/usr/local/awstats/tools/awstats_updateall.pl now

A SIMPLE config file has been created: /etc/awstats/awstats.www.
example1.com.conf

You should have a look inside to check and change manually main
parameters.

You can then manually update your statistics for 'www.example1.
com' with command:

> perl awstats.pl -update -config=www.example1.com

You can also build static report pages for 'www.example1.com' with
command:

> perl awstats.pl -output=pagetype -config=www.example1.com

Press ENTER to finish...

3.	 You can now open the file generated /etc/awstats/awstats.www.example1.
com.conf and update the LogFile variable to the path of the Nginx log file (assuming
that they are being log rotated).
LogFile="/usr/local/nginx/logs/access_%YYYY-0%MM-0%DD-0.log"

4.	 Now you can test out the new log analysis by using the following command. This will
also depend on where you installed the AWstats package:
/usr/local/awstats/wwwroot/cgi-bin/awstats.pl -update -config=www.
example1.com

5.	 Now you need to generate the reports in HTML, so you will need to create a directory
and then run the HTML generation script:
mkdir /data/webroot/awstats

/usr/local/awstats/tools/awstats_buildstaticpages.pl -update

-config=www.example1.com -lang=en -dir=/data/admin_web/awstats

-awstatsprog=/usr/local/awstats/wwwroot/cgi-bin/awstats.pl

Get It All Logged: The Logging Module

80

6.	 You can now add some configuration to Nginx to expose this HTML analysis on your
own domain:
location ~ ^/awstats/ {

 root /data/webroot/awstats;

 index index.html;

 access_log off;

 error_log off;

 charset utf-8;

}

7.	 Now you can visit http://example1.com/awstats/awstats.www.example1.
com.html to see the resultant HTML.

How it works...
This is a fairly simple setup, where we are initially setting up the logging format on Nginx so
that we are able to fully exploit all that AWstats can generate for us. Then we go on to install
AWstats, which is a set of Perl scripts. We generate a configuration for our domain www.
example1.com and then start analyzing the log. In addition to the basic analysis, we can also
generate really easy-to-use HTML reports.

There's more...
A tool like AWstats allows you to track things like:

ff Visits (the number of unique visitors)

ff Access time and the last visit

ff User authentication (last time logged in using site credentials)

ff Weekly peak time (the number of pages, click-through rate per hour, and week
kilobytes)

ff Name/country hosts visitors (pages, click-through rate, byte, 269 domains/ countries
detected, GeoIP detection)

ff Host list of recently visited and did not resolve the IP address list

ff Most read entry and exit pages

ff File types

ff Site compression tables (mod_gzip or mod_deflate)

ff Operating system (one for each operating system, the number of pages, click-through
rate, byte, 35 OS detected)

ff Type of browsers used

ff Robot visits (319 robots detected)

http://example1.com/awstats/awstats.www.example1.com.html
http://example1.com/awstats/awstats.www.example1.com.html
http://example1.com/awstats/awstats.www.example1.com.html
http://www.example1.com

Chapter 3

81

ff Worm attacks (5 worm family)

ff Search engines statistics about what keywords lead users to your site

ff HTTP protocol error (the most recent inspection did not find the page)

ff Other reports based on the personalized URL and link parameters, involving the field
of integrated marketing purpose

ff Your site by adding "favorite bookmarks" views

ff Screen size (in the index page of the need to add some HTML tags)

ff The proportion of browser support: Java, Flash, RealG2 reader, Quicktime reader,
WMA reader, PDF reader

ff The ratio of load-balancing server cluster report

The preceding setup was not completely automated after you run the script for the first time.
We can take a step ahead and put all this in a cron script that will help us run it as a cron job.

You will need to add the following in your cron (crontab –e):

00 1 * * * /usr/local/awstats/tools/awstats_buildstaticpages.pl
-update -config=www.example1.com -lang=cn -dir=/data/admin_web/awstats
-awstatsprog=/usr/local/awstats/wwwroot/cgi-bin/awstats.pl

This above cron job basically fires up a script every day at 1:00AM. The job of the script is to
parse and generate the reports for the sites that it is configured for.

4
Slow Them Down:
Access and Rate
Limiting Module

In this chapter, we will cover:

ff Limiting requests for any given session

ff Blocking and allowing access using IP

ff Setting up simple rate limiting for a download directory

ff Rate limiting search engine bots

ff Setting up GeoIP using the MaxMind country database

ff Using the GeoIP module to set up access and rate control

Introduction
In this day and age of the Internet, the user is extremely sensitive about the quality of service
they get from their online services. There are a lot of small companies with few resources that
are able to capture a part of the market by innovating rapidly. Such companies eventually
have to rate limit, as inevitably they have more traffic than their servers can handle.

Something as simple as getting "digged" (http://www.digg.com) or "slashdotted"
(http://www.slashdot.org) used to bring down sites, but Nginx provides good protection
against situations like this by providing rate limiting and server access based on IP.

Slow Them Down: Access and Rate Limiting Module

84

Limiting requests for any given session
Due to its event driven nature, Nginx is being adopted all over the world whenever one needs
performance with resource constraints. However, in a lot of situations, that is not enough and
the only way is to limit request to ensure that your site is up and your server does not suffer
any downtime.

How to do it...
The following configuration, when applied within a server directive, allows you to limit requests
for a given session:

http {

limit_req_zone $binary_remote_addr zone=one:10m rate=1r/s;
...

Server {
	 limit_req zone=one burst=5;
...
}

How it works...
The limit_req_zone directive basically allows you to define what variable (in this case
$binary_remote_addr) to act as the key of the sessions, in addition to allocating 10MB for
this "zone" and limiting the rate to one request per second. There are no limits to the number
of zones one can set up, as long as you have the memory to handle the zone allocations. A
given zone which uses, say, the remote address as the key for the session, will be able to
handle about 32,000 sessions in 1M of session memory allocated to it.

In the server directive, we actually do the request rate limiting by using the limit_req
directive, which basically uses zone one, which allows no more than an average of one
request per second with a maximum burst rate of five requests.

Any request that is beyond the rate capacity will receive a "Service unavailable" 503 error page.

There's more...
You can use other variables to act as the session key, but it is important to note that the
session key variable size must be small to accommodate all the incoming connections (that is
total connections x session value size < size of session cache).

Chapter 4

85

Blocking and allowing access using IP
One of the most important things that a site needs to do is to blacklist some malicious IPs
that over time try to probe and cause harm to your site. This can be done at multiple levels like
the router, and even at the software firewall level which will also drive away this unnecessary
load from Nginx. If you do not have enough control on your stack, then Nginx is the best place
to start blocking those bots and hackers.

How to do it...
This lets you block some IPs from accessing your site:

server {
listen 80;
server_name www.example1.com;
location / {
 deny 192.168.1.1;
 allow 192.168.1.0/24;
 deny all;
}
...
}

How it works...
It is clear that the deny and allow directives are in sequence, so it will deny the IP 192.168.1.1
while it allows the network 192.168.1.0/24 to access. A final deny all; directive makes sure
that no other IP can access this location (http://www.example1.com).

So all other IPs, when they try to access this HTTP location, will get a 403 forbidden page. You
can use the error_page directive to rewrite this to a 404 page.

There's more....
It is important to realize that the sequence of the directives is critical. Something like:

server {
listen 80;
server_name www.example1.com;
location / {
 deny all; # this is not a good idea
 deny 192.168.1.1;
 allow 192.168.1.0/24;
}
...
}

Slow Them Down: Access and Rate Limiting Module

86

Will give a 403 forbidden to all the clients that open the location
(http://www.example1.com).

Setting up simple rate limiting for
a download directory

We have looked at ways to rate limit requests, but sometimes the issue is that some clients
start to hog the bandwidth and pull down the quality of service for the other users. In such
scenarios, it is best to use bandwidth based rate limiting.

The best application of something like this is with the static files on your site. It ensures that
no one leeches your bandwidth for the wrong reasons.

How to do it...
The following simple configuration in the server directive will allow you to rate limit the
whole site:

server {
server_name www.example1.com;
location /downloads/ {
 limit_rate 10k;
 root /var/www/www.example1.com/downloads/;
}
..
}

How it works...
This simple configuration will limit the /downloads file downloading speed to 10k for all users.

There's more...
There are a lot more things that can be done with this rate limiting; the following configuration
will let you limit the rate to 100k after the 1 megabyte of the file has been sent in full throttle
to the client:

server {
server_name www.example1.com;

location /downloads/ {
limit_rate_after 1m;
limit_rate 100k;
 root /var/www/www.example1.com/downloads/;
}
…
}

Chapter 4

87

Rate limiting search engine bots
Till now we have learned about easy ways of blocking, request-limiting, and bandwidth-limiting
all clients. We can start applying most of this knowledge to some problems that do come up in
the production environment.

Most of the time, it so happens that with content heavy sites, bots and search engines start
using up more bandwidth than actual users. In such a scenario, where you want to make
sure the actual users are not hindered, yet you have the SEO intact, you will want to rate limit
search engine bots.

How to do it...
This following configuration, when placed within the location directive, will help you block and
rate limit some bots:

if($http_user_agent ~ "Alexibot|Art-Online|asterias|BackDoorbot|Black.
Hole|\
BlackWidow|BlowFish|botALot|BuiltbotTough|Bullseye|BunnySlippers|Cegbf
eieh|Cheesebot") {

 deny all;
	

}

if ($http_user_agent ~ Google|Yahoo|MSN|baidu) {
 limit_rate 20k;
}

How it works...
The idea is fairly simple, in cases where it is clear that the bot is not getting you traffic but
only leeching your bandwidth, it is best to block them. But not all bots are bad. Googlebot,
yahoobot and msnbot are all crucial for your search engine traffic to come through. It is a fine
balance that has to be undertaken in situations where you have a high traffic site.

There's more....
You can use this situation to also ensure that your site gets very little spam traffic. It is clear
that most commenting bots can be stopped with simple blacklisting of the HTTP_REFERER,
as shown in the following snippet:

if ($http_referer ~* (\.us$|dating|diamond|forsale|girl|jewelry|organi
c|poker|poweroversoftware|teen|webcam|zippo)) {
 deny all;
}

Slow Them Down: Access and Rate Limiting Module

88

Setting up GeoIP using the MaxMind country
database

MaxMind is a company that specializes in generating databases which map countries and
cities to IP ranges. It allows you to easily locate the geographic location of the end client. This
information can be used to show the user geo-dependent data, or maybe redirect to server
locations that can serve the end-client faster.

In this recipe, we will install the MaxMind database in Nginx and show the usage of the GeoIP
variables inside the Nginx configuration. Check out their demo at: http://www.maxmind.
com/app/locate_my_ip.

How to do it...
1.	 Download the Geo-IP database or install the package:

 wget http://geolite.maxmind.com/download/geoip/database/
GeoLiteCity.dat.gz

or
aptitude install geoip-database

Chapter 4

89

2.	 You will need to install some GeoIP libraries:
aptitude install libgeoip-dev

3.	 Then you configure Nginx for installing the GeoIP module as well. This assumes
that you have already downloaded the Nginx codebase and have the compilation
dependencies already installed. This has been covered in one of the earlier recipes
as well.
./configure --with-http_geoip_module

4.	 We will then add the following configuration user the http directive:

http {
 geoip_country GeoIP.dat; # the country IP database
 geoip_city GeoLiteCity.dat; # the city IP database
 . . .

How it works...
The preceding steps installs the databases and configures the GeoIP module in Nginx. This
allows the configuration to access the following new variables. These variables can let you
write geography specific rules!

Variable Purpose
$geoip_city_country_code Two-letter country code, for example, "RU", "US".
$geoip_city_country_
code3

Three-letter country code, for example, "RUS",
"USA".

$geoip_city_country_name The name of the country, for example, "Russian
Federation", "United States" — if available.

$geoip_region The name of the region (province, region, state,
province, federal land, and the like), for example,
"Moscow City", "DC" — if available.

$geoip_city The name of the city, for example, "Moscow",
"Washington", "Lisbon", &c — if available.

$geoip_postal_code Zip code or postal code — if available.
$geoip_city_continent_
code

Continent – if available

$geoip_latitude Latitude — if available.
$geoip_longitude Longitude — if available.

Slow Them Down: Access and Rate Limiting Module

90

Using the GeoIP module to set up access
and rate control

Now we come to an interesting part of Nginx, where we can use the GeoIP module to set up
access and rate control.

For example, you can make your site inaccessible to a whole country depending on your
needs. Hulu videos (http://www.hulu.com) are not available to IPs outside of the United
States. This is, of course, not completely fool-proof as there are anonymity networks that allow
you to mask your actual IP or appear as if you are a client from the US.

How to do it...
This simple configuration, which assumes that you have already installed GeoIP as per the
preceding recipe, will allow Bermuda users to access certain content while blocking Bhutan
and Bolivia users from accessing the site:

http {
 geoip_country GeoIP.dat; # the country IP database
 geoip_city GeoLiteCity.dat; # the city IP database

...
server {
server_name www.example1.com;
 ...

 location / {
 If($geoip_city_country_code ~ BM) {
 rate_limit 20k;
 }
 If($geoip_city_country_code ~ BT|BO) {
 deny all;
 }
 ...

}

...
}

Chapter 4

91

How it works...
The idea behind the GeoIP module is simple. It basically looks at the remote client IP and fills
up some variables which let you easily identify the various geographic attributes of the client.
In this example, we are filtering requests that are from the Bermudas and rate limiting their
bandwidth to 20k, while we are taking requests that are identified as coming from Bhutan and
sending a 403 forbidden response to them.

You can extend this to create alternate sites for different countries on the same URL. This
is useful for language localization as well. Nginx is clearly state-of-the-art when it comes to
GeoIP mapping.

5
Let's be Secure:

Security Modules

In this chapter, we will cover:

ff Setting up HTTP auth for access control

ff Generating a secure link for files

ff Setting up HTTPS for a simple site

ff Using non standard error codes for debugging SSL setup

ff Using wildcard certificates with multiple servers

ff Using Nginx SSL variables for rewrite rules

Introduction
Internet security has become one of the hottest topics of research and progress in recent
time. Most countries have government mandates to run cyber-security teams in conjunction
with normal security forces. Nginx, due to its rather small footprint and clear modular design,
has a distinct advantage in maintaining a secure codebase in comparison to lots of much
larger open source web servers.

It is fair to say that there is no web server with zero exploits; the only way to prevent security
issues is to have the right policy in place. A policy is inclusive of the activities that others in
the system can perform and the various security logging mechanisms in place. However,
all policies are only as good as the implementation through correct configuration. A simple
example is that we can use simple HTTP authentication to prevent random people from
accessing a staging site. Here, the policy is to prevent unknown individuals from accessing
your private beta site.

Let’s be Secure: Security Modules

94

In this chapter we will look at how we can use the security modules built-in Nginx to secure
your site and user's data.

Setting up HTTP auth for access control
In recent APIs, some of the larger web properties have utilized HTTP auth as a way of
access control for their APIs. This however, has been gradually phased out for OAuth based
authentication in most applications. The advantage of this scheme is that it's fairly fast to
implement and ship out as an API provider as it is based on HTTP headers. In this particular
recipe we will set up HTTP auth on a particular end-point and test it out.

How to do it...
1.	 You will first need to create the htpasswd file using Apache utils. This file basically

contains the username and password hash pairs, which are used to authenticate the
users:
htpasswd –c /etc/nginx/user_auth dipankar

The preceding command will create a user dipankar and ask for a
password from the command line.

2.	 Now we basically add this configuration to the location portion of the configuration,
where we want to protect the URL end-point using HTTP authentication:
server {

server_name www.example1.com;

. . .

location / {

 auth_basic "Restricted";

 auth_basic_user_file /etc/nginx/user_auth;

 . . .

}

}

3.	 Now you can go to http://www.example1.com and test the HTTP authentication.
If you enter dipankar and the password that you used earlier, you will be
successfully able to enter, as shown in the following screenshot:

http://www.example1.com

Chapter 5

95

If you are unable to enter the correct combination of username and password you will get the
"Authorization Required" page as in the following screenshot:

How it works...
The above configuration needs an authentication file which contains the list of users and
passwords in the traditional Apache htpasswd format, and you can use it to password-protect
any part of the site that you want to.

It is just as easy to have a different set of username passwords for password protecting other
URLs on the site; you just need to create a separate set of htpasswd files.

Generating a secure link for files
Sometimes the only form of security that one needs for sharing files is a special URL. This is
useful when the data is online temporarily, or maybe has value for a limited period of time.
Nginx provides a module for exactly that purpose as well. In this recipe we will look at how to
quickly implement secure links for files on your web server.

Let’s be Secure: Security Modules

96

How to do it...
1.	 The first step is to ensure that Nginx is compiled with this module, so you will need to

make sure that you download Nginx and use the following flag during compilation:
./configure . . . --with-http_secure_link_module

2.	 The next step is to choose a secret key (for example, superhash) and then use the
following configuration:
location /t/ {

 secure_link_secret superhash;

 # If the hash is incorrect then $secure_link has the value of
 the null string.

 if ($secure_link = "") {

 return 403;

 }

 # This needs to be here otherwise you'll get a 404.

 rewrite ^ /t/$secure_link break;

}

3.	 Now we can test this on a file (top_secret.html) that we have, so the generated
URL is of the form http://www.example1.com/t/<md5 hash>/top_secret.
html where
echo -n 'top_secret.htmlsuperhash' | openssl dgst -md5

generates the <md5-hash>

4.	 If the above generated hash is correct, then you will be able to download the file.
Otherwise, you will go to an Error page:

If you by mistake you enter the wrong hash, you will receive a "Forbidden" page as shown in
the following screenshot:

http://www.example1.com/t/%3cmd5
http://www.example1.com/t/%3cmd5

Chapter 5

97

How it works...
The idea is to create a simple mechanism to have a unique and difficult URL to generate for a
given file. In this case, the combination of the filename and the secret salt is used to generate
the MD5 hash to form a part of the URL.

Setting up HTTPS for a simple site
Cryptography has evolved over the ages and in today's world public key cryptography is pretty
much the cutting edge (this is what PGP is based upon). All browsers implement certificate
based security, allowing for safe and encrypted transactions on the Internet. It has proven to
be one of the key factors contributing to the growth of e-commerce over the last decade.

Just as most browsers implement SSL based client mechanisms, all web servers also need to
handle the server end of things. Nginx has a very clean and easy-to-configure implementation
of SSL-based security. In this recipe we will have a look at how easy it is to get a pair of
certificates and quickly set up a secure site.

How to do it...
1.	 Initially, you will need to buy a certificate from one of the known Certificate Authority

(CAs) or obtain it from a free, public CA such as CAcert. Alternatively you can generate
a certificate yourself. You can read more about this by picking up a Packt publications
book on server security. These certificates basically come with 2 files, one of which
is the certificate and the other a key. Let's say they are called cert.pem and cert.
key. They are always specific to the domain that you are using it for.

2.	 To implement SSL on a certain end-point you will need to make sure that your firewall
has the right ports open (80,443).

3.	 The following piece of configuration has to be placed in the configuration file for the
particular domain (in this case www.example1.com).
server {

 server_name www.example1.com;

 listen 443 default ssl;

 ssl_certificate /usr/local/nginx/conf/cert.pem;

 ssl_certificate_key /usr/local/nginx/conf/cert.key;

. . .

}

http://www.example1.com
http://www.example1.com

Let’s be Secure: Security Modules

98

4.	 Now you can just try out https://www.example1.com, and it should open without
any errors. If there are errors, it implies that the certificates are not being validated
correctly by the browser. In the following example we can see how Paypal (https://
www.paypal.com) has a valid certificate from Verisign Inc:

In a lot of cases, the certificate of the site may not be correctly configured, or may have
expired. In those cases, most modern browsers will ask the user if they want to navigate to
such a site, as shown in the following screenshot. It is advised, in most cases, to remove badly
configured certificates as they may act as a barrier for the end user.

Chapter 5

99

How it works...
The following image best describes the actual process of SSL authentication. In the
configuration, we basically define the certificate and the key for the web server, and the rest is
pretty much handled internally:

Let’s be Secure: Security Modules

100

There's more...
Let's say that you do not yet want to buy certificates for your site, and want instead to try
out SSL based security for you site. You can generate your certificates by following the steps
below:

1.	 First, change directory to where you want to create the certificate and private key, for
example:
cd /usr/local/nginx/conf

2.	 Now create the server private key. You'll be asked for a passphrase:
openssl genrsa -des3 -out server.key 1024

3.	 Create the Certificate Signing Request (CSR):
openssl req -new -key server.key -out server.csr

4.	 Remove the necessity of entering a passphrase for starting up Nginx with SSL using
the above private key:
cp server.key server.key.org

openssl rsa -in server.key.org -out server.key

5.	 Finally, sign the certificate using the above private key and CSR:

openssl x509 -req -days 365 -in server.csr -signkey server.key
-out server.crt

Using non standard error codes
for debugging SSL setup

Most setups are difficult to get the first time around, and to that end Nginx has provided some
really easy-to-use non-standard error codes for debugging your SSL setup.

In this recipe we will take a look at the non-standard error codes that are present and how to
tackle SSL setup issues.

How to do it...
These error codes are enabled by default and are as follows:

HTTP error codes Error
495 Error checking client certificate
496 Client did not grant the required certificate
497 Normal request was sent to HTTPS

Chapter 5

101

How it works...
The idea is fairly simple. Nginx allows you to log these special errors that you can use to
identify and correct SSL issues.

A simple example is that you can create a simple page that looks at all the Nginx variables
on a particular error code for debugging purposes only. If you get a 495 error page it
implies that the client certificate was not successfully checked from the CA it was issued
from. This may be for reasons such as firewall permissions or the fact that you may have
resolution issues on the web server. In some situations, when you get 496 it may indicate
that someone is attempting to create some issues with your site! Most SSL attacks involve
a man-in-the middle scenario or replay attacks where there is a small proxy server that sits
in the middle and records all the above steps necessary to create a SSL connection, only to
target and cause havoc at a later time.

Using wildcard certificates with multiple
servers

In lots of situations, we would want to provide a lot of secured subdomains among unsecured
ones and share resources, both across the HTTP and HTTPS subdomains. In this recipe we will
have a look at how to configure a HTTP domain, a secured subdomain and a directory shared
on both HTTP and HTTPS subdomains.

How to do it...
To achieve the above, all we need to do is to add the following to the configuration. It assumes
that all the certificate files have been concatenated into one file (common.crt) and similarly
all the keys have been concatenated as well (common.key):

http{
	 ...
	

	 ssl_certificate common.crt;
	 ssl_certificate_key common.key;
	 server {
	 listen 80;
	 server_name www.example1.com;
	 location / {
	 ...
	 }
	 }
	

	 server {
	 listen 443 default ssl;

Let’s be Secure: Security Modules

102

	 server_name payment.example1.com;
	 location / {
	 ...
	 }
	 }
	

	 server {
	 listen 80;
	 listen 443;
	 server_name static.example1.com;
	 location / {
		 root /var/www/www.example1.com/static;
	 }
	 }

Now if you visit the three different parts of the site, you will realize that you can access
http://www.example1.com and http://static.example1.com/null.gif but not
be able to access https://www.example1.com or http://payment.example1.com/.
The following screenshot demonstrates https://www.example1.com not opening:

The following screenshot displays the null.gif file being served correctly by Nginx, while
https://www.example1.com does not open as shown in the preceding screenshot.

http://www.example1.com
http://www.example1.com
http://static.example1.com/null.gif
https://www.example1.com
http://payment.example1.com/
https://www.example1.com
https://www.example1.com

Chapter 5

103

How it works...
This particular configuration shows the versatility of Nginx. In this recipe, you simply turned
SSL on and off depending on the domain. You had one case where you did not want
SSL (http://www.example1.com), another in which you wanted only SSL (https://
payment.example1.com), and a third case where both the SSL and non-SSL URLs were
enabled for the files in a particular directory (/var/www/www.example1.com/static).

Using Nginx SSL variables for rewrite rules
Nginx has a very smart and well-designed rewrite system. It even allows you to access SSL
variables for your rewrite rules. In this recipe, we will explore a simple example to see what
we can do with these variables. You can explore more about rewrite rules in Chapter 2 which
focuses on rewrites.

We will basically check if the SSL verification ($ssl_client_verify) was a success and
show a different set of pages if it was not.

How to do it...
Inserting this configuration in your file will basically result in showing the user a different site if
the SSL client certificate is successfully verified:

	 server {
	 listen ssl;
	 server_name www.example1.com;
	 if($ssl_client_verify ~* SUCCESS) {
 rewrite ^ http://www.example1.com/test/;

https://payment.example1.com
https://payment.example1.com

Let’s be Secure: Security Modules

104

 }
	 location / {
	 ...
	 }
 location /test/ {
 }
	 }

How it works...
This simple example has a look at how we caused the client certificate validation to redirect
the client to a different part of the site (in this case http://www.example1.com/test/).

You can use other variables that the SSL module populates for a given session to do other
things, like protocol based logging and more.

There's more...
You can access the following variables that can be utilized in creating interesting rules:

SSL variable Description
$ssl_cipher This returns the cipher suite being used for the currently

established SSL/TLS connection.
$ssl_client_serial This returns the serial number of the client certificate for the

currently established SSL/TLS connection, if applicable. That is,
if client authentication is activated in the connection.

$ssl_client_s_dn This returns the subject Distinguished Name (DN) of the client
certificate for the currently established SSL/TLS connection, if
applicable. That is, if client authentication is activated in the
connection.

$ssl_client_i_dn This returns the issuer DN of the client certificate for the
currently established SSL/TLS connection, if applicable. That is,
if client authentication is activated in the connection.

$ssl_protocol This returns the protocol of the currently established SSL/TLS
connection, depending on the configuration and client available
options, it's one of SSLv2, SSLv3, or TLSv1.

$ssl_session_id The Session ID of the established secure connection—requires
Nginx version greater or equal to 0.8.20.

$ssl_client_cert Returns the client certificate installed for the particular domain.
$ssl_client_raw_
cert

Returns the raw client certificate.

$ssl_client_verify Takes the value "SUCCESS" when the client certificate is
successfully verified.

http://www.example1.com/test/

6
Setting Up

Applications: FCGI
and WSGI Modules

In this chapter, we will cover:

ff Setting up a PHP FCGI site

ff Setting up a Python site using uWSGI

ff Modifying FCGI timeouts

ff Utilizing FCGI cache to speed it up

ff Using multiple FCGI backends

Introduction
This is a practical section devoted to helping programmers and system administrators to
understand and install their applications using Nginx as the web server. Due to the lack of
integrated modules for running PHP and Python, the setting up of such systems can be an
issue for non-experienced system administrators.

Nginx is designed to be a framework to handle native web and mail protocols using an event
driven mechanism. Most of the web server-application interfaces have been added to the
main web server later. Over time, CGI has evolved into many forms. It has resulted FCGI, SCGI,
and similar protocol WSGI for python. The goal at the end of the day for all these protocols
is to effectively communicate with the web server in a standardized format with the lowest
possible language overheads.

Setting Up Applications: FCGI and WSGI Modules

106

Setting up a PHP FCGI site
This recipe helps you to set up a PHP site using Nginx and PHP-fpm fairly easily and quickly.
Nginx, unlike Apache, does not have mod_php built into it and remains a standalone web
server which supports many standard protocols such as CGI, FCGI, SCGI, WSGI, and more
through core and third-party modules.

PHP-fpm is a set of utilities and scripts that enables the system administrator to easily run
and manage a PHP FCGI backend. This is officially available as a part of the PHP5.3.x stable
and would become a major part of PHP deployment going forward.

We will initially have a look at how to set up php-fpm and then see a simple WordPress site
being configured using this setup.

How to do it...
This will be divided into two sections; one which will help you install php-fpm and the other
which will help you configure WordPress on Nginx using this setup.

Installing php-fpm for PHP 5.2.x

1.	 Depending on your system and PHP requirements you will need to either download
the packages [deb/rpm] or the source code.

2.	 If you are lucky, you can work with the packages you can download from http://php-
fpm.org/download/ depending on the version of PHP that you have.

3.	 If you are not in luck for the packages, you will need to follow the guide on the
following site: http://legacy.php-fpm.org/Documentation. In this guide you
will effectively download the latest patch for PHP 5.2.X and then apply the patch:

bzip2 -cd php-5.2.11.tar.bz2 | tar xf -

patch -d php-5.2.11 -p1 <php-fpm-0.6~5.2.patch

cd php-5.2.11

./buildconf --force

./configure --enable-fastcgi --with-fpm --with-libevent[=path]

4.	 After the installation is done, you can start the php-fpm daemon process. This will by
default run on the 9000 port (or you can configure it according to your needs).

Configuring WordPress

1.	 Now we will simply create a new configuration for the WordPress site that you plan
to run with Nginx and PHP-FPM. This assumes that the php-fpm is listening on port
9000.

http://php-fpm.org/download/

Chapter 6

107

server {
 listen 80;
 server_name www.example1.com;
 root /var/www/www.example1.com;
 index index.php index.html index.htm;

 try_files $uri $uri/ /index.php;
 location ~ \.php$ {
 include fastcgi_params;
 fastcgi_pass 127.0.0.1:9000;
 fastcgi_index index.php;
 }
}

2.	 Now all you need to do is restart Nginx and make sure that it accepts the
configuration.

3.	 After this, we can access the domain that has been set up and that will redirect you
to the installation page, as displayed in the following screenshot:

Setting Up Applications: FCGI and WSGI Modules

108

4.	 You will need to make sure that you have created a MySQL database on your system,
as the next installation screen requires you to enter the database information:

5.	 Finally, you will have got your PHP WordPress blog up and running!

Chapter 6

109

How it works...
Depending on the operating system and PHP version, you will have to choose the correct
method of installing php-fpm. After the installation, you will need to start the php-fpm daemon
installed on a port that is not already in use by any other application.

The Nginx configuration step involves setting up a server directive which will basically invoke
the daemon with the HTTP request and the script being queried. We are also handling
WordPress clean URLs using the above rewrites.

There's more...
You can also go ahead and install other PHP applications without any clean URLs by simply
using the following sample configuration! In this case, we do not require any of the static files
and clean URL rewrites.

server {
 listen 80;
 server_name www.example1.com;
 root /var/www/www.example1.com;
 index index.php index.html index.htm;

 location ~ \.php$ {
 include fastcgi_conf;
 fastcgi_pass 127.0.0.1:9000;
 fastcgi_index index.php;
 }
}

Setting Up Applications: FCGI and WSGI Modules

110

Setting up a Python site using uWSGI
Python has seen an immense rise of popularity ever since it was adopted by Google for
a significant part of its server side scripting. It has garnered significant support from the
industry and consequently warrants attention in this practical chapter.

There has been development of Web Server Gateway Interface (WSGI) which acts as a
simple and universal interface between a web server and the various Python frameworks
that have come up in recent times. In this recipe, we will use a sample installation of Django,
which is a Python web framework, to show how we can get Nginx and python to work together.

How to do it...
For setting up a simple python, we will look at three parts. The first part will deal with the
installation of uWSGI (http://projects.unbit.it/uwsgi/wiki), the second will deal
with the setting up a very basic Django installation, and the last will deal with how to get them
all working together.

Installation of uWSGI

1.	 If you are using a Nginx which is greater than 0.8.4 then uWSGI is already installed
on your server. Otherwise you will need to follow the steps below. It is also assumed
that you have root privileges or sudo access to the server on which the installation is
to be done.

2.	 Download the uWSGI module at the same level of your Nginx source code directory
and then configure the package:
wget http://projects.unbit.it/downloads/uwsgi-0.9.6.5.tar.gz

tar –xvzf uwsgi-0.9.6.5.tar.gz

cd nginx

./configure --add-module=../uwsgi-0.9.6.5/nginx/

make && make install

3.	 This will install the uWSGI module for your Nginx setup. You will also need to copy the
uwsgi_params file into your Nginx installation directory.

Basic Django setup with WSGI script

1.	 We will first install the easy_install script from http://peak.telecommunity.
com/dist/ez_setup.py

sudo python http://peak.telecommunity.com/dist/ez_setup.py

2.	 We will then install the Django package using easy_install, this will handle all the
dependencies and install them for you.
sudo easy_install django

Chapter 6

111

3.	 After this, we will start a new project called test
django-admin.py startproject testapp

4.	 We can now test if it is running or not by simply going into the test directory and
invoking the in-built development server:
cd test

python manage.py runserver

5.	 We will now create the WSGI file that will run this test setup. You will need to go above
the test directory and create a new file called django_wsgi.py:
import os
os.environ['DJANGO_SETTINGS_MODULE'] = 'testapp.settings'

import django.core.handlers.wsgi

application = django.core.handlers.wsgi.WSGIHandler()

6.	 You will now need to run a uWSGI instance for this site using the following command.
This assumes that the project was created at /var/www/ and the port that uWSGI
will use is 3031.

uwsgi --socket 127.0.0.1:3031 --pythonpath /var/www/ --pythonpath
/var/www/testapp/ -w django_wsgi -M -T -d server.log –L

Nginx with uWSGI

1.	 For running this test Django site, you will need to add the following configuration:
server {
 listen 80;
 server_name www.example1.com;
 location / {
 root /var/www/testapp;
 index index.php index.html index.htm;
 }
 location / {

Setting Up Applications: FCGI and WSGI Modules

112

 uwsgi_pass 127.0.0.1:3031;
 include uwsgi_params;
 }
}

2.	 You will need to restart the Nginx web server and then you can try visiting your site.

How it works...
The idea behind uWSGI is to provide a common protocol between the application and the web
server so that you can plug and play depending on your needs. In this recipe, we can clearly
see how one can go about uWSGI, which in some cases already comes as a part of the Nginx
source package. We can see how to create and get a small Django application running.

So the uWSGI daemon runs on the 3031 port in our example and Nginx basically converts the
HTTP requests into the WSGI protocol and proxies them to the daemon. uWSGI provides quite
a lot of features which allow you to also manage the python overheads properly.

There's more...
You can take this simple example and extend it to most other python frameworks. Here is a
really small standalone python script for web.py developers. Save this as django_usgi2.py:

import web
urls = (
 '/(.*)', 'hello'
)
app = web.application(urls, globals())

class hello:
 def GET(self, name):

Chapter 6

113

 if not name:
 name = 'World'
 return 'Hello, ' + name + '!'

application = app.wsgifunc()

To run this use:

uwsgi -s /tmp/web.py.socket -w django_usgi2.py

Modifying FCGI timeouts
If you have already discovered the various possibilities of how to set up PHP with Nginx, it will
become clear that FCGI is a fairly optimal setup for low to medium traffic environments for
PHP and Python, where RAM is a constraint.

In situations where due to resource constraints or time-consuming computation the FCGI
daemon is not able to send back a response quickly enough, the user is made to wait and this
lowers the quality of experience for the site.

How to do it...
In order to increase your FCGI timeout from the default 60 second you will need to add the
following to your FCGI directives:

server {
 listen 80;
 server_name www.example1.com;
 root /var/www/www.example1.com;
 index index.php index.html index.htm;
 fastcgi_read_timeout 120;
 fastcgi_write_timeout 120;

 try_files $uri $uri/ /index.php;
 location ~ \.php$ {
 include fastcgi_params;
 fastcgi_pass 127.0.0.1:9000;
 fastcgi_index index.php;
 }
}

How it works...
These simple directives simply increase the amount of time the server waits for the upstream
FCGI process to process and send data. This is important as other directives like send_
timeout and proxy_connect_timeout do not affect the Nginx FCGI upstream setting.

Setting Up Applications: FCGI and WSGI Modules

114

We are utilizing the same Nginx setup from the recipe use to set up PHP-fpm with Nginx in the
above configuration.

Utilizing FCGI cache to speed it up
Due to the disconnected nature of the Nginx and the FCGI daemon, a cache in between can
really speed things up for common requests. If set up correctly it can do wonders for a site
and the server as the CPU will not be utilized unnecessarily.

How to do it...
It is pretty easy to setup:

http {
 fastcgi_cache_path /var/www/cache levels=1:2
 keys_zone=NAME:10m
 inactive=5m;

 server {
 server_name wwww.example1.com;
 ...
 location / {
 ...
 fastcgi_pass 127.0.0.1:9000;
 fastcgi_cache NAME;
 fastcgi_cache_valid 200 302 1h;
 fastcgi_cache_valid 301 1d;
 fastcgi_cache_valid any 1m;
 fastcgi_cache_min_uses 1;
 fastcgi_cache_use_stale error timeout invalid_header http_500;
 }
 }
}

How it works...
In this recipe we are setting up a cache called NAME and setting it up for the site, with an hour
of caching on any site that was successfully retrieved, while very low caching for error pages.

The fastcgi_cache_path directive specifies the path to the cache storage and other cache
parameters. All data is stored within this directive, the cache key and the name of the cache
file are calculated as the MD5 sum of the proxied URL. The levels parameter sets the number
and width of the name of the sub directories to be used in the caching file location. The size
has been set to 10M in the current example, and by default, entries are removed from the
chache if inactive for ten minutes.

Chapter 6

115

The following table summarizes the various directives and their use:

Directive Use
fastcgi_cache This determines the area which will be utilized for caching
fastcgi_cache_key This sets the key that will be used for caching
fastcgi_cache_path This sets the path and other critical parameters for the cache being

created
fastcgi_cache_methods This sets which HTTP methods are to be allowed while caching
fastcgi_cache_min_uses This specifies how many requests to the same URL will be cached
fastcgi_cache_use_stale This determines if the web server will start serving stale cached

data in case of gateway errors
fastcgi_cache_valid This sets the caching period for the specified HTTP codes

Using multiple FCGI backends
In this recipe, we will look at how to work with multiple FCGI backends on the system. This
can happen in a system where you have multiple types of applications running, such as a PHP
application, a Python FCGI application, and so on.

It can also be the case that you want to isolate two application backends to prevent performance
issues between them, as one slow application would definitely tie the other one down.

How to do it...
This is fairly straightforward, as you can create a simple fcgi_common file that will contain
the common FCGI configuration:

fastcgi_param SCRIPT_FILENAME /var/www/www.example1.com$fastcgi_
script_name;

fastcgi_param QUERY_STRING $query_string;
fastcgi_param REQUEST_METHOD $request_method;
fastcgi_param CONTENT_TYPE $content_type;
fastcgi_param CONTENT_LENGTH $content_length;

fastcgi_param SCRIPT_NAME $fastcgi_script_name;
fastcgi_param REQUEST_URI $request_uri;
fastcgi_param DOCUMENT_URI $document_uri;
fastcgi_param DOCUMENT_ROOT $document_root;
fastcgi_param SERVER_PROTOCOL $server_protocol;

fastcgi_param GATEWAY_INTERFACE CGI/1.1;
fastcgi_param SERVER_SOFTWARE nginx/$nginx_version;

fastcgi_param REMOTE_ADDR $remote_addr;

Setting Up Applications: FCGI and WSGI Modules

116

fastcgi_param REMOTE_PORT $remote_port;
fastcgi_param SERVER_ADDR $server_addr;
fastcgi_param SERVER_PORT $server_port;
fastcgi_param SERVER_NAME $server_name;

fastcgi_param REDIRECT_STATUS 200;

You will then need to use the following configuration and put it in the Nginx configuration file
at sites-enabled/www.example1.com:

server {
 listen 80;
 server_name www.example1.com;

 location / {
 root /var/www/www.example1.com;
 index index.php index.html index.htm;
 }

 location ~ \.php$ {
 include fcgi_common;

fastcgi_pass 127.0.0.1:9000;
 fastcgi_index index.php;

 }
}

You will then need to use the following configuration and put it in the Nginx configuration file
at sites-enabled/www.example2.com

server {
 listen 80;
 server_name www.example2.com;

 location / {
 root /var/www/www.example2.com;
 index index.php index.html index.htm;
 }

 location ~ \.php$ {
 include fcgi_common;
 fastcgi_pass 127.0.0.1:9001;
 fastcgi_index index.php;
 }
}

Chapter 6

117

How it works...
This setup basically lets you take out the common parts of the FCGI directives and have a
clean setup for as many sites as you want.

If you notice, with this setup the rewrites specific for the clean URLs of an application are the
only extra directives that are required.

7
Nginx as a Reverse

Proxy

In this chapter, we will cover:

ff Using Nginx as a simple reverse proxy

ff Setting up a rails site using Nginx as a reverse proxy

ff Setting up correct reverse proxy timeouts

ff Setting up caching on the reverse proxy

ff Using multiple backends for the reverse proxy

ff Serving CGI files using thttpd and Nginx

ff Setting up load balancing with reverse proxy

ff Splitting requests based on various conditions using split-clients

Introduction
Nginx has found most applications acting as a reverse proxy for many sites. A reverse proxy
is a type of proxy server that retrieves resources for a client from one or more servers. These
resources are returned to the client as though they originated from the proxy server itself.

Due to its event driven architecture and C codebase, it consumes significantly lower CPU power
and memory than many other better known solutions out there. This chapter will deal with the
usage of Nginx as a reverse proxy in various common scenarios. We will have a look at how
we can set up a rail application, set up load balancing, and also look at a caching setup using
Nginx, which will potentially enhance the performance of your existing site without any codebase
changes.

Nginx as a Reverse Proxy

120

Using Nginx as a simple reverse proxy
Nginx in its simplest form can be used as a reverse proxy for any site; it acts as an
intermediary layer for security, load distribution, caching, and compression purposes. In effect,
it can potentially enhance the overall quality of the site for the end user without any change of
application source code by distributing the load from incoming requests to multiple backend
servers, and also caching static, as well as dynamic content.

How to do it...
You will need to first define proxy.conf, which will be later included in the main
configuration of the reverse proxy that we are setting up:

proxy_redirect off;
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
client_max_body_size 10m;
client_body_buffer_size 128k;
proxy_connect_timeout 90;
proxy_send_timeout 90;
proxy_read_timeout 90;s
proxy_buffers 32 4k

To use Nginx as a reverse proxy for a site running on a local port of the server, the following
configuration will suffice:

server {
 listen 80;
 server_name example1.com;
 access_log /var/www/example1.com/log/nginx.access.log;

Chapter 7

121

 error_log /var/www/example1.com/log/nginx_error.log debug;

location / {
 include proxy.conf;
 proxy_pass http://127.0.0.1:8080;
 }
}

How it works...
In this recipe, Nginx simply acts as a proxy for the defined backend server which is running
on the 8080 port of the server, which can be any HTTP web application. Later in this chapter,
other advanced recipes will have a look at how one can define more backend servers, and
how we can set them up to respond to requests.

Setting up a rails site using Nginx as
a reverse proxy

In this recipe, we will set up a working rails site and set up Nginx working on top of the
application. This will assume that the reader has some knowledge of rails and thin. There are
other ways of running Nginx and rails, as well, like using Passenger Phusion.

How to do it...
This will require you to set up thin first, then to configure thin for your application, and then to
configure Nginx.

1.	 If you already have gems installed then the following command will install thin,
otherwise you will need to install it from source:
sudo gem install thin

Nginx as a Reverse Proxy

122

2.	 Now you need to generate the thin configuration. This will create a configuration in
the /etc/thin directory:
sudo thin config -C /etc/thin/myapp.yml -c /var/rails/myapp
--servers 5 -e production

3.	 Now you can start the thin service. Depending on your operating system the start up
command will vary.

4.	 Assuming that you have Nginx installed, you will need to add the following to the
configuration file:
upstream thin_cluster {

 server unix:/tmp/thin.0.sock;

 server unix:/tmp/thin.1.sock;

 server unix:/tmp/thin.2.sock;

 server unix:/tmp/thin.3.sock;

 server unix:/tmp/thin.4.sock;

 }

 server {

 listen 80;

 server_name www.example1.com;

 root /var/www.example1.com/public;

 location / {

 proxy_set_header X-Real-IP $remote_addr;

 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

 proxy_set_header Host $http_host;

 proxy_redirect false;

 try_files $uri $uri/index.html $uri.html @thin;

 location @thin {

 include proxy.conf;

 proxy_pass http://thin_cluster;

 }

 }

 error_page 500 502 503 504 /50x.html;

 location = /50x.html {

 root html;

 }

 }

Chapter 7

123

How it works...
This is a fairly simple rails stack, where we basically configure and run five upstream thin
threads which interact with Nginx through socket connections.

There are a few rewrites that ensure that Nginx serves the static files, and all dynamic
requests are processed by the rails backend. It can also be seen how we set proxy headers
correctly to ensure that the client IP is forwarded correctly to the rails application. It is
important for a lot of applications to be able to access the client IP to show geo-located
information, and logging this IP can be useful in identifying if geography is a problem when the
site is not working properly for specific clients.

Setting up correct reverse proxy timeouts
In this section we will set up correct reverse proxy timeouts which will affect your user's
interaction when your backend application is unable to respond to the client's request.

In such a case, it is advisable to set up some sensible timeout pages so that the user can
understand that further refreshing may only aggravate the issues on the web application.

How to do it...
You will first need to set up proxy.conf which will later be included in the configuration:

proxy_redirect off;
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
client_max_body_size 10m;
client_body_buffer_size 128k;
proxy_connect_timeout 90;
proxy_send_timeout 90;
proxy_read_timeout 90;s
proxy_buffers 32 4k

Reverse proxy timeouts are some fairly simple flags that we need to set up in the Nginx
configuration like in the following example:

server {
 listen 80;
 server_name example1.com;
 access_log /var/www/example1.com/log/nginx.access.log;
 error_log /var/www/example1.com/log/nginx_error.log debug;

 #set your default location

Nginx as a Reverse Proxy

124

 location / {
 include proxy.conf;
 proxy_read_timeout 120;
 proxy_connect_timeout 120;
 proxy_pass http://127.0.0.1:8080;
 }
}

How it works...
In the preceding configuration we have set the following variables, it is fairly clear what these
variables achieve in the context of the configurations:

Directive Use
proxy_read_timeout This directive sets the read timeout for the response of the

proxied server. It determines how long Nginx will wait to get the
response to a request. The timeout is established not for the
entire response, but only between two operations of reading.

proxy_connect_
timeout

This directive assigns timeout with the transfer of request to the
upstream server. Timeout is established not on the entire transfer
of request, but only between two write operations. If after this
time the upstream server does not take new data, then Nginx
shuts down the connection.

Setting up caching on the reverse proxy
In a setup where Nginx acts as the layer between the client and the backend web application,
it is clear that caching can be one of the benefits that can be achieved. In this recipe, we will
have a look at setting up caching for any site to which Nginx is acting as a reverse proxy. Due
to extremely small footprint and modular architecture, Nginx has become quite the Swiss knife
of the modern web stack.

Chapter 7

125

How to do it...
This example configuration shows how we can use caching when utilizing Nginx as a reverse
proxy web server:

http {
 proxy_cache_path /var/www/cache levels=1:2 keys_zone=my-cache:8m
max_size=1000m inactive=600m;
 proxy_temp_path /var/www/cache/tmp;

...

server {
 listen 80;
 server_name example1.com;
 access_log /var/www/example1.com/log/nginx.access.log;
 error_log /var/www/example1.com/log/nginx_error.log debug;

 #set your default location
 location / {
 include proxy.conf;
 proxy_pass http://127.0.0.1:8080/;
 proxy_cache my-cache;
 proxy_cache_valid 200 302 60m;
 proxy_cache_valid 404 1m;

 }
}
}

How it works...
This configuration implements a simple cache with 1000MB maximum size, and keeps all
HTTP response 200 pages in the cache for 60 minutes and HTTP response 404 pages in
cache for 1 minute.

There is an initial directive that creates the cache file on initialization, in further directives we
basically configure the location that is going to be cached.

It is possible to actually set up more than one cache path
for multiple locations.

Nginx as a Reverse Proxy

126

There's more...
This was a relatively small show of what can be achieved with the caching aspect of the proxy
module. Here are some more directives that can be really useful in optimizing and making
your stack faster and more efficient:

Directive Use
proxy_cache_bypass The directive specifies the conditions under which the answer will

not be taken from the cache. If one string variable is not empty
and not equal to "0", the answer is not taken from the cache.

proxy_cache_min_
uses

This directive determines the number of accesses before a page
is cached.

proxy_cache_use_
stale

This directive tells Nginx when to serve a stale item from the proxy
cache. For example, when an Application error HTTP Code 500
occurs.

proxy_cache_
methods

This directive lets you choose what directives to cache [GET, PUT,
and so on].

Using multiple backends for the reverse
proxy

As traffic increases, the need to scale the site up becomes a necessity. With a transparent
reverse proxy like Nginx in front, most users never even see the scaling affecting their
interactions with the site. Usually, for smaller sites one backend process is sufficient to handle
the oncoming traffic. As the site popularity increases, the first solution is to increase the
number of backend processes and let Nginx multiplex the client requests. This recipe takes a
look at how to add new backend processes to Nginx.

Chapter 7

127

How to do it...
The configuration below adds three upstream servers to which client requests will be sent
for processing:

upstream backend {
 server backend1.example1.com weight=5;
 server backend2.example1.com max_fails=3 fail_timeout=30s;
 server backend3.example1.com;
}

server {
 listen 80;
 server_name example1.com;
 access_log /var/www/example1.com/log/nginx.access.log;
 error_log /var/www/example1.com/log/nginx_error.log debug;

 #set your default location
 location / {
 include proxy.conf;
 proxy_pass http://backend;
 }
}

How it works...
In this configuration we set up an upstream, which is nothing but a set of servers with some
proxy parameters. For the server http://backend1.example1.com, we have set a weight
of five, which means that the majority of the requests will be directed to that server. This can
be useful in cases where there are some powerful servers and some weaker ones. In the next
server http://backend2.example1.com, we have set the parameters such that three
failed requests over a time period of 30 seconds will result in the server being considered
inoperative. The last one is a plain vanilla setup, where one error in a ten second window will
make the server inoperative!

This displays the thought put in behind the design of Nginx. It seamlessly handles servers
which are problematic and puts them in the set of inoperative servers. All requests to the
server are sent in a round robin fashion. We will discuss modules in future recipes that ensure
that the requests are sent using other queue mechanisms based on server load and other
upstream server performance metrics.

http://backend1.example1.com
http://backend2.example1.com

Nginx as a Reverse Proxy

128

Serving CGI files using thttpd and Nginx
At some point in time in Internet history, most applications were CGI based. Nginx does not
serve CGI scripts, so the workaround is to use a really efficient and simple HTTP server called
thttpd and to get Nginx to act as a proxy to it.

How to do it...
The best way to go about it is to set up thttpd from source code, apply the IP forwarding patch,
and then to use the configuration below:

1.	 Download thttpd and apply the patch.
wget http://www.acme.com/software/thttpd/thttpd-2.25b.tar.gz

tar –xvzf thttpd-2.25b.tar.gz

2.	 Save the code below in a file called thttpd.patch:
--- thttpd-2.25b/libhttpd.c 2003-12-25 20:06:05.000000000 +0100

+++ thttpd-2.25b-patched/libhttpd.c 2005-01-09
00:26:04.867255248 +0100

@@ -2207,6 +2207,12 @@

 if (strcasecmp(cp, "keep-alive") == 0)

 hc->keep_alive = 1;

 }

+ else if (strncasecmp(buf, "X-Forwarded-For:", 16) == 0
)

+ { // Use real IP if available

+ cp = &buf[16];

+ cp += strspn(cp, " \t");

+ inet_aton(cp, &(hc->client_addr.sa_in.sin_addr));

+ }

 #ifdef LOG_UNKNOWN_HEADERS

 else if (strncasecmp(buf, "Accept-Charset:", 15) == 0
||

 strncasecmp(buf, "Accept-Language:", 16) == 0 ||

3.	 Apply the patch and install thttpd:
patch -p 1 -i thttpd.patch

cd thttpd-2.25b

make

sudo make install

http://www.acme.com/software/thttpd/thttpd-2.25b.tar.gz
http://www.acme.com/software/thttpd/thttpd-2.25b.tar.gz

Chapter 7

129

4.	 Use the following configuration for /etc/thttpd.conf:
BEWARE : No empty lines are allowed!

This section overrides defaults

This section _documents_ defaults in effect

port=80

nosymlink # default = !chroot

novhost

nocgipat

nothrottles

host=0.0.0.0

charset=iso-8859-1

host=127.0.0.1

port=8000

user=thttpd

logfile=/var/log/thttpd.log

pidfile=/var/run/thttpd.pid

dir=/var/www

cgipat=**.cgi|**.pl

5.	 Set up Nginx as a proxy for the port 8000.
server {

 listen 80;

 server_name example1.com;

 access_log /var/www/example1.com/log/nginx.access.log;

 error_log /var/www/example1.com/log/nginx_error.log debug;

location /cgi-bin {

 include proxy.conf;

 proxy_pass http://127.0.0.1:8000;

 }

}

How it works...
The setup above allows you to enjoy the best of CGI and Nginx. You initially set up thttpd,
which will run on port 8000 of the server, which will effectively be the core CGI web server
and you can run Nginx as the proxy for the user requests.

All you need to do is place the perl scripts in the /var/www directory and you will be running
CGI using Nginx and thttpd.

Nginx as a Reverse Proxy

130

You can also use the same technique as above to run CGI scripts using other
CGI-capable servers like Apache and lightHTTPD as well. You will be required
to change the operating ports of those servers to 8000 and the same
configuration like above will work.

Setting up load balancing with reverse proxy
In most reverse proxy systems one wants to have some notion of load balancing in the system.
In one of the preceding recipes, we have seen how to set up and run multiple upstream
servers in a round robin mechanism of sending over the requests.

In this recipe, we will install a load balancing module which will allow us to set up a fair load
balancing with the upstream servers.

How to do it...
For this particular recipe we will install a third-party module called "upstream fair module".

1.	 You will need to go an download the module:
wget https://github.com/gnosek/nginx-upstream-fair/tarball/master

https://github.com/gnosek/nginx-upstream-fair/tarball/master
https://github.com/gnosek/nginx-upstream-fair/tarball/master

Chapter 7

131

2.	 Compile Nginx with the new module:
Tar –xvzf nginx-upstream-fair.tgz

Cd nginx

./configure --with-http_ssl_module --add-module=../nginx-upstream-
fair/

Make && make install

3.	 You will need to add the following configuration to your nginx.conf:
upstream backend {

 server backend1.example1.com;

 server backend2.example1.com;

 server backend3.example1.com;

 fair no_rr;

}

server {

 listen 80;

 server_name example1.com;

 access_log /var/www/example1.com/log/nginx.access.log;

 error_log /var/www/example1.com/log/nginx_error.log debug;

 #set your default location

 location / {

 proxy_pass http://backend;

 }

}

How it works...
This is a fairly straightforward setup once you understand the basics of setting up multiple
upstream servers. In this particular "fair" mode, which is no_rr, the server will send the
request to the first backend whenever it is idle. The goal of this module is to not send requests
to already busy backends as it keeps information of how many requests a current backend
is already processing. This is a much better model than the default round robin that is
implemented in the default upstream directive.

Nginx as a Reverse Proxy

132

There's more...
You can choose to run this load balancer module in a few other modes, as described
below, based on your needs! This is a very simple way of ensuring that none of the backend
experiences load unevenly as compared to the rest:

Mode Meaning
default (that
is fair;)

The default mode is a simple WLC-RR (weighted least-connection round-robin)
algorithm with a caveat that the weighted part isn't actually too fair under low
load.

no_rr This means that whenever the first backend is idle, it's going to get the next
request. If it's busy, the request will go to the second backend unless it's busy
too, and so on.

weight_
mode=idle
no_rr

This mode redefines the meaning of "idle". It now means "less than weight
concurrent requests". So you can easily benchmark your backends and
determine that X concurrent requests are the maximum for you.

weight_
mode=peak

This means that Nginx will never send more than weight requests to any single
backend. If all backends are full, you will start receiving 502 errors.

Here is an example of a peak weight mode setup:

upstream backend {
 server backend1.example1.com weight=4;
 server backend2.example1.com weight=3;
 server backend3.example1.com weight=4;
 fair weight_mode=idle no_rr;
}

Splitting requests based on various
conditions using split-clients

This recipe will take a look at how we can potentially separate client requests based on
various conditions that can arise.

We will also understand how we can potentially set up a simple page for A-B testing using this
module.

Chapter 7

133

How to do it...
This module is fairly simple to use and comes inbuilt with Nginx. All you need to do is to insert
the following configuration in your nginx.conf:

http {

 split-clients "${remote-addr}AAA" $variant {
 50.0% .one;
 50,0% .two;
 - "";
 }
...

server {
 listen 80;
 server_name example1.com;
 access_log /var/www/example1.com/log/nginx.access.log;
 error_log /var/www/example1.com/log/nginx_error.log debug;

location / {
 root /var/www/example1.com;
 index index${variant}.html;
 }
}

}

How it works...
This particular configuration sets up a system which is based upon the remote client address,
assigns the values .one, .two, or "" to a variable $variant. Based upon the variable value,
a different page is picked up from the file location.

Nginx as a Reverse Proxy

134

The following table shows the various probabilities and actions from the above configuration:

Variable value Probability Page served
.one 50% /var/www/example1.com/index.one.html

.two 50% /var/www/example1.com/index.two.html

"" 0% /var/www/example1.com/index.html

The preceding pie chart clearly displays the split across the two pages. Utilizing this approach,
we are able to test out interactions with the page changes that you have made. This forms the
basis of usability testing.

8
Improving

Performance and SEO
Using Nginx

In this chapter, we will cover:

ff Setting up TCP options correctly for optimizing performance

ff Reducing the keep-alives to free up Nginx workers

ff Using Memcached as the cache backend

ff Configuring the right event model and file limits

ff Setting max-age expiry headers for client-side caching

ff Blocking scrapers, bots, and spiders to save bandwidth

ff Redirection of www to non-www domain for SEO

ff Removing all white space from response

ff Setting up server status for monitoring

ff Setting up Munin for 24x7 Nginx monitoring

ff Enabling gzip pre-compression

ff Preventing hotlinking using Nginx

ff Using embedded Perl to minify JavaScript files

ff Using embedded Perl to minify CSS files

ff Using embedded Perl to serve sitemaps (SEO)

ff Setting up Boost module on Drupal with Nginx

Improving Performance and SEO Using Nginx

136

ff Setting up streaming for Flash files

ff Utilizing the 1x1 gif serving module to do offline processing

Introduction
This chapter is all about how you can make your site load faster and possibly get more traffic
on your site. We will cover the basics of optimizing your Nginx setup and some SEO tricks.
These techniques will not only be useful for your SEO, but also for the overall health of your
site and applications.

Setting up TCP options correctly for
optimizing performance

Nginx allows some easy ways to tweak TCP options which will be based upon your server
operating system that will allow faster loading of your sites. We will have a look at the possible
options and their impact.

How to do it...
The following configuration will optimize your setup for Linux:

user www-data;
worker_processes 1;

error_log /var/log/nginx/error.log;
pid /var/run/nginx.pid;

events {
 worker_connections 1024;
}

http {
 include /etc/nginx/mime.types;
 default_type application/octet-stream;

 access_log /var/log/nginx/access.log;

 sendfile on;
	 tcp_nodelay on;
 tcp_nopush off;
 …
}

Chapter 8

137

How it works...
We use the following directives, and in the following table we can see what they are actually
utilized for:

Directive Usage
tcp_
nodelay

This directive allows or forbids the use of the socket option TCP_NODELAY.

By definition, TCP_NODELAY is for a specific purpose; to disable the
Nagle buffering algorithm. It should only be set for applications that send
frequent small bursts of information without getting an immediate response;
where timely delivery of data is required (the canonical example is mouse
movements).

tcp_nopush This directive permits or forbids the use of the socket options TCP_NOPUSH
on FreeBSD or TCP_CORK on Linux. This option is only available when using
sendfile.

Setting this option causes Nginx to attempt to send it's HTTP response
headers in one packet on Linux and FreeBSD 4.x

On Linux, Nginx can use the TCP_CORK socket option. From the tcp(7)
manual:

TCP_CORK

If set, don't send out partial frames. All queued partial frames are sent when
the option is cleared again. This is useful for prepending headers before
calling sendfile(2), or for throughput optimization. As currently implemented,
there is a 200 millisecond ceiling on the time for which output is corked
by TCP_CORK. If this ceiling is reached, then queued data is automatically
transmitted. This option can be combined with TCP_NODELAY only since
Linux 2.5.71. This option should not be used in code intended to be portable.

On FreeBSD Nginx can use the TCP_NOPUSH socket option, which enables T/
TCP transactions. This does much the same as the above, but is known to be
slow and somewhat buggy on many versions of FreeBSD.

Reducing the keep-alives to free up Nginx
workers

Are you starting to feel that a lot of your Nginx seems to be tied up without actually having a
lot of traffic on you site? This simple tweak will let you efficiently utilize your Nginx setup when
you feel that your users are spending a lot of time on a particular page before moving to the
next page on your site.

Improving Performance and SEO Using Nginx

138

How to do it...
This is, again, a fairly simple change in the configuration file as shown in the following code:

user www-data;
worker_processes 1;

error_log /var/log/nginx/error.log;
pid /var/run/nginx.pid;

events {
 worker_connections 1024;
}

http {
 include /etc/nginx/mime.types;
 default_type application/octet-stream;

 access_log /var/log/nginx/access.log;

. . .
#keepalive_timeout 65;
keepalive_timeout 3;
. . .
}

How it works...
This simple directive actually sets the value of the time the connection with the client is kept
alive after a request. For example, in the preceding setting the connection will wait for three
seconds after serving a client request waiting for the next request from them (and in the
process ignoring other clients).

The idea is finding the right amount of time after which if you close the connection, Nginx
does not end up ignoring many requests unnecessarily. This will improve the efficiency of how
connections are managed by Nginx.

Using Memcached as the cache backend
Over the last couple of years, Memcached has been one of the most utilized caching layers
used by nearly every large portal. It is interesting to notice how every platform has evolved to
support this as a default caching mechanism. Nginx is not far behind and can utilize all the
power of Memcached as a caching backend.

Chapter 8

139

How to do it...
The Memcached module is by default compiled into Nginx. In this we will assume that a local
Memcached instance is running on the 11211 port. The following configuration will allow you
to run a simple caching setup:

server {
 server_name www.example1.com;
 location / {
 set $memcached_key $uri;
 memcached_pass 127.0.0.1:11211;
 default_type text/html;
 error_page 404 @fallback;
 }

 location @fallback {
 proxy_pass http://backend;
 }
}

How it works...
This is a fairly simple setup, where the complete site is cached in Memcached. The idea is
that when Nginx is queried for a given URL, it is checked if Nginx has the corresponding page
in memory or not. If it has, then it is served directly from there. Otherwise, we call the dynamic
backend of the site.

The catch, however, is that you will need to save the outputs of the pages
in memory for Nginx to be able to query it from Memcached. The following
diagram is an example of how this works in practice with a framework such as
Django (Python).

Improving Performance and SEO Using Nginx

140

Configuring the right event model and file
limits

Nginx is an event-driven web server and it always tries to use the underlying event model in
the parent operating system to efficiently function. We will see the various choices on offer
depending on the operating systems we operate in. In addition to that we will also have a look
at how to modify the limits on file descriptor in the configuration.

How to do it...
This simple set of changes within the configuration is all that is needed to make changes in
the event model and file limits. You will, however, need to also modify sysctl.conf on Linux
and its equivalent on other operating systems to enhance the underlying file limits in place or
the following setting will be ignored:

user www-data;
worker_processes 1;

worker_rlimit_nofile 206011;

error_log /var/log/nginx/error.log;
pid /var/run/nginx.pid;

events {
 event select;
worker_connections 1024;
}

http {

...

}

How it works...
In this current setup, we have set a fairly high limit on the number of open file descriptors that
a worker process can have. We have also gone ahead and explicitly selected the select event
model which comes built in by default in Nginx. You can also choose the poll event model or
an alternative based upon the operating system you are on. The following table outlines the
various options one has in selecting the event models.

Select method Operating system Notes
select All Standard method compiled in by default
poll All Standard method compiled in by default

Chapter 8

141

Select method Operating system Notes
kqueue FreeBSD 4.1+, OpenBSD 2.9+,

NetBSD 2.0 and MacOS X
With dual-processor machines running
MacOS X using kqueue can lead to kernel
panic

epoll Linux 2.6+ In some distributions, like SuSE 8.2, there
are patches for supporting epoll by kernel
version 2.4

rtsig Linux 2.2.19+ By default no more than 1024 POSIX
realtime (queued) signals can be
outstanding in the entire system

/dev/poll Solaris 7 11/99+, HP/UX
11.22+ (eventport), IRIX
6.5.15+ and Tru64 UNIX 5.1A+

eventport Solaris 10 To avoid kernel panic, it is necessary to
install this security patch

Setting max-age expiry headers for
client-side caching

In a reverse proxy setup, one of the most crucial tasks of a frontend web server like Nginx is
to serve the static files. This is one of the most effective optimizations in the arsenal of a web
administrator. In this, we set the client side cache expiry on static files to a significantly high
value far in the future. This ensures that if the site is frequently used by the user, the static
files like the images, CSS, and JavaScript files are not downloaded once again. This leads to a
significantly better interaction with the site.

Improving Performance and SEO Using Nginx

142

If you tend to use development plugins such as Firebug (which you can check out at
http://getfirebug.com), they show you the headers of the files downloaded when you
load a page, as shown in the following screenshot. This shows an example of the CSS files
downloaded on the Yahoo! site:

How to do it...
This is a simple configuration change that needs to be made to the location directive that
serves the static files:

location ~* \.(jpg|jpeg|gif|css|png|js|ico|html)$ {
 expires max;
}

location / {
 ...

 proxy_pass http://backend;
}

How it works...
This is a fairly simple directive where if the file is a static file like a CSS, JS, or any image file,
we simply send the file back with the Expires header set far in the future. This will ensure
that the file stays in the cache of the client browser and is not reloaded unnecessarily when
the user comes back to the same page in the future.

Chapter 8

143

Static files like these do not change on most sites, while the HTML which defines the structure
of the content may be very much dynamic. This also prevents significant unnecessary
bandwidth usage for the site owners.

You must keep in mind that a lot of time you will need to modify static files,
so in those cases you will need to append a random/different query string
variable to force the client to download the fresh version of the static file.

Blocking scrapers, bots, and spiders to save
bandwidth

If you have ever gone through your access log you will see a whole load of rather weird looking
User-Agents visiting your site. Except for the larger search engines such as Google, Microsoft
Bing, and Yahoo! every other bot is pretty much unnecessary in the larger scheme of the
global SEO scenario today. In this recipe we will end up blocking out a whole lot of other
content leechers and in the process save you valuable bandwidth.

This will also block a whole load of commenting bots that end up pushing ugly and
unnecessary comments to screw up your site.

How to do it...
You will need to add the following in the location directive to keep away a fairly large list of
scrapers, bots, and spiders. We will start with a smaller set of user agents to block, and can
add others once we are sure of how it works.

location / {
 ...

if ($http_user_agent ~* aesop_com_spiderman|alexibot|backweb|bandit|ba
tchftp|bigfoot|black.?hole|blackwidow|blowfish|botalot|buddy|builtbott
ough|bullseye|cheesebot|cherrypicker|chinaclaw|collector|copier|copyri
ghtcheck|cosmos|crescent|curl|custo|da|diibot|disco|dittospyder|dragon
fly|drip|easydl|ebingbong|ecatch|eirgrabber) {

 rewrite ^/ http://www.example1.com/robots.txt;
}

proxy_pass http://backend;
}

Improving Performance and SEO Using Nginx

144

How it works...
This set of rules effectively look at the HTTP user agent and compare it to a list "of know
rouge" user agent list and reject the request by redirecting them to the robots.txt file. This
also ensures that you are never wasting computation time and bandwidth on bots which can
be utilized in providing a better quality of service for your users.

By stopping spam comments on your site, you are also effectively ensuring that your SEO does
not get affected by pornographic or explicit content injected by them.

Redirection of www to non-www domain
for SEO

Most people do not realize that www.example1.com is not the same as example1.com for
the search engines. Technically, they are completely separate entities. All search engines have
algorithms to detect copied content to rank out the people who plagiarize content. In such a
situation it is imperative that people actually use either www.example1.com or example1.
com as the operative domain name for their site.

The verdict on what is better depends on the use case; the puritans argue that www version
represents the correct sub-domain for all the Internet users. It can be argued that in an age
where we use acronyms for nearly every word, the extra characters are unnecessary and may
even affect your site's popularity. In this recipe, we will stick with non-www as the primary
domain and force all www pages to redirect to the non-www pages.

How to do it...
We will insert the following configuration in the http directive to redirect all http://
example1.com requests to http://www.example1.com:

server {
 listen 80;
 server_name example1.com;
 location / {
 ...
 }
}

server {
 listen 80;
 server_name www.example1.com;
 rewrite ^ http://example1.com$uri permanent;
}

http://www.example1.com
http://www.example1.com

Chapter 8

145

How it works...
This is a simple rewrite rule for all www based requests, where they are redirected to the non-
www URL. This makes sure that there is only one version of a page visible on the Internet for
the search engines to crawl.

Removing all white space from response
This may sound a bit absurd, but white spaces form a major chunk of the files being
transferred on a site. It can be said that if you are using GZIP compression then it is not
an issue, but if you are looking at getting the most out of your setup then every little thing
matters. This recipe will help you strip out all the unnecessary white space without wasting
precious development time doing the same.

How to do it...
This simple directive will allow you to strip the HTML served of white spaces. You will first need
to install the mod_strip module.

1.	 You will first need to download the module and untar it:
wget http://wiki.nginx.org/File:Mod_strip-0.1.tar.gz

tar –xvzf Mod_strip-0.1.tar.gz

2.	 We then compile into Nginx the module, using the following configure statement:
./configure –add-module=../Mod_strip-0.1

make && make install

3.	 We then put the following directive in the location part of the site that we want to strip
spaces for:
location / {
 strip on;
 . . .
 proxy_pass http://backend;
}

How it works...
This is an extremely fast module and it efficiently removes all whitespaces (spaces, tabs, and
newlines) from the HTML served by Nginx. This in combination with the GZIP compression
provides quite a drastic improvement in page loading times.

http://wiki.nginx.org/File:Mod_strip-0.1.tar.gz
http://wiki.nginx.org/File:Mod_strip-0.1.tar.gz
http://wiki.nginx.org/File:Mod_strip-0.1.tar.gz
http://wiki.nginx.org/File:Mod_strip-0.1.tar.gz

Improving Performance and SEO Using Nginx

146

Setting up server status for monitoring
Sometimes in an active production environment, it is not possible to process logs to see web
server statistics on the fly. In such situations, Nginx provides you with a simple server status
page. This page will give you enough information to understand the current load on the server.

How to do it...
This module does not come compiled in by default, so we will initially compile in the module
and then configure the server status stub.

1.	 You will need to recompile Nginx and add the following flag to the configure option:
./configure --with-http_stub_status_module

make && make install

2.	 Then we will go ahead and use the configuration to add a new status end-point:

location /nginx_status {
 stub_status on;
 access_log off;
}

How it works...
This simple configuration will create a page http://www.example1.com/nginx_status,
which will give you statistics on how much load is there on your web server. The following is an
example of what you may get to see on the page.

We can also set up access control for this page by looking at the Setting up HTTP auth for
access control recipe in Chapter 5, Let's Be Secure: Security Modules which will let you set up
HTTP authentication.

Active connections: 291
server accepts handled requests
 16630948 16630948 31070465
Reading: 6 Writing: 179 Waiting: 106

The following table explains the meaning of the server status output.

Statistic Meaning
Active connections Number of open connections to the backend
Server accepts
handled requests

Nginx accepted 16630948 connections, went ahead and handled
16630948 connections and served 31070465 requests

Reading The number of requests Nginx is reading

http://www.example1.com/nginx_status

Chapter 8

147

Statistic Meaning
Writing The requests that are being processed or being written back to the

clients
Waiting Connections that are kept alive with the clients (KeepAlives)

Setting up Munin for 24x7 Nginx monitoring
In a production level environment where you may have multiple servers running, it becomes
necessary to have top level monitoring tools such as Munin. The tools let you collate information
and figure out load levels on the fly thus keeping you in the loop 24 hours, seven days a week.
This recipe aims at being useful for the new Nginx user as well as highly experienced system
administrators. The following screenshot is a sample of the kind of visualizations Munin generates:

How to do it...
There are two parts to this recipe; the first is in setting up Nginx with the server stub module.

1.	 You will need to recompile Nginx and add the following flag to the configure option:
./configure --with-http_stub_status_module

Make && make install

Improving Performance and SEO Using Nginx

148

2.	 Then we will go ahead and use the configuration to add a new status end-point:
location /nginx_status {
 stub_status on;
 access_log off;
}

Now we will go ahead and install the Munin plugins. Do note that we are assuming that you
have already set up Munin on your system.

1.	 You will first download the plugins:
cd /usr/share/munin/plugins

sudo wget -O nginx_request http://exchange.munin-monitoring.org/
plugins/nginx_request/version/2/download

sudo wget -O nginx_status http://exchange.munin-monitoring.org/
plugins/nginx_status/version/3/download

sudo wget -O nginx_memory http://exchange.munin-monitoring.org/
plugins/nginx_memory/version/1/download

sudo chmod +x nginx_request

sudo chmod +x nginx_status

sudo chmod +x nginx_memory

2.	 Now we will link the plugins to the correct directories:
sudo ln -s /usr/share/munin/plugins/nginx_request /etc/munin/
plugins/nginx_request

sudo ln -s /usr/share/munin/plugins/nginx_status /etc/munin/
plugins/nginx_status

sudo ln -s /usr/share/munin/plugins/nginx_memory /etc/munin/
plugins/nginx_memory

3.	 Add the Nginx server stub URL to the Munin configuration (/etc/munin/plugin-
conf.d/munin-node).
[nginx*]
env.url http://localhost/nginx_status

4.	 Restart the munin-node:
sudo /etc/init.d/munin-node restart

Now you should be able to view something like the following screenshot on your Munin
installation:

Chapter 8

149

How it works...
This two part setup first installs the server status stub module for Nginx which is used by
Munin to keep track of the server loads. In the second part, we install the various Munin
plugins that are needed to effectively monitor Nginx. Munin will keep polling the server
status and parse it to gather the relevant information to generate the graphs. These simple
visualizations can help the system administrator optimize the system further and potentially
plan future hardware needs based on projections.

Improving Performance and SEO Using Nginx

150

Enabling GZIP pre-compression
We have had a look at how GZIP compression can lower the site's loading time drastically.
We can further extend that thinking by pre-compressing the static sites that we want to
serve and effectively reduce the computation power we waste to compress the file each and
every time. This recipe will automagically help you serve a pre-compressed gzipped version
of your static file.

How to do it...
You will need to carry out the following steps to enable gzip pre-compression module and use
it effectively.

1.	 You will need to recompile Nginx and add the following flag to the configure option:
./configure --with-http_gzip_static_module

Make && make install

2.	 Now, you will need to compress the various static files (using the gzip command line
utility, if on UNIX) that you have so that Nginx can serve those pre-compressed ones
whenever possible. Make sure that the compressed files are placed in the same
directory as the original files.

3.	 Make the following changes to the Nginx configuration file:

http {
. . .

gzip_static on;

gzip_http_version 1.1;
gzip_proxied expired no-cache no-store private auth;
gzip_disable "MSIE [1-6]\.";
gzip_vary on;

How it works...
When this module is turned on, Nginx will always look for a pre-compressed file whenever
a file is being served from the disk. The idea is to simply avoid spending more CPU time
compressing the content every time.

Chapter 8

151

Preventing hotlinking using Nginx
A lot of multimedia driven sites have the problem of people linking and embedding their
content without their explicit permission. This not only leads to copyright issues at times, but
also ends up in lost bandwidth for the site minus the traffic. This is clearly not a good scenario
for any site. This recipe helps you prevent this situation on your site.

How to do it...
This simple rule will stop other sites from linking to your content:

server {

server_name www.example1.com;

location ~* ^.+\.(jpg|jpeg|gif)$ {
 valid_referers none blocked example1.com www.example1.com;
 if ($invalid_referer) {
 return 444;
 }
}

...

}

How it works...
The idea behind this is to set a list of correct referrer values which are permissible. The rest
are rejected. In case there is no match with this list the variable, $invalid_referer is set
to 1. The lists of parameters in the valid_referers mean the following:

parameter Meaning
None This value implies that it is a match when the "refers" line is not a part of the

request header.
blocked This means masked refer headers by firewall. For example "Referer : XXXXXX".

Do note that this method is not an absolute fix for hot-linking as it is fairly easy to spoof
the header.

Improving Performance and SEO Using Nginx

152

Using embedded Perl to minify JavaScript
files

This recipe will have a look at how to get embedded Perl working in Nginx and use it to minify
JavaScript files. The basic concept of minifying JavaScript files is to reduce the size of the
file by removing unnecessary whitespaces and shortening variable names. Of course, any
compression of the JavaScript file should not be affecting the actual functionality of the site.

How to do it...
We will start by installing the embedded Perl module and then go ahead and configure the
setup to minify the JavaScript files.

1.	 You will need to recompile Nginx and add the following flag to the configure option:
./configure -with-http_perl_module

Make && make install

2.	 You will need to add the following into your Nginx configuration to get started with
using embedded Perl. This assumes that you have installed the JavaScript minifier
library from CPAN:
http {
 perl_modules perl;

 perl_require Javascript/Minifier.pm;
 perl_require Minify.pm;

 root /var/www;
 server {
 server_name www.example1.com;
 location / {
 index index.html index.htm;
 }

 location ~ \.js$ {
 perl Minify::handler;
 }
 }
}

3.	 You will then need to create the Minify handler which will reside in the Minify.pm
file. This is the actual function that will minify the JavaScript code and cache, and
serve the generated file.
package Minify;
use nginx;
use JavaScript::Minifier qw(minify);

Chapter 8

153

sub handler {
 my $r=shift;
 my $cache_dir="/tmp"; # Cache directory where minified files
will be kept
 my $cache_file=$r->uri;
 $cache_file=~s!/!_!g;
 $cache_file=join("/", $cache_dir, $cache_file);
 my $uri=$r->uri;
 my $filename=$r->filename;

 return DECLINED unless -f $filename;

 if (! -f $cache_file) {
 open(INFILE, $filename) or die "Error reading file: $!";
 open(OUTFILE, '>' . $cache_file) or die "Error writting file:
$!";
 minify(input => *INFILE, outfile => *OUTFILE);
 close(INFILE);
 close(OUTFILE);
 }
 $r->sendfile($cache_file);
 return OK;
}

1;

__END__

4.	 Now you can simply go ahead and restart Nginx. You will begin to notice minified
JavaScript files appearing in your /tmp directory.

How it works...
This is a fairly interesting and simple setup, where we basically use embedded Perl as a way
of minifying the JavaScript files and caching them. The Perl script is intelligent in the way that
it ensures that the minifying happens only once initially, and then after every request the file is
served from the hard drive.

Improving Performance and SEO Using Nginx

154

A comparison of the various Yahoo UI JavaScript files when minified can be seen in the
following screenshot:

There's more...
This same approach can be used to do a whole lot of other utility activities inside the web server.
We will have a look at how to minify CSS in the next recipe using a very similar approach.

Using embedded Perl to minify CSS files
We will have a look at how we can minify CSS files using embedded Perl within Nginx. This
simple recipe will ensure that you do not waste time thinking about such optimizations when
deploying a production site. Minifying CSS can result in significantly smaller asset files which
need to be downloaded by the end user.

How to do it...
We will start by installing the embedded Perl module and then going ahead to configure the
setup to minify the JavaScript files.

1.	 You will need to recompile Nginx and add the following flag to the configure option:
./configure --with-http_perl_module

Make && make install

2.	 You will need to add the following into your Nginx configuration to get started with
using embedded Perl. This assumes that you have installed the CSS minifier library
from CPAN:

Chapter 8

155

http {
 perl_modules perl;

 perl_require CSS/Minifier.pm;
 perl_require Minify.pm;

 root /var/www;
 server {
 location / {
 index index.html index.htm;
 }

 location ~ \.css$ {
 perl Minify::handler;
 }
 }
}

3.	 You will then need to create the Minify handler, which will reside in the Minify.
pm file. This is the actual function that will minify the code and cache, and serve the
generated CSS file:
package Minify;
use nginx;
use CSS::Minifier qw(minify);

sub handler {
 my $r=shift;
 my $cache_dir="/tmp"; # Cache directory where minified files
will be kept
 my $cache_file=$r->uri;
 $cache_file=~s!/!_!g;
 $cache_file=join("/", $cache_dir, $cache_file);
 my $uri=$r->uri;
 my $filename=$r->filename;

 return DECLINED unless -f $filename;

 if (! -f $cache_file) {
 open(INFILE, $filename) or die "Error reading file: $!";
 open(OUTFILE, '>' . $cache_file) or die "Error writting file:
$!";
 minify(input => *INFILE, outfile => *OUTFILE);
 close(INFILE);
 close(OUTFILE);
 }
 $r->sendfile($cache_file);
 return OK;
}
1;

__END__

Improving Performance and SEO Using Nginx

156

4.	 Now you can simply go ahead and restart Nginx. You will start to notice minified CSS
files appearing in your /tmp directory.

How it works...
In this recipe, we first ensure that you install the embedded Perl module. Then we configure
Nginx to run a piece of Perl code when a CSS file is queried for. The Perl script effectively
minifies the CSS file on the first call made, and it serves the minified file from the caching
location for subsequent calls.

Using embedded Perl to serve
sitemaps (SEO)

Since the advent of search engines, SEO has played a crucial role in the Internet economy.
Businesses want to attract more visitors to their sites, thus creating more awareness and
opportunities to sell their products/services. One of the most basic concepts that have
served as standard for search engines when they index a site for information is the sitemap. A
sitemap is nothing but a directory of all the potential links on the site. It also assigns weights
to how often a particular page changes, ensuring that a search engine can come back and
look at the page at regular intervals.

We will look at how to take your sitemaps and serve them correctly using Nginx. You can
then use these sitemaps on the various webmaster tools provided by Google, Bing, and other
search engines.

Chapter 8

157

How to do it...
In this recipe we will first set up a sitemap generator and then integrate it with our Nginx setup
to generate and serve sitemaps correctly.

1.	 In this we will assume that you are able to set up the python sitemap generator:
(http://sitemap-generators.googlecode.com/svn/trunk/docs/en/
sitemap-generator.html).

2.	 You can now go ahead and put the following configuration into your Nginx setup to
enable the sitemap generation:
http {
 include mime.types;
 default_type application/octet-stream;

 perl_modules perl;
 perl_require Sitemap.pm;

 keepalive_timeout 65;

 server {
 listen 80;
 server_name www.example1.com;

 location / {
 root html;
 index index.html index.htm;
 }

 location /sitemap.xml {
 perl Sitemap::handler;
 }
 }
}

3.	 Now we need to place the Perl handler, which will allow you to serve the generated
sitemaps:
package Sitemap;
use nginx;
use LWP::Simple;

our $basedir="/var/www/www.example1.com";

sub handler {
 my $r=shift;
 my $cache_dir="/tmp"; # Cache directory where minified files
will be kept
 my $cache_file=$r->uri;
 $cache_file=~s!/!_!g;
 $cache_file=join("/", $cache_dir, $cache_file);

http://sitemap-generators.googlecode.com/svn/trunk/docs/en/sitemap-generator.html
http://sitemap-generators.googlecode.com/svn/trunk/docs/en/sitemap-generator.html
http://sitemap-generators.googlecode.com/svn/trunk/docs/en/sitemap-generator.html

Improving Performance and SEO Using Nginx

158

 my $uri=$r->uri;
 my $filename=$r->filename;

 return DECLINED unless -f $filename;

 if (! -f $cache_file) {
 `python sitemap_gen.py` # Assumes that google sitemap
generator is in the same directory
 }
 $r->sendfile($cache_file);
 return OK;

}

1;

__END__

4.	 Now all you need is to restart Nginx and visit http://www.example1.com/
sitemap.xml.

How it works...
This is a fairly interesting setup that basically sets up the Google sitemap generator and then
utilizes it when the sitemap is queried for by the search engines. The Perl code is fairly simple
as it is only called when the sitemap is not found. It basically makes a call to the python code,
which will generate the sitemap and go ahead and serve the files.

Setting up Boost module on Drupal
with Nginx

Drupal is one of the leading open source CMS applications out there. It has proved to be
extremely capable in handling a variation of content driven portals out on the Internet today
and will continue to be a dominant player in this market. As with any high performance
platform, a particular module called Boost has emerged as a strong tool in the hands of
system administrators who want to scale up and optimize their Drupal setup. In this recipe,
we will look at how we can take a Drupal setup which has Boost, and use Nginx's strength of
serving static files for a fairly significant optimization.

Chapter 8

159

How to do it...
It is assumed that you have already installed and configured Boost for Drupal. It is a fairly
simple and well-documented setup which can be found online (http://drupal.org/
project/boost).

1.	 Now that you have already installed Boost and Nginx is running as your frontend web
server and using PHP-FCGI, you will need to place the following configuration in your
Nginx sites-enabled directory:
server {
 listen 80;
 server_name example1.com;
 access_log /var/log/nginx/example1.com.access.log;
 error_log /var/log/nginx/example1.com.error.log;
 root /var/www/example1.com;
 index index.php;

 location / {
 rewrite ^/(.*)/$ /$1 permanent; # remove trailing slashes
 try_files $uri @cache;
 }

 location @cache {
 if ($request_method !~ GET) {

Improving Performance and SEO Using Nginx

160

 return 405;
 }
 if ($http_cookie ~ "DRUPAL_UID") {
 return 405;
 }
 error_page 405 = @drupal;

 expires epoch;
 add_header Cache-Control "must-revalidate, post-check=0,
pre-check=0";
 charset utf-8;

 try_files /cache/$host${uri}_$args.html @drupal;
 }

 location @drupal {
 rewrite ^/(.*)$ /index.php?q=$1 last;
 }

 location ~* (/\..*|settings\.php$|\.(htaccess|engine|inc|info|
install|module|profile|pl|po|sh|.*sql|theme|tpl(\.php)?|xtmpl)$|^(
Entries.*|Repository|Root|Tag|Template))$ {
 deny all;
 }

 location ~ \.php$ {
 try_files $uri @drupal;
 fastcgi_pass 127.0.0.1:9000;
 fastcgi_index index.php;
 fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_
script_name;
 include /etc/nginx/fastcgi_params;
 }

 location ~ \.css$ {
 if ($request_method !~ GET) {
 return 405;
 }
 if ($http_cookie ~ "DRUPAL_UID") {
 return 405;
 }
 error_page 405 = @uncached;

 access_log off;
 expires max; #if using aggregator

 try_files /cache/$host${uri}_.css $uri =404;
 }

 location ~ \.js$ {
 if ($request_method !~ GET) {

Chapter 8

161

 return 405;
 }
 if ($http_cookie ~ "DRUPAL_UID") {
 return 405;
 }
 error_page 405 = @uncached;

 access_log off;
 expires max; # if using aggregator

 try_files /cache/$host${uri}_.js $uri =404;
 }

 location @uncached {
 access_log off;
 expires max;
 }

 location ~* ^.+\.(jpg|jpeg|gif|png|ico)$ {
 if ($http_referer !~ ^(http://example1.com)) { # prevent
image hijacking
 return 444;
 }

 access_log off;
 expires 45d;

 try_files $uri =404;
 }
}

2.	 All you need to do now is restart Nginx.

How it works...
This particular configuration can be looked at in the following steps. First, when the request
comes in, the Boost physical cache it is checked. If it is found in the cache, it is served back to
the client. If not, it basically rewrites the clean URL into the Drupal index.php argument form
and makes the PHP call.

This is a highly optimized setup, as it ensures that you serve the static files using Nginx
whenever possible. As generating similar pages consistently is clearly a waste of precious server
resources, this will let you focus on optimizing more frontend aspects of your web application.

Improving Performance and SEO Using Nginx

162

Setting up streaming for Flash files
Video has become quite the dominant format on the net. It is also fair to say that Flash has
been the driving force behind this over the last couple of years. YouTube (http://youtube.
com) is a good example of FLV streaming video sites. In this recipe, we will look at how simple
it is to set up Flash video streaming.

How to do it...
In this simple recipe, you will initially need to re-compile Nginx with the FLV module and then
configure the directories that will serve the FLV files.

1.	 You will need to recompile Nginx and add the following flag to the configure option:
./configure --with-http_flv_module

Make && make install

2.	 You will then need to add the following configuration to the directory location where
you are streaming it from:
location ~ \.flv$ {
 flv;
}

3.	 You will then need to restart Nginx.

Chapter 8

163

How it works...
This is a fairly simple setup where you will not need to do a lot to get FLV streaming working in
no time. This module allows you to seek within FLV files using time-based offsets. This means
that the user is able to start the video from somewhere in the middle and perform other
similar video timeline operations.

Utilizing the 1x1 GIF serving module to do
offline processing

Sometimes we encounter situations where the backend processing takes a bit more time than
necessary and the client has to unnecessarily wait for a response. This recipe looks into a way
of making a non-block call to a URL, potentially allowing you to send a response back to the
user's browser that much faster, and yet ensuring that the background processing occurs.

It is also used for delivering an empty GIF which can be used for spacing in table-based
HTML design.

How to do it...
All you need to implement a simple example is to use the following configuration:

upstream backend {
. . .
}
server {
server_name www.example1.com;
. . .
location / {
 empty_gif;
 post_action /post;
}

location = /post {
 internal;
 proxy_pass http://backend;
}

}

Improving Performance and SEO Using Nginx

164

How it works...
This is a simple example where a 1x1 GIF is returned immediately when someone visits the
site http://www.example1.com. That, in turn, actually fires up a POST call on http://
www.example1.com/post, which is an internal only call. This web server call will perform
whatever background activity is required, while the client would have already received his
200OK response.

http://www.example1.com
http://www.example1.com/post

9
Using Other

Third-party Modules

In this chapter, we will cover:

ff Setting up an IMAP/POP3 proxy server

ff Setting up authentication for mail services

ff Setting up SSL for mail authentication

ff Using Nginx as a WEBDAV reverse proxy

ff Dynamic image resizing using Nginx

ff Replacing and searching text in Nginx response

ff Assembling ZIP files on the fly

ff Using Nginx as a HTTP publish-subscribe server

ff Transforming XML responses using XSLT templates

ff Setting up Etags for static content

ff Easy logging of page load times

ff Streaming of MP4/H.264 files

ff Setting up SCGI sites

ff Setting up expiring links

Using Other Third-party Modules

166

Introduction
This chapter will have a look at some inbuilt, third-party modules which allow us to extend and
use Nginx with other protocols, such as IMAP, POP3, WebDAV, and much more. Due to the flexible
and well-defined module API, many module developers have used Nginx for interesting web-based
tasks, such as XSLT transformations, image resizing, and HTTP publish-subscribe server.

Setting up an IMAP/POP3 proxy server
One of the most understated uses of Nginx is that of acting as a mail proxy server. It understands
the IMAP, SMTP, and the POP3 protocols. In this recipe we will set up Nginx as a proxy for your
test IMAP/POP3 server. However, you will need to have an authentication script that will basically
return a response redirecting the incoming client to its correct IMAP or POP3 server.

How to do it...
You need to put the following configuration in your setup:

mail {
 auth_http localhost:9000/cgi-bin/auth;

 proxy on;

 imap_capabilities "IMAP4rev1" "UIDPLUS";
 server {
 listen 143;
 protocol imap;

Chapter 9

167

 server_name imap.example1.com;
 }

 pop3_capabilities "TOP" "USER";
 server {
 listen 110;
 protocol pop3;
 server_name pop3.example1.com;
 }
}

How it works...
This setup takes any incoming request and sends back a response outlining the POP3 or IMAP
server it must connect with. We can see the necessary capabilities that the connecting client
must have in order to work with the POP3 or IMAP server.

The auth endpoint will return something as follows:

HTTP/1.0 200 OK
Auth-Status: OK
Auth-Server: 192.168.1.10
Auth-Port: 110
Auth-User: newname

This basically tells the client that they need to connect with 192.168.1.10 on port 110 to
continue further interaction with the backend POP3 server.

Setting up authentication for mail services
Mail being a personal form of communication inevitably requires authentication of some form
or another. We will use embedded Perl to do the authentication in this example. This is driven
in the backend with a table that contains the user and corresponding mail server list.

How to do it...
All you need to enable IMAP and POP3 support is to paste the following configuration in your
Nginx setup:

user nobody;
worker_processes 1;
error_log logs/error.log info;
pid logs/nginx.pid;

events {
 worker_connections 1024;

Using Other Third-party Modules

168

 multi_accept on;
}

http {
 perl_modules perl/lib;
 perl_require mailauth.pm;

 server {
 location /auth {
 perl mailauth::handler;
 }
 }
}

mail {
 auth_http 127.0.0.1:80/auth;

 pop3_capabilities "TOP" "USER";
 imap_capabilities "IMAP4rev1" "UIDPLUS";

 server {
 listen 110;
 protocol pop3;
 proxy on;
 }

 server {
 listen 143;
 protocol imap;
 proxy on;
 }

Now you will also need to create a file called mailauth.pm in the configuration directory and
paste the following code:

package mailauth;
use nginx;
use DBI;
my $dsn="DBI:mysql:database=DBNAME;host=HOSTNAME";
our $dbh=DBI->connect_cached($dsn, 'dbusername', 'dbpass', {AutoCommit
=> 1});
our $sth=$dbh->prepare("select password,mail_server from mailaccounts
where username=? limit 1");

our $auth_ok;
our $mail_server_ip={};
our $protocol_ports={};
$mail_server_ip->{'mailhost01'}="192.168.1.22";
$mail_server_ip->{'mailhost02'}="192.168.1.33";
$protocol_ports->{'pop3'}=110;

Chapter 9

169

$protocol_ports->{'imap'}=143;

sub handler {
 my $r = shift;
 $auth_ok=0;

 $sth->execute($r->header_in("Auth-User"));
 my $hash=$sth->fetchrow_hashref();
 # assuming that the query results password and mail_server
 # assuming that the password is in crypt format

 if (crypt($r->header_in("Auth-Pass"), $hash->{'password'}) eq
$r->header_in("Auth-Pass")){
 $auth_ok=1;
 }
 if ($auth_ok==1){
 $r->header_out("Auth-Status", "OK") ;
 $r->header_out("Auth-Server", $mail_server_ip->{$hash->{'mail_
server'}});
 $r->header_out("Auth-Port", $protocol_ports->{$r->header_in("Auth-
Protocol")});
 } else {
 $r->header_out("Auth-Status", "Invalid login or password") ;
 }

 $r->send_http_header("text/html");

 return OK;
}

1;

__END__

How it works...
The preceding configuration basically works in the following way; the authorization information
is passed in the header to the proxy.

GET /auth HTTP/1.0
Host: auth.server.hostname
Auth-Method: plain
Auth-User: user
Auth-Pass: password
Auth-Protocol: imap
Auth-Login-Attempt: 1
Client-IP: 192.168.1.1

Using Other Third-party Modules

170

Then the Perl code will actually verify the information in the header, and based on the protocol
it will choose the mail server it needs to redirect to. The end-point then sends back the following
on the success of the request; this will be the backend that the service will connect to.

HTTP/1.0 200 OK
Auth-Status: OK
Auth-Server: 192.168.1.22
Auth-Port: 110
Auth-User: newname

Setting up SSL for mail authentication
This recipe will look at how one can set up SSL for the mail proxy you have working with Nginx.
This will add a significant layer of security to the initial authentication exchange, which would
happen in plain text and would be exposed to the man in the middle and replay attacks easily.

Chapter 9

171

How to do it...
You will need to put the following configuration in your setup and ensure the certificates are in
the correct places:

mail {
 auth_http localhost:9000/cgi-bin/auth;

 proxy on;
 starttls on; ## enable STARTTLS for all mail servers

 # The config assumes certificates in /etc/nginx/ssl/ and
 # private keys in /etc/nginx/ssl/private/
 ssl on;
 ssl_prefer_server_ciphers on;
 ssl_protocols TLSv1 SSLv3;
 ssl_ciphers HIGH:!ADH:!MD5:@STRENGTH;
 ssl_session_cache shared:TLSSL:16m;
 ssl_session_timeout 10m;
 ## default SSL cert. Each host should have its own.
 ssl_certificate ssl/wildcard.crt;
 ssl_certificate_key ssl/private/wildcard.key;

 ## default, STARTTLS is appended because of starttls directive above
 imap_capabilities "IMAP4rev1" "UIDPLUS";
 server {
 listen 143;
 protocol imap;
 server_name mx.example1.com;
 }

 pop3_capabilities "TOP" "USER";
 server {
 listen 110;
 protocol pop3;
 }
}

How it works...
This recipe simply sets up a set of certificates that will be used for every proxy request that
comes through Nginx. It uses TLS and SSL, which ensure reliable security based on the
browser you have in action.

The other directives help you set the cache sizes and timeout sizes, the defaults are fairly
optimal in most use cases and would require tweaking in the event of a significant rise in
secure certificate-driven traffic.

Using Other Third-party Modules

172

Using Nginx as a WEBDAV reverse proxy
Web-based Distributed Authoring and Versioning (WebDAV) is a set of methods based on
the Hypertext Transfer Protocol (HTTP) that facilitates collaboration between users in editing
and managing documents and files stored on World Wide Web servers. WEBDAV adds more
keywords on top of HTTP which support many more keywords, such as PUT, DELETE, MKCOL,
COPY, and MOVE.

The WebDAV protocol makes the Web a readable and writable medium. It provides a
framework for users to create, change, and move documents on a server (typically a web
server or "web share").

This recipe will help us proxy WEBDAV correctly over Nginx. It finds application in SVN over
HTTP and many other situations.

How to do it...
We will first set up the module and then add the configuration necessary for WEBDAV to work
properly behind Nginx.

1.	 We will start with installing the module:
./configure --with-http_dav_module

make && make install

2.	 We will then add configuration in the location directives where we want the WEBDAV
supports.
root /data/www/www.example1.com;
location /files {
 dav_methods PUT DELETE MKCOL COPY MOVE;

 create_full_put_path on;

Chapter 9

173

 dav_access group:rw all:r;

 limit_except GET {
 allow 192.168.1.0/32;
 deny all;
 }
}

3.	 Now we will restart the server to see the changes.
/etc/init.d/nginx restart

How it works...
In this configuration, we set up the various WEBDAV methods that Nginx will support. We then
enable the ability to create intermediary directories when a new file is PUT (and the directories
above it do not exist). We then use some basic group level permission on which user or group
can make the calls and modify the files.

We also put a limit rule that does not allow computers outside the subnet to make anything
other than a GET method call. That ensures that someone cannot modify the files maliciously
from outside.

Dynamic image resizing using Nginx
Today the Web is about multimedia, and images that form an important part of it. Image
resizing, as a result, has become one of the more common web-based tasks. Writing image
manipulation code can be tedious and at times, inefficient. To solve this issue, we will have a
look at how can one resize images on the fly using Nginx.

Using Other Third-party Modules

174

How to do it...
So you will need to follow these steps to install the module and then configure Nginx to resize
images.

1.	 You will first need to compile Nginx with this module:
./configure -with-http_image_filter_module

Make && make install

2.	 You will then need to add the following configuration in your site configuration:
location /img/ {
 proxy_pass http://backend;
 image_filter resize 150 100;
 error_page 415 = /empty;
}

location = /empty {
 empty_gif;
}

3.	 You will then need to restart Nginx to complete the installation and configuration.
/etc/init.d/nginx restart

How it works...
The idea is fairly simple; it acts as an image filter, resizing any image that is uploaded to this
endpoint. The directive image_filter takes the resize and size (100 X 100) parameter to
do the necessary filtering:

Chapter 9

175

There's more...
You can set other parameters for the image_filter directive and can get it do other forms
of image manipulation. The following table lists the possibilities.

Parameter value Description
test This checks if the image type is an image format, otherwise it returns an

HTTP 415 error code
size It gives information about the image in the JSON format, for example:

{ "img" : { "width": 100, "height": 100, "type":
"gif" } }
If it is not an image it returns
{}

resize This proportionally scales the images to the given height and width
Crop This does not scale, but crops the image to the given height and width

Replacing and searching text in Nginx
response

It is sometimes possible that you would need to block or remove certain keywords from the
entire site at the shortest notice possible. With much larger sites, and static page sites, this
can be a very tedious and time-consuming process. Nginx provides you with a quick way of
replacing and searching texts in the response it sends out. In this example, we will clear swear
words out of the outputted response.

How to do it...
You will first need to install the module, and then we will put in some configuration that will
remove all kinds of swear words.

1.	 You will first compile Nginx with the substitution module.
./configure --with-http_sub_module

Make && make install

Using Other Third-party Modules

176

2.	 Now we will enter the required configuration to enable the substitution:
Server {
Server_name www.example1.com;

...
location / {
 ...
 sub_filter 'bad_word' '**This is censored**';
 sub_filter_once off;
}

}

3.	 We can now safely restart Nginx to complete the installation and see the module
in action.
/et/init.d/nginx restart

How it works...
This piece of configuration basically takes all occurrences of bad_word in the response and
substitutes it with '**This is censored**'. The directive sub_filter_once basically
ensures that the replacement happens for the first occurrence only; we have switched it off as
we want to replace all occurrences.

Assembling ZIP files on the fly
An often needed feature on most sites nowadays is the ability to download a compressed
version of a file. We will, in this recipe, introduce a module that will take a set of files in the
local files system and serve them as a single ZIP file. This is a very efficient module which can
easily archive hundreds of megabytes of files.

Chapter 9

177

How to do it...
In this recipe, we will first install the module, and then we will see how it works.

1.	 You will need to first download the code for the module and then configure Nginx.
wget http://wiki.nginx.org/images/6/61/Mod_zip-1.1.6.tar.gz

tar -xvzf Mod_zip-1.1.6.tar.gz

cd nginx

./configure --add-module=../Mod_zip-1.1.6

make && make install

2.	 You should restart Nginx; the command will differ based on your platform.
/etc/init.d/nginx restart

3.	 You can then try testing the module by making the following HTTP request. This
request should contain "X-Archive-Files: zip" in its header:
- 428 /test1.txt Test file 1.txt
- 100339 /test2.txt Test file 2.txt

4.	 This should trigger the download of a ZIP archive.

How it works...
The working of this module is interesting, in that we are making a special HTTP request with
the "X-Archive-Files: zip" header which triggers this module. What we send is a list of the files
that need to be in the archive in the following format:

<CRC-32 value> <Filesize in bytes> <file location> <filename in archive>

Using Other Third-party Modules

178

If there is any error in the list of files, then the download is aborted. It is also important to
notice in the example that sometimes the CRC-32 value of a file may not be at hand, so you
can send "-"in the place of that parameter.

Using Nginx as a HTTP publish-subscribe
server

Most of us are using one social network or another, and in recent years it is very clear that
the social Internet is all about real-time. Driving this forward is asynchronous JavaScript HTTP
calls which come in two forms, the short poll and the long poll.

To explain this let's take the simple example of a real-time updating status page. There are two
possible ways of updating this page, one is that the JavaScript periodically fires a request, say
every second, and gets an update from the server. This has its pros and cons, as it is clearly not
real-time in the true sense. The other approach is the event driven one, where the JavaScript
opens a connection with the server and waits till the server responds (which may take quite a
while in some cases). The issue with this approach is that this potentially eats up resources for
the web server as it waits to send a response to the client. However, due to Nginx's event-driven
architecture, it is very cheap for Nginx to keep many connections open concurrently.

In this recipe, we will have a look at an Nginx module that helps you easily implement the
HTTP publish-subscribe model using Nginx.

Chapter 9

179

How to do it...
In this recipe we will first install the module and then set up the configuration.

1.	 We will first download the module and then compile it into Nginx:
wget http://pushmodule.slact.net/downloads/nginx_http_push_
module-0.692.tar.gz

tar -xvzf nginx_http_push_module-0.692.tar.gz

cd nginx

./configure --add-module=../nginx_http_push_module-0.692

make && make install

2.	 Now the following configuration needs to be inserted in the server directive:
internal publish endpoint (keep it private / protected)
location /publish {
 set $push_channel_id $arg_id; #/?id=239aff3 or somesuch
 push_publisher;

 push_store_messages on; # enable message queueing
 push_message_timeout 2h; # expire buffered messages
after 2 hours
 push_max_message_buffer_length 10; # store 10 messages
 push_min_message_recipients 0; # minimum recipients before
purge
}

public long-polling endpoint
location /activity {
 push_subscriber;
 push_subscriber_concurrency broadcast;
 set $push_channel_id $arg_id;
 default_type text/plain;
}

3.	 We will then restart Nginx.
/etc/init.d/nginx restart

How it works... 
This configuration creates a publishing end-point that will take an ID parameter to publish in.
It will store the last 10 messages in a buffer for the new recipients who join the channel.

Using Other Third-party Modules

180

It also creates an activity endpoint, which is actually the long-polling endpoint, which the
JavaScript will call and wait for. In its current configuration, it will allow any client who joins
the channel to long-poll this end-point. This will make your application dependant on Nginx for
the long-poll ability, thus freeing up resources on your application server. Nginx has a lot less
overhead for maintaining open connections, which is a necessity in long-poll based activities.

The preceding site has the TV chatter feed which is driven by the Nginx's
publish-subscribe module and scales easily for thousands of users.

There's more...
You can also use this same channel broadcasting mechanism for one-to-one communication
as well. So you can set values to the push_subscriber_concurrency directive depending
on which you can achieve other communication modes.

Modes Description
last Only the most recent listener request is kept, 409 for others
first Only the oldest listener request is kept, 409 for others
broadcast Any number of listener requests may be long-polling

Chapter 9

181

Transforming XML responses using XSLT
templates

Before the advent of JavaScript as the primary client side language, JSON or JavaScript
object notation had not really caught on. XML has been the dominant format of exchange for
quite some time and most systems continue to support one XML format or another. It is also
interesting to note how the newer document formats (new office and open office formats) are
also primarily XML standards in a well-packaged archive.

Nginx gives us the ability to transform the XML responses that it generates
into another XML format by the application of a XSLT. This can be very
useful in situations where one requires API outputs to fit an external client's
requirements without a change to the end-point.

How to do it...
We will first install the module and then configure your site setup.

1.	 You will need to install the XSL module:
./configure --with-http_xslt_module

make && make install

2.	 Insert the following configuration into your server directive:
server {
server_name www.example1.com;
. . .
location / {
 . . .
}
location /xml_api {

Using Other Third-party Modules

182

 xml_entities /site/dtd/entities.dtd;
 xslt_stylesheet /site/xslt/one.xslt param1="value";
 . . .
}
}

3.	 Restart Nginx.
/etc/init.d/nginx restart

How it works...
This configuration allows you to apply one XSLT transform on all the XML responses that the
/xml_api endpoint generates. This also allows you to set parameters in the XSLT based on
your Nginx variables (or GET parameters).

Setting up Etags for static content
Etags are a part of the HTTP protocol and is utilized for cache validation. This allows more
efficiency on the part of the web browser and saves bandwidth as well. You can think of Etags
as Unique IDs which represent the current state of a URL.

Nginx does not generate Etags for the static content that it serves, and as a result you are not
able to make full use of the advantages of Etags. In this recipe, we will install a module that
will get your static content running with Etags in a jiffy.

Chapter 9

183

How to do it...
1.	 We will first install the module:

git clone git://github.com/mikewest/nginx-static-etags.git ./
nginx-static-etags

cd nginx

./configure --add-module=../nginx-static-etags

make && make install

2.	 Now we can place the following directives in the locations where we want the static
files to contain the Etags directive:
location / {
 ...
 FileETag on;
 ...
}

3.	 You need to restart Nginx to see the affect.
/etc/init.d/nginx restart

How it works...
This directive basically adds the ability for Nginx to have a look at the static files being served
and add an ETag to the HTTP header. When the files change, the Etag header changes
accordingly, this ensures cache invalidation on the client's browser and downloading of the
new updated static file.

Easy logging of page load times
If you are in the business of running portals or websites, the speed of your site is one of
the most important parts of your interaction with the end user. You would want to find out
the slower parts of your website and possibly optimize your codebase to respond to those
requests faster.

This recipe has a look at a module that helps you log the page load times and then you can
parse those logs to find out the part of the sites that take the most amount of time to load up.

How to do it...
This recipe involves the setting up of the module and then a re-configuration of the logging
format to output the page load time variable. We also run a parser to get a list of the slower
pages on the site.

Using Other Third-party Modules

184

1.	 We will need to install this module first:
wget http://wiki.nginx.org/images/7/78/Ngx_http_log_request_speed.
tar.gz

tar -xvzf Ngx_http_log_request_speed.tar.gz

cd nginx

./configure --add-module=../Ngx_http_log_request_speed

make && make install

2.	 We will configure Nginx to log the page loading times as well:
user www www;
worker_processes 2;
error_log logs/error.log;
pid logs/nginx.pid;
events {
 worker_connections 1024;
}
http {

 log_request_speed_filter on;
 log_request_speed_filter_timeout 3;
 . . .

}

3.	 Now we need to restart Nginx.
/etc/init.d/nginx restart

4.	 Run the site for some time, and then you can run the log parser to see some analysis:
wget http://wiki.nginx.org/images/a/a8/Log_Analyzer.tar.gz

cd Log_Analyzer

tail -n 10000 /var/log/nginx/error.log | grep 'process request' |
./analyzer.pl -r

POST /message/ajaxWrite/from_profile/toni32 HTTP/1.1 --- avg ms:
3110, value count: 1

POST /sessionupdate_prod.php HTTP/1.1 --- avg ms: 3312, value
count: 137

GET /favoriten/1 HTTP/1.1 --- avg ms: 3345, value count: 76

GET /nachrichten/read/in/neu/369217567 HTTP/1.1 --- avg ms: 3737,
value count: 1

POST /login_prod.php HTTP/1.1 --- avg ms: 4117, value count: 14

GET /wan/isonline?NICKNAME=luckynight&rtime=1259292758 HTTP/1.1
--- avg ms: 5267, value count: 1

GET /sessionupdate_prod.php HTTP/1.1 --- avg ms: 5572, value
count: 8

Chapter 9

185

How it works...
In the preceding steps we have installed the plugin which adds a Nginx variable that keeps
track of the amount of time the backend takes to respond. This variable can now be easily
logged, giving you performance insights without writing extra code. After logging, you can use
a simple script for this extra column to find out the slower pages.

The directive log_request_speed_filter_timeout basically sets a cut-off of three
seconds, above which all pages will be logged. This prevents unnecessary time logging of pages.

Streaming of MP4/H.264 files
Video streaming has become a social phenomenon with the rise of sites such as YouTube
(http://youtube.com), Metacafe (http://metacafe.com), and Dailymotion (http://
dailymotion.com). Most of these sites either stream FLV files or MP4 files. We have
covered how you can efficiently stream FLV files and now we will cover MP4.

Nginx supports an MP4 streaming module that allows you to easily stream and seek MP4 files.

Using Other Third-party Modules

186

How to do it...
In this recipe, we will first install the module and then configure a particular location to serve
the MP4 video files.

1.	 We will first install the module:
wget http://i.6.cn/nginx_mp4_streaming_public_20081229.tar.bz2

tar -xvjf nginx_mp4_streaming_public_20081229.tar.bz2

cd nginx

./configure --add-module=../nginx_mp4_streaming_public_20081229

make && make install

2.	 Now we will add the following configuration to the location directive where your video
files reside:
server {
server_name www.example1.com;
. . .
root /var/www/www.example1.com;
location / {
. . .
}
location /videos {
mp4;
. . .
}
}

3.	 We will need to restart Nginx to apply the settings.
/etc/init.d/nginx restart

How it works...
All you require to support MP4 files streaming is to add the directive above. This module
ensures that you can seek to random parts of the file as well.

Setting up SCGI sites
Nginx supports SCGI out of the box, and as a result it is rather straightforward to set up.
This is supposed to be an alternative to CGI, much like FastCGI. In this recipe, we will
assume that you already have an SCGI backend and we will go ahead and set up Nginx as
the frontend proxy server.

Chapter 9

187

FastCGI has a fairly complicated protocol, as compared to SCGI which makes it prone to
efficiency issues. Due to the simplicity of the protocol definition which is 100 lines long
(http://python.ca/nas/scgi/protocol.txt), SCGI is considered and often found to
be a faster and more efficient CGI replacement as compared to FastCGI.

How to do it...
To get this running, all you need to do is to use the following configuration in your setup and
then restart Nginx:

http {
 scgi_cache_path /usr/local/nginx/temp levels=1:2
 keys_zone=NAME:10m
 inactive=5m;

 server {
 location / {
 scgi_pass 127.0.0.1:9000;
 scgi_cache NAME;
 scgi_cache_valid 200 302 1h;
 scgi_cache_valid 301 1d;
 scgi_cache_valid any 1m;
 scgi_cache_min_uses 1;
 scgi_cache_use_stale error timeout invalid_header http_500;
 }
 }

How it works...
This assumes that you have an SCGI backend running on localhost on port 9000. This
configuration sets up an SCGI cache of 10MBs which caches all 200OK files for a minute. This
is very similar to how the FastCGI cache works.

Using Other Third-party Modules

188

Setting up expiring links
A lot of the time, security comes as a factor of time limits and obfuscation. We will explore a
module here which will let you generate links that are valid until a certain Date/Time.

How to do it...
We will set up the module and then setup the secure download location.

1.	 We will first install the module:
git clone https://github.com/replay/ngx_http_secure_download.git

cd nginx

./configure --add-module=../ngx_http_secure_download

make && make install

2.	 We will need to add the following configuration under the server directive:
location /timedfolder {
 secure_download on;
 secure_download_secret IAmSalt$remote_addr;
 secure_download_path_mode file;

 if ($secure_download = "-1") {
 rewrite /expired.html break;
 }
 if ($secure_download = "-2") {
 rewrite /bad_hash.html break;
 }
 if ($secure_download = "-3") {
 return 500;
 }

 rewrite ^(.*)/[0-9a-zA-Z]*/[0-9a-zA-Z]*$ $1 break;
}

3.	 We will need to restart Nginx for the configurations to apply.
/etc/init.d/nginx restart

How it works...
In this configuration, we have enabled the module and set the md5 secret as
IAmSalt$remote_addr. The path mode is file which means that the hash created contains
the file name. The URL generated has the following structure:

<real_path>/<md5_hash>/<expiration_timestamp>

Chapter 9

189

The md5 hash gets generated out of the following string:

<real_path>/<secret>/<expiration_timestamp>

ff real_path can be either the path of the file which you want to access or the folder
which contains the file

ff secret is the hash defined

ff expiration_timestamp is a unix_timestamp (seconds since beginning of 1970) in
hexadecimal format

So an example URL would be like the one below:

http://www.example1.com/timefolder/protected.html/f901b5272c17b456fab
f49c3e9bcc120/49F71056

10
Some More

Third-party Modules

In this chapter, we will cover:

ff Configuring a fair load balancing

ff Setting up health checks for backend servers

ff Tracking and reporting file upload progress

ff Generating circles for round edges using Nginx

ff Running Python using Phusion Passenger

ff Generating graphs directly from RRDtool in Nginx

ff Using Google performance tools

ff Serving content directly from GridFS

ff Configuring Basic HTTP auth using PAM

ff Configuring Basic HTTP auth using Kerberos

Introduction
This chapter looks at various web situations such as load balancing, server health checks,
and more which will be very useful in a production environment. These simple recipes will
be highly applicable in enterprise scenarios where you may need to have analytics, external
authentication schemes, and many other situations.

Some More Third-party Modules

192

Configuring a fair load balancing
Nginx by default uses a round robin mechanism to proxy requests to its backend servers. Most
of the time this is sufficient, as the machines on the backend are usually of the same build
and configuration, but in many cases it necessary to implement a fair load. This balance takes
into account the existing load on a machine before its proxies the requests. This is where the
Nginx fair scheduler plugin comes in. It enables the system administrator to configure fair
scheduling and allows the backend machines to be of dissimilar performance, and yet the
whole system will perform optimally.

How to do it…
We will first download the plugin, install it, and then configure it in the steps described ahead.

1.	 We will first install the fair scheduling module:
git clone git://github.com/gnosek/nginx-upstream-fair.git

cd nginx

./configure --add-module=../nginx-upstream-fair

make

make install

2.	 We will then put the following in our Nginx configuration:
upstream backend {
 server 192.168.1.3;
 server 192.168.1.5;
 fair;

Chapter 10

193

}
server {
 server_name www.example1.com;
 ...
 location / {
 proxy_pass http://backend;
 ...
 }
}

3.	 Now, we need to restart Nginx to see the changes:
/etc/init.d/nginx restart

How it works…
This module lets you configure a weighted least connection round robin mechanism, which
keeps track of the real-time load on each individual backend server to make a decision on
whom to proxy it to.

The module also allows you to track the load on each server by visiting a web page; this can
be easily integrated into your web infrastructure monitoring systems.

There's more…
We can also configure the module to handle the following scheduling cases:

Modes Description
Default This lets us configure the simple weighted least-connection round

robin, which basically means you give the request to the server
with the least active connections in a round-robin fashion. This is
the default mode explained in the preceding example.

no_rr This disables round robin, which would be applicable in cases
where we may be spawning multiple backends depending on your
load. It will ensure that Nginx uses as many backends as it needs.

weight_mode=idle no_rr This mode attempts to balance the load between the minimum
pool of backend servers. It can help us identify the actual number
of backend servers.

weight_mode=peak In this mode, Nginx will not send requests to the backend beyond
a certain limit. If all the backends are full the client will receive a
502 error.

Some More Third-party Modules

194

The following diagram shows a scenario how servers respond when they are busy:

See also
Chapter 7, Setup load balancing with reverse proxy

Setting up health checks for backend servers
One of the most important aspects of running a fairly large Internet site is the ability to
understand the health of your machines. In huge server farms, it is not physically possible to
inspect the health of the machines one by one, or for that matter to detect which backend
server is down.

To solve this problem, Nginx has a neat module which will let you run a regular check on all
the backend servers and mark them as bad when they do not behave accordingly. Marking
them as bad ensures that the end client's request never gets sent to the backend server with
issues by Nginx. There are very little performance overheads as Nginx maintains all the health
check numbers in memory.

Chapter 10

195

How to do it…
1.	 We will first install the Nginx backend health module:

git clone https://github.com/cep21/healthcheck_nginx_upstreams.git

cd nginx

./configure --add-module=../ healthcheck_nginx_upstreams

make

make install

2.	 We will then put the following in the configuration files:
upstream backend {
 server 192.168.1.2;
 server 192.168.1.5;
 healthcheck_enabled;
 healthcheck_delay 60000;
}
server {
 server_name www.example1.com;
 ...
 location / {
 proxy_pass http://backend;
 ...
 }
 location /backend_status {
 healthcheck_status;
 }
}

3.	 Now, restart Nginx to see the changes.
/etc/init.d/nginx restart

How it works…
This module makes a query to the backend servers every minute and then updates the
status of every backend server. This was achieved with the healthcheck_enabled and
healthcheck_delay directives.

Some More Third-party Modules

196

We have enabled the health check status page as well, so we can check out the status of the
backend server by visiting http://www.example1.com/backend_status.

Tracking and reporting file upload progress
File uploading is one of the most common activities on a website. It is achieved by making a
multi-part POST submission, which does not allow you to track the progress of the file upload.
So if your user is uploading a fairly large file, he expects to be notified about the speed of
upload and the time it will take. To ensure that the user is aware, there is a module that helps
us track how far the file has been uploaded to the server.

How to do it…
We will first install the plugin, and then see how to configure it in the following steps.

1.	 We will first install the Nginx file upload progress module:
git clone https://github.com/masterzen/nginx-upload-progress-
module.git

cd nginx./configure --add-module=../nginx-upload-progress-module

make

make install

http://www.example1.com/backend_status

Chapter 10

197

2.	 We will use the following in our Nginx configuration:
http {

 upload_progress proxied 1m;

 server {

 server_name www.example1.com;

 root /var/www/www.example1.com;

 location / {
 proxy_pass http://127.0.0.1;
 proxy_redirect default;
 track_uploads proxied 30s;
 }

 location ^~ /progress {
 report_uploads proxied;
 }
}
}

3.	 A restart of Nginx will apply those changes:
/etc/init.d/nginx restart

How it works…
This configuration basically sets up a 1MB cache to keep track of the uploaded file status.
Every file uploaded should be assigned a tracking ID, using which one can query http://
www.example1.com/progress to find out how much of the file has uploaded till now. It can
return a lot of formats based on how we have configured the module output; in this example it
will output JSON by default.

It is important to note that to track the file progress we will need to append an X-Progress-ID,
which will uniquely identify the file being uploaded.

http://www.example1.com/progress
http://www.example1.com/progress

Some More Third-party Modules

198

Generating circles for round edges
using Nginx

The latest in Internet aesthetics are rounded edges, and clearly Nginx is not going to be left
behind. This recipe has a look at an interesting module that allows you to generate dynamic
circles, which we can easily utilize for creating round edge styles. This is most applicable when
you need to support rounded edges on older browsers that are not compatible with CSS3.

How to do it…
We will first install the plugin and then configure it in the following steps.

1.	 We will first need to install the Nginx Circle GIF module:
wget http://wiki.nginx.org/images/b/b6/Nginx_circle_gif-
0.1.3.tar.gz

tar –xvzf Nginx_circle_gif-0.1.3.tar.gz

cd nginx

http://wiki.nginx.org/images/b/b6/Nginx_circle_gif-0.1.3.tar.gz
http://wiki.nginx.org/images/b/b6/Nginx_circle_gif-0.1.3.tar.gz

Chapter 10

199

./configure –add-module=../ Nginx_circle_gif-0.1.3

make

make install

2.	 We will then use the following in our Nginx configuration:
server {
 server_name www.example1.com;
 ...
 location / {
 proxy_pass http://backend;
 ...
 }
 location /circle {
 circle_gif;
 }
}

3.	 Now, restart Nginx to see the changes.
/etc/init.d/nginx restart

How it works…
Configuring this module is simply adding a new URL endpoint, which will act as a web API to
generate the gif. The format of the URL is as follows:

<background color>/<foreground color>/<radius>.gif

So the following URL will generate a black on white circle of radius 10 pixels. We can use this
to generate the rounded corner styles:

http://www.example1.com/circles/ffffff/000000/10.gif

Some More Third-party Modules

200

Running Python using Phusion Passenger
Nginx's primary purpose, to act as a state-of-art web and mail proxy server, has curtailed its
image as that of an all-purpose server, of which it is fully capable. We will have a look at how
can we run Python applications with Phusion Passenger as the backend.

How to do it…
We will first install all the dependencies required to install Phusion Passenger and then
configure Nginx with it in the following steps.

1.	 We will first install Ruby:
apt-get update

apt-get -y install build-essential zlib1g zlib1g-dev libxml2
libxml2-dev libxslt-dev

wget http://ftp.ruby-lang.org/pub/ruby/1.9/ruby-1.9.2-p0.tar.gz

tar -xvf ruby-1.9.2-p0.tar.gz

./configuremake

make install

2.	 We need to install rubygems, which is the package management tool for Ruby:
wget http://rubyforge.org/frs/download.php/60718/rubygems-
1.3.5.tgz

tar zxvf ./rubygems-1.3.5.tgz

cd rubygems-1.3.5

sudo ruby setup.rb

3.	 We will install rails and Passenger Phusion:
gem install rails

gem install passenger

Chapter 10

201

4.	 We will install the Passenger Phusion Nginx module, as shown in the following
screenshot:
Passenger-install-nginx-module

5.	 The following configuration is used in nginx.conf and it assumes that the application
is placed at /var/www/www.example1.com/.
worker_processes 1;
events {
 worker_connections 1024;
}

http {
 include mime.types;
 default_type application/octet-stream;

 sendfile on; keepalive_timeout 65;
 gzip on;
 passenger_root /usr/local/lib/ruby/gems/1.9.1/gems/
passenger-2.2.5; passenger_ruby /usr/local/bin/ruby;

 server {
 listen 80;
 server_name localhost;
 root /opt/nginx/html/public/;
 passenger_enabled on
}
}

Some More Third-party Modules

202

6.	 Now, a Nginx restart should let you see all the changes at work.
/etc/init.d/nginx restart

How it works…
Phusion Passenger is a very easy way to deploy production application in Rails, which is a web
framework in Ruby. It is also very efficient at deploying Python (WSGI) applications. In this recipe,
we have gone ahead and set up a small Python web script to demonstrate this capability.

See also
Chapter 6, Setting up a Python site using uWSGI

Generating graphs directly from RRDtool
in Nginx

A lot of sites today show analytics as a part of their offering. The most common form of
analytics representation is the time-based graphs, which are very efficiently generated by
RRDtool, which is a really good open source graph generation tool. In this recipe, we will
explore a module that will create a web API that you can dynamically call to get your graphs.

Chapter 10

203

How to do it…
We will first install the plugin and then configure it in the following steps.

1.	 We will install the Nginx RRDtool module; it assumes that you have already installed
RRDtools:
wget http://wiki.nginx.org/images/9/9d/Mod_rrd_graph-0.2.0.tar.
gz
tar –xvzf Mod_rrd_graph-0.2.0.tar.gz

cd nginx

./configure –add-module=../Mod_rrd_graph-0.2.0

make

make install

2.	 We will then use the following in our configuration:
server {
 server_name www.example1.com;
 ...
 location / {

 ...
 }
 location /rrd_gen {
 rrd_graph;
 }
}

3.	 Now, restart Nginx to see the changes.
/etc/init.d/nginx restart

How it works…
This set up is easy to demonstrate. Let's say that we want to generate a graph using the
following set of commands in the RRDtool:

rrdtool graph --start now-300s \--end now \
DEF:ds0=test.rrd:reading:AVERAGE \
LINE1:ds0#00FF00

You can generate the following URL, which will return the preceding graph, but it will appear as a
web URL which will simplify your life drastically. This URL contains the preceding code in an URL
encoded format appended to the http://www.example1.com/rrd_gen URL.

http://www.example1.com/rrd_gen--start%20now-300s%20--end%20now%20
DEF%3Ads0%3Dtest.rrd%3Areading%3AAVERAGE%20LINE1%3Ads0%2300FF00

http://wiki.nginx.org/images/9/9d/Mod_rrd_graph-0.2.0.tar.gz
http://wiki.nginx.org/images/9/9d/Mod_rrd_graph-0.2.0.tar.gz
http://wiki.nginx.org/images/9/9d/Mod_rrd_graph-0.2.0.tar.gz
http://www.example1.com/rrd_gen
http://www.example1.com/rrd_gen

Some More Third-party Modules

204

Using Google performance tools
The more experienced Nginx user may actually need to look into limitations of the Nginx
platform, in those cases libraries such as Google performance tools make life very easy for
the developers. We will look at setting up the Google performance tools module in this recipe.

How to do it…
We will first install the plugin and then configure it in the following steps.

1.	 We will first install the Google performance Nginx module:
cd nginx

./configure --with-google_perftools_module

make

make install

2.	 Use the following in your configuration:
worker_processes 1;
events {
 worker_connections 1024;
}
google_perftools_profiles log/profile;
http {
 include mime.types;
 default_type application/octet-stream;

Chapter 10

205

 sendfile on;
 keepalive_timeout 65;
 gzip on;
. . .

3.	 We will need to restart Nginx to see the changes.
/etc/init.d/nginx restart

How it works…
This simple directive will let us profile our worker threads. The generated profile files are
defined by the google_perftools_profiles directive, and this configuration will generate
files such as log/profile.<pid> where pid is the process ID of the worker thread whose
profiling information it is.

Serving content directly from GridFS
GridFS is a specification for storing large files in MongoDB. It basically aims to split down files
into smaller chunks which are easily manageable, and allows efficient range operations. We
will have a look at how we can configure Nginx to serve content directly from GridFS, thereby
creating a situation where you can manage all your large files through GridFS and serve them
using Nginx.

Some More Third-party Modules

206

How to do it…
We will first install the plugin and then configure Nginx in the following steps.

1.	 This recipe assumes that you have installed GridFS. We will install the Nginx gridFS
module:
git clone https://github.com/mdirolf/nginx-gridfs.git

cd nginx-gridfs

git submodule init

git submodule update

cd ../nginx

./configure --add-module=../nginx-gridfs

make

make install

2.	 We will put the following in our Nginx configuration:
server {
listen 80;

server_name www.example1.com;
. . .
location /gridfs/ {
 gridfs my_app
 root_collection=pics
 field=_id
 type=int
 user=foo
 pass=bar;
 mongo 127.0.0.1:27017;
}
}

3.	 Now, restart Nginx to check out the changes. Do make sure that GridFS is running
before you test.
/etc/init.d/nginx restart

How it works…
The configuration above enables the GridFS on a MongoDB database called my_app, with the
username password as foo and bar respectively. Any call made like http://www.example1.
com/gridfs/123/ will return the corresponding file from the pic collection with the ID 123.

http://www.example1.com
http://www.example1.com/gridfs/123/

Chapter 10

207

Configuring Basic HTTP auth using PAM
Nginx supports HTTP authentication, and as we have seen in earlier recipes, we can generate
htpasswd files which contain the valid username and passwords. However, most systems
have an existing authentication system that already integrates with PAM, and Nginx has a
plugin that already lets you authenticate with PAM.

PAM is a mechanism that integrates low-level authentication schemes into
high level programming API, thus all your programs can operate independently
to how your login system operates.

Some More Third-party Modules

208

The recipe describes a situation where you want to protect http://www.example1.com/
downloads and ensure that only LDAP authenticated users can access that part of the site.

How to do it…
We will first install the PAM authentication model and then configure Nginx in the
following steps.

1.	 We will first install the Nginx PAM auth module. This recipe assumes that you have an
already configured and working LDAP setup.
wget http://web.iti.upv.es/~sto/nginx/ngx_http_auth_pam_module-
1.2.tar.gz

tar –xvzf ngx_http_auth_pam_module-1.2.tar.gz

cd nginx

./configure –add-module=../ngx_http_auth_pam_module-1.2

make

make install

2.	 We will then put the following in our Nginx configuration:
server {

server_name www.example1.com;
. . .
location /downloads {
 auth_pam "Downloads";
 auth_pam_service_name "nginx";
}
}

3.	 We will need to put the following in /etc/pam.d/nginx:
auth required /lib/security/pam_ldap.so
account required /lib/security/pam_ldap.so

4.	 Now, you will need to restart your Nginx server.
/etc/init.d/nginx restart

How it works…
This module basically utilizes PAM as the top level API to access the LDAP authentication
structures. It first enables the authentication in the necessary location, which is /downloads
in this case. Then we set up a PAM service called Nginx, that basically utilizes the PAM LDAP
libraries to complete the authentication.

http://www.example1.com/downloads
http://web.iti.upv.es/~sto/nginx/ngx_http_auth_pam_module-1.2.tar.gz
http://web.iti.upv.es/~sto/nginx/ngx_http_auth_pam_module-1.2.tar.gz
http://web.iti.upv.es/~sto/nginx/ngx_http_auth_pam_module-1.2.tar.gz
http://www.example1.com

Chapter 10

209

Configuring Basic HTTP auth using Kerberos
If you are using Windows based systems in a heterogeneous environment, in all probability
you must use Kerberos as your authentication protocol. In situations where we are deploying
a site internally it may be useful to handle web authentication with Kerberos. Nginx has the
solution for this, as it has a module that lets you authenticate the user using Kerberos.

This recipe will take a look at how you can protect a particular web location using HTTP
authentication using Kerberos as the backend. This is a highly experimental plugin, and only
useful when you do not have an alternative to this form of authentication in your network.

Some More Third-party Modules

210

How to do it…
In this recipe, we first install the plugin and then configure Nginx to use it in the following steps.

1.	 We will first install the Nginx Kerberos module:
git clone https://github.com/mike503/spnego-http-auth-nginx-
module.git

cd nginx

,/configure –add-module=../spnego-http-auth-nginx-module

make

make install

2.	 Now we will configure the module:
location /downloads {
 auth_gss on;
 auth_gss_realm LOCALDOMAIN;
 auth_gss_keytab /etc/krb5.keytab;
 auth_gss_service_name HTTP;
}

3.	 Restart Nginx for the changes to take effect.
/etc/init.d/nginx restart

How it works…
This module defines the realm name, and then we will need to define the location of the
service credentials. Finally, we set up the service that you use to acquire the credentials.

There are some assumptions that the preceding configuration makes. Your Nginx web server
should be in the same broadcast scope of the Kerberos server and so should the client, who
will be authenticated to that server.

In another scenario, it is possible that you already have PAM with Kerberos support set up on
your server. In this case you can use the preceding recipe to set up PAM with Kerberos.

See also
The Configuring basic HTTP auth using PAM recipe, in this chapter

https://github.com/mike503/spnego-http-auth-nginx-module.git
https://github.com/mike503/spnego-http-auth-nginx-module.git
https://github.com/mike503/spnego-http-auth-nginx-module.git

Index
Symbols
$arg_PARAMETER variable 37, 70
$args variable 37, 70
$binary_remote_addr variable 37, 70, 84
$body_bytes_sent variable 37, 68, 70
$content_length variable 37, 70
$content_type variable 37, 70
$document_root variable 38, 70
$document_uri variable 38, 71
$geoip_city_continent_code variable 89
$geoip_city_country_code3 variable 89
$geoip_city_country_code variable 89
$geoip_city_country_name variable 89
$geoip_city variable 89
$geoip_latitude variable 89
$geoip_longitude variable 89
$geoip_postal_code variable 89
$geoip_region variable 89
$host variable 38, 71
$http_HEADER variable 38, 71
$http_referer variable 44, 68
$http_user_agent variable 68
$http_x_forwarded_for variable 68
$is_args variable 38, 71
$remote_addr variable 68
$remote_user variable 68
$request_uri variable 38, 71
$request variable 68
$scheme variable 38, 71
$server_addr variable 38, 71
$server_name variable 38, 71
$server_port variable 38, 71
$server_protocol variable 38, 71
$ssl_cipher variable 104
$ssl_client_cert variable 104

$ssl_client_i_dn variable 104
$ssl_client_raw_cert variable 104
$ssl_client_s_dn variable 104
$ssl_client_serial variable 104
$ssl_client_verifyt variable 104
$ssl_protocol variable 104
$ssl_session_id variable 104
$status variable 68
$time_local variable 68
$uri variable 38, 71
1x1 GIF serving module

utilizing, for offline processing 163, 164
302 redirection 36
403 error 86
404 error page

setting up 32, 33
404 logging

disabling 68
495 error code 100
496 error code 100
497 error code 100
-add-module flag 9
<block> directive 23
<echo> directive 23
<include> directive 23
--with-debug flag 10

A
access

allowing, with IP 85
blocking, with IP 85

access control
HTTP auth, setting up 94, 95
setting up, GeoIP module used 90, 91

access log
creating, for virtual host 72, 73

212

access_log directive 73
allow directive 85
any parameter 32
Apache

about 67, 130
log analyzing tools, using 67, 68

apache .htaccess
converting, into rewrites 59-61

Apache utils 94
authentication

setting up, for mail services 167-169
authorization information 169
Authorization Required page 95
auth parameter 32
auto-indexing

enabling, in Nginx 26
auto-indexing module 25
AWstats

about 68, 76
benefits 80, 81
installing 77

B
backend health module

installing 195
backend servers

health check, setting up for 194, 195
backup 65
bandwidth protection

bots, blocking for 143, 144
scrapers, blocking for 143, 144
spiders, blocking for 143, 144

Basic HTTP auth
configuring, Kerberos used 209, 210
configuring, PAM used 208

Boost 54, 56, 158
boost module

setting up, on Drupal 159-161
bots

blocking 87
blocking, for bandwidth protection 143, 144
rate limiting 87

broadcast mode 180
browser agents

using, for rewrites 40, 41

C
cache backend

Memcached module, using as 139
caching

setting up, on reverse proxy 124, 125
caching framework 54
Certificate Authority (CA) 97
certificates

generating 100
Certificate Signing Request (CSR) 100
cert.key file 97
cert.pem file 97
CGI 105, 106
CGI files

serving, Nginx used 128, 129
serving, thttpd used 128, 129

character mapping 30
circles

generating, for edges 198, 199
clean URLs 46
CLI

Nginx, reloading with 11, 12
client_body_buffer_size directive 21
client_body_in_file_only directive 21
client_body_in_single_buffer directive 21
client_body_temp_path directive 21
client_body_timeout directive 21
client_header_buffer_size directive 21
client_header_timeout directive 21
client_max_body_size directive 21
client-side caching

max-age expiry headers, setting for 142
compiling

Nginx 8, 9
compression techniques 31
conditional rewrite

creating 37
configuration, Basic HTTP auth

Kerberos used 209, 210
PAM used 208

configuration, fair load balancing 192, 193
configuration files

splitting 13-15
configuration, WordPress 106
content

adding, after particular page 23-25

213

adding, before particular page 23-25
serving, from GridFS 206

cookies
serving, for user identification 29
using, for rewrites 38, 40

COPY keyword 172
CRC-32 value 178
cron 81
Crop parameter 175
cryptography 97
CSS files

minifying, with embedded Perl 154-156
custom logs

setting up, for parsing 76-80
cyber-security teams 93

D
Dailymotion

URL 185
debug_alloc flag 10
debug_core flag 10
debug_event flag 10
debugging levels 10
debug_http flag 10
debug_imap flag 10
debug mode

Nginx, running in 10, 11
debug_mutex flag 10
default catch-all virtual host

setting up 17
default mode 193
DELETE keyword 172
deny all directive 85
deny directive 85
digg 83
directory

random web page, serving from 27, 28
directory listing, Nginx

example 25
Django 110, 139
Django package 110
django_wsgi.py file 111
download directory

simple rate limiting, setting up for 86
Drupal 52, 158
Drupal site

setting up, with static file serving 52, 54

dynamic SSI
using, for simple sites 22, 23

E
easy_install directive 110
embedded Perl

CSS files, minifying with 154-156
JavaScript files, minifying with 152-154
sitemaps (SEO), serving with 156-158

error levels
about 67
alert 67
configuring 66
crit 67
debug 67
error 67
info 67
notice 67
warn 67

error_log 11
error_log directive 73
error log path

setting up 66
error logs

404 logging, disabling 68
creating, for virtual host 72, 73

error_main format 70
error_page directive 85
error pages

setting up 32, 33
Etags

about 182
setting up, for static content 183

event driven mechanism 105
expired parameter 32
Expires header 142
expiring links

setting up 188, 189

F
Facebook 40
fair load balancing

configuring 192, 193
fair scheduling module

installing 192
FastCGI 16, 52, 187

214

fastcgi_cache directive 115
fastcgi_cache_key directive 115
fastcgi_cache_methods directive 115
fastcgi_cache_min_uses directive 115
fastcgi_cache_path directive 114, 115
fastcgi_cache_use_stale directive 115
fastcgi_cache_valid directive 115
FCGI 105, 106
FCGI cache

utilizing 114, 115
fcgi_common file 115
fcgi.conf file 14
FCGI timeouts

modifying 113
file descriptor

limits, modifying on 140
file encoding 30
files

secure link, generating for 95-97
file upload progress

reporting 196, 197
tracking 196, 197

file upload progress module
installing 196

Firebug
URL 142

first mode 180
Flash files

streaming, setting up for 162, 163
FLV files 185
FLV streaming video sites 162
footer.html file 22

G
GeoIP module

access control, setting up 90, 91
rate control, setting up 90, 91
setting up, with MaxMind database 88, 89

GET method 173
Google 68, 110, 143
googlebot 87
Google performance tools

using 204, 205
google_perftools_profiles directive 205
graphs

generating, with RRDtool 203

GridFS
about 205
content, serving from 206

Gzip compression
about 31
enabling 31

GZIP pre-compression
enabling 150

H
H.264 files

streaming 186
header.html file 22
health check

setting up, for backend servers 194, 195
healthcheck_delay directive 195
healthcheck_enabled directive 195
hotlinking

preventing, Nginx used 151
htpasswd file 94, 95
HTTP

about 172
setting up, for simple sites 97-99

HTTP auth
setting up, for access control 94, 95

HTTP authentication 93
httpd 67
http directive 89
HTTP error codes

495 100
496 100
497 100
about 100

HTTP header, variables
$arg_PARAMETER 37
$args 37
$binary_remote_addr 37
$body_bytes_sent 37
$content_length 37
$content_type 37
$document_root 38
$document_uri 38
$host 38
$http_HEADER 38
$is_args 38
$request_uri 38

215

$scheme 38
$server_addr 38
$server_name 38
$server_port 38
$server_protocol 38
$uri 38

HTTP publish-subscribe server
Nginx, using as 179, 180

Hulu videos 90
HUP signal 11
Hypertext Transfer Protocol. See HTTP

I
image

resizing, with Nginx 174
image_filter directive 174
IMAP 166
IMAP proxy server

setting up 166, 167
inactive flag 72
index.html file 22
index.php file 54
installation, AWstats 77
installation, backend health module 195
installation, fair scheduling module 192
installation, file upload progress module 196
installation, Nginx 9
installation, Passenger Phusion 201
installation, php-fpm

from PHP 5.2.x 106
installation, RRDtool 203
installation, Ruby 200
installation, rubygems 200
installation, uWSGI module 110
installing

AWstats 77
Nginx 9
php-fpm, from PHP 5.2.x 106
uWSGI module 110

internet security 93
INT signal 11
IP

access, allowing with 85
access, blocking with 85

iPhone 40

J
JavaScript files

minifying, with embedded Perl 152-154
JavaScript object notation. See JSON
JSON 181

K
keep-alives

reducing, for freeing up Nginx
workers 137, 138

Kerberos
Basic HTTP auth, configuring with 209, 210

kill command 12

L
last mode 180
Latin-1 encoding 30
lightHTTPD 130
limit_req_zone directive 84
limits

modifying, on file descriptor 140
load balancer module 132
load balancing

setting up, with reverse proxy 130, 131
log analyzers 67
log analyzing tools

using, with Apache 67, 68
log archiving 74
log file cache

enabling 72
logging 65, 71
logging formats

implementing 69, 70
log management 65
log_request_speed_filter_timeout

directive 185
logrotate script 74
log rotation

setting up 74

M
Magento

about 56
URL, for downloading 57

216

Magento site
setting up, with static file serving 57, 58

mail authentication
SSL, setting up for 170, 171

mailauth.pm file 168
mail proxy server 166
mail services

authentication, setting up for 167-169
main log format 70
maintenance page

serving,during deployment 44, 45
map module

using, for better configuration 62, 63
max-age expiry headers

setting, for client-side caching 142
max flag 72
MaxMind 88
MaxMind database

GeoIP module, setting up with 88, 89
Memcached module

about 139
using, as cache backend 139

Metacafe
URL 185

Microsoft Bing 143
MIME types 31
min_uses flag 72
MKCOL keyword 172
mod_strip module 145
mod_uid module 29
MongoDB database 206
monitoring

server status, setting up for 146
MOVE keyword 172
MP4 files 185
MP4 video files

streaming 186
msnbot 87
multiple backends

using, for reverse proxy 126, 127
multiple FCGI backends

using 115, 116
multiple servers

wildcard certificates, using with 101-103
multiple virtual hosts

setting up 16
Munin

setting up, for Nginx monitoring 147-149
MySQL database 108

N
Nginx

404 error page, setting up 32, 33
about 10, 105
access, allowing with IP 85
access, blocking with IP 85
authentication, setting up for mail

services 167-169
auto-indexing, enabling in 26
boost module, setting up on Drupal

with 159-161
caching, setting up on reverse proxy 124, 125
CGI files, serving with 128, 129
circles, generating for edges 198, 199
compiling 8, 9
configuration files, splitting 13-15
cookies, serving for user identification 29
custom logs, setting up for parsing 76-80
default catch-all virtual host, setting up 17
dynamic SSI, using for simple sites 22, 23
errors, logging for specific IP addresses 11
Etags, setting up for static content 183
expiring links, setting up 188, 189
FCGI cache, utilizing 114, 115
FCGI timeouts, modifying 113
Gzip compression, enabling 31
GZIP pre-compression, enabling 150
H.264 files, streaming 186
hotlinking, preventing with 151
HTTP auth, setting up for access

control 94, 95
HTTPS, setting up for simple sites 97-99
image, resizing with 174
IMAP proxy server, setting up 166, 167
installing 9
load balancing setup, with reverse

proxy 130, 131
log analyzing tools, using with Apache 67, 68
log file cache, enabling 72
log rotation, setting up 74
mail authentication, setting up for

SSL 170, 171
Memcached module, using as backend

217

server 139
MP4 video files, streaming 186
multiple backends, using for reverse

proxy 126, 127
multiple virtual hosts, setting up 16
multiple FCGI backends, using 115, 116
PHP FCGI site, setting up 106-109
requests, limiting for sessions 84
simple rate limiting, setting up for download

directory 86
page load times, logging 183
POP3 proxy server, setting up 166, 167
rails site, setting up with 121, 123
reloading, CLI used 11, 12
requests, splitting with split-clients 132, 133
reverse proxy timeouts, setting up 123, 124
running, in debug mode 10, 11
SCGI sites, setting up 187
secure link, generating for files 95-97
size, increasing of upload files 20, 21
SSL setup, debugging with non standard error

codes 100, 101
SSL variables, using for rewrite rules 103
TCP options, setting up for performance

optimization 136, 137
third-party modules, installing 8, 9
using, as HTTP publish-subscribe

server 179, 180
using, as reverse proxy 120, 121
using, as WEBDAV reverse proxy 172, 173
wildcard certificates, suing with multiple

servers 101-103
wildcards, using in virtual hosts 18
worker processes number, setting up 19
XML responses, transforming with XSLT

templates 181, 182
ZIP files, assembling 176, 177

nginx.conf file 13, 14, 22
Nginx directory listing

example 25
Nginx monitoring

Munin, setting up for 147-149
Nginx response

text, replacing in 175, 176
text, searching in 175, 176
white space, removing from 145

Nginx SSL variables

using, for rewrite rules 103
no-cache parameter 32
no_etag parameter 32
no_last_modified parameter 32
non standard error codes

SSL setup, debugging with 100, 101
no_rr mode 193
no-store parameter 32

O
OAuth based authentication 94
off flag 72
offline processing

1x1 GIF serving module, utilizing for 163, 164
off parameter 32

P
page load times

logging 183
PAM

about 207
Basic HTTP auth, configuring with 208

passenger phusion 121
Passenger Phusion

installing 201
Paypal

URL 98
PCRE library 9
performance optimization

TCP options, setting up for 136, 137
Perl 167
permanent redirection [301] rule 36
PGP 97
PHP 52
PHP 5.2.x

php-fpm, installing from 106
PHP FCGI site

setting up 106-109
php-fpm

about 106
installing, from PHP 5.2.x 106

Phusion Passenger
about 202
Python, running with 200-202

policy 93
POP3 166

218

POP3 proxy server
setting up 166, 167

port 3031 111, 112
port 9000 106
private parameter 32
proxy_cache_bypass directive 126
proxy_cache_methods directive 126
proxy_cache_min_uses directive 126
proxy_cache_use_stale directive 126
proxy.conf file 120
proxy_connect_timeout directive 113, 124
proxy_read_timeout directive 124
public key cryptography 97
push_subscriber_concurrency directive 180
PUT keyword 172, 173
Python

about 110
running, Phusion Passenger used 200-202

Python site
setting up, uWSGI module used 110-112

Q
QUIT signal 11

R
rails site

setting up, with Nginx 121, 123
random web page

serving, from directory 27, 28
rate control

setting up, GeoIP module used 90, 91
rate limits

using, for rewrites 42
real-time updating status page

example 178
remote logging

enabling, with syslog-ng 75, 76
request based rate limiting

setting up 42
requests

limiting, for sessions 84
splitting, split-clients used 132, 133

requests, based on HTTP referrers
blocking 43, 44

resize parameter 174, 175
reverse proxy

about 119
load balancing, setting up with 130, 131
multiple backends, using for 126, 127
Nginx, using as 120, 121

reverse proxy timeouts
setting up 123, 124

rewrite module
rewrites, writing 36

rewrite rules
SSL variables, using for 103

rewrites
apache .htaccess, conerting into 59-61
browser agents, using for 40, 41
cookies, using for 38, 40
rate limits, using for 42
variables, using in 37
writing 36

right event model
configuring 140

robots.txt file 144
rotation 65
round robin mechanism 192
RRDtool

graphs, generating with 203
installing 203

Ruby
installing 200

rubygems
installing 200

S
SCGI 105, 106, 187
SCGI sites

setting up 187
scrapers

blocking, for bandwidth protection 143, 144
secure link

generating, for files 95-97
send_timeout directive 113
server directive 84
server private key

creating 100
server status

setting up, for monitoring 146
Service unavailable page 42
sessions

219

requests, limiting for 84
simple rate limiting

setting up, for download directory 86
simple redirect

setting up 36
simple sites

dynamic SSI, using for 22, 23
HTTPS, setting up for 97-99

sitemaps (SEO)
serving, embedded Perl used 156-158

sites-available/ directory 14
sites-enabled/ directory 14
sites-enabled/site1.conf 14
site, WordPress

setting up, with static file serving 47-50
size

increasing, of upload files 20, 21
size parameter 174, 175
slashdot 83
SMTP 166
socket connections 123
spammer bots

blocking 44
spiders

blocking, for bandwidth protection 143, 144
split-clients

requests, splitting with 132, 133
SSL

setting up, for mail authentication 170, 171
SSL setup

debugging, non standard error codes
used 100, 101

SSL variables
$ssl_cipher 104
$ssl_client_cert 104
$ssl_client_i_dn 104
$ssl_client_raw_cert 104
$ssl_client_s_dn 104
$ssl_client_serial 104
$ssl_client_verify 104
$ssl_protocol 104
$ssl_session_id 104
using, for rewrite rules 103

static content
Etags, setting up for 183

static file serving
Drupal site, setting up with 52, 54

Magento site, setting up with 57, 58
WordPress site, setting up with 47-50

static_main log format 70
streaming

setting up, for Flash files 162, 163
sub_filter_once directive 176
sudo directive 110
sysctl.conf file 140
syslog-ng

remote logging, enabling with 75, 76

T
TCP_CORK socket option 137
tcp_nodelay directive 137
tcp_nopush directive 137
TCP options

about 136
setting up, for performance

optimization 136, 137
temporary redirection 36
TERM signal 11
test parameter 175
text

replacing, in Nginx response 175, 176
searching, in Nginx response 175, 176

third-party modules
installing 8, 9

thttpd
about 128
CGI files, serving with 128, 129

TLS 171
TLS library 9
try_files directive 54

U
userid directive 29
user identification

cookies, serving for 29
USR1 signal 11
USR2 signal 11
UTF-8 encoding 30
uWSGI module

installing 110
Python site, setting up with 110-112

uwsgi_params file 110

220

V
valid flag 72
vanilla installation 9
variables

using, in rewrites 37
Verisign Inc 98
video 162
video streaming 185
virtual hosts

access logs, creating for 72, 73
error logs, creating for 72, 73
wildcards, using in 18

W
Web 173
webalizer 68, 76
Web-based Distributed Authoring and

Versioning. See WebDAV
WebDAV 166, 172
WEBDAV reverse proxy

Nginx, using as 172, 173
web page encoding

modifying 30
web server 172
Web Server Gateway Interface. See WSGI
weight_mode=idle no_rr 193
weight_mode=peak 193
white space

removing, from responses 145
wilcards

using, in virtual hosts 18
wildcard certificates

using, with multiple servers 101-103

WINCH signal 11
WordPress

about 46
configuring 106

WordPress site
setting up, with static file serving 47-50

worker_connections directive 19
worker_processes configuration 12, 19
wp-supercache plugin 50
WSGI 105, 106, 110
www domain

redirecting, to non-www domain for
SEO 144, 145

X
XML responses

transforming, XSLT templates used 181, 182
XSLT templates

XML responses, transforming with 181, 182
XSLT transformation 166

Y
Yahoo! 143
yahoobot 87
YouTube

URL 162, 185

Z
ZIP files

assembling 176, 177

Thank you for buying
Nginx 1 Web Server Implementation Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Java EE 6 with GlassFish 3
Application Server
ISBN: 978-1-849510-36-3 Paperback: 488 pages

A practical guide to install and configure the GlassFish 3
Application Server and develop Java EE 6 applications to
be deployed to this server

1.	 Install and configure the GlassFish 3 Application
Server and develop Java EE 6 applications to be
deployed to this server

2.	 Specialize in all major Java EE 6 APIs, including
new additions to the specification such as CDI and
JAX-RS

3.	 Use GlassFish v3 application server and gain
enterprise reliability and performance with less
complexity

FreeSWITCH 1.0.6
ISBN: 978-1-847199-96-6 Paperback: 320 pages

Build robust high-performance telephony systems using
FreeSWITCH

1.	 Install and configure a complete telephony system
of your own even if you are using FreeSWITCH for
the first time

2.	 In-depth discussions of important concepts like
the dialplan, user directory, and the powerful
FreeSWITCH Event Socket

3.	 The first ever book on FreeSWITCH, packed with
real-world examples for Linux/Unix systems, Mac
OSX, and Windows, along with useful screenshots
and diagrams

Please check www.PacktPub.com for information on our titles

Nginx HTTP Server
ISBN: 978-1-849510-86-8 Paperback: 348 pages

Adopt Nginx for your web applications to make the most
of your infrastructure and serve pages faster than ever

1.	 Get started with Nginx to serve websites faster
and safer

2.	 Learn to configure your servers and virtual hosts
efficiently

3.	 Set up Nginx to work with PHP and other
applications via FastCGI

4.	 Explore possible interactions between Nginx and
Apache to get the best of both worlds

Squid Proxy Server 3.1:
Beginner's Guide
ISBN: 978-1-849513-90-6 Paperback: 332 pages

Improve the performance of your network using the
caching and access control capabilities of Squid

1.	 Get the most out of your network connection
by customizing Squid's access control lists and
helpers

2.	 Set up and configure Squid to get your website
working quicker and more efficiently

3.	 No previous knowledge of Squid or proxy servers
is required

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1:
The Core HTTP Module
	Introduction
	Installing new modules and compiling Nginx
	Running Nginx in debug mode
	Easy reloading of Nginx using the CLI
	Splitting configuration files for better management
	Setting up multiple virtual hosts
	Setting up a default catch-all virtual host
	Using wildcards in virtual hosts
	Setting up the number of worker processes
	Increasing the size of uploaded files
	Using dynamic SSI for simple sites
	Adding content before and after a particular page
	Enabling auto indexing of a directory
	Serving any random web page from a directory
	Serving cookies for identifying and logging
	Re-encoding the response to another
	Enabling Gzip compression on some content
	Setting up 404 and other error pages

	Chapter 2:
All About Rewrites: The Rewrite Module
	Introduction
	Setting up a simple redirect
	Using variables in your rewrite
	Using cookies for your rewrites
	Using browser agents for your rewrites
	Using rate limits as a condition for rewrites
	Blocking requests based on HTTP referrers
	Serving maintenance page when deploying
	Setting up a WordPress site with static file
	Setting up a Drupal site with static
	Setting up a Magento site with static file
	Converting your Apache's .htaccess
	Using maps to make configurations cleaner

	Chapter 3:
Get It All Logged: The Logging Module
	Introduction
	Setting up error log path and levels
	Logging it like Apache
	Disabling logging of 404 in error logs
	Using different logging profiles in the same
	Enabling a log file cache
	Utilizing separate error logs per virtual
	Setting up log rotation
	Enabling remote logging with syslog-ng
	Setting up your custom logs for easy parsing

	Chapter 4:
Slow Them Down: Access and Rate Limiting Module
	Introduction
	Limiting requests for any given session
	Blocking and allowing access using IP
	Setting up simple rate limiting for
	Rate limiting search engine bots
	Setting up GeoIP using the MaxMind country database
	Using the GeoIP module to set up access and rate control

	Chapter 5:
Let's be Secure: Security Modules
	Introduction
	Setting up HTTP auth for access control
	Generating a secure link for files
	Setting up HTTPS for a simple site
	Using non standard error codes
	Using wildcard certificates with multiple
	Using Nginx SSL variables for rewrite rules

	Chapter 6:
Setting Up Applications: FCGI and WSGI Modules
	Introduction
	Setting up a PHP FCGI site
	Setting up a Python site using uWSGI
	Modifying FCGI timeouts
	Utilizing FCGI cache to speed it up
	Using multiple FCGI backends

	CHapter 7:
Nginx as a Reverse Proxy
	Introduction
	Using Nginx as a simple reverse proxy
	Setting up a rails site using Nginx as
	Setting up correct reverse proxy timeouts
	Setting up caching on the reverse proxy
	Using multiple backends for the reverse
	Serving CGI files using thttpd and Nginx
	Setting up load balancing with reverse proxy
	Splitting requests based on various conditions using split-clients

	Chapter 8:
Improving Performance and SEO Using Nginx
	Introduction
	Setting up TCP options correctly for optimizing performance
	Reducing the keep-alives to free up Nginx
	Using Memcached as the cache backend
	Configuring the right event model and file limits
	Setting max-age expiry headers for client-side caching
	Blocking scrapers, bots, and spiders to save bandwidth
	Redirection of www to non-www domain for SEO
	Removing all white space from response
	Setting up server status for monitoring
	Setting up Munin for 24x7 Nginx monitoring
	Enabling GZIP pre-compression
	Preventing hotlinking using Nginx
	Using embedded Perl to minify JavaScript files
	Using embedded Perl to minify CSS files
	Using embedded Perl to serve sitemaps (SEO)
	Setting up Boost module on Drupal with Nginx
	Setting up streaming for Flash files
	Utilizing the 1x1 GIF serving module to do offline processing

	CHapter 9:
Using Other Third-party Modules
	Introduction
	Setting up an IMAP/POP3 proxy server
	Setting up authentication for mail services
	Setting up SSL for mail authentication
	Using Nginx as a WEBDAV reverse proxy
	Dynamic image resizing using Nginx
	Replacing and searching text in Nginx response
	Assembling ZIP files on the fly
	Using Nginx as a HTTP publish-subscribe server
	Transforming XML responses using XSLT templates
	Setting up Etags for static content
	Easy logging of page load times
	Streaming of MP4/H.264 files
	Setting up SCGI sites
	Setting up expiring links

	Chapter 10:
Some More Third-party Modules
	Introduction
	Configuring a fair load balancing
	Setting up health checks for backend servers
	Tracking and reporting file upload progress
	Generating circles for round edges using Nginx
	Running Python using Phusion Passenger
	Generating graphs directly from RRDtool in Nginx
	Using Google performance tools
	Serving content directly from GridFS
	Configuring Basic HTTP auth using PAM
	Configuring Basic HTTP auth using Kerberos

	Index

